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Abstract 
 

This thesis explores the use of Mobile Thermography1, a significantly less investigated sensing 

capability, with the aim of reliably extracting a person’s multiple physiological signatures and 

recognising mental stress in an automatic, contactless manner. Mobile thermography has greater 

potentials for real-world applications because of its light-weight, low computation-cost 

characteristics. In addition, thermography itself does not necessarily require the sensors to be 

worn directly on the skin. It raises less privacy concerns and is less sensitive to ambient lighting 

conditions. 

The work presented in this thesis is structured through a three-stage approach that aims to 

address the following challenges: i) thermal image processing for mobile thermography in 

variable thermal range scenes; ii) creation of rich and robust physiology measurements; and iii) 

automated stress recognition based on such measurements. Through the first stage (Chapter 4), 

this thesis contributes new processing techniques to address negative effects of environmental 

temperature changes upon automatic tracking of regions-of-interest and measuring of surface 

temperature patterns. In the second stage (Chapters 5,6,7), the main contributions are: robustness 

in tracking respiratory and cardiovascular thermal signatures both in constrained and 

unconstrained settings (e.g. respiration: strong correlation with ground truth, r=0.9987), and 

investigation of novel cortical thermal signatures associated with mental stress. The final stage 

(Chapters 8,9) contributes automatic stress inference systems that focus on capturing richer 

dynamic information of physiological variability: firstly, a novel respiration representation-based 

system (which has achieved state-of-the-art performance: 84.59% accuracy, two stress levels), 

and secondly, a novel cardiovascular representation-based system using short-term 

measurements of nasal thermal variability and heartrate variability from another sensing channel 

(78.33% accuracy achieved from 20seconds measurements). Finally, this thesis contributes 

software libraries and incrementally built labelled datasets of thermal images in both constrained 

and everyday ubiquitous settings. These are used to evaluate performance of our proposed 

computational methods across the three-stages. 

 

 

 

 

                                                 
1 Thermography is also called thermal imaging. In this thesis, Mobile Thermography is defined as thermal 

imaging using mobile, low-cost thermographic systems allowing them to perform in unconstrained, mobile, 

real world situations. 
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Impact Statement 
 

This thesis proposes a new pathway to physiological and stress measurements through mobile 

thermal imaging. State-of-the-art performance achieved from tests with the use of small, light-

weight, and more importantly, low-cost sensing devices makes itself more feasible and practical 

in supporting real-world applications. Its physiological computing2 capability alone can benefit 

general healthcare and fitness sectors by providing contactless, simultaneous measurements of 

multiple vital signs to specific user groups, for example, people with chronic pain who tend to 

reduce the number of clothes and/or devices that touch their body. The physiological computing-

empowered mental stress detection capability can produce fundamental beneficiaries to this 

modern society where mental stress has become a critical problem.  

This form of stress strongly affects our wellbeing. With disabled people for instance, even 

basic everyday tasks such as using public transport to go shopping can induce high level stress. 

However, people are often not aware of their stress level until it becomes too high. Long exposure 

to this situation leads to further impairment of their mental capability, such as attention, memory 

and decision-making (Yerkes & Dodson, 1908). The ability to automatically recognise a person’s 

mental stress is fundamental to the personalisation of better and continuous stress management 

support. To date however, the only technologies which are available for this are intrusive, heavy, 

fragile, or restrict mobility and movement, therefore limiting their use. On the other hand, our 

proposed advanced tracking methods which enable low-cost, mobile thermography to have the 

ability to create new opportunities for a wide range of user groups, spanning from therapists to 

the general public.   

This thesis has also strong industrial impact. Low-cost mobile thermal cameras first 

arrived on the market a couple of years ago. However, tools for mobile thermal imaging have 

remained very limited. Our proposed novel frameworks and computational methods, which 

activate reliable mobile thermal imaging, and furthermore physiology/stress sensing in 

                                                 
2  In this thesis, we define physiological computing as technology that listens to a person’s bodily 

(physiological and psychological) states and needs. 
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unconstrained real-world settings, can help build new industrial areas. Indeed, we have applied 

our proposed approach to industrial sectors through the EU H2020 Human research project3 in 

order to help tailor factory workers’ work schedule towards their psychological needs. We have 

also tested our own distinctive advantages against commercially available sensors (e.g. bracelet-

based devices interfering with machine operation). Already, some industrial partners (i.e. small 

and big companies4) have expressed their interest with building consumer solutions. 

Finally, research-driven software libraries, datasets and tools made within this thesis, 

which have been released to foster this research, can have a strong impact upon this area of 

research. Many academic and industrial research institutions have had access to the released 

outcomes. For example, our released datasets have been used by circa 20 research institutions (by 

October 2018)5. All in all, this thesis is expected to contribute towards helping shape our lives in 

beneficial ways.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

                                                 
3 http://www.humanmanufacturing.eu/ 
4 For example, Samsung, LG, Sony and Huawei, etc. 
5 Another example is our paper published at CHI’18 (Cho et al., 2018), which has been downloaded more 

than 800 times within 6 months (between late April and mid-October in 2018). 
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Glossary 
 

Terminology Definition 

Autonomic Nervous System 

(ANS) 

the part of the nervous system responsible for control of the 

bodily functions not consciously directed, such as breathing, 

the heartbeat, and digestive processes. 

Cardiovascular relating to the heart and blood vessels. 

Cerebral Blood Flow (CBF) the blood supply to local functional areas of the brain. 

Convolutional Neural 

Network (CNN) 

an artificial neural network built mainly with convolutional 

layers. 

Cortical relating to the outer layer of the cerebrum. 

Corticotropin-Releasing 

Hormone (CRH) 

a peptide hormone or neurotransmitter responding to 

stressors. Also known as corticotropin-releasing factor 

(CRF). 

Directionality of 

temperature 

a characteristic in terms of a binary direction of thermal 

variations. 

Stress 

[definition 1] (Selye, 1980)  

the nonspecific response of the body to any demand. 

[definition 2] (Oxford English Dictionary, 2018) 

a state of mental or emotional strain or tension resulting 

from adverse or demanding circumstances. 

Spectrogram 

 

a photographic or other visual or electronic representation of 

a spectrum. 

Mobile Thermography 

 

thermal imaging using a mobile, low-cost thermographic 

system allowing themselves to perform in unconstrained, 

mobile, real world situations. It is also called mobile thermal 

imaging. 

Nasal relating to the nose. 

Perspiratory relating to or affecting sweating or the sweat glands. 

Physiological Computing 

technology that listens to a person’s bodily (physiological 

and psychological) states and needs (definition proposed in 

the thesis). 

Quantisation 

a process to approximate (a continuously varying signal) by 

one whose amplitude is restricted to a prescribed set of 

values. 

Region of Interest (ROI) a selected local region of an image. 

Respiratory 
relating to or affecting respiration (breathing) or the organs 

of respiration. 

ROI Tracking 
a method to keep track of the position of an region of 

interest (ROI) on image sequences. 

Skew (of a statistical distribution) not symmetrical. 

Skewness a measure of the asymmetry of a probability distribution  
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Thermal relating to heat.  

Thermography 

a method to measure, and visualise, spatial temperature 

distributions of (an) object(s), materials and scenes, etc. It is 

also called thermal imaging.  

Variability lack of consistency or fixed pattern, liability to change. 

Vasoconstriction the narrowing of blood vessels. 

Vasodilation the widening of blood vessels 
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Chapter 1 

 

Introduction 
 

“Emotional activity causes a rise of temperature (in the head); this 

rise is, moreover, more rapid and of greater degree than that seen in 

intellectual work.” 

J.S Lombard (1878) 

 

 

1.1. Background   

With sensing technology becoming pervasive in our everyday life, the ability to monitor human 

psychophysiological states has become important in human computer interaction. Amongst such 

states, high level mental stress or mental workload is a common problem affecting mental, 

physical health and life in our modern society (Nash & Thebarge, 2006; McEwen, 2007; Arnsten, 

2009). Studies show that mental stress could be automatically assessed through the use of these 

physiological sensing technologies, in turn opening new potential ways for stress management 

support strategies (Healey & Picard, 2005; Hosseini & Khalilzadeh, 2010; Hernandez et al., 2011; 

Hong et al., 2012; Sano & Picard, 2013; Al-Shargie et al., 2016; Yu et al., 2018). However, to 

date, such available technologies are relatively heavy, fragile, or restrict mobility, movement and 

measurement environments, limiting their use. This thesis focuses on building new approaches 

to more reliable physiological and stress measurements using low-cost and mobile sensing 

technology, supporting unconstrained and potentially a variety of everyday situations.  

Mental stress is a complex phenomenon given its definition, “the nonspecific response of 

the body to any demand” noted by Hans Selye who first introduced the term stress in 1926 (see 

his exemplary guidance to stress research, Selye, 1980). As stress influences a person’s neural 

and physiological processes, various approaches have been proposed to extract signatures of the 

human stress response. Sensing channels for cardiovascular (e.g. heart rate, heart rate variability, 

blood pressure, vasoconstriction/dilation-induced temperature), respiratory (e.g. breathing rate, 
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tidal volume), perspiratory (e.g. skin conductance level and response rate), muscular (e.g. 

muscular electric wave, muscle activation-induced temperature) and neural activities (e.g. brain 

electrical wave, cerebral blood flow activation) have been employed as physiological measures 

of stress (Healey & Picard, 2005; Hosseini & Khalilzadeh, 2010; Hernandez et al., 2011; Hong 

et al., 2012; Engert et al., 2014). To ensure high performance, existing works require direct or 

close contact to the body, often using cumbersome attachment mechanisms (e.g. chest belt, EEG 

cap) and often highly constrained settings, limiting its deployment in real world applications. 

Interestingly, like systems for capturing behavioural data in a contactless manner, such as 

body motion (Kleinsmith & Bianchi-Berthouze, 2013) and voice (Lane et al., 2015), researchers 

have shown that affect-related physiological signatures can also be captured via non-contact 

sensing devices, such as thermal cameras (e.g. respiration monitoring in Pereira et al., 2015) and 

RGB cameras (as remote photoplethysmography to measure blood volume pulse in Verkruysse 

et al., 2008). Whilst RGB camera-based methods suffer from illumination and privacy issues, 

thermography is much less affected by those constraints (Lloyd, 2013). In addition, studies have 

shown that different types of physiological activities can be read through the use of a thermal 

imaging channel (Garbey et al., 2007, Pavlidis et al., 2012, Pereira et al., 2015). 

Thermography, also called thermal imaging, which interprets electromagnetic radiation 

emissions into temperatures and visualises them on a two-dimensional image, is a key non-

contact and non-invasive method that helps to capture heat distributions over human cutaneous 

skin regions. With advancements in commercial thermal imaging technologies, thermography 

has supported studies to explore the relation of a person’s skin temperature with his/her affective 

or mental states (an example of facial thermal images of the author is shown in Figure 1.1a, which 

was taken by a high-precision thermal camera in Figure 1.1b). A variety of studies have 

investigated patterns of temperature variations (e.g. thermal direction) associated with 

psychological states. For example, Engert et al. (2014) explored thermal responses of a person’s 

facial regions to mental stressors, finding a significant drop in nasal temperature due to stress-

induced vasoconstriction of the area. Computational physiologists have also explored capabilities 

of thermal imaging in extracting other types of physiological signals (e.g. respiratory rate in 

Pereira et al., 2015 and cardiac pulse rate in Garbey et al., 2007).  
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   (a)                                                                    (b)                                           (c) 

  

 

Figure 1.1. (a) an example of a thermal image of the author taken by (b) a high-precision, high-

cost, heavyweight thermal camera (FLIR SC5000mb) – dimension: 320x141x159 mm3; weight: 

3,800.0g (this camera also needs to be used with a powerful desktop/laptop for data collection). 

And (c) a low-precision, low-cost, lightweight thermal camera (FLIR One 2G) – dimension: 

34x68x14 mm3; weight: 36.5g 

 

 

Although earlier initial investigations have shown promising capabilities of thermal 

imaging in assessing affective states and measuring a person’s physiological signals,  the findings 

in the literature are mostly limited to discussions of binary directions of thermal variations 

(thermal directionality) on facial and palm regions in association with certain affective states 

(Genno et al., 1997; Pavlidis et al., 2002, 2012; Gane et al., 2011; Engert et al., 2014). Its 

simplicity makes it susceptible to noise due to many external (e.g. environmental temperatures) 

and internal (e.g. body conditions) factors, being likely to lose important information as often 

reported in studies using other physiological channels (Billman, 2013). 

In addition, performance of physiological measurements using thermal imaging has been 

still very limited as they require highly constrained settings in terms of room temperatures and a 

person’s mobility. This has been one of factors limiting the capability of physiological thermal 

signatures in assessing a person’s affective states. In particular, despite other types of thermal 

signatures discovered such as respiratory thermal signatures, only the simple directional 

information has been considered in assessing mental stress, often resulting in inconsistent 

findings. For example, while Engert et al. (2014) reported a significant temperature drop of the 

chin in response to mental stress, Veltman & Vos (2005) reported there was no significant change 
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in temperature of the same area. Furthermore, all of the earlier studies have employed 

heavyweight and expensive thermographic systems (e.g. Figure 1.1b – cost: over £10,000 in 2017, 

weight: 3,800g, dimension: 320x141x159mm3), which can only be set up in certain positions and 

require to be used with additional powerful computing machines for data collection, hence limit 

their use to highly constrained laboratory settings, in turn making themselves less likely to be 

used in mobile, everyday HCI applications. 

Now, we are standing at an exciting moment when advanced thermography technology 

has emerged, producing a new category of thermographic systems: mobile, low-cost thermal 

imaging system (e.g. Figure 1.1c – cost: lower than £200 in 2017, weight: 36.5g, dimension: 

34x68x14 mm3). Despite the relatively low quality of their thermal imaging outputs, this 

technology could help bridge the gap between the preliminary findings from highly constrained 

laboratory environments and real-world applications in the wild. Indeed, its portability (e.g. small 

size and low computational resource requirement) allows it to not only be easily attached to 

mobile phones but also be integrated into our clothes and accessories. Inspired by the initial 

explorations in the body of earlier work of thermal imaging as a measure of physiological and 

affective states, this research aims to explore how to bring Thermography into unconstrained, real 

world human computer interaction as a multimodal physiology and mental stress sensing channel.  

 

 

1.2. Research Questions, Scopes and Contributions 

To achieve the aim addressed above, we discuss our research questions, the scope and 

contributions of this thesis in this section. Figure 1.2 shows our research question tree starting 

with a key question, “Can mobile, low-cost thermography be used as multiple physiological 

measures for automatic recognition of a person’s mental stress in HCI settings?”. We discuss 

each detail below. 
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Figure 1.2. Research Question (RQ) Tree: the main research question leads to detailed sub-

questions along with three themes: i) signal processing techniques for mobile thermal imaging, 

ii) physiology measurements through mobile thermal imaging, iii) automated stress recognition 

based upon mobile thermal imaging 
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Improving Signal Processing Techniques for Mobile Thermal Imaging 

RQ1. A) How can we address the effect of variable thermal range scenes, which is one of the key 

challenges in automatic tracking of ROIs (Regions of Interest) in real world, mobile situations? 

The ultimate goal of this work is to formulate methods which can bring mobile thermal 

imaging into a variety of health-related real-life applications. Until recently, thermographic 

systems have been regarded as infeasible and impractical solutions for physiological and 

psychological measurements because they were very costly and heavy as highlighted by Gastel 

et al. (2016). The emergence of recently launched mobile thermographic systems, which are low-

cost and small-sized (e.g. Figure 1.1c), opens the possibility of their use in unconstrained, 

ubiquitous mobile settings. However, to have mobile ubiquitous systems that operate in the 

general environment and not merely controlled indoor-laboratory settings we ought to confront 

the key challenge: highly-variable environmental temperature which negatively affects 

morphological, graphical properties of thermal images in automatically tracking a Region-Of-

Interest (ROI), which is a prerequisite to reliably and continuously extract physiological 

signatures.  

To overcome the limitations, we propose new quantisation-based pre-processing 

techniques for enabling existing ROI tracking methods to properly perform in uncontrolled 

thermal range scenes. The performance of our approach is evaluated by comparison with state-

of-the-art methods without the proposed quantisation in settings of incremental complexity in 

terms of mobility and variability of environment temperature. The main concept is proposed and 

verified in Chapter 4 and further investigations are made based upon this method in accordance 

with different ROIs in Chapters 5 and 6. 

 

RQ1. B) How can we generalise the proposed approach (above) to other material temperatures 

than human skin temperatures?  

Answering the question, we aim to demonstrate the general capability of the proposed 

quantisation-based pre-processing to other material temperatures in real world settings. In 

particular we investigate how it can contribute to building another HCI application of thermal 

imaging beyond physiological and affective computing applications which is the focus of this 

thesis. Thermal imaging has also been investigated for other HCI applications. For instance, 

Larson et al. (2011) proposed a thermal imaging-based surface gesture recognition system which 

uses residual heat traces on a surface. Kurz (2014) extended this concept to support touch 
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detection in 3D augmented space. Shirazi et al. (2014) have shown how to use thermal reflection 

characteristics of materials for gestural interaction. However, these approaches have also limited 

their use to constrained settings due to the use of high-cost, heavyweight thermal cameras. Given 

this (even in other HCI applications), the issue due to environmental temperature changes have 

been unaddressed up to this point. To address this, the last part of Chapter 4 targets a specific 

task, classification of material types collected outdoors where ambient temperature is extremely 

dynamic. Despite computational methods built for this not being directly used in the following 

chapters, the findings provide general insights of the significant role of the quantisation process. 

 

The main outcome from the question RQ1(A,B) is the base for physiological computing 

and automatic stress recognition following from the structure of this thesis. Software libraries 

built for these methods are publicly available on web-based archives (e.g. GitHub) to foster the 

approaches in this research community.  

 

Enabling Mobile Thermal Imaging as Multiple Physiological Measures 

Amongst three questions below to address the challenge, the first two questions are about 

how to achieve robustness in monitoring documented physiological responses, i) respiratory and 

ii) cardiovascular thermal responses in unconstrained settings. This selection of the two responses 

is particularly important due to both being the most rigorously investigated in the literature. At 

the same time, tracking them reliably in unconstrained settings have been underexplored, which 

will be tackled within this thesis. The remaining question among the three is about an 

investigation of a new cortical thermal response from underexplored regions. This is to tackle 

another limitation of the body of earlier work whose findings have been primarily from facial 

regions.  

 

RQ2. A) Can respiratory signatures be recovered through thermography in unconstrained HCI 

settings? If so, how can we build methods for robust respiration tracking using thermal imaging?  

This thesis focuses on how to reliably recover respiratory signatures from the breathing 

induced air exchanges inside the nostril which is the key region where we can observe thermal 

changes along with inhalation and exhalation cycles (Pereira et al. 2015). By doing so, we further 

identify key issues in unconstrained settings: difficulty in automatically tracking the nostril due 
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to noise coupled by motion artefacts (mobility) and thermal dynamics (varying ambient 

temperature), and the degraded quality of respiration signals due to the noise together with the 

low resolution of mobile thermal imaging. Hence, we propose novel methods to robustly track 

the nostril and respiratory signature in Chapter 5. The proposed methods are thoroughly evaluated 

in three studies which are conducted with different levels of complexity in terms of the issues 

addressed. The contribution of the robustly tracked respiratory thermal signature to stress 

recognition is thoroughly investigated in Chapter 8 where a breathing-based stress inference 

system is built.  

 

RQ2. B) Can we continuously monitor stress-induced vasoconstriction/dilation patterns from the 

nose tip in unconstrained settings? And can we build a rich set of metrics to quantify variations 

in the patterns? 

While binary directions in thermal variances on a facial ROI (e.g. nasal) occurring in 

association with a person’s affective state has been the main focus in this field of study, 

computational algorithms for supporting the analysis (e.g. automated tracking of a ROI) have 

been very limited in a majority of earlier works (e.g. a dot stick was used for the tracking of the 

ROI in Nhan & Chau, 2010). In particular, although it has been repeatedly shown that the 

vasoconstriction/dilation-related temperature drop from the nose tip occurs in response to mental 

stressors, there has been a lack of methods to continuously and reliably capture the entire pattern 

of cardiovascular signature rather than just a binary direction. As discussed above, the simplicity 

of the metric measuring the direction makes it susceptible to noise due to a variety of external 

and internal factors such as variable thermal range scenes and physical, psychological conditions 

of a person, possibly losing important information. 

Inspired by a controlled study which has found the very quick response of the signature 

under mental load (Abdelrahman et al. 2017), in Chapter 6 we propose computational methods 

and metrics to automatically track the signature and quantify even subtle, but informative 

variations in it from where head motion and environmental temperatures are not controlled.  The 

proposed methods are thoroughly evaluated in a controlled systemic experiment and an 

unconstrained stress induction study. The contribution of the robustly tracked nasal 

vasoconstriction/dilation related thermal signature to stress recognition is thoroughly investigated 

in Chapter 9 where an instant stress detection task is used.  
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Beyond the known physiological thermal signatures which are mostly from our facial area 

which is explored in the literature, this thesis investigates underexplored regions which could 

show thermal responses to stressors. Based on evidence from the human physiology on heat 

production, the scalp is chosen as a new ROI to identify its cortical thermal response.  In detail, 

this thesis aims to answer: 

 

RQ2. C) Can thermal responses of brain local regions to mental stress be observed by using low-

cost thermal cameras? If so, how can we build methods and metrics to capture cortical thermal 

signatures? 

Various local regions over the scalp can be monitored using mobile thermal imaging by 

taking advantage of it being lightweight and portability by contrast with dominantly used 

heavyweight devices. A low-cost, mobile thermal camera can be installed above a person’s head 

easily and this recording setup does not require to obstruct one’s vision in real life situations. 

With this, the thesis builds new methods for cortical mapping on thermal images to find strong 

cues related to brain activation (i.e. cerebral blood flow) in Chapter 7. For this, we search for 

neurological and physiological evidence of heat production of the brain in response to mental 

stressors and then elaborate stress-related local brain regions for the choice of ROIs.  

 A computational mapping procedure can be built on the automatic ROI tracking methods 

proposed in the earlier chapters, which provide the positional information of a ROI. However, 

the scope of this work does not include the design of a new tracker. We also investigate a wide 

variety of metrics to quantify cortical thermal signatures. The investigations and evaluations are 

undertaken in an unconstrained stressful situation to lead initial discussions and a highly 

constrained stress induction study which minimises motion and hair-induced noise which may 

contaminate signatures. Given the aiming at initial explorations of new cortical thermal signatures, 

the outcome is not further extended in the following chapters where stress recognition systems 

are built.  

 

With the outcomes from the proposed physiological computing approaches, this thesis 

finally aims to build automated stress recognition models and systems. In particular, we 

investigate the contribution of each robustly tracked physiological signature (i.e. respiratory and 
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cardiovascular thermal signatures) to mental stress inference since their roles have been weak or 

underestimated. With this purpose, the next question is: 

 

Automatically Recognising a Person’s Mental Stress 

RQ3. A) How can respiratory thermal signature itself contribute to building automatic stress 

recognition systems?  

In the computing literature of automated stress recognition, it has been shown that the 

contribution of traditional gross respiration metrics (e.g. average breathing rate for a certain 

duration) to automatically recognising stress is weak in comparison with other physiological 

features (e.g. heart rate variability). This may be due to limitations of the widely used metrics 

simplifying the physiological information. Indeed, Grossman (1983), a physiologist, addressed 

earlier, “stressful events could affect a person’s respiration irregularity”. Inspired by his note, 

this thesis proposes a new bi-dimensional way to represent respiration signature which can 

condense dynamic respiratory information. This allows us to conduct the in-depth analysis of 

respiration variability in relation to mental stress in Chapter 8. Furthermore, a deep learning-

based framework is designed for automatic feature learning on the proposed signature. 

Consequently, the thesis presents a novel respiration-based unimodal stress recognition system 

trained on a dataset we have collected from a stress induction study. 

 

The next and the last question is: 

RQ3. B) How can the nasal vasoconstriction/dilation related thermal signatures contribute to 

very fast stress recognition together with other types of cardiovascular signals from another 

mobile sensing channel (HRV from PPG)? 

To jump up one more step, this thesis aims to investigate instant stress recognition (i.e. 

inferring mental stress levels from a very short period of physiological measurements – several 

seconds) considering that a variety of systems must take a relatively long term window of data 

(several minutes to a few hours) to ensure reliable inferences (McDuff et al., 2016), which may 

not be feasible in real world situations. In Chapter 9, we investigate the contribution of the nasal 

vasoconstriction/dilation related signatures to this particular task. Here, we also take a look at 

other types of cardiovascular signals, photoplethysmography, which can be simultaneously 
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obtained from a mobile phone-based setup (which is a controller of mobile thermal imaging). The 

practicality and feasibility of the proposed system is tested in unconstrained stress inference tasks.  

 

Answering the organised research questions, this thesis finally proposes Mobile 

Thermography as a new multi-modal physiology and stress sensing channel, which can be 

potentially used to tailor physical and mental activities to a person’s affective needs in real world 

applications. 

 

 

1.3. Thesis Structure 

The rest of the thesis is organized as follows:  

In Chapter 2, a literature review is conducted to identify (a) a past use of temperature 

measurements and available commercial thermographic systems, (b) how thermal imaging can 

be used to measure physiological signatures (e.g. direction of thermal variations and respiration), 

and earlier challenges, (c) earlier findings on affect (including stress)-related thermal signatures, 

and (d) explorations of human physiology and neurology on stress-related heat production to find 

new regions of interest over the scalp, which respond to stress. 

In Chapter 3, the main research methodology is proposed together with a summary of 

basic tools for mobile thermal imaging, experimental protocols for incrementally building 

datasets, and evaluation methods.  

We start looking at Stage I (Chapter 4). First, we propose a new thermal image pre-

processing method, Optimal Quantisation, which can minimise negative effects of ambient 

temperature on automated tracking processes of ROIs on the human skin. Second, we 

demonstrate the general capability of the approach to other material types than the human skin to 

show how the method can be used in other HCI applications of thermal imaging (Chapter 4).  

At Stage II (Chapters 5, 6 and 7), we dive into three different physiological thermal 

signatures. The first two chapters focuses on the two documented physiological signatures in the 

literature: respiratory signature (Chapter 5) and nasal vasoconstriction/dilation-related 

cardiovascular signature (Chapter 6). In particular, we explore how to achieve reliable accuracies 

in computationally tracking each signature in unconstrained, mobile and ubiquitous situations 
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(e.g. walking outside in Chapter 5). The remaining chapter (Chapter 7) explores novel cortical 

thermal signatures from underexplored areas (i.e. local regions of the scalp) in relation to cortical 

activation and deactivation of local cortical areas associated with mental stress. 

At Stage III (Chapters 8, 9), we explore the contribution of each physiological thermal 

signature to stress detection. Particularly, we focus on respiratory and cardiovascular signatures 

as they are able to be robustly tracked using the proposed methods in the second stage. As the 

computing literature has shown that their roles have been weak in this particular task and 

incongruent results have been often reported, we investigate how to address the issues by focusing 

on each signature separately rather than combining all signatures together to obtain better 

performance. With this focus, we propose a non-contact stress recognition model which is based 

upon a newly proposed two-dimensional respiration signature in relation to mental stress levels 

(Chapter 8), and then we explore the contribution of the nasal vasoconstriction/dilation related 

thermal signatures to a very fast stress recognition procedure together with other types of 

cardiovascular signals from another mobile sensing channel (Chapter 9).  

Finally, this thesis ends with conclusions in Chapter 10. In the next chapter, we dive into 

research literature in the areas spanning from the use of earlier thermometry, thermal imaging, to 

human physiology in relation to stress-related heat production.  
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Chapter 2 

 

Background 
 

As humans are homeothermic, our internal temperature is closely linked with numerous 

physiological and psychological mechanisms. Given this, human thermal patterns have been 

explored to improve the understandings of our body for a couple of centuries. This thesis is also 

concerned with this, particularly, how to more reliably interpret a person’s temperature into 

physiological signatures and help detect our psychological stress, possibly in any situations. 

Through this chapter, we dive into existing methods, paradigms and physiological evidence 

around the thermal mechanism. First, we start looking at thermal measurements spanning from 

earlier thermometry to modern thermal imaging, and their use. Second, we discuss recent studies 

exploring the use of thermography in capturing a person’s physiological cues and understanding 

affective states through thermography. Then, we review human physiology of heat production to 

discuss an underexplored thermal body area and its related signatures. Finally, we state the 

challenges and limitations which have emerged from the literature.  

 

 

2.1. An Overview: from earlier Medical Thermometry to 

state-of-the-art Thermal Imaging 

A brief history of medical thermometry 

Back to the eighteenth century when the first mercury thermometer was invented by D.G. 

Fahrenheit in 1714 (Fahrenheit, 1724), physiologists and philosophers had begun to explore 

bodily heat of a living mammal in relation to medical symptoms (Pearson, 1786; Crawford, 1788). 

Authors observed that certain types of diseases or inflammatory disorders could induce an 

increase of the temperature of the body. In the nineteenth century, the bodily temperature of 
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patients had been more rigorously investigated; in turn, the heat monitoring had started to be used 

as a diagnostic and prognostic tool for fatal diseases such as tumours and phthisis (Jackson, 1828; 

Ringer, 1873; Donkin, 1879). In the late nineteenth century when physiologists brought up the 

underexplored topic of the cognitive, sensorial, and emotional functions of the brain to the 

research community (James, 1884), their earlier attentions given to the body temperature had 

been extended to the heat from the brain. In 1877, to the best of the author’s knowledge, Broca 

applied thermometry to the surface of the head, for the first time, to estimate the mean temperature 

of the brain (Anon, 1877; Haller Jr, 1985)6. A few years later, Lombard investigated the head 

temperature under cognitive and emotional conditions (Lombard, 1878a, 1878b). The author 

found increases of temperatures from three segmented regions of the head: anterior, middle and 

posterior.  

Explorations on the temperature of the human body and the brain had continued 

throughout the first half of the twentieth century in which thermometry became more accurate 

and more general in use; in particular, psychiatrists and neurologists had studied the effect of 

affects and emotions on the bodily temperature of a human being (Ziegler & Cash, 1938) and 

emotional hypothermia in an animal (Grant, 1950). These earlier discoveries with the 

thermometry over the previous centuries paved the way for the understanding of what 

temperature changes of our body regions would mean; however, it was almost impractical to 

observe temperatures from the entire skin surficial area which may have different patterns until a 

new type of thermometry was invented and commercialised around the middle of the twentieth 

century – that is, the infrared thermal imaging camera (see the historical review of the thermal 

imaging devices; Lloyd, 2013).  

 

Thermal imaging (thermography) Technology 

Non-contact thermography is a key non-invasive method to study heat distributions on the 

surface of materials and organisms based on the interpretation of naturally emitted 

electromagnetic radiations into temperatures. Most commercial thermographic cameras sense the 

electromagnetic radiations (the wavelength range: between approximately 8µm and 14µm) from 

surfaces of objects and materials, providing thermograms of them. Thermograms can have a wide 

range of spatial and temporal resolutions similar to images captured by RGB-vision cameras. 

                                                 
6 As Broca’s original paper was not available online in 2015-2018 when the thesis was written, we referred 

to two review articles published in 1877 (The Lancet) and in 1985 (The Western Journal of Medicine). 
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Here, the ability to read electromagnetic radiations outside the visible spectral range (so-called 

visible spectrum) differentiates their benefits from the visible spectrum-based imaging devices, 

such as RGB cameras, which are susceptible to illumination effects: for instance, extremes of 

darkness and brightness incapacitate imaging capabilities due to sensor saturation or sensitivity 

(Liu et al., 2010; Aittala et al., 2015).  

In detail, human eyes and RGB cameras that mimic the eyes are only sensitive to a narrow 

range of electromagnetic spectrum called “visible light”. They capture objects through the 

radiations in the visible spectrum their surface emits or reflects when hit by a source of light 

(Roychoudhuri et al., 2008). This means that without sources emitting visible light, such as the 

sun or incandescent bulbs, this type of vision system is generally unable to “see” the world. 

According to Planck’s law, every object above absolute zero emits thermal radiation (Pavlidis et 

al., 2000; Vollmer & Klaus-Peter, 2017). Most of emitted radiations fall in the infrared spectrum 

range (circa between 0.9 and 14 μm) rather than the visible spectrum range (approximately 

between 380 and 780 nm). Thermal cameras are designed to capture infrared radiations while 

RGB cameras are not.  

A wide range of factors influence capturing of thermal radiation patterns emitted from 

materials. Some examples are compound combinations of materials, surface structure, such as 

the level of roughness, and geometry such as existence of cavities. Thus, what thermal imaging 

systems measure is actually estimated temperature using some thermal parameters, such as, the 

emissivity which is the level of effectiveness of materials in emitting energy as thermal radiation 

(Vollmer & Klaus-Peter, 2017) 

 Since the human body is homoeothermic, and cutaneous and subcutaneous skin regions 

release infrared radiations, they can be remotely interpreted and transformed into thermograms 

(thermal images) (Lloyd, 2013). Such thermograms produced by thermal imaging systems have 

been used in medical applications to detect pathological symptoms, disorders and diseases of 

patients. Clinical studies using thermal imaging have demonstrated its high performance in 

detecting inflammatory arthritis, osteoarthritis, soft tissue rheumatism, and malignant diseases or 

tumours, and a good performance in clinical monitoring of Complex Regional Pain Syndrome 

(CRPS) and Raynaud’s phenomenon, whose symptoms include abnormal or asymmetric 

temperature distributions visually inspectable by clinicians (Wasner et al., 2002; Spalding et al., 

2008; Ring & Ammer, 2012).  

With advancements in commercial thermal imaging technologies, thermography has been 

adopted beyond medicine to investigate the possibility of measuring physiological processes 
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(Murthy & Pavlidis, 2006; Garbey et al., 2007; Lewis et al., 2011; Ebisch et al., 2012; Gault & 

Farag, 2013) and affective states (Puri et al., 2005; Or & Duffy, 2007; Pavlidis et al., 2012; 

Abdelrahman et al., 2017). However, such studies have a common limitation. Their findings have 

all relied upon the use of high-cost, heavyweight (several kilograms) thermographic systems 

(with their dependency on an additional powerful computing machine) in highly constrained 

settings, in turn keeping themselves from being deployed to unconstrained, mobile, real world-

like settings (We discuss details of these studies, their findings and limitations in the following 

sections). 

Very recently, a new group of low-cost, lightweight (<37gram) thermal cameras have been 

developed, which can be used as an accessory of mobile devices (e.g. smartphones, tablet PCs). 

They have greater potentials to power real world applications of thermal imaging (a smartphone 

embedding a thermal camera has been already launched7). For example, Naik et al. (Naik & Patel, 

2017) have shown that, in controlled environments, a low-cost thermal camera has sufficient 

resolution and accuracy to grade the maturity of a fruit.  

Lastly, Table 2.1 summarises specifications and costs of both low-cost and high-cost 

thermal imaging devices between 2015 and 2018. There are three key parameters in determining 

thermal imaging quality: thermal sensitivity, spatial resolution and temporal resolution (sampling 

rate). The thermal sensitivity is measured by Noise Equivalent Temperature Difference (NETD). 

NETD is to describe the minimal temperature difference which can be recognisable by a thermal 

imaging device. Hence, the smaller, the better. NETD of thermal cameras varies from 0.017°C to 

0.5°C. At this very moment, the cost of the currently available sensors seems to primarily depend 

on the temporal resolution (here, sampling rate). For example, while both FLIR One (at £166 

GBP, in May 2016) and Optris PI 200 (at £2,500 GBP, in May 2016) meets the 160x120 spatial 

resolution and under-0.1°C sensitivity, the former has unsteady sampling rate lower than 8.7Hz 

and the latter supports 128Hz. Nonetheless, apart from specifications, such low-cost cameras (+ 

in Table 2.1) provide valuable benefits, such as small form factors, affordability and portability 

(e.g. lower than 34x14x68mm3 dimension), making them more feasible to be deployed in HCI 

systems than heavyweight, immobile, and expensive high-end thermographic systems (* in Table 

2.1). 

 

 

                                                 
7 CAT S60: https://www.catphones.com/ 
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Table 2.1. Specification and price of commercial thermal cameras: +Low-cost, Mobile Thermal Cameras 

(< 34x14x68mm3 Dimension / a mobile phone is needed for data collection), *High-end thermal imaging 

systems (> 90x46x56 mm3 dimension / an additional powerful desktop/laptop is needed). ** The 

manufacturer corrected the thermal sensitivity values on datasheets in 2018 (from 0.15°C). In this thesis, 

FLIR One 2G and FLIR One Pro were used as a main channel for mobile thermal imaging. 

Product 
Spatial 

Resolution 
Sampling Rate 

Thermal 

Sensitivity 

(NETD) 

Price 

(in July 2017) 

+FLIR One 2G 

(Figure 1.1c) 160x120 
<8.7Hz 

(unsteady) 
<0.10°C 

Not applicable 

(in July 2017) 

 

£166.00  

(about $239 

in May 2016) 

+FLIR One 3G 80x60 
<8.7Hz 

(unsteady) 
0.10°C** $199.99 

+FLIR One Pro 160x120 
<8.7Hz 

(unsteady) 
0.07°C** $399.99 

+Seek Thermal 

Compact 
206x156 

<9Hz 

(unsteady) 
0.50°C $249.00 

+Seek Thermal Compact PRO 320x240 
>15Hz 

(unsteady) 
Unknown $499.00 

+Therm-App Hz 384x288 25Hz <0.07°C $999.00 

*Optris PI 200 160x120 128Hz <0.10°C 

£2,500.00 

(about $3,570 

in May 2016) 

*FLIR A35 320x256 60Hz <0.05°C $5,900.00 

*OPTRIS PI-640 640x480 32Hz 0.075°C $11,310.04 

*FLIR A325sc 320x240 60Hz <0.05°C $12,322.46 

*FLIR SC5000mb 

(Figure 1.1b) 
640x512 100Hz 0.017°C Over $13,000.00 

 

 

2.2. Thermography as a Measure of Physiological Cues 

In this section, we review existing works about the use of thermal imaging in measuring a 

person’s physiological cues. We are particularly interested in what types of physiological thermal 

signatures have been explored, which methods and metrics have been developed and what has 
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been required in the prior art for extracting and quantifying such signatures through thermal 

imaging. 

The Autonomic Nervous System (ANS) controls physiological phenomena, such as, 

cardiovascular, respiratory, perspiratory activities as well as muscular activity which is also 

linked to behavioural patterns. Such physiological cues have been employed as measures of a 

person’s affective states, in particular, mental stress (Healey & Picard, 2005; Hosseini & 

Khalilzadeh, 2010; Hernandez et al., 2011; Hong et al., 2012; Engert et al., 2014). Recent studies 

using thermography have shown possibilities of thermal imaging in monitoring human 

physiological signatures from facial areas. The most widely explored physiological thermal cue 

is the directional change in temperature which is triggered mainly by vasoconstriction and 

vasodilation related cardiovascular activity (Genno et al., 1997; Or & Duffy, 2007; Engert et al., 

2014; Di Giacinto et al., 2014; Salazar-López et al., 2015). 

 

Vasoconstriction/dilation related cardiovascular thermal signature 

In particular, the nose tip area from which a variety of studies have explored temperature 

patterns (Genno et al., 1997; Veltman & Vos, 2005; Or & Duffy, 2007; Di Giacinto et al., 2014; 

Engert et al., 2014; Abdelrahman et al., 2017) is one of the main facial areas where we could 

observe vasoconstriction and dilation induced thermal directional changes. Vasoconstriction over 

the area induces a decrease in temperature. This is the narrowing of blood vessels, causing blood 

flow to decrease and in turn reducing loss of body heat. Hence, the surface area becomes colder. 

This can occur under a cold ambient temperature condition (Pergola et al., 1993) as well as a 

specific affective (e.g. mentally stressed) condition (Elam & Wallin, 1987). Vasodilation occurs 

in an opposite way. Given this, most researchers in this domain have focused on capturing a 

directional change (i.e. temperature drop, rise) in temperature8 of the nose tip as a metric.  

Capturing has been mainly done in three ways: i) subtracting temperature from the final 

moment of a task from the initial moment of the task (Or & Duffy, 2007), ii) comparing 

temperature from a task with that of another task (Di Giacinto et al., 2014; Salazar-López et al., 

2015; Abdelrahman et al., 2017), and iii) extracting a linear slope from an entire temperature 

sequence from a task (Engert et al., 2014). As this procedure is of relative ease, a support of 

                                                 
8 To represent temperature of a Region Of Interest (ROI), simply averaging temperatures in the ROI (here, 

nose tip) has been dominantly used (Veltman et al., 2005; Or & Duffy, 2007; Di Giacinto et al., 2014; Engert 

et al., 2014; Abdelrahman et al., 2017). Note that thermographic systems provide two dimensional 

temperature matrices, so multiple temperatures can be observed from the nose tip. 
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complex computational methods for automatically continuously extracting thermal variations has 

not been necessarily required. For example, Engert et al. (2014) visually inspected and rejected 

thermal images where there is a movement of a participant. To reduce this effort, many authors 

have requested their participants to stay in an exact same position (Salazar-López et al., 2015). 

A chinrest has also been often used to make this process easier (Veltman & Vos, 2005). Although 

a few studies have used computational tracking methods, the purpose has been to correct minor 

motion artefacts as participants have been generally asked to take a look to the front facing a 

thermal camera (Abdelrahman et al., 2017). To ensure the minimisation of environmental 

temperature effects on this measure, room temperatures have been generally controlled (Genno 

et al., 1997; Or & Duffy, 2007; Abdelrahman et al., 2017). Such constraints have been generally 

introduced to studies in the literature reviewed in this section as well as Section 2.3 (later, we 

provide tables to summarise the literature in Section 2.3.3). 

 

Perspiratory thermal signature 

Depending on the selection of a proper ROI, different types of physiological thermal 

signatures can be monitored. For instance, skin regions containing many sweat glands, such as 

the palm, the maxillary and the perinasal regions can have perspiratory responses (i.e. sweat gland 

activations). The sweat gland responses result in either an increase or a decrease in temperature 

of those areas (Shastri et al., 2009; Pavlidis et al., 2012; Krzywicki et al., 2014). It is noteworthy 

that Pavlidis et al. (2012) identified strong correlations between galvanic skin response (GSR) 

signals and thermal changes both on the perinasal area and on the finger region (r=0.943, r=0.968, 

respectively) during psychological stress inducing tasks. More recently, Krzywicki et al. (2014) 

proposed a method to find active pores on the cutaneous skin and count them using thermal 

imaging. As shown in Figure 2.1, extremely high-resolution thermal cameras (640x512, 

1280x1024) with focal lens enabled the authors to observe perspiratory activations of minute 

pores (i.e. sweat glands). In addition, Shastri et al. (2009) highlighted noise from (automatic) 

tracking and segmentation imperfections, leading to low accuracies in extracting such 

physiological signatures. 
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Figure 2.1. A widely used experimental setup in the literature (adapted from Pavlidis et al. 

2012). 

 

 

Cardiac pulse related cardiovascular thermal signature 

The superficial blood vessels play an important role as an indicator of human health, 

providing a measure of temperature as well as cardiac pulse-related information, due to vessels 

being directly influenced by cardiac output and arterial pressure. Like the computation for 

extracting sweat glands responses, the cardiac pulse related information can be extracted through 

the use of high-precision and expensive thermographic systems as shown in Figure 2.1. Garbey 

et al. (2007) hypothesised that the cardiac pulse could be recovered from the dynamic thermal 

signal emitted from major superficial blood vessels since the temperature on the vessel is 

modulated by the blood flow. The authors proposed an algorithmic approach mainly based on a 

conditional density propagation tracker (Isard & Blake, 1998) to track a selected artery vessel on 

thermal images. They estimated cardiac pulse rates by using the fast Fourier transform (FFT).  

However, their experiment comparing the extracted pulse rates with reference data 

showed very low accuracy; for example, although the range of participants’ pulse rates (ground-

truth) was very narrow (55.6bpm – 86.1bpm), the maximum error was 23.7bpm9. The authors 

also documented that the performance relied upon thermal imprint quality, which is entirely 

dependent on the ROI tracking performance. Furthermore, by contrast with other types of cardiac 

                                                 
9 The authors claimed good accuracy using their customised evaluation tool called Complement of the 

Absolute Normalised Difference (CAND), not standard statistical tools (such as correlations); however, we 

applied this metric to our explorative study result in Appendix B and found that the minimum value of the 

CAND is varying depending on rates of interest and the output tends to be generally very high (in our case, 

despite low correlation of r=0.519, the CAND-base accuracy was 90.79%, Figure B.2).  
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pulse measurements (e.g. ECG or PPG), this method is unable to provide a rich set of metrics 

including Heart Rate Variability (HRV) related metrics (Shaffer & Ginsberg, 2017). 

 

Respiratory thermal signature 

Likewise, it has been shown that respiratory rate can be extracted through thermal imaging 

(Murthy et al., 2004; Murthy & Pavlidis, 2006; Fei & Pavlidis, 2010; Abbas et al., 2011; Lewis 

et al., 2011; Pereira et al., 2015). This can be done by monitoring thermal patterns of air 

exchanges inside the nostrils, which are caused by inhalation and exhalation breathing cycles. 

Although areas around lips and nostrils can be used, most of existing works have used the nostril 

as a key ROI in which they have averaged temperatures to represent the breathing signal. This 

approach has been tested within several contexts in indoor, stationary settings where the position 

of a thermal camera can be fixed, including neonatal care (Abbas et al., 2011) and sleep (Fei & 

Pavlidis, 2010). Much higher performances have been achieved in the monitoring of breathing 

cyclic information using thermal imaging than the cardiac pulse monitoring and it has been shown 

that extracted time-varying signals reflect breathing signature more reliably than other types of 

physiological thermal signatures (note that the approach capturing cardiac pulse rate does not 

produce raw blood volume pulse information, and the same applies to the thermal directionality, 

such as temperature rise/drop, reviewed above). However, this method has also been challenged 

by difficulties in tracking the nostril.  

In the latest work where state-of-the-art performances were achieved (Pereira et al., 2015), 

the respiration tracking accuracy was greatly improved by using the latest automatic ROI-tracking 

method in computer vision (Mei & Ling, 2011) within indoor controlled experiments (strong 

correlation with ground truth: r=0.974). This indicates state-of-the-art ROI tracking methods 

could handle motion artefacts. However, they still do not provide robustness to environmental 

thermal dynamics. Even though our facial temperature distribution is internally controlled (e.g. 

blood vessel regulation), ambient temperature affects thermal images. For this reason, the actual 

temperature within which signals can be found may vary.  

Such challenges are similar to the tone-mapping-related quantisation issue found in 

converting real-world luminance to virtually expressed colour (Ledda et al., 2005). Although lots 

of challenges have been identified in high dynamic range imaging, existing works using thermal 

imaging have entirely ignored the issue, adopting a fixed range of temperature (e.g. 28°C to 38°C 

in Fei & Pavlidis, 2010). This is the component that can deteriorate the tracking performance 
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under high thermal dynamic scenes. Other than the ROI tracking issue, the quality of the 

respiratory signature is also influenced by such motion artefacts and environmental thermal 

dynamics, which has not been broadly investigated by previous authors. Hence, a more robust 

respiration tracking approach is required to improve the accuracy further in mobile settings.  

 

Muscular thermal signature 

Lastly, thermal imaging can also be employed to observe cues related to muscular 

activations. The activations can closely be associated with behavioural changes. For example, a 

facial expression is made up of a number of activations of micro-muscle units on the whole face 

(Ekman, 1993). To perform full-body or partial-body movements, skeletal muscles in our body 

should be activated (Hall & Guyton, 2015). As for facial expression recognition tasks, earlier, 

thermography had been used as an auxiliary means to improve performances of RGB vision 

cameras-based approaches (Heo et al., 2004; Bebis et al., 2006). Later, thermal imaging has 

become a primary channel for recognising facial expressions (Hernández et al., 2007). This has 

led to initial investigations of the use of thermal imaging to study affect-related facial muscle 

activations (Liu & Wang, 2011; Wang et al., 2014b). More details are discussed in Section 2.3.2. 

 

 

2.3. Thermography as a Measure of Human Affects 

With the literature reviewed in Section 2.2, this section aims to bring together the relevant 

literature that explores the ability of thermal imaging in assessing a person’s affective states in 

order to identify which types of thermal signatures and their metrics have been investigated in 

relation to affective states. Before starting to review, we would like to draw attention to a diagram 

presented in Figure 2.2 which summarises existing works in this field (thickness of a line is to 

show what a majority of existing works have focused on). As discussed above, the selection of 

ROIs is linked to physiological signature of interest. Amongst explored physiological thermal 

signatures, vasoconstriction/dilation related cardiovascular activity and perspiratory activity as 

well as facial muscular activity have been explored in relation to affective states. These works 

have been conducted in systematic constrained settings in terms of environmental temperature 

changes and movements. We discuss more details in Sections 2.3.1 and Sections 2.3.2, which are 

followed by a discussion with summary tables in Section 2.3.3. 
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2.3.1. Thermal Directionality in relation to a Person’s Affective 

States  

Amongst physiological thermal signatures, the vasoconstriction/dilation-related cardiovascular 

and sweat gland activation-related perspiratory responses induce increases or decreases in 

temperatures of ROIs, which could be quantified by using a simple metric such as binary 

directional change (e.g. temperature difference between data at two temporal points of interest). 

Hence, a majority of studies within this field have focused on thermal directional changes on 

ROIs in association with a person’s affective states. In addition, the body of work have mostly 

chosen local areas on thermal images of the face (an example of facial thermal image is shown 

in Figure 2.3 Left). Initial works in this field concentrated on psychological stress or mental 

workload-induced temperature changes. More recently, interests have been expanded to different 

types of affective states ranging from anxiety and fear to sexual arousal and maternal empathy in 

contexts of social interaction. Before diving into existing works, Figure 2.3 shows examples of 

thermal directional responses of some selected ROIs for peoples affective states. Below are the 

detailed reviews of the literature. 

 

 

 
Figure 2.3. Left) an example of thermal image of his face and thumb finger, and widely used 

ROIs, Right) a quick summary of thermal directional responses of selected ROIs to a person’s 

affective states. 
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Thermal directional changes in relation to Mental Stress 

Genno et al. (1997) analysed nose and forehead temperatures to observe their directional 

responses to mental stressors. Using a contact-based multi-channel thermistor, they measured 

both temperatures of 117 participants during a resting period and a self-designed stress induction 

task. During the task, participants were required to keep searching for a moving virtual object on 

a computer screen which suddenly pops up with a flash lightening effect and a loud siren sound 

feedback as the onset of stressors. To minimise effects of ambient temperature they controlled 

the room temperature. In the analysis, they directly compared temperature of the nasal area with 

that of the forehead region. They reported a significant decrease in nasal temperature under the 

stress condition. This can be explained by vasoconstriction (i.e. narrowing of blood vessels) of 

nasal peripheral tissues under the mentally stressed condition (Elam & Wallin, 1987). On the 

other hand, forehead temperatures of participants were stable. Despite the use of contact-based 

sensor (not thermal imaging), the result showed greater potentials of the thermal directional 

change as a stress indicator. This leads to the following studies using different experimental 

protocols and more importantly, using contact-free high-resolution thermography. ROIs have 

also been extended to peripheral facial areas including peri-nasal regions, supraorbital and 

frontalis areas (Puri et al., 2005; Veltman & Vos, 2005; Or & Duffy, 2007; Pavlidis et al., 2012; 

Engert et al., 2014).    

Using a high-resolution thermal imaging system, Or and Duffy (2007) observed 

significant thermal changes of the nasal area in a negative direction during a driving simulation 

task (3min) and a real-field driving task (5min) in comparison with pre-driving sessions as the 

baseline. Both tasks were designed to induce a considerable amount of mental stressors. Or and 

Duffy confirmed there was no significant change in temperature of the forehead. In addition, 

authors noted that the Sympathetic Nervous System (SNS)-triggered vasoconstriction could 

explain the physiological response of the nose temperature to mental workload, which was 

captured by thermal imaging. Very recently, the same result (significant drop in temperature of 

the nose tip in comparison with the forehead temperature) was reported from studies using the 

Stroop colour-word test (Abdelrahman et al., 2017). During the Stroop test (Stroop, 1935), 

participants are required to name the colour of words while the meaning of each word was 

presented either incongruent or congruent. This test has been widely used as a means of producing 

cognitive load-induced mental stress in psychophysiological and neuroscientific studies (Taylor 

et al. 1997).   
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From another study using the Stroop test as stressors, the role of thermal imaging as a 

measure of mental stress has also been discussed (Puri et al., 2005). The authors focused on the 

forehead region, in particular, the skin above a thick blood vessel which is connected from the 

supraorbital area to the frontalis. They interpreted temperature patterns on the area into the 

amount of blood volume changes and compared this with the amount of energy expenditures 

using a gas collection mask (from nostrils and lips), which was used as the ground truth of stress 

measures (Seematter et al., 2002). Despite details of their computational methods not described 

in their article they showed a strong correlation between the different measures, indicating that 

thermal imaging-based cardiovascular measure could support monitoring of psychological stress 

levels.  

As part of an effort to extend ROIs which can show physiological thermal responses to 

stressors, Engert et al. (2014) conducted a study using the trier social stress test (Kirschbaum et 

al., 1993) which involves a mock-up job interview and a difficult mental arithmetic solving task.  

The authors observed temperature patterns from periorbital, perioral, corrugator and chin, as well 

as the nose and forehead regions. In particular, the authors extracted a time series of mean 

temperatures from each region and also extracted the slope from each timeseries data. This was 

used as an alternative to selecting two temperatures from the beginning or baseline, and from the 

end of each session, which is the dominantly used way. For this they visually inspected all thermal 

imaging data and removed data collected when a participant’s head moved. As results, not only 

was there a decrease in temperature of the nasal area, but also declines in temperature of chin and 

corrugator areas under the stressful condition. However, from a more highly controlled 

experiment using a chin rest (Veltman & Vos 2005), such areas other than the nasal area did not 

respond to mental stressors. During the experiment using a mental memory task, Veltman & Vos 

(2005) focused on the thermal directional change of 17 facial ROIs including the nose tip, chin 

and corrugator (outside an eye and around eyebrow). Such incongruent results may indicate 

limitations of the use of simple directionality-related metrics and the analytic process which 

depends on manual or visual inspections which may produce experimenter-dependent errors.   

In a recent study, Pavlidis et al. (2012) focused on perspiratory thermal responses of 

peripheral areas of the nose and a finger in quantifying mental stress levels, rather than focusing 

on vasoconstriction/dilation-induced thermal directional changes. Using a very high spatial 

resolution camera, the authors attempted to directly observe thermal responses of sweat glands to 

stressors. They used a surgical laparoscopic drill training session as the main stress induction task. 
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The authors documented that novice surgeons showed higher stress levels than experts, a lower 

temperature of the perinasal area (above lips and surrounding areas) could be another stress sign.  

 

Thermal directional changes in relation to other affective states spanning from 

anxiety, fear, to love 

Such promising results from the body of work has led to studies where facial thermal 

directional responses to other affective states have been investigated. For example, the thermal 

response to anxiety has been explored in the context of deception (Pavlidis et al., 2002; Pollina 

et al., 2006). Pavlidis et al. (2002) conducted an experiment which required participants to 

commit a mock crime and declare their innocence of the crime. When participants were given a 

specific forensic question, they tended to produce temperature changes in their periorbital regions. 

The finding was also reported in studies using different crime-related protocols (Pollina et al., 

2006). 

The thermal directional response of fingertips to fear-conditions has also been explored 

(Kistler et al., 1998; Di Giacinto et al., 2014). For example, Kistler et al. (1998) used a horror 

film to induce fear-conditions. Compared with temperature measured prior to the task (watching 

the film), participants had temperature drops of up to 2°C on their fingertips. In another study 

conducted by Di Giacinto et al. (2014), a sudden acoustic stimulus was used to induce fear 

conditions in people with Post Traumatic Stress Disorder (PTSD). A temperature drop was 

generally observed over the whole face of participants. The nose tip showed the highest thermal 

change (drop). Some studies exploring the facial temperature in nonhuman primates have also 

supported the evidence for the nasal temperature as a measure of fear (Nakayama et al., 2005; 

Kuraoka & Nakamura, 2011).  

Our facial areas could also have such thermal directional changes along with startle states 

(Pavlidis et al., 2001; Shastri et al., 2012). Shastri et al. (2012) documented that temperature of 

the upper lip and its surrounding regions of their participants decreased during the presentations 

of unexpected startling sound effects (e.g. glass breaking sound). Similarly, Pavlidis et al. (2001) 

reported the increase in temperature of the periorbital region of participants was observed after 

being exposed to a loud startling sound. However, other authors - who conducted a study based 

on a similar protocol to Pavlidis et al. (2001) - reported an incongruent finding (Gane et al., 2011). 

There were no significant changes in temperature of the periorbital area. The inconsistent results 
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may indicate that the thermal directional signature can be influenced not only by a variety of 

internal, however also external factors, for example, environmental temperature.  

It is clear that a wide variety of advantages of the non-contact and non-invasive 

measurement are attractive in its use to observe a person’s affective state in social contexts 

(Ebisch et al., 2012; Hahn et al., 2012; Salazar-López et al., 2015). Hahn et al. (2012) studied 

sexual arousal during social interaction with interpersonal physical contact (i.e. physically 

touching a body). They identified the closer relationship a participant has with his opposite gender 

partner, the higher increase of temperature the person showed on the nasal, periorbital areas and 

the lips. In terms of the socio-emotional development in children, furthermore, Ebisch et al. (2012) 

explored thermal signatures (again, thermal directional change) in relation to empathy between 

mothers and their children in stressful situations. The authors found a significant parallelism 

between their facial temperature changes (mother-child). In a recent study, thermal variations 

associated with romantic love in couples were found (Salazar-López et al., 2015). Participants in 

the study were asked to take a look at pictures of their beloved partner to postulate love in memory 

and those of their friend during a baseline period. The authors confirmed there was a general 

increment in their facial temperature in feeling love. 

 

Automated affect recognition 

Although those earlier studies highlighted the capability of thermography in affective 

computing, they focused mostly on observing affect-related thermal directional changes of a 

certain ROI through manual annotation, not bringing such signatures into automated affect 

recognition problems. Interestingly, Nhan & Chau (2010) attempted to automatically recognise 

one’s affective states using thermal imaging (the heavyweight, high-resolution system was used). 

They focused on how to infer a person’s arousal (unexcited-excited) and valance (unpleasant-

pleasant) states (i.e. high or low). They set five ROIs: left, right supraorbiral, left, right periobital, 

and nasal, which all are influenced by constriction and dilation of vessels controlled by SNS 

activity (Wallin, 1981). Participants were given a set of pictures selected from the International 

Affective Picture System (IAPS) (Lang et al., 2008) in their experiment. With thermography, 

they also used additional contact-based physiological sensors to measure heart rate and 

respiration rate. To avoid the complexity of automatically tracking each ROI, a dot stick was 

attached to the top of their participants’ forehead. For automated affect recognition, 78 values 

from each ROI (using basic statistical and customised functions), 10 correlation coefficients 
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between each ROI pair (i.e. 5C2 – combination) and average heart and respiratory rates (from the 

contact-based sensors) were used as features. They employed the Linear Discriminant Analysis 

(LDA)-based machine learning technique as a binary classifier. Their approach achieved success 

rates of approximately 80% in discriminating high arousal state from a baseline state, and high 

valence state from a baseline state, respectively. On the other hand, their classifier could not 

produce above-chance level accuracies in classifying high arousal versus low arousal, and high 

valence versus low valence.  

 

 

2.3.2. Facial Muscular Thermal Signature in relation to a 

Person’s Affective States 

Facial muscular thermal signature has also been explored in their relation to a person’s 

affective states (Hernández et al., 2007; Wang et al., 2010; Liu & Wang, 2011; Jarlier et al., 2011; 

Wesley et al., 2012). Facial micro-muscle activations contribute to producing numerous facial 

expressions. Studies have focused on how to use thermography for automated facial expression 

recognition (Hernández et al., 2007; Wang et al., 2010; Liu & Wang, 2011; Khan et al., 2016). 

Similar to RGB-vision based approaches, the body of work attempted to select a couple of (e.g. 

mostly three to five) facial ROIs which include main sensory organs such as the eyes and lips. 

By contrast, with studies focusing on the observation of affect-related directional physiological 

changes of facial temperatures, a variety of machine learning techniques have been used for 

automatic recognition of facial expressions which appeared on thermal image sequences. For 

example, Liu and Wang (2011) and Wang et al. (2014) extracted features from thermal images, 

such as a histogram and mean which were applied using Hidden Markov Models (HMMs) to 

classify expressions relavant to happiness, disgust and fear.  

More recently, Khan et al. (2016) propose a segmentation of a person’s facial thermal 

image into a number of local areas (e.g. 75 local squared areas) to extract a maximum temperature 

timeseries from each area. Using a feature selection technique and the LDA, the authors achieved 

73.7% and 68.4% accuracies in automatically recognising happiness and sadness, respectively, 

from their data collection study using IAPS (similarly used in Nhan & Chau, 2010; Salazar-López 

et al., 2015 – reviewed in Section 2.3.1). 

There have been studies which have focused on understanding facial micro-muscle 

activations which occur in the process of facial expressions. It has been shown that micro-muscle 
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activations can lead to morphological changes on thermal image sequences (Jarlier et al., 2011; 

Wesley et al., 2012). Traditionally, the Facial Action Coding System (FACS) and facial 

ElectroMyoGraphy (EMG) have been used to observe or decode such muscular activations. In 

particular, the FACS is basically based on the manual analysis of anatomical composition of 

human facial muscle Action Units (AUs) (Ekman & Friesen, 1977). While this is very accurate, 

this requires a trained human coder. Hence, researchers have tried to automatize FACS coders’ 

time-consuming decoding works (Jarlier et al., 2011; Wesley et al., 2012). 

To the best of the author’s knowledge, Jarlier et al. (2011) first explored facial thermal 

patterns associated with the activation of facial AUs during producing emotional expressions. 

The authors recruited four trained FACS coders. They observed not only the temperature 

distribution on coders’ faces where different action units were intentionally activated to make 

emotional expressions, but also the speed and intensity of corresponding muscle contractions. 

The participants’ heads were immobilised to minimise motion artefacts. The Principal 

Component Analysis (PCA) was used to reduce the dimension of features and select informative 

features of the activated facial action units. For the classification, the k-Nearest Neighbour model 

(kNN) was used. They reported that amongst eight cases (requesting 8 different AUs activations), 

the correct rates of six cases were above 60%, showing potentials of thermography in the FACS 

decoding process. Wesley et al. (2012) followed this work by comparing the thermal imaging 

based facial expression classifier with a RGB vision based classifier. The authors documented 

that thermography-based approaches could be more useful given the fact that thermography is 

much less susceptible to the ambient lighting condition issue, which is one of the main limitations 

in the use of RGB vision-based approaches.  

 

 

2.3.3. Summary Tables 

Table 2.2 summarises existing approaches to thermography-based affective computing, which 

we have discussed in Section 2.3. The main focus of the literature spans from thermal directional 

changes of facial local areas in relation to psychological stress, fear, anxiety and to facial muscle 

activations in association with facial expressions. We elaborate the main information of the study 

protocols used in the literature (e.g. task types and baseline) in Table 2.2, providing an insight for 

building experimental protocols. As described in the table, only facial areas have been dominantly 

explored. In order to quantify the discussed thermal directional responses to affective states, 
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authors have generally used a simple metric, the difference between thermal data at two temporal 

points. In particular, averaging has been used to represent temperatures of a ROI on thermal 

images.  

Furthermore, existing studies (reviewed in Sections 2.2 and 2.3) have all been conducted 

in systematic constrained settings in terms of stable environmental (ambient) temperature and 

low-level motion artefacts. Although a few studies have explored automatic ROI tracking (also 

called motion tracking) methods, they often reported negative effects of tracking imperfections 

on affect quantification tasks (Garbey et al., 2007; Sun et al., 2005; Ebisch et al., 2012; Manini 

et al., 2013; Shastri et al., 2012; Tsiamyrtzis et al., 2007; Zhou et al., 2009). In addition, the 

tracking performance in varying thermal range scenes has remained unaddressed. 

 

Table 2.2. A summary of thermography-based affective computing studies: experimental protocols (in 

particular, constraints required), explored ROIs and metrics. 

Affective 

States 
Author 

Experimental protocols Analysis 

Participants Task Baseline 
Require-

ments 
ROIs 

Metrics or Fea-

tures10 

Mental 

Stress 

Genno et 

al. (1997) 

117 

healthy 

adults 

Self-made 

tracking task 

(11mins) 

Rest 

(5 mins) 

Stable room 

temperature 

Nasal and 

forehead 

Difference be-

tween mean tem-

perature (from two 

points)  

&  

Temperature dif-

ference  

between data from 

two ROIs 

Veltman 

and Vos 

(2005) 

8 adults 

Continuous 

Memory Task 

(3mins) 

Rest 

(3mins) 

Chin rest 

used 

Nasal, 

cheek, chin, 

lips, eyes, 

forehead 

Difference be-

tween mean tem-

perature (from two 

points)  

Or and 

Duffy 

(2007) 

33 healthy 

licensed 

drivers 

 

Car-driving 

simulator tests 

(3mins) 

  

Rest 

(3mins) 

Stable room 

temperature 

Nasal and 

forehead 

Difference be-

tween mean tem-

perature (from two 

points)  

Pavlidis 

et al. 

(2012) 

17 healthy 

adults 

Laparoscopic 

drill training 

(4mins) 

Natural 

landscape 

Not 

reported 

(but, see 

Figure 2.1) 

Perinasal 

and Finger 

Difference be-

tween mean tem-

perature at two 

temporal points  

(on sweat glands) 

Engert et 

al. (2014) 

15 male 

adults 

1) Cold Pres-

sor Test, 2) 

Trier Social 

Stress Test 

Rest 

(5mins) 

Stable room 

temperature 

& 

Visual  

inspection  

Chin, Corru-

gator, Fore-

head, Fin-

ger, Nose, 

Peri-orbital, 

Perioral 

Mean slope 

                                                 
10 Although metrics and features are used as synonym in some literature, in this thesis, metric is used to 

describe a measure to quantify physiological symptoms and feature is used to describe specifically the 

feature input to, or analysed in, machine learning models (in most cases of the thesis, classifiers). 
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Cogni-

tive 

Load 

Ab-

delrah-

man et al. 

(2017) 

24 

Egyptian 

and 

Canadian 

participants 

Stroop Test 
Rest 

(10mins) 

Stable room 

temperature 

& 

Keeping 

participants 

facing a 

thermal 

camera 

Nose tip & 

forehead 

Difference be-

tween mean tem-

perature (from two 

points) 

Fear 

Kistler et 

al. (1998) 

20 healthy 

Caucasian 

adults 

Watching hor-

ror movie 

scene (3mins 

45s) 

Rest 

(2mins) 

Stable room 

temperature 
Finger tip 

Difference be-

tween mean tem-

perature (from two 

points) 

Di Gi-

acinto et 

al. (2014) 

10 post 

traumatic 

stress dis-

order pa-

tient, 10 

healthy 

adults 

 

Image presen-

tation with 

80-db white 

noise burst 

(6mins) 

  

Image 

presenta-

tion with 

no sound 

(6mins) 

Stable room 

temperature 

&without 

ventilation 

Nasal and 

whole face 

Difference be-

tween mean tem-

perature (from two 

points) 

Anxiety / 

Decep-

tion 

Pollina et 

al. (2006) 

13 healthy 

adults 

Committing a 

mock crime 

not 

specified 

Stable room 

temperature 

Right and 

left hemi-

faces 

Difference be-

tween mean tem-

perature (from two 

points)  

Startle 

reaction 

Pavlidis 

et al. 

(2001) 

6 healthy 

participants 

A startle stim-

ulus using a 

sudden  

loud noise 

(60dB)  

Sitting in 

the dark 

room 

(10 mins) 

Stable room 

temperature 

Periorbital, 

Cheeks, 

Neck, Na-

sal, chin re-

gion 

Average pixel val-

ues (relative ther-

mal change) 

Shastri et 

al. (2012)  

18 healthy 

participants 

Presentation 

of unexpected 

startle sounds 

(e.g. glass 

breaking 

sound).  

not 

specified 

Not 

reported 

(but, a 

similar 

environ-

ment to the 

one in 

Figure 2.1) 

Upper lip 

and sur-

rounds 

Difference be-

tween mean tem-

perature (from two 

points) & wave-

let-based metrics 

Gane et 

al. 

(2011)  

11 adults 

102 dB Audi-

tory startle 

stimulus (in-

stantaneous 

(30s) x 100 

repetitions) 

Rest 

(1min) 

Manually 

adjusting 

thermal 

imaging 

parameters 

to room 

temperature 

(an ambient 

temperature 

sensor was 

used)   

Periorbital 

areas 

Range, mean, var-

iance, skewness, 

kurtosis, entropy, 

normality, station-

arity  

of  

2 second mean 

temperature 

timeseries 

Sexual 

arousal 

Hahn et 

al., 

(2012)  

23 healthy 

adults 

Facial contact 

with an oppo-

site-sex ex-

perimenter 

(15mins) 

Prior to fa-

cial con-

tact 

Keeping 

participants 

from 

moving 

Nasal and 

periorbital 

areas and 

lips 

Difference be-

tween mean tem-

perature (from two 

points) 

Mater-

nal em-

pathy 

Ebisch et 

al. (2012) 

12 mothers 

and their 

children 

Eliciting 

stressful situa-

tions based on 

the “mishap 

paradigm” 

Prior to 

task (10-

20mins) 

Stable room 

temperature 

Nasal tip, 

maxillary 

regions 

Difference be-

tween mean tem-

perature (from two 

points) 

Love 

Salazar-

López et 

al. (2015) 

12 couples 

Presentation 

of pictures of 

the beloved 

partner 

(5mins) 

Presenta-

tion of pic-

tures of 

friends 

(5mins) 

Keeping 

participants 

from 

moving 

Whole face, 

hand 

Difference be-

tween mean tem-

perature (from two 

points) 
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Positive-

negative 

emotions 

Nhan & 

Chau 

(2010) 

12 healthy 

adults 

Presentation 

of pictures se-

lected from 

the interna-

tional affec-

tive picture 

system 

(IAPS) 

Rest 

Stable room 

temperature 

& a dot 

tracker used 

left, right 

supra-or-

bital, perior-

bital, nasal 

regions 

390 features 

(5ROIs x 78) and 

10 features (corre-

lation coefficients 

from pairs of 

ROIs) 

(*for classifica-

tion) 

Salazar-

López et 

al. (2015) 

120 univer-

sity stu-

dents 

Presentation 

of pictures se-

lected from 

the interna-

tional affec-

tive picture 

system 

(IAPS) (sev-

eral seconds) 

Rest 

(10mins) 

Keeping 

participants 

from 

moving 

nose, fore-

head, orofa-

cial area and 

cheeks and 

the whole 

face region 

Difference be-

tween mean tem-

perature (from two 

points) 

Facial 

expres-

sions 

and 

Facial 

Action 

Coding 

Systems 

(FACS) 

Khan et 

al. 

(2004), 

(2016) 

16 under-

graduates 

(2004), 

19 partici-

pants 

(2016) 

Presentation 

of pictures se-

lected from 

the interna-

tional affec-

tive picture 

system 

(IAPS) (sev-

eral seconds) 

Rest 

(20mins) 

Stable room 

temperature 

Self-defined 

facial ther-

mal feature 

points 

Covariance met-

rics and maximum 

temperature 

timeseries from 75 

self-selected ROIs 

on a face 

(*for classifica-

tion) 

Wang et 

al. (2010) 

215 healthy 

students 

Presentation 

of film clips 

Not re-

ported 

Uncon-

strained 

room envi-

ronments 

Forehead, 

nose, lips, 

cheek 

Feature selection 

using PCA, 

PCA+LDA, 

AAM, 

AAM+LDA, etc. 

(*for classifi-

cation) 

Jarlier et 

al. (2011) 

4 trained 

and certi-

fied FACS 

coders 

Activating 

different fa-

cial action 

units 

Rest 

(15mins) 

Keeping 

participants’ 

heads 

immobilised 

with a head 

fixation 

system 

Facial ac-

tion units 

Topography of 

thermal changes 

based on speeds 

and intensities of 

muscle contrac-

tion (*for classifi-

cation) 

 

 

Table 2.3 summarises the specifications (resolutions, sensitivity) of thermographic 

systems which have been used in the literature discussed in Section 2.2 and Section 2.3, as well 

as actual requirements for their thermal analysis. First, all of existing works have employed very 

heavy and expensive thermographic imaging systems (e.g. Figure 1.1b, Figure 2.1), which are 

hardly accessible to the general public. In addition, installation difficulty (e.g. top view) has 

confined ROIs mostly to the facial regions, possibly interfering with one’s vision, causing 

distraction, and more importantly, prohibiting this from being carried out in unconstrained, 

mobile settings.  

Interestingly, many works have required lower spatial resolutions and sampling rates (than 

specifications of their systems) as summarised in Table 2.3 (right column). For example, very 
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low sampling rates or static data have been required for capturing thermal directional changes 

(the sampling rate of 340Hz was down-sampled to 0.2Hz in Veltman and Vos, 2005). Respiratory 

rate can also be extracted at a lower sampling rate of 5Hz (Lewis et al., 2011). In Shastri et al. 

(2012), the spatial resolution of 640x512 was down-sampled to 100x100. 

 

 

Table 2.3. Specification requirements for thermography-based physiological measurements and affective 

computing. The majority of existing works indeed require lower spatial and temporal resolutions than 

actual resolutions thermal imaging devices have. 

Author Metrics 
Affective 

States 

Specification of Thermal Device Requirement for Analysis 

Spatial 

Resolution 

Sampling 

Rate 

Thermal 

Sensitivity 

Spatial 

Resolution 

Sampling 

Rate 

Thermal 

Sensitivity 

Fei & 

Pavlidis, 

2010 
respiratory 

rate 

Not 

explored 

640x512 55hz 0.025°C 640x512 10Hz 0.025°C 

Murthy et 

al. (2004) 
640x512 126Hz 0.025°C 640x512 31Hz 0.025°C 

Pereira et 

al. 2015 
1024x768 30hz 0.05°C 1024x768 30Hz 0.05°C 

Lewis et 

al. (2011) 

respiratory 

rate & 

 relative 

tidal 

volume 

320x240 <29hz 0.08°C 320x240 5Hz 0.08°C 

640x510 126hz 0.02°C 640x510 30Hz 0.02°C 

Shastri et 

al. (2009) 

skin-

conductan

ce-related 

raw signal 

640x512 126 Hz 0.025°C 640x512 126 Hz 0.025°C 

Abdelrahm

an et al. 

(2017) 

thermal 

directional 

change 

cognitive 

load 
160x120 120Hz 0.08°C 160x120 120Hz 0.08°C 

Di 

Giacinto et 

al. (2014) 

fear 320x240 60Hz 0.02°C 
Not 

reported 
10Hz 0.02°C 

Ebisch et 

al. (2012) 
empathy 320x240 50Hz 0.02°C 

Not 

reported 
1Hz 0.02°C 

Engert et 

al. (2014) 

mental 

stress 
320x240 50Hz 0.02 °C 320x240 5Hz 0.02 °C 

Gane et al. 

(2011) 

startled 

state 
640x480 120 Hz 0.01°C 640x480 15Hz 0.01°C 

Hahn et al. 

(2012) 

sexual 

arousal 
160x120 1/75 Hz 0.08 °C 160x120 1/75 Hz 0.08 °C 

Kistler et 

al. (1998) 
fear 280x90 6.25Hz 

Not 

reported 

Not 

reported 
0.1Hz 

Not 

reported 
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Nakayama 

et al. 

(2005),  

 Kuraoka et 

al. (2011) 

fear 
Not 

reported 

Not 

reported 

Not 

reported 
254x238 0.1Hz 0.1°C 

Or and 

Duffy 

(2007) 

mental 

stress 
320x240 60Hz 0.08°C 

Not 

reported 

Static 

Image 
0.08 °C 

Pollina et 

al. (2006) 

deception-

related 

anxiety 

256x256 30Hz 0.1 °C 256x150 30Hz 0.1 °C 

Salazar-

López et 

al. (2015) 

romantic 

love 
320x240 60Hz 0.07 °C 320x240 

Static 

Image 

0.1 °C – 

0.5 °C 

Shastri et 

al. (2012) 

startled 

state 
640x512 126 Hz 0.025°C 100x100 25Hz 0.025°C 

Veltman 

and Vos 

(2005) 

mental 

stress 
320x256 340Hz 0.07°C 320x240 

0.2Hz 

(every 5s) 
0.07°C 

Pavlidis et 

al. (2012) 

thermal 

directional 

change & 

skin-

conductan

ce-related 

raw signal 

mental 

stress 
640x512 126Hz 0.025°C 640x512 25Hz 0.025 °C 

 

 

As described in Figure 2.2 which summarises thermography-based studies for 

physiological measurements (Section 2.2) and for affective computing (Section 2.3), it is 

noteworthy that while the thermal directional changes of facial regions have been dominantly 

investigated so far, other types of physiological thermal signatures and body parts beyond the 

face have been underexplored in this body of work. Given this, in the next section, beyond the 

primarily focused facial areas, we elaborate physiological evidence to find potential ROIs, in 

particular which can provide information of a person’s stress. 

 

 

2.4. The Scalp as a Potential Region of Interest (ROI) for 

Stress-related Thermal Signatures: Neuroscientific 

Evidence 

Although identifying facial thermal signatures associated with stress has been one of the most 

dominant topics in this field of study, signatures from various body regions have been 
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underexplored. The scope of this review is confined to neurophysiological responses of the brain 

to psychological stressors and their thermal signatures (Additionally, the physical stress 

responses of skeletal muscles as another facet of stress are reviewed in Appendix A to provide 

more insights).  

The brain is a human pivotal organ which processes cognitive and psychological activities. 

It controls physiological and behavioural responses to numerous intrinsic and extrinsic factors. 

In particular, against mental stressors, the organ arbitrates neurological mechanisms which cause 

a series of physiological, metabolic, and behavioural responses. Below is the review to find 

neurological and physiological evidence of the heat production or alteration in the brain under 

mental workload. This leads to a discussion of searching novel ROIs where stress-related thermal 

signatures can be potentially captured through thermal imaging.  

 

2.4.1. Stress Responses of the Brain in relation to Temperature 

Hippocampus, hypothalamus, prefrontal cortex (PFC), and amygdala are major cerebral 

regions which react to mental stress (Dedovic et al., 2009). The regions are in charge of 

controlling chemical releases and activation/deactivation of local functional areas of the brain 

under mental workload. Here we discuss the mental stress-induced neurological phenomena in 

terms of 1) releases of biochemistry such as Corticotropin-Releasing Hormone (CRH) (Dunn 

& Berridge, 1990; Koob et al., 1993) and Dopamine (Pruessner et al., 2004; Belujon & Grace, 

2015), 2) regional changes in Cerebral Blood Flow (CBF) (Soufer et al., 1998; Pruessner et al., 

2004; McEwen et al., 2015).  

First, Corticotropin-Releasing Hormone (CRH), also known as Corticotropin-Releasing 

Factor (CRF), is a neurotransmitter in the mammalian Central Nervous System (CNS). The 

releasing mechanism of the CRF is closely related to mental stressors (Dunn & Berridge, 1990; 

Koob et al., 1993). In the view of the hypothalamus-pituitary-adrenal (HPA) axis which engages 

in the CRH releasing mechanism and triggers the fight-or-flight responses (Kudielka et al., 2004; 

Pariante & Lightman, 2008; Belujon & Grace, 2015), the CRH is released by the hypothalamus 

responding to mental stressors, and the hormone manages the secretion of adrenocorticotropic 

hormone (ACTH) and glucocorticoids, which influence the central nervous, metabolic, and 

cardiovascular, respiratory activities (Dedovic et al., 2009; McEwen et al., 2015). Likewise, it 

has been shown that the dopamine (DA) system engages in the neurological reactions to stressors, 

releasing dopamine (Pruessner et al., 2004; Belujon & Grace, 2015). In particular, Pruessner et 
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al. (2004) identified a mesolimbic dopamine release which is triggered by psychosocial stressors. 

The amount of the released hormone can be predicted by monitoring the reduction of [11C] 

raclopride binding potential (BP) which is proportional to the cortisol level influenced by the 

ACTH.  

Despite a lack of studies exploring whether such biochemical signals directly trigger 

temperature variances in a person’s brain or body, there have been studies exploring their 

relations in animals, for example, the CRH elevating core temperature in rats (Heinrichs et al., 

2001). In addition, psychiatrists documented, “in humans the rise in body temperature prior to a 

stressful event may be considered as an index of involvement (primary or secondary) of the 

anterior hypothalamus and of the corticotropin-releasing factor.”, after they conducted a study 

where they found an increase in the bodily temperature of a healthy person who felt stressed 

before a stressful examination period (Marazziti et al., 1992). From the study of long-term 

consequences of stressors (several months), they concluded by suggesting that, together with 

blood pressure and rate, the temperature could be another companion of mental stress.  

Second, compared with CRH and dopamine releases, CBF, the blood supply to the brain 

in a given period of time is more strongly related to temperature of the brain and is helpful to 

localise its activated/deactivated regions thanks to brain imaging equipment such as functional 

Magnetic Resonance Imaging (fMRI). CBF is a homeostatic parameter strongly associated with 

a cerebral heat production (Kiyatkin, 2010; Wang et al., 2014a; Li et al., 2017). In particular, 

CBF plays a key role in maintaining brain and body temperature coupling, and the variances in 

local, sometimes called regional, CBF can be used as a measure of functional brain metabolism 

which is associated with the brain circulation and core temperature (Govier et al., 1984). 

Furthermore, the body of work which studies the effect of task difficulty on the regional CBF has 

shown that some regional CBF would be higher during a stressful task rather than during rest-

periods (Weinberger DR et al., 1986; Gur et al., 1988), potentially elevating the corresponding 

regional temperature. 

 

2.4.2. Potential Local Scalp Regions providing Cortical Thermal 

Signatures 

As reviewed in Section 2.1, in 1878, Lombard reported a rise in temperature from three 

segmented scalp areas (anterior, middle, posterior) in association with cognitive and emotional 

processes. Ever since this earlier discovery, investigation on the scalp temperature and emotion 
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has been being inactive for centuries. In order to discover potential ROIs which could propagate 

thermal signatures, we elaborate studies on regional changes in CBF under mental workload or 

mental stressors, given the strong association between regional CBF and core temperature (Li et 

al., 2017). 

Soufer et al. (1998) undertook an experiment to find in which cortex areas CBF increases 

or decreases under the mentally stressful conditions elicited by an arithmetic serial subtraction 

task using Positron Emission Tomography (PET) equipment and Statistical Parametric Mapping 

(SPM) analysis. The authors identified that there was a significant effect of such stressors on the 

blood activation in the left frontal gyrus of healthy participants, which is situated nearby the 

temporalis muscles on the human head (Soufer et al., 1998). In the case of patients with coronary 

artery disease, they showed even more fluctuated patterns of CBF on several different regions. In 

addition, Taylor et al. (1997) also unearthed activations and deactivations of regional CBF in 

response to mental stressors in a study where the Stroop test was used; for example, the left 

inferior frontal gyrus from the frontal lobe, the regions across the parietal lobe (more specifically, 

left parietal/occipital junction, right inferior parietal lobules) were activated and the superior 

temporal gyrus was deactivated. In this study, PET was used (Taylor et al., 1997).  

With the growing importance of fMRI, a study using fMRI showed the activation of CBF 

in the right prefrontal cortex of a person facing psychological stressors (Wang et al., 2005). The 

arithmetic task-based protocol was used in the study. Meanwhile, neuroscientists and 

psychologists have started to discuss the limited amount of stressors in such study protocols in 

brain imaging environments even though mental stress can be induced by increasing cognitive 

load from arithmetic solving or Stroop-based tasks (Dedovic et al., 2005, 2009; Pruessner et al., 

2008). Given this discussion, Dedovic et al. (2005) proposed a new protocol built on the 

arithmetic solving, called the Montreal Imaging Stress Task (MIST) which adds social evaluative 

threats within itself. According to the protocol, an experimenter is required to inform participants 

of average performance of others (using manipulated scores to artificially stress their poor 

performance). Based on this protocol, Pruessner et al. (2008) explored stress-induced regional 

CBF patterns using both PET and fMRI. The authors identified regional CBF changes in the 

limbic system as reactions to the mental stressors. In particular, the left inferior frontal gyrus, 

occipital lobe, left prefrontal cortex and left premotor were activated, and the medial prefrontal 

cortex and superior temporal gyrus were deactivated in response to the stressors. 

More recently, functional near infrared spectroscopy (fNIRS), a relatively new measure 

of CBF (which measures the oxygenated HbO2 and deoxygenated HHb haemoglobin in the blood 
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supply in the brain) has been used in this field of study (Al-Shargie et al., 2016; Causse et al., 

2017; Rosenbaum et al., 2018). Taking advantage of better portability of fNIRS than PET or 

fMRI, Causse et al. (2017) observed CBF patterns in the brain of participants who took a stressful 

aviation task using a flight simulator. The authors identified CBF activation across the prefrontal 

cortex. Amongst local prefrontal cortex regions, they found the right dorsolateral prefrontal 

cortex was activated most. Al-Shargie et al. (2016) also reported the strong correlation between 

CBF in the right prefrontal cortex and subjective self-report of mental stress scores. 

The findings are invaluable for this thesis which found reported areas are closely situated 

to the skull. This could propagate thermal energy to nearby scalp regions. Hence, there is a high 

possibility that the mentally distressed conditions could induce thermal variations on the scalp. 

Other than such cortical regions, part of the central cortex responding to stressors, such as the 

hippocampus and hypothalamus, are less likely to directly propagate thermal energies to the scalp 

areas because of their position.  

Lastly, in order to shine on the explorations of thermal signatures in brain areas, it should 

be discussed how to monitor and estimate the brain regional temperature noninvasively. 

Obviously, it is difficult to measure the core or inner skull temperature of human participants in-

vivo, for example, while doing everyday desk activities which do not allow to set a huge 

measurement device (e.g. Magnetic Resonance Spectroscopy). However, physiologists identified 

that there was a strong correlation between temperature of the temporalis muscle and the cortical 

temperature, brain core temperature, of rats (Busto et al., 1987). Furthermore, fortunately, a very 

recent study showed a strong correlation between CBF and brain core temperature of rats (Li et 

al., 2017), indicating that CBF activation and deactivation patterns could be estimated from the 

scalp temperatures. As it has been emphasised that there were great similarities in vascular 

networks of the brains between human beings and rats, so the findings even from rats could be 

valuable in estimating temperatures of local human brain cortical areas. 

 

Finally, it is certain that the psychological stress severely affects human brain mechanisms 

as well as physical and psychological conditions on an everyday basis. Moreover, it stimulates 

the brain’s genetic changes (Arnsten, 2009). For instance, the PFC, a part of the brain region 

which has the highest-order cognitive abilities, is influenced both by short-term and long-term 

stress exposures, which causes a loss of prefrontal cognitive abilities and architectural changes in 

the region, respectively. Therefore, it is required to improve our understanding of signals from 

the brain region and its responses to stressors, and to seek for non-invasive technical intervention 
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methods mediating mental stress in daily life. In this thesis, thermal signatures on the scalp region 

are thoroughly investigated for this purpose. 

 

 

2.5. Chapter Summary and Problem Statements 

Existing works in areas of thermography-based physiological, affective computing as well as 

human physiology on heat production have been discussed in this chapter. Given that 

thermography raises less privacy related issues and can help remotely read stress-related 

physiological thermal signatures from a person, not affected by illumination, it is evident that 

thermography has greater potentials in its use as a multimodal physiological, stress sensor for 

real-world settings. With advanced thermal imaging technologies available, thermography has 

been employed in a variety of applications (e.g. medical diagnosis). An overview of their use 

cases and commercial thermographic systems has been described in Section 2.1.  

In Section 2.2, the capability of thermography in physiology measurements was discussed. 

We found that several physiological signatures could possibly be extracted through thermography. 

They are: cardiovascular, respiratory and perspiratory thermal signatures mostly from facial areas. 

In particular, vasoconstriction, vasodilation (cardiovascular) and sweat gland activation 

(perspiratory) lead to a directional change in temperature (temperature rise or drop). As this can 

be more easily obtained than other signatures and their metrics, the majority of studies about 

thermography-based affective computing have focused on which facial areas show an 

increase/decrease in temperature in association with affective states. This has been discussed in 

Section 2.3. Affective states explored in the body of work span from mental stress, fear, startle, 

to love and maternal empathy.  

Lastly, as part of an effort to extend stress-related thermal signatures, we have reviewed 

human neurology and physiology in heat production from the scalp which has been 

underexplored in Section 2.4. 

Through the literature review, we have identified key limitations of existing approaches 

in building thermography-based physiological computing and stress recognition systems that can 

support more real world-like settings. Below are further details: 
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i) Lack of computational methods supporting thermal imaging in unconstrained, 

mobile situations 

Up to this point, computational methods for thermal image processing have been limited 

mainly due to existing studies all conducted in highly constrained, systematic experimental 

settings using high-cost, heavyweight thermographic systems (heavyweight as shown in Figure 

2.1). In particular, room temperatures and participants’ movements have been generally highly 

controlled in the literature (e.g. stable ambient temperature, often chin rest used) so as to obtain 

reliable results. To support unconstrained and mobile situations, such constraints should be 

tackled. At the same time, extractions of thermal signatures need to be automatized. With a 

concern about motion artefacts, a couple of authors have applied automatic ROI tracking methods 

(originally built for RGB vision images) to thermal images (despite still limited head movements 

involved in state-of-the-arts, e.g. Pereira et al. 2015). However, effects of environmental 

temperature changes have never been addressed.  

Bringing thermal imaging into more unconstrained settings, it is expected that variable 

thermal range scenes could affect performances of existing state-of-the-art methods in extracting 

physiological thermal signatures. As discussed in Section 2.2, thermal dynamics (i.e. different 

ambient temperature and its dynamic variation) could change the morphological and graphical 

properties in thermogram and lead to tracking imperfections. In this view point, new signal 

processing techniques are required to overcome such limitations. 

 

ii) Challenges in tracking good quality of physiological thermal signatures 

Amongst explored physiological thermal signatures, vasoconstriction/dilation-related 

cardiovascular and respiratory signatures have been most often explored. They are very 

interesting as they are strongly related to mental stress responses (Everly Jr & Lating, 2012) and 

at the same time, they do not necessarily require high-resolution thermal imaging systems (Table 

2.3). By contrast, the perspiratory signature which is also an important physiological stress cue 

(Healey & Picard, 2005) requires use of extremely high spatial thermal cameras for the 

monitoring of sweat glands (Pavlidis et al., 2012; Krzywicki et al. 2014). In the case of cardiac 

pulse-related signature which is another type of cardiovascular thermal cues, the accuracy has 

been very low as discussed in Section 2.2 (and Appendix B). 

However, two challenges have emerged from the literature about tracking ROIs containing 

the two interesting thermal signatures. First, connected to the discussion point above, existing 
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state-of-the-arts can only support constrained environments in terms of motion artefacts and 

environmental temperatures. In particular, the prior arts for monitoring vasoconstriction/dilation 

related thermal phenomenon from the nasal area do not support to continuously and reliably track 

the area and the signature. Although state-of-the-arts for continuous respiration tracking have 

reached good performances in tracking the nostril (the main ROI), they still require such 

constrained environments.  

Second, there is a need to improve quality of such physiological thermal signatures. This 

is directly linked to metrics which can be used to quantify the signatures. Although (general) 

vasoconstriction/dilation has been known to be very informative of mentally stressed states (Elam 

& Wallin, 1987), only a simple metric (i.e. binary direction) has been applied to thermal changes 

in relation to the signature. Continuously extracting higher quality signals should contribute to 

capturing more complex physiological phenomenon informative of mental stress. The same 

applies to respiratory signature. Rather than producing a simple breathing rate over a certain time 

period, there is the need for reliably recovering time-varying breathing-induced air exchange 

patterns.   

Beyond documented (explored) thermal signatures which have been mostly observed from 

facial areas, we have found possibilities of capturing novel types of thermal signatures from 

underexplored scalp local regions. From the literature reviewed in Section 2.4, we have found 

there is sufficient evidence to support the relation of cortical thermal responses of the scalp local 

regions (e.g. near parietal lobes and inferior frontal gyrus) to mental stressors. We expect mobile 

thermal imaging can be of greater help to observe such potentially important signatures from 

various underexplored areas. 

 

iii) Limited contributions of stress-related thermal signatures to automated stress 

recognition 

As addressed above, a variety of existing studies have focused on the simple metric 

designed to observe binary directions of thermal changes (i.e. temperature decrease, increase) in 

association with a person’s affective states. Despite findings in the literature opening up exciting 

prospects for thermography-based affective computing, they have often shown incongruent 

results of thermal directional patterns in association with psychological states (e.g. Stress: Engert 

et al., 2014 - Veltman & Vos, 2005; Startle: Gane et al., 2011 - Pavlidis et al., 2001). Given our 

complex psychophysiological mechanisms related to mental stress, a single discrete metric itself 
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(e.g. thermal directional changes of the nose tip, Genno et al., 1997; Engert et al., 2014) is less 

likely to contribute strongly to stress inference tasks. The same generally applies to other 

physiological signatures including respiratory signature.  

As summarised in Figure 2.2, the ability of respiratory thermal signature in stress 

assessment has never been explored. Although, beyond the literature focusing on thermography, 

gross statistical features (e.g. mean) of respiratory rate have been explored for automatic stress 

recognition, the contribution of respiratory rate to the stress assessment process has been known 

to be very weak (McDuff et al., 2016). This could indicate that currently used computational 

methods should be tackled by building new ways to represent such signatures as respiration is 

known to strongly respond to mental stressors in the literature in physiology, medicine (Grossman, 

1983; Everly Jr & Lating, 2012). 

Lastly, whilst the majority of existing works about stress assessments require long-term 

measurements, for example, longer than five minutes and additional baseline measurements 

(Engert et al., 2014). However, it is hard to ensure to obtain reliable physiological signatures 

during this long period of time in ubiquitous situations. Hence, the power of short-term 

measurements needs to be addressed. 

 In summary, little has been known about how thermal signatures contribute to building 

automated stress recognition systems, in particular, supporting unconstrained settings (regardless 

of the modality). Relevant libraries of computational methods and datasets of thermal video 

recordings have also remained publicly unavailable. To foster this promising work in our research 

communities, there is a need for making them available to the public. Thus, this thesis aims to 

address such challenges. 
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Chapter 3 

 

Research Methodology 
 

Through this thesis, we define Mobile Thermal Imaging as a new pathway for thermal imaging 

that can perform in unconstrained, mobile, real-world like situations, differentiating itself from 

the traditional use of thermal imaging within constrained, systematic environments, as shown in 

Figure 3.1.  

In this chapter, we discuss our research questions introduced in Section 1.2 with respect 

to findings and limitations of the literature reviewed in Chapter 2. Along with this, we present 

our general approach used to tackle the research questions, materials and tools developed to 

support our approach.  

 
 

Figure 3.1. Mobile thermal imaging as a new way for bringing thermal imaging from 

traditional constrained systematic settings into unconstrained, mobile, real-world like situations. 

 

 

3.1. Three Stage Approach 

To address the identified three key limitations, the methodology proposed for this thesis is 

organised in three corresponding stages: STAGE I: Novel Signal Processing Techniques for 

Mobile Thermal Imaging, STAGE II: Novel Physiological Computing Techniques, STAGE III: 
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Novel Automatic Mental Stress Recognition Systems. The following is dedicated to the detailed 

description of the three stages which form a backbone of this thesis in Table 3.1. 

 

Table 3.1. Proposed three stage approach based upon the research question tree in Figure 1.2. 
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STAGE I. Novel Signal Processing Techniques for Mobile Thermal Imaging 

The first stage (Chapter 4) aims to answer the research question, RQ1.A) How can we 

address the effect of variable thermal range scenes, which is one of the key challenges in 

automatic tracking of ROIs (Regions of Interest) in real world, mobile situations?  As discussed 

in Section 2.5, a key rationale for this stage is that the effect of thermal environmental changes, 

one of the key challenges in keeping track of ROIs on thermal images in unconstrained settings, 

has been unaddressed in the literature. 

To overcome this limitation, this stage focuses on contributing pre-processing techniques 

to support automatic ROI tracking in unconstrained settings with low-cost, mobile thermal 

cameras, building on state-of-the-art motion tracking algorithms (originally built for RGB visions) 

(e.g. Kalal et al.’s Median Flow, 2010). In particular, we focus on building a technique which 

can make tracking performance less affected by environmental thermal dynamics. By doing so, 

we tackle the standard quantisation process using a fixed thermal range of interest (e.g. 28°C to 

38°C in Fei & Pavlidis, 2010) to approximate measured temperatures into grey-colour-scaled 

values. This standard approach cannot address time-varying environmental temperatures 

affecting graphical and morphological structures of skins or objects on thermal images, leading 

to difficulties in tracking ROIs. Hence, we aim to develop a new technique that can adaptively 

construct a colour mapping of absolute temperature to improve segmentation, classification and 

tracking. 

Furthermore, this stage aims to answer the second research question related to the first 

one, RQ1.B) How can we generalise the proposed signal processing approach to other material 

temperatures than human skin temperatures? Although the main focus of this thesis is on 

physiological and psychological cues derived from the skin temperature, we expect that a 

technique which adaptively adjusts thermal images to environmental temperature changes can be 

generalised to other types of materials (which have higher thermal conductivities than the human 

skin). Hence, beyond the problem of the skin ROI tracking, we aim to test this further on thermal 

images of other materials, particularly, collected from outdoors where environmental 

temperatures are highly dynamic. By doing so, it is expected to see how important a pre-

processing step is for mobile thermal imaging in other HCI applications where thermal imaging 

is possibly used.  
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STAGE II. Novel Physiological Computing Techniques 

In this second stage (Chapters 5, 6 and 7), we dive into different physiological thermal 

signatures: respiratory, cardiovascular, and cortical thermal signatures. The first two are the 

documented physiological signatures in the literature where there is need to improve signature 

tracking performance, and the third is a novel signature backed by neuroscientific evidence 

reviewed in Section 2.4.  

1) Respiratory thermal signature: While earlier works have allowed for small amounts 

of head motion, most works exploring respiratory thermal signature have used static 

contexts in which people try not to move (Murthy & Pavlidis, 2006; Fei & Pavlidis, 

2010; Abbas et al., 2011; Lewis et al., 2011; Pereira et al., 2015). This leads to the 

research question, Q2.A) Can respiratory signatures be recovered through 

thermography in unconstrained HCI settings? If so, how can we build methods for 

robust respiration tracking using thermal imaging?  

With the effect of variable thermal range scenes, the first stage is to address the 

remaining key challenge which has emerged from the literature. The challenge is the 

effect of motion artefacts to which nostril tracking on thermal images is susceptible. 

It is also expected that the low spatial resolution of the imaging and mobile situations 

introduce noise in the respiratory signal quality. In this case, averaging which has 

been dominantly used to represent respiration signatures (Murthy & Pavlidis, 2006; 

Fei & Pavlidis, 2010; Abbas et al., 2011; Lewis et al., 2011) is more likely to lose 

important breathing information. Hence, in Chapter 5, we aim to overcome both 

issues. Accordingly, we investigate (i) how to enhance the boundary around the 

nostril region, contributing to making the system more robust to motion artefacts, as 

well as (ii) how to benefit from the two-dimensional data taken from thermal imaging 

to contribute towards higher quality breathing patterns. 

 

2) Nasal Vasoconstriction/dilation-related Cardiovascular thermal signature: Measuring 

binary directional changes in temperature of the nasal area has been the main focus 

of the literature (Genno et al. 1997; Veltman & Vos, 2005; Or & Duffy, 2007; Engert 

et al., 2014; Abdelrahman et al., 2017). As this measurement is of relative ease, state-

of-the-art methods to track this physiological phenomenon through thermal imaging 

have been very limited. As vasoconstriction/dilation itself has shown to be 
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informative of a person’s stressed states in the physiological literature (Elam & 

Wallin, 1987), we are interested in complex variations in vasoconstriction-related 

nasal temperature. This leads to the research question, RQ2.B) Can we continuously 

monitor stress-induced vasoconstriction/dilation patterns from the nose tip in 

unconstrained settings? And can we build a rich set of metrics to quantify variations 

in the patterns? 

Accordingly, Chapter 6 aims to build a novel technique that continuously and 

accurately estimates vasoconstriction/dilation-related thermal signatures in less 

constrained settings. This can be based on the outcome from the previous chapters. 

Due to the low spatial resolution of the thermal camera, the shape of the nose tip 

region is likely to be blurred, inducing the difficulty in tracking. Hence, we investigate 

the use of a larger ROI including the nose tip and the effect of breathing induced 

temperature changes on the measures.  

Continuously tracked signals make it possible to extract richer information related to 

mental stress than the single metric (i.e. binary direction). To support this, we design 

multiple metrics and evaluate them to see if they lead to better understandings of 

stress related factors such cardiovascular events from the nasal area. Using datasets 

we collect from stress-induction tasks (details are given in Section 3.3 and each 

chapter), we explore the relation of the signature to mental stress further. 

 

3) Cortical thermal signature: Beyond known thermal signatures which are mostly from 

a person’s facial area, a potentially interesting signature has emerged from a review 

of neuroscientific studies in Section 2.4. This is the cortical thermal signature from 

the scalp. Given neurological evidence of the relation between mental stress and brain 

activities that potentially influence the scalp temperature (Busto et al., 1987; Taylor 

et al., 1997; Soufer et al., 1998;Li et al., 2017), Chapter 7 aims to answer the research 

question, RQ2.C) Can thermal responses of brain local regions to mental stress be 

observed by using low-cost thermal cameras? If so, how can we build methods and 

metrics to capture cortical thermal signatures?  

For this, we can take advantage of the lightweight, small-sized characteristics of low-

cost thermal cameras in observing cortical thermal signatures from the scalp. The 

low-cost, mobile thermal cameras can be set up over a person’s head easily, by 

contrast with the high-cost, immobile thermal cameras. This recording setup does not 
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require obstruction of vision in real life situations. With this setup, we investigate 

thermal signatures from brain-scalp regions in relation to Cerebral Blood Flow (CBF) 

reaction under stressful conditions used in stress induction studies. As in the second 

part of this stage, we build a richer set of metrics beyond the single and simple 

direction-related metric to capture stress-induced cortical thermal variations.  

 

STAGE III. Novel Automatic Mental Stress Recognition Systems 

In this third stage (Chapters 8 and 9), we explore how to improve the ability to detect 

mental stress with each physiological thermal signature. Particularly, we focus on respiratory and 

cardiovascular signatures as the exploration of cortical thermal signature is on a very initial stage. 

The computing literature has shown that roles of such signatures have been weak in the stress 

inference process and incongruent results from the use of simple metrics to quantify mental stress 

have often been reported. That is why we investigate how to address the issues by focusing on 

each signature separately rather than combining all signatures together to obtain better 

performance. By doing so, we throw the first research question, RQ3.A) How can respiratory 

thermal signature itself contribute to building automatic stress recognition systems? To answer 

this, in Chapter 8 we tackle the use of the dominantly-used gross statistical, hand-engineered 

features from physiological signatures given their limitations. Inspired by a physiologist’s 

discussion of mental stressors possibly inducing breathing irregularity (Grossman, 1983), we aim 

to focus on how to capture a richness of stress-induced breathing dynamical information. This 

leads us to build new physiological signal representation techniques that help to condense 

important stress-related respiration variability. This new compact image-based representation can 

enable the use of automatic feature learning algorithms (representation learning) such as a 

Convolutional Neural Network, which could learn informative features itself from the condensed 

information. Rather than building new machine learning algorithms or making edits on 

hyperparameters or architectures, we aim to explore how a representation technique can enhance 

the stress inference performance of existing machine learning classifiers. 

The second research question in this stage RQ3. B) is How can the nasal 

vasoconstriction/dilation related thermal signatures contribute to very fast stress recognition 

together with other types of cardiovascular signals from another mobile sensing channel (HRV 

from PPG)? Current state-of-the-art stress recognition systems require long-term reliable 

measurements (e.g. two minutes in McDuff et al., 2016) to make inference about a person’s 

mental stress. However, it is often hard to ensure reliable physiological signatures are obtained 
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during this long-term period in unconstrained, mobile, and real-world-like situations. Hence, 

Chapter 9 focuses on improving the ability in automatically detecting mental stress levels using 

a short-term measurement. In this case, we take advantage of the use of a smartphone and a low-

cost thermal camera. This recording setup allows for simultaneously recording two different 

cardiovascular signatures together: vasoconstriction/ dilation related signatures from the thermal 

camera and blood volume pulse information from an RGB camera equipped in the phone. Again, 

the focus is on proposing new representations capturing complex information of mental stress 

from such signatures. Overall, we aim to achieve state-of-the-art performance in detecting mental 

stress levels through mobile thermal imaging.  

 

 

3.2. Basic Tools for Thermal Imaging in Unconstrained 

Settings 

For mobile thermal imaging in unconstrained settings, we use low-cost thermal cameras as 

thermal imaging sensing channels due to their small-sized, lightweight and portable 

characteristics making them more feasible to be deployed in real-world settings.  

 

Low-cost Thermal Camera as a Mobile Thermal Imaging Channel 

Amongst low-cost, mobile thermal cameras commercially available, FLIR One (for 

Android - dimensions: 72mm x 26mm x 18mm, FLIR Systems Inc., Santa Barbara, CA, 

www.flir.com), which was cheapest in 2016 (see Table 2.1), was chosen as a main channel for 

supporting mobile thermal imaging throughout this thesis. This device converts 8-14m radiation 

spectral density to temperature. As shown in Figure 3.2, this device requires a smartphone to be 

connected to control the parameters for the temperature measurement process and to visualise, 

and store, thermal images. The camera can be either directly connected to the phone or connected 

to it with an extension cable. When attached to a smartphone, it can be used to continuously sense 

and record thermal image sequences with a spatial resolution of 160x120 and a temporal 

resolution of less than 9 frames per second (fps). The device can be placed on a desk or handheld 

by a user to measure, and record temperatures of a person’s face and body, providing more 

flexibility than high cost, heavyweight thermographic systems which have been dominantly used 

in the literature (e.g. Figure 2.1). 
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Figure 3.2. A low-cost thermal camera (FLIR One) to be used as a mobile thermal imaging 

channel in the thesis. This device requires a smartphone to be connected to control parameters 

for itself and to visualise, and store, thermal images. They can be either directly connected or 

connected with an extension cable.  

 

 

Built Bespoke Software Library for Thermal Data Acquisition 

An acquisition of measured temperatures (i.e. raw/original data) is the first step to be done 

for the thermal analysis. However, all the commercially available data recording software for the 

low-cost thermal camera do not provide users with a function to extract the raw data, that is a 

sequence of temperature metrices. Available tools produce colour-mapped images which are 

already converted from raw data. As their own temperature-to-colour mapping formula is not 

provided (histogram equalization is often applied), it is hard to extract actual temperature values 

from the colour images. Hence, there is a need to design a new recording tool that can provide a 

time series of 2D temperature information. 

To capture the temporal 2D thermal information, we developed software using FLIR One 

SDK for Android11, which allows to access to data produced by the thermal imaging controller 

(in the device) and extract the raw thermal sequences. Upscaling and bicubic interpolation were 

applied to the original 160x120 thermal matrix to double the size of the matrix and enhance its 

quality, as shown in Figure 3.3a. We also implemented a function to assist with changing the 

emissivity coefficient which requires adjustment along with a type of targeted material surface. 

                                                 
11http://developer.flir.com/flir-one-software-development-kit/ 
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For all the data collection studies carried out in this thesis, the emissivity was set to 0.98 for the 

human skin (Steketee, 1973).  

Figure 3.3b shows a data frame protocol for mobile thermal imaging as there is no standard 

protocol for sharing two-dimensional thermal data sequences in the research community. Note 

that every low cost, mobile thermal imaging device available in early 2018 uses the MPEG 

protocol which is one of the RGB video/audio compression protocols. The compressed outcomes 

are already quantised colour-mapped images or videos, not thermal sequences. Therefore, we 

developed the data frame protocol for storing the raw thermal data sequences.  

Temperature sequences stored within the proposed data frame protocol can be easily 

loaded on Matlab or Python – example codes are available at the author’s GitHub repository12. 

Each frame is stored in a 16bit Boolean binary array, instead of 8bit data, to avoid degrading the 

thermal sensitivity. As discussed in Section 2.1, the low-cost thermal imaging devices (such as 

FLIR One and Seek Thermal, see Table 2.1) do not produce data at a consistent sampling rate 

(i.e. unsteady temporal resolution due to their dependency on a mobile operating system) For this 

reason, time stamps are included in the end of each frame (time info in Figure 3.3b). 

 

 

Figure 3.3. (a) Thermal image with bicubic interpolation and scaling, (b) the proposed data 

frame protocol. 

 

 

3.3. Overview of Experimental Protocols and Datasets  

This section describes key experimental protocols to create bespoke datasets that allow for 

specifically addressing our research questions, comparting our proposed methods with state-of-

the-art approaches. Inspired by the literature, we design two groups of experimental protocols 

along with task type: i) without and ii) with stress-induction tasks. The first group of protocols is 

                                                 
12 https://github.com/deepneuroscience/Thermal-Video-Read  

https://github.com/deepneuroscience/Thermal-Video-Read


88 

to collect data from participants in various activities and environments with the main purpose of 

testing signal processing and computational methods which this thesis proposes and builds for 

automatic tracking of ROIs and physiological signatures in Stages I and II. Breathing exercise, 

standing, and sitting (for having a conversation, surfing the internet, reading articles, etc), walking 

indoors and outdoors are chosen as main activities.  

The second group of protocols aims to collect data from participants who specifically 

attend stressful tasks to ensure capturing of stress-induced physiological patterns in Stage II and 

to test computational methods for stress recognition in Stage III. As main tasks, Stroop and mental 

arithmetic tests are used. Both task types were chosen based upon studies already tested in the 

literature for systematically validating our methods and comparing them with the existing state-

of-the-arts in highly constrained situations. However, our protocols were also designed to be 

conducted in unconstrained situations so as to see how they could reliably work in real-world like 

situations where environmental temperature changes and natural movements of participants are 

allowed.   

 

Without stress-induction tasks (Stages I and II - Chapters 4, 5, 6)  

In more detail, the experimental protocols without stress-induction tasks were designed 

with different scenarios along with higher complexity reflecting the thermal dynamic ranges and 

motion artefacts. These are referred to as: 

(i) controlled breathing exercise with constrained head motions in multiple indoor and 

outdoor places with different ambient temperatures,  

(ii) indoor sedentary activity with constrained head motions and room temperatures, 

(iii) indoor sedentary activity with unconstrained head motions and room temperatures, 

(iv) indoor and outdoor physical activity in fully unconstrained, mobile contexts and 

with variable thermal range scenes. 

 

The aim of the first and second experiment protocols (i, ii) are for systematic evaluations 

of our proposed methods. As in Gastel et al. (2016), the first protocol uses guided breathing 

patterns and constrains the person’s movement. Following Veltman & Vos (2005), the second 

protocol uses a chinrest to minimise head motions of participants and controls room temperatures.  
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Both the third and fourth experimental protocols (iii, iv) are to evaluate our methods under 

natural, real-world like conditions: the third targets sedentary activities (such as sitting and 

reading articles as in Abdelrahman et al., 2017) without constraining movement and with low-

levels of room ambient temperature variances. To simulate real-world like situations, we use open 

places (e.g. real office) where strangers are present and natural conversation is allowed. The last 

protocol targets physical activity in fully mobile contexts with varying ambient temperature. This 

includes walking through indoor corridors, stepping and strolling in a park area.  

 

 

With stress-induction tasks (Stages II and III - Chapters 6, 7, 8 and 9)  

The experimental protocols with stress-induction tasks are to build datasets which help to 

validate the proposed approaches under stressful conditions. These are: 

(i) stress-induction desk activity tasks with constrained head motions and room 

temperatures, 

(ii) stress-induction desk activity tasks with unconstrained head motions and room 

temperatures. 

The first protocol (i) is mainly for exploring cortical thermal signatures (in Chapter 7). 

Whilst we have found physiological and neuroscientific evidence demonstrating a possibility that 

cortical thermal signatures could respond to mental stressors, this has been unexplored in the 

literature; hence a very constrained protocol is required. On the other hand, the second protocol 

(ii) is to impose no constraints to participants, allowing their unconstrained movement (e.g. head 

motion) during the sedentary activities. In addition, room temperatures are also not controlled 

similarly to  the previous group of experimental protocols.  

To be specific, during both types of stress induction study protocols, we collect 

physiological data and subjective self-reports in association with mental stress levels due to 

mental workload (Lazarus, 1993; Everly Jr & Lating, 2012; Alberdi et al., 2016). We have chosen 

two cognitive-load induction tasks to build our study protocols - the Stroop Colour Word test 

(Stroop, 1935) and the Mathematical Serial Subtraction test (Soufer et al., 1998). These tests are 

mainly selected as they have been shown in the literature on mental stress induction studies in 

psychology, neuroscience and affective computing with the aim to induce mental stress by 

increasing cognitive load (Åkerstedt et al., 1983; Dedovic et al., 2009; Hong et al., 2012; McDuff 

et al., 2016). They have also been used in other thermal imaging studies (Puri et al., 2005; Engert 
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et al., 2014). Each task needs to be divided into two sub-tasks with varying difficulty levels in 

order to elicit different stress levels, for instance, easy and hard: Se – Stroop easy, Sh – Stroop 

hard, Me – Math easy, Mh- Math hard. Each sub-task is counterbalanced in a Latin squared design.  

Although it has been shown that the Stroop and mental arithmetic tests lead to cognitive 

overload (Åkerstedt et al., 1983; Taylor et al., 1997; Soufer et al., 1998; Dedovic et al., 2009; 

Alberdi et al., 2016), they are limited in the amount of stress they induce due to the lack of 

psychosocial stressors or other stressors (Dedovic et al., 2009; Setz et al., 2010). Hence, 

following the literature (Åkerstedt et al., 1983; Genno et al., 1997; Dedovic et al., 2009; Setz et 

al., 2010), we also introduce further stressors: a) social evaluative threats, i.e., close observation 

and assessment of a person’s performance (Dedovic et al., 2009; Setz et al., 2010), b) time 

pressure, for example, 1.5 second limitation for each Stroop question (Åkerstedt et al., 1983), and 

c) loud sound feedback, in particular, an unpleasant sound for wrong answers (Genno et al., 1997). 

To collect subjective self-reports of mental stress levels, we commonly use a 10-cm Visual 

Analogue Scale (VAS), which allows participants to answer on an analogue basis (continuous) 

to avoid non-parametric properties (Bijur et al., 2001; Lesage et al., 2012). The main question 

asked is “How much did you feel mentally stressed?” (ranging from 0, not at all, to 10, very much). 

Only one VAS straight line is used in the stress induction data collection studies in this thesis to 

self-report his/her perceived stress levels across all tasks and sessions. This is to help participants 

easily compare stress scores they report between sessions as shown in Figure 3.4 where a 10cm 

VAS based questionnaire is visualised with examples of labels along with each session type (R1, 

R2: Rest from Session 1 and 2, Se: Stroop easy, Sh: Stroop hard, Me: Math easy, Mh: Math hard). 

This approach combines a numerical approach to self-reporting with a ranking one, as ranking is 

generally more reliable than simple quantisation of a subjective state (Bang, 2009; Atkinson et 

al., 2016; Yannakakis et al., 2017). Examples of labels (R1, R2: Rest from Session 1 and 2, Se: 

Stroop easy, Sh: Stroop hard, Me: Math easy, Mh: Math hard) in Figure 3.4 have been added to 

the figure by the researcher to clarify their reference to each task. The entire questionnaires used 

in this thesis is provided in Appendix H. 
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Figure 3.4.  10cm VAS based questionnaire with examples of labels along with each session 

type (R1, R2: Rest from Session 1 and 2, Se: Stroop easy, Sh: Stroop hard, Me: Math easy, Mh: 

Math hard). The red marks (x) represent examples of self-reported scores of one participant 

over the different tasks. The task labels have been added by the researchers for the purpose of 

this figure. 

 

 

 

 

 

Summary of collected datasets  

Table 3.2 summarises our collected datasets using the experimental protocols described 

above. This is to provide a quick glance of our incrementally built labelled datasets of thermal 

images in both constrained and everyday ubiquitous settings. Each detail is provided in each 

corresponding chapter in terms of task flows, information of participants, the number of thermal 

cameras used, and other commercialised physiological sensors used for the purpose of technically 

evaluating proposed methods. In addition, we provide detail of how we build a richer set of 

physiological data sets (multiple types of physiological data were collected from additional 

sensors for building richer datasets even if they are not exploited in this thesis). Prior to all data 

collection conducted in this thesis, participants were asked to read the information sheet and sign 

the informed consent form attached in Appendix I. All the experimental protocols described 

above were approved by the Ethics Committee of University College London Interaction Centre 

(ID Numbers: STAFF/1011/005 and UCLIC/1617/003). Participants were informed that they 

could stop the study at any time if they felt uncomfortable.  
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Table 3.2. An overview of an incrementally built, labelled datasets from conducted data collection studies 

in constrained systematic and unconstrained settings 

 

Dataset Name Chapter  
Constrained Systematic 

Experiments 
Unconstrained Experiments 

ROITracking 4 & 5 - 

indoor sedentary activity with 

unconstrained head motions 

and room temperatures (N=10) 

ThermalBreath 

I 
5 

controlled breathing exercise 

with constrained head 

motions in multiple indoor 

and outdoor places with 

different ambient 

temperatures (N=5) 

- 

ThermalBreath 

II 
5 - 

indoor and outdoor physical 

activity in fully 

unconstrained, mobile 

contexts and with variable 

thermal range scenes (N=8) 

NoseTracking 6 

indoor sedentary activity with 

constrained head motions and 

room temperatures (N=10) 

- 

StressNose 6 - 

stress-induction desk activity 

with unconstrained head 

motions and room 

temperatures (N=12) 

ThermalBrain 

I 
7  

stress-induction desk activity 

with unconstrained head 

motions and room 

temperatures (N=10) 

ThermalBrain 

II 
7 

stress-induction desk activity 

with constrained head 

motions and room 

temperatures (N=10) 

 

DeepBreath 8 - 

stress-induction desk tasks 

with unconstrained head 

motions and room 

temperatures (N=8) 

InstantStress 9 - 

stress-induction desk tasks 

with unconstrained head 

motions and room 

temperatures (N=17) 
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3.4. Overview of Evaluation Methods 

This thesis thoroughly evaluates our proposed approaches using incrementally built datasets from 

the experimental protocols described in Section 3.3. We reimplement existing state-of-the-art 

approaches for comparing performance of our proposed approaches, particularly in Stages I and 

II (i.e. automatic ROI tracking, physiological signal tracking). We also implemented existing 

standard metrics to represent such physiological signatures to compare them with our proposed 

representation and metrics. In the case of physiological signature tracking, reference data from 

commercial physiological sensors are adopted as a ground truth to statistically evaluate results. 

Results from the stress induction experiments, such as self-report scores and physiological 

thermal signatures, are statistically analysed. 

To be more specific, in Stage I, we implement existing ROI tracking methods which are 

most widely used in the computing literature such as the Median Flow (Kalal et al., 2010). Two 

facial areas, periorbital and perioral areas, are chosen as ROIs to track as both areas have been 

widely explored in the literature (e.g. Pavlidis et al. 2002). The number of successfully tracked 

frames is used as a metric to assess the performance. It is programmed to store a movie with the 

tracking result from every frame of thermal image so as to faciliate visual inspections. In the case 

of trackers based on “Good Features to Track” (Shi & Tomasi, 1994) (a majority of state-of-the-

art algorithms are built on this, such as Median Flow), the tracking evaluation program is 

programmed to finish and report the metric value when all feature points are lost. As the proposed 

signal processing technique is a backbone of computational methods built in Stages II and III, as 

well as being thoroughly tested in terms of motion artefacts and variable environmental 

temperatures, this stage uses only the dataset collected from the indoor sedentary activity with 

unconstrained head motions and room temperatures and track the two ROIs. Lastly, in order to 

test the general capability of the method in other material temperatures than the human skin, we 

additionally conduct a material classification task by collecting numerous outdoor materials. For 

the evaluation, we implement a state-of-the-art deep learning algorithm (Spatial Transformer-

based convolutional neural network, Jaderberg et al., 2015) and compare the classification 

performance between the proposed processing-enabled method and the original algorithm. 

In Stage II, we additionally implement an existing state-of-the-art ROI tracking method, 

Sparse Representation (Mei & Ling, 2011) used in the state-of-the-art breathing tracking method 

proposed by Pereira et al. (2015). As we conduct in the first stage, we use the tracking success 

rate and evaluate each performance statistically using significance tests (e.g. Friedman’s analysis 
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of variance, ANOVA). Furthermore, we implement the dominantly used signal representation 

technique, which is to represent two-dimensional data within a ROI box via averaging (Murthy 

& Pavlidis, 2006; Fei & Pavlidis, 2010; Abbas et al., 2011; Lewis et al., 2011; Gane et al., 2011; 

Pavlidis et al., 2012; Pereira et al., 2015; Abdelrahman et al., 2017), and metrics to quantify 

physiological thermal signatures such as temperature difference or respiratory rate. They are used 

as benchmarks to compare the quality of physiological signatures tracked by the proposed 

methods. At the same time, we evaluate the results with reference signals from existing 

physiological sensing devices (e.g. chest respiration belt) with statistical tools such as the Bland-

Altman plot and the root mean square error (RMSE). In the case of data collection studies using 

stress-induction studies, we statistically compare between self-report scores and physiological 

data, or between such data across each condition (e.g. stressful or not stressful) by conducting 

significance tests. The within-group design is commonly used in this thesis.  

In Stage III, we implement existing machine learning classification models, such as k-

Nearest Neighbour, a single hidden-layer neural network and convolutional neural network. We 

test such models with the widely-used gross statistical features from physiological signatures as 

well as new models based on feature representation techniques this thesis proposes. A set of 

subjective ratings on questionnaires collected from stress induction-tasks are used to label data 

and set ground truths. Finally, a Leave-One-Subject-Out (LOSO) cross-validation technique is 

used to test their ability to generalise towards different individuals. 

 

 

3.5. Chapter Summary 

This chapter is dedicated to the establishment of our research methodology to bringing thermal 

imaging from constrained, systematic environments into unconstrained, mobile, real world 

situations. The key approach is stacked through the three stage strategy. Earlier stages are 

prerequisites to enable every next stage towards answering the key research question of this thesis: 

“Can mobile, low-cost thermography be used as multiple physiological measures for automatic 

recognition of a person’s mental stress in HCI settings?”. Basic tools have been built to support 

the use of low-cost thermal cameras as a main physiological sensing channel. Experimental 

protocols have been designed to incrementally produce datasets considering the problem which 

each proposed method is to solve along with each stage and chapter. We have also discussed 

evaluation methods to appropriately assess the performances of our proposed approaches upon 
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the built datasets. This chapter is followed by Chapter 4 which stands on the first stage. In the 

following chapter, novel signal processing techniques are proposed and evaluated, with the aim 

of enabling the use of thermal imaging in variable thermal range scenes.  
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STAGE I 

Novel Signal Processing Techniques  

for Mobile Thermal Imaging 
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Chapter 4 

 

Optimal Quantisation: A Preprocessing 

method for Mobile Thermography in 

Variable Thermal Range Scenes 
 

As discussed in Chapter 2, to bring thermal imaging from constrained, systematic settings into 

unconstrained, ubiquitous applications, we ought to confront the key challenge: variable 

environmental temperature. This negatively affects graphical and morphological structures of 

skins or materials on thermal images, leading to difficulties in automatically tracking ROIs, which 

is a prerequisite to reliably, continuously and automatically extract physiological signatures. To 

address this key issue, this chapter aims to build a new pre-processing method that can support 

the use of thermal imaging in high-thermal dynamic range scenes.  

Section 4.1 discusses the background and our research question. Section 4.2 proposes the 

novel signal processing method and the method-enabled ROI tracking system. Sections 4.3 and 

4.4 describe datasets and evaluation methods, which are followed by Section 4.5 where 

performance of tracking human skin ROIs is presented. Section 4.6 further explores how the 

proposed method can be generalised to other material temperatures. The chapter ends with a 

discussion and a summary in Section 4.7 and 4.8. 

 

 

4.1. Background and Research Questions  

Whilst in the majority of earlier work researchers have carefully and manually tracked a person’s 

ROI on recorded thermal image sequences to observe temperature variances induced by certain 

affective states, only a few studies have applied automatic ROI (or motion) tracking algorithms - 
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which have been developed for RGB video analysis - to thermal sequences (Garbey et al., 2007; 

Sun et al., 2005; Ebisch et al., 2012; Manini et al., 2013; Shastri et al., 2012; Tsiamyrtzis et al., 

2007; Zhou et al., 2009). Despite documented motion artefacts leading to less reliable 

physiological signal acquisition from thermal imaging, recent greater improvements made in 

vision-based ROI tracking (Kalal et al., 2010, 2012; Mei & Ling, 2011) are also promising for 

thermal imaging, possibly helping to handle the issue. However, beyond controlled laboratory 

settings, another key computational challenge is environmental thermal dynamics which affect 

morphological, graphical properties of thermograms.  

This is a similar issue to illumination-related issues of RGB vision imaging: for example, 

beyond typical situations with moderate light levels, an RGB camera used for physiological 

monitoring (Kumar et al., 2015) or material recognition sensitivity (Liu et al., 2010; Aittala et al., 

2015) do not work properly. The environmental temperature issue has never been addressed in 

the literature up to this point as their high-cost, immobile thermal cameras have limited their use 

to highly constrained lab settings where ambient temperature is controlled (Garbey et al., 2007; 

Sun et al., 2005; Ebisch et al., 2012; Manini et al., 2013; Shastri et al., 2012; Tsiamyrtzis et al., 

2007; Zhou et al., 2009). Thus, this needs to be tackled to make thermal imaging less thermal 

illumination-dependent. 

In detail, despite our homoeothermic characteristics, temperature distribution on the 

cutaneous skin of the human face changes with the ambient temperature. Therefore, the changes 

in thermal patterns could lead to difficulties in identifying each facial area on thermal images. 

Figure 4.1 for instance, shows thermal images of a person being exposed to ambient air while 

walking outside during the summer. As can be seen, as the person’s face cools down, information 

about facial morphology becomes lost. However, this is a direct result of the way the image was 

created. The thermal camera measures temperature directly, and this must be quantised or 

converted into a digital signal with a fixed number of bits. The quantisation process must cover 

where the bulk of the signal lies.  
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Figure 4.1. Key challenge in the ROI tracking through thermal imaging in high thermal 

dynamic range scenes: fixed thermal range of interest is not suitable in preserving the 

morphological facial shape within varying ambient temperature: [top] examples of thermogram 

shots collected from a person walking outdoor (for 6 minutes), [bottom] temperature 

histograms.  

 

 

The most common approach is to use linear quantisation with a selected temperature range 

of interest, which is traditionally fixed from the first thermogram frame (e.g. 28°C to 38°C in Fei 

& Pavlidis, 2010). However, this is unable to adapt to the dynamic situation here in which the 

temperature falls below 28°C in many parts of the image. One way to address this would be to 

increase the thermal range of values in colour-mapping to ensure all salient features are captured. 

However, because the resolution of the digital signal is fixed, this causes the resolution to go 

down. Because the range of temperature distribution over the facial area is relatively narrow, this 

would reduce contrast and the ability to detect subtle signals. These factors directly influence 

automatic ROI tracking performance.  

This leads to the research questions: How can we address the effect of variable thermal 

range scenes, which is one of the key challenges in automatic tracking of ROIs (Regions of 

Interest) in real world, mobile situations? To answer this, we focus on building a new solution 

to colour mapping, which can continuously adapt to consider high dynamical thermal changes in 

order to improve segmentation, classification, and in turn ROI tracking. Furthermore, the last part 

of this chapter is dedicated to a demonstration of the general capability of the proposed new 

solution to other material temperatures in other HCI applications and material classifications, in 
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order to answer the second question: How can we generalise the proposed approach to other 

material temperatures than human skin temperatures?  

 

 

4.2. Proposed Computational Methods 

In this section, we propose a novel signal processing technique to help compensate for the 

negative effect of variable thermal range scenes (Section 4.2.1) and then we describe how the 

technique can support a ROI tracking algorithm (Section 4.2.2). 

 

4.2.1. Optimal Quantisation Algorithm 

In thermal image processing, Quantisation is the process of translating from a continuous 

temperature value to its digital colour-mapped equivalent. Suppose the temperature lies in the 

range 
0 1[ , ]kT T −

 and the colour pixel which represents it lies in the range 
0 1[ , ]ku u −

. We define 

( )u T=   as the mapping between the two. For the Quantisation in time-varying thermal dynamic 

range scenes, our idea is to adaptively quantise the thermal distribution sequences by finding a 

thermal range of interest that contains the whole facial temperature distributions for every single 

frame.  

As a first step, we use a statistical extreme value removal process to reduce unexpected 

noises (e.g. sunlight projected on a person’s glasses) and points of extreme temperature, which 

may be produced by errors of mobile thermal imaging in calculating temperature due to fixed 

emissivity or lens conditions (e.g. misted lens). By removing thermal signals beyond 1.96 

standard deviations, we can set an initial candidate for the thermal range 
min max[ , ]T T  : 

  (4.1) 

where is the sample mean of  which is the one-dimensional temperature distribution 

( ),  is the spatial resolution of collected thermal distribution matrixes (Figure 

4.1), and is the standard deviation of . 

Now for the final selection the interest range, we assume there are two qualitatively 

different elements in each frame: the person’s face and the background. Therefore, we adopt 

Ridler and Calvard’s concept of optimal threshold selection (Ridler & Calvard, 1978). This 

min max1.96 , 1.96c cT c T c
n m n m

 
 = − = +

 

c ( )c x

1,x n m   n m

c ( )c x
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method finds the threshold value that best separates objects from the background by iteratively 

analysing the colour histogram. This can help to search thermal values that distinguish the human 

skin from non-skin areas and the time-varying temperature histograms exhibiting various 

dynamic ranges. Furthermore, it is known this method is robust, even in the presence of non-

bimodal histograms which make it harder to find an optimal boundary of temperature ranges of 

interest. Our Optimal Quantisation technique, which is named after the concept, is finalized with 

the iterative computation of an optimal threshold value  below: 

  (4.2) 

  (4.3) 

 

where and  are the mean values when , , respectively. 

While the method presented in Ridler & Calvard (1978) requires the four corners of an image to 

contain background pixels, our method does not require this condition because Equation (4.2) is 

initialised with a value from Equation (4.1). The process is iterated until  

is satisfied and the temperature range of interest is then chosen to be  

 

 . (4.4) 

 
 

When the average temperature over the background, which includes hair and air, is lower than 

that of human cutaneous skin, only the lower bound is of interest in determining the optimal range. 

When the average temperature of the background is above that of human cutaneous skin, the 

upper bound can be used instead. 

 

4.2.2. Optimal Quantisation-powered Automatic ROI Tracking 

The aim of this section is to present how the proposed quantisation method can enable existing 

automatic ROI tracking methods (which are for RGB images) to perform on thermal images. A 

series of computations following the recording phase contain: i) the Optimal Quantisation, ii) 

ROI Tracking, iii) extraction of original 2D thermal matrices from the tracked ROI, and iv) a post 

processing, as summarised in Figure 4.2. We used the Median Flow algorithm (Kalal et al., 2010), 

one of the state-of-the-arts, for tracking point features on colour converted images created by the 

quantisation technique (Figure 4.2b, 4.2c). Details of the tracking process are described in 

Chapter 5 (Section 5.2.1) where we explore how to further improve the existing tracking 

optT

min(0)optT T =

1 2( ) ( )
( 1)

2
opt

t t
T t

 +
+ =

1( )t 2 ( )t ( ) ( )optc x T t ( ) ( )optc x T t

( ) ( 1) 0opt optT p T p− − 

0 1 max( ),opt kT T p T T− = =
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algorithm. This process results in capacitating the extraction of a two-dimensional apparent 

temperature sequence from the tracked ROI (Figure 4.2d). Although explorations of thermal 

variances from the ROI are beyond the scope of this chapter, please note that this can be followed 

by a post-processing step which is necessary. For example, sparse signal restoration that estimates 

null values between sparse elements (Figure 4.2e) which addresses unsteady temporal frame rates 

of mobile thermal imaging, as discussed in Section 2.1. In addition, thermal voxel integration and 

outlier removals which are described in the following chapters.  
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4.3. Experimental Protocol and Dataset (ROITracking) 

This section describes the experimental protocol and the collected dataset (named ROITracking). 

This aims to collect facial thermal images from participants taking part in indoor sedentary 

activities with unconstrained room temperatures and head motions. This is to mainly test the 

Optimal Quantisation-powered automatic ROI tracking performance on human skin areas. As in 

Abdelrahman et al. (2017), desk activities such as sitting and reading articles are used. In detail, 

10 healthy adults (6 female) (aged 24-31 years, M=28.4, SD=2.17) from a variety of ethnical 

backgrounds (skin colour: from pale white to black) were recruited from the university subject 

pool. The pool includes people from outside the university. Participants went through a sequence 

of tasks consisting of three phases lasting 2 minutes each: i) sitting and conversation, ii) reading 

a news article on the screen and iii) surfing the internet with the keyboard and mouse. 

As described in Figure 4.3, we used the low-cost thermal camera described in Section 3.2 

(Figure 3.2) and installed it near each participant’s face using a shoulder rig. The distance 

between a person’s face and the device ranged from 35cm to 50cm to account for the low spatial 

resolution (160x120) of the camera. Each participant was asked to take off glasses and their cap 

(if any) to clearly capture thermal variations on their facial cutaneous skin including the 

periorbital and perioral areas. The data collection study was conducted in an office room to 

simulate everyday desk activities. Although a chest-belt type respiration sensor was used in this 

data collection, the data is not used in this chapter (this is to evaluate performance of respiration 

tracking methods which are discussed in the following chapter). 

 

 

Figure 4.3. Experimental setup: a low-cost thermal camera was installed near each participant’s 

face using a shoulder rig. An office room was used to simulate everyday desk activities. 

Participants were not asked to constrain their movements. Additionally, a chest-belt type 

respiration sensor was used. The data is not used in this chapter but used as a reference signal in 

the following chapter where we evaluate respiration tracking algorithm performance.  
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To simulate natural behaviours during in-situ tasks, behaviour such as turning of the head 

during a conversation, body shaking due to laughing and any other natural movements were not 

controlled or restricted in any way. As shown in Figure 4.4, this resulted in collecting thermal 

image recordings including a variety of movement situations, such as head rotations due to people 

walking behind them with temporary disappearance of certain ROIs, such as the periorbital area 

or nostrils, from the thermal camera view. The change in a participant’s position from the first 

phase (sitting and conversation) to the second phase (reading an article) ensured sudden head 

movements; in particular, participants with low vision, approached the screen as shown in Figure 

4.4 (top-left and top-middle).   

 

 

Figure 4.4. Examples of collected facial thermal images of participants. Not constraining 

participants’ movements helped to capture their very natural motions such as lowering, turning, 

and rotating their heads.  

 

All sessions were run during the summer. To ensure ambient temperature variations, we 

changed (lowered or increased) air conditioning options during the course of each session. The 

experiment resulted in circa 60 minutes (10 participants x about 6 minutes) of thermal video 

recording of natural movements, spontaneous breathing patterns in sedentary contexts and 

changes in ambient temperature. The total number of frames of thermal recordings for each 

person ranged from 2558 to 3506 frames (about 6 minutes). Note that the sampling rate of the 

low cost thermal camera is not fixed, leading to the different range of collected frames.  
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4.4. Evaluation Method 

To evaluate performance of the proposed Optimal Quantisation method in the skin ROI tracking 

task, we implemented two ROI tracking algorithms. Firstly, Mode-Seeking (also called mean-

shift) algorithm (Cheng, 1995) was selected since it is known as a simple and effective traditional 

method. Secondly, Kalal et al.’s Median Flow (2010) was implemented as, given its high tracking 

success rates, it has been used in latest works employing thermal imaging (Abouelenien et al., 

2017) and also used as the base of the proposed Optimal Quantisation-powered method in Section 

4.2.2. Since the employed methods do not handle the dynamic quantisation issue, the thermal 

range of interest to ±5°C from the average temperature over a person’s whole face in the first 

thermogram frame was used for static quantisation as in Fei & Pavlidis (2010) (i.e. the range is 

[28°C, 38°C]). 

In this evaluation process, periorbital and perioral areas were chosen as main ROIs 

because they have been the main facial parts having emerged from the literature which explores 

affect-related thermal signatures (Pavlidis et al., 2001; Veltman & Vos, 2005; Gane et al., 2011; 

Pavlidis et al., 2012; Engert et al., 2014). To evaluate performances of the proposed and 

implemented algorithms, we used the number of successfully tracked frames as a main evaluation 

metric (and its rate over the total frame number) and investigated effects of tracking methods on 

the metric using the Friedman test.  

 

4.5. Results 

Table 4.1 shows the overall results from the collected thermal sequences. We compared each 

successful result (the number of ROI frames which were successfully tracked) in tracking the two 

local facial regions. As a result, the tracking performance of the Optimal Quantisation powered 

Median Flow over-performed the others (Periorbital area: Mode-Seeking M=49.98%, 

SD=29.96(%); Median Flow M=55.25%, SD=26.09(%); Proposed M=99.43%, SD=1.81(%);  

Perioral area: Mode-Seeking M=47.23%, SD=33.21(%); Median Flow M=34.81%, 

SD=40.15(%); Proposed M=83.11%, SD=25.39(%)). To double check the results, we visually 

inspected each recorded thermal video with the tracker (bounding box).  

Furthermore, we tested statistical significance of tracking results from each ROI. For this 

we used Friedman test (with an alpha value of 0.05) which is the non-parametric alternative to 

the ANOVA with repeated measures as not all the data for each level of the within subject factor 
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were normally distributed (e.g. Median Flow with Optimal Quantisation for the periorbital area: 

p=0.019 from the Shapiro-Wilk normality test). The number of successfully tracked frames 

showed significant effects of the algorithm type (Periorbital area: χ2(2)=14.8, p=0.001, Perioral 

area: χ2(2)=7.824, p=0.02). For the post hoc analysis of paired conditions, we used the 

nonparametric Wilcoxon signed ranks test in which the alpha value was adjusted (α=0.017 

≈0.05/k where k=3, the number of pair-wise comparisons). The results showed that the Optimal 

Quantisation powered algorithm significantly outperformed the other two for the periorbital area 

(mode-seeking vs. proposed: Z=-2.521, p=0.012; median flow vs. proposed: Z=-2.666, p=0.008) 

and the median flow for the perioral area (median flow vs. proposed: Z=-2.521, p=0.012; in the 

case of mode-seeking vs. proposed: Z=-2.1, p=0.036). The result is very interesting as it indicates 

our Optimal Quantisation itself can improve tracking performance of existing algorithms in 

situations where environmental temperature and participants’ mobility are not controlled. 

 

Table 4.1. Tracking results: the number of successfully tracked frames – Mode seeking (Cheng, 1995) vs. 

Median Flow (Kalal et al., 2010) vs. Median Flow with the proposed Optimal Quantisation (bold: perfect). 

Participants 
Total 

frame 

ROI: Periorbital area ROI: Perioral area 

Mode-

seeking 

Median 

Flow 

Median Flow 

with Optimal 

Quantisation 

Mode-

seeking 

Median 

Flow 

Median Flow 

with Optimal 

Quantisation 

P1 

 

3195 509 737 3195 360 638 3195 

 15.93% 23.07% 100% 11.27% 19.97% 100% 

P2 

 

3282 3282 731 3282 3282 81 3282 

 100% 22.27% 100% 100% 2.47% 100% 

P3 

 

3183 532 1545 3183 159 20 1281 

 16.71% 48.54% 100% 5.00% 0.63% 40.25% 

P4 

 

3404 1576 1747 3404 1753 3404 3404 

 46.30% 51.32% 100% 51.50% 100% 100% 

P5 

 

3152 1185 1237 3152 966 523 2924 

 37.60% 39.24% 100% 30.65% 16.59% 92.77% 

P6 
2558 982 1551 2411 874 297 2411 

 38.39% 60.63% 94.25% 34.17% 11.61% 94.25% 

P7 
3506 1318 2955 3506 1050 2593 3506 

 37.59% 84.28% 100% 29.95% 73.96% 100% 

P8 
3368 2238 2717 3368 2323 169 2208 

 66.45% 80.67% 100% 68.97% 5.02% 65.56% 

P9 
3011 1230 1278 3011 1228 539 1152 

 40.85% 42.44% 100% 40.78% 17.90% 38.26% 

P10 
3238 3238 3238 3238 3238 3238 3238 

 100% 100% 100% 100% 100% 100% 
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4.6. Generalisation to Other Material Temperatures 

Beyond the human skin temperature which this thesis mainly investigates, this section explores 

the general capability of the proposed Optimal Quantisation in analysing material temperatures 

which can be found from highly variable temperature environments. As explored in the 

computing literature (Larson et al., 2011; Kurz, 2014; Sahami Shirazi et al., 2014), thermal 

imaging with  high-cost, heavy thermographic systems has also been employed in other 

interesting HCI applications which have mostly targeted office environments. With the use of 

low-cost thermal cameras helping improve its accessibility to the general public, we expect that 

the Optimal Quantisation can help to tackle the boundary using thermal imaging and bring this 

to more wild, ubiquitous applications.  

Here, for the first time, we bring mobile thermal imaging outdoors, specifically aiming to 

create the ability to automatically recognise materials for which a variety of sensing technology 

have been investigated in HCI (Bell et al., 2015; Sato et al., 2015; Yeo et al., 2016; Wang et al., 

2016). This is to support context and material awareness which are of critical importance in many 

situations for both humans and ubiquitous technologies (Schmidt et al., 1999; Dourish, 2004; 

Dey & Häkkilä, 2008). For doing this, we use the proposed Optimal Quantisation which is to 

compensate for high thermal dynamic range scenes, together with one of the latest machine 

learning techniques. In the following sub-section, we introduce our new mobile thermal imaging-

based proximate material type recogniser that can work in a wide range of environmental 

illumination, temperature, and viewpoints.  

 

4.6.1. Method: Deep Thermal Imaging 

Deep Thermal Imaging is a novel approach for sensing and recognising the material of proximate 

objects. Rather than focusing on the overall material temperature, we propose to focus on the 

quantisation process to capture the characteristic spatial thermal pattern of the compounds or 

elements forming a material (Callister & Rethwisch, 2011). Figure 4.5 illustrates our four-step 

approach: a) physical sensing of proximate surfaces through mobile thermal imaging; b) dynamic 

range Quantisation to decrease environmental temperature effects and enhance thermal texture; 

c) deep-learning-based feature learning and training; and d) real-time recognition of materials.  

 



110 

 
Figure 4.5. The overall process for proximate material type recognition with Deep Thermal 

Imaging: a) physical sensing via mobile thermal imaging, b) dynamic range quantisation on 

every thermal image frame, c) feature learning and training process based on spatial transformer 

and deep convolutional neural networks, d) prediction results. 

 

 

Physical Sensing: Mobile Thermal Imaging 

When attached to a smartphone, a low-cost, mobile thermal camera can be used to 

continuously sense and record thermal image sequences of different types of surface materials as 

shown in Figure 4.5a. Its portability means that it is easy to gather images of the same object from 

many different perspectives (e.g., shape, geometry, illumination) and distances. 

 

Dynamic Range Quantisation 

Various factors affect the thermal texture of materials captured by the camera. Each 

materials compound combinations, surface structure (e.g., roughness) and geometry (e.g., cavities) 

influence both the amount of radiation emitted from the surface and the emissivity (Vollmer & 

Klaus-Peter, 2017). Given this, thermal imaging detects the thermal radiation and estimates the 

temperature by using an emissivity value, so-called apparent temperature (not true temperature). 

Instead of attempting to measure the true temperature of the material, we aim to capture the 

thermal radiation differences over material surfaces to discriminate them.  

To maximise the differences between materials and compensate for environmental 

temperature changes, we introduce the Dynamic Range Quantisation method, simplified from the 

Optimal Quantisation method proposed in Section 4.2. Quantisation, the process of mapping 
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input data to output data within a specific range, is crucial for handling thermal image sequences 

in the wild as discussed earlier. Our method amplifies the relative difference between 

neighbouring temperature elements by taking into account the different amounts of radiation on 

every single thermal image of a material surface as shown in Figure 4.5b.  

First, it crops an NxN square at the centre of the captured image. In our implementation, 

we use a 75x75 square given the low spatial resolution (160x120) of the thermal camera. 

Cropping is important because low-cost systems, designed for mobile thermal imaging, suffer 

from lens-inducing calibration errors that can lead to extremely low or high temperature at the 

edge of the image. The second step is to adaptively quantise the thermal measurements using the 

expression ( )u T=  , where 
1 2[ , ]T T  is the range of temperature and 

1 2[ , ]u u  is the range of a pixel 

value on the output thermal image. The temperature range is given by  

       1
,

( ) min ( )ij
i j ROI

T k S k
 

= ,  2
,

( ) max ( )ij
i j ROI

T k S k
 

=         (4.5) 

where ( )ijS k  is the element (i, j) of the thermal matrix S with frame number k. The final 

quantised value ( )ijI k  on the processed thermal image is: 

1

2 1

2 1

( ) ( )
( ) ( )

( ) ( )

ij

ij

S k T k
I k u u

T k T k

− 
= −  

− 
.                     (4.6) 

This conversion has two effects. Firstly, it produces an output image with more distinct 

spatial thermal patterns of material as shown in Figure 4.5b, which help to discriminate between 

the different types. Secondly, these patterns are more invariant to changes in ambient temperature. 

 

Feature Learning Process using Deep CNN 

Given the parallel to image processing with RGB images, our feature learning process 

uses the deep Convolutional Neural Network (CNN) illustrated in Figure 4.5c. Many CNNs have 

been proposed for RGB-vision analysis (Cimpoi et al., 2015; Jaderberg et al., 2015; Ren et al., 

2015; Wang et al., 2016). In this work, we use the Spatial Transformer-based CNN (Jaderberg et 

al., 2015). This architecture gets its name from the fact that the Spatial Transformer artificially 

manipulates spatial data information within CNNs. This helps to handle high-level variances of 

spatial thermal image patterns due to different shooting perspectives and geometries. This 

technique also performs well on lower resolution images, which is ideal for our thermal image. 

For more details on the implementation, see Jaderberg et al. (2015). Once the implemented deep 
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learning network has been trained, it can be used to automatically classify material types as 

illustrated in Figure 4.5d.  

The CNN architecture used the architecture in Jaderberg et al. (2015) as summarised in 

Table 4.2 and consisted of one average pooling layer, two convolutional layers, two max pooling 

layers and two fully connected layers. We used a Rectified Linear Unit (ReLU) as an activation 

function to speed up the feature learning process (Nair & Hinton, 2010). Quantised images of 

size 75x75 were resized to 60x60 to be feed-forwarded into the first layer to use the layer 

composition. Furthermore, a pilot test showed that this CNN composition did not performed good 

(accuracy of less than 70%). A possible reason is that the trained neural network overfitted the 

training set. An overfit model is more likely to produce a lower recognition accuracy on new 

unseen data (Tetko et al., 1995). Hence, we added “dropout” to the end of the neural network 

layers in the CNN, which is a simple but powerful way to reduce overfitting issues (Krizhevsky 

et al., 2012).  

In the training process, a learning rate of 0.001 and a batch size of 256 were used for 350 

epochs. The CNN was implemented on the MatConvNet framework and ran on a 64-bit Windows 

desktop (Intel Core i7-3770 CPU @ 3.40GHz 20GB RAM).  

 

Table 4.2. CNN architecture used in this study which is based on Jaderberg et al. (2015). 

 

Layer 0 1 2 3 4 5 6 7 8 9 10 11 12 

Type Input 
Aver. 

Pool. 
Conv. ReLU 

Max 

Pool. 
Conv. ReLU 

Max 

Pool. 

Fully 

conn. 
ReLU 

Fully 

conn. 

Drop 

out 

Soft 

max 

Kernel size n/a 2x2 7x7 n/a 2x2 5x5 n/a 2x2 1x1 n/a 1x1 (0.3) n/a 

Kernel Num. n/a n/a 12 n/a n/a 24 n/a n/a 48 n/a 17 n/a n/a 

 

 

Implementation of Real-Time Proximate Material Type Recogniser 

Figure 4.6 illustrates the architecture of a real-time material recogniser. The smartphone 

client application (i) controls the mobile thermal imaging sensor (FLIR One and its SDK) to 

collect a temperature matrix of material, (ii) quantises the matrix, and then (iii) wirelessly sends 

it to a server using the TCP/IP protocol. The received data is fed to the trained deep CNN for 

classification. This transformer network was implemented using the MatConvNet framework 

(Vedaldi & Lenc, 2015). Alternatives based on embedded platforms with a GPU could be also 
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used, such as NVIDIA Jetson TK1 13  with Caffe 14 . A smartphone could also be used for 

classification by using TensorFlow Mobile15  

 

Finally, the easy-to-use API for the Quantisation and the deep learning process as well as 

example codes for the raw thermal data collection from the thermal camera are made available at 

http://youngjuncho.com/2018/DeepThermalImagingAPI. 

 

 

Figure 4.6. Implementation of Deep Thermal Imaging, the real-time proximate material type 

recogniser.  

 

 

4.6.2. Data Collection Study 

In this section, we report the data collection study protocol and our collected thermal image 

dataset. Outdoor materials we aim to collect are summarised in Figure 4.7. Outdoor materials are 

found in conditions which are very variable and are exposed to dirt and weathering effects. The 

choice of materials was linked to one of our use cases on wheelchair users discussed later. 

Caretakers were informally interviewed, and prior studies on wheelchair navigation were used 

(Kasemsuppakorn & Karimi, 2009). Materials which frequently appear on the ground (e.g., 

granite) or obstacles (e.g., fences) were considered important to facilitate navigation. Such 

materials are challenging as they are less likely to have constant patterns of spatial temperature, 

texture and geometry. Two materials were also added to the outdoor collection - radiator in 

                                                 
13 Jetson TK1: http://www.nvidia.com/object/jetson-tk1-embedded-dev-kit.html 
14 Caffe deep learning framework: http://caffe.berkeleyvision.org 
15 TensorFlow Mobile: https://www.tensorflow.org/mobile 

http://youngjuncho.com/2018/DeepThermalImagingAPI
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building corridor (denoted as z) and building entrance carpet (denoted §) even though they are 

physically found indoors. The reason is that they tend to be more variable – their surfaces may 

be exposed to high thermal dynamics and dirt. 

 

 

Figure 4.7. Outdoor materials collected for the material classification task. 

 

To evaluate the performance of Deep Thermal Imaging, we conducted a study outside of 

controlled lab settings (e.g., temperature, light and dirt control). The recording of images was 

carried out by sampling while walking or running around an existing environment and taking 

thermal videos of material around from different perspective and repeating such recordings in 

various places, at different times of the day, temperature and weather conditions. This process 

was facilitated by the low and unsteady frame rate of the thermal camera (3-8 thermal images 

every second) and ensured a collection of non-similar images of the same materials to maximise 

the generalization capability of the trained recognition model. 

The data collection process produced the dataset which includes 26,584 labelled thermal 

images from 17 outdoor material types. The average number of collected spatial thermal patterns 

from each material was 1563.8 (SD=295.3; about 300-500 images of each material per each 

condition). A preview video16 shows examples of data.   

As illustrated in Figure 4.8, two experimenters collected thermal images in two different 

months (April and August) both during the day and at night. Experimenters collected spatial 

                                                 
16 https://dl.acm.org/citation.cfm?id=3173576  

https://dl.acm.org/citation.cfm?id=3173576
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material temperature patterns while moving or running slowly around material during shooting 

to exploit the low frame rate of the thermal camera and recorded materials from different 

perspectives. Imaging materials from different perspectives, distances, times of days, and seasons 

was critical to evaluate the generalization capability of the modelling approach. However, we 

avoided rainy days and materials which were significantly covered by clutter such as sand or 

trash bags. Figure 4.9 shows examples of thermal images collected and quantised for this study. 

A higher number of recordings were collected for materials – such as iron fences – with a high 

degree of variability due to thermal reflection (Vollmer & Klaus-Peter, 2017).  

 

 
Figure 4.8. Data collection: thermal images of outdoor materials were recorded by two 

experimenters while walking/running outside both at daytime and night-time in different 

seasons. 

 

 
Figure 4.9. Examples of collected and quantised thermal images of t. iron fence, +. flower bed, 

u. granite stones (pavement edge) and §. building entrance carpet. These images contain some 

degree noise, e.g., dirt and rubbish. 
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4.6.3. Results 

Figure 4.10 shows thermal dynamic levels of the collected thermal images from 17 outdoor 

material types. The thermal dynamics were examined by using the temperature range (T2-T1) in 

Equation (4.5). Compared with indoor materials which were additionally collected in Appendix 

E (Figure E.1, E.2), outdoor materials showed higher thermal dynamics (the range of thermal 

dynamics of indoor materials is denoted as A in Figure 4.10 and Figure E.2 for comparison). 

Overall, the temperatures ranged between 0.341°C and 28.744°C with a mean of 2.959°C 

(SD=1.963).  

 

 
 Figure 4.10. Thermal dynamics levels for the total 26584 thermal images across all 17 outdoor 

materials (p-¿). The thermal dynamics were estimated by using (T2-T1) in Equation (4.5). The 

thermal dynamic range of indoor materials (in Appendix E) is marked with red dot lines (A) for 

comparison. 

 

To explore the quantisation effect on material temperatures in highly variable thermal 

range scenes, firstly we trained the proposed classification model on the thermal dataset to which 

the proposed Dynamic Range Quantisation (DRQ) was not applied. For this, a fixed target 

thermal range of interest, [-5°C, 45°C] was used as most temperatures of outdoor material 

surfaces fall into this range. Second, we trained the same classification model on the dataset 

which was quantised by the proposed technique.  

For the training and testing, we commonly used 5-fold cross-validation. For the creation 

of random partitions (i.e., k-fold), the MATLAB function cvpartition was used. Results showed 

each CNN classifier produced a mean accuracy of 19.369% (SD=21.713) and 84.526% 

(SD=9.875) for the case without the DRQ support and that supported by the DRQ, respectively, 
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as shown in Figure 4.11. Figure 4.12 compares the mean class accuracy results across the targeted 

materials. As seen here, the without DRQ case showed the classification model was overfitted 

with the material t (iron fence) with some of the materials (e.g. p:brick walls, ¿:asphalt road with 

a deep pothole) not being properly classified at all.  

 

 

Figure 4.11. Mean class accuracy results (17 classes) from i) the proposed method, but without 

the Dynamic Range Quantisation (DRQ) and ii) that with the DRQ (error bar: 95% confidence 

interval). 

 

 

Figure 4.12. Mean class accuracy results using 5-fold cross validation: (a) without, (b) with the 

support of Dynamic Range Quantisation 

 

 

 

 

Furthermore, we tested the DRQ supported model using a higher-fold cross-validation 

(10-fold) within the dataset. The aim was to understand the effects of training with smaller 

datasets. Using 10-fold cross validation methods, the implemented CNN classifier (Table 4.2) 

achieved a mean accuracy of 89.356% (SD=6.833) which was marginally higher than the result 

from 5-fold. Figure 4.13 summarises the mean class accuracy results from 10-fold cross-

validation. Surprisingly, z (radiator in building corridor) and § (building entrance carpet), which 

are on the border between outdoor and indoor areas, showed highest accuracies (97.9% and 
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98.1%, respectively). On the other hand, + (flower bed), * (lawn) and ¿ (asphalt road with a deep 

pothole) still showed worst performance just below or around 80%. Those results can be 

explained by the fact there is a greater variability in the composition of these materials (e.g., soil, 

flowers).   

 
Figure 4.13. 10-fold cross validation results (high dynamic temperature range proximate 

material, labels for materials shown in Figure 4.7): (a) confusion matrix (in percentage; colour 

range: white(0%)-black(100%)), (b) mean class accuracy recognition distribution (error bar: 

95% confidence interval). 
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4.7. Discussion 

Given the recent greater improvements made in thermal imaging devices, helping to shrink their 

size, cost and weight, to the point where it can be used in much less constrained situations than 

previously used, we have tried to build computational methods to support the use of such sensing 

devise in unconstrained daily, mobile situations. By focusing on the quantisation process, we 

have tackled the key challenge identified in Section 4.1, which addressed how thermal imaging 

is sensitive to environmental temperature changes. In particular, we have proposed the Optimal 

Quantisation technique which mainly contributes to improving the performances of existing 

methods in tracking skin ROIs. Through the additionally conducted study in Section 4.6, we have 

also demonstrated the general capability of the proposed method to different material 

temperatures, rather than the skin areas which are the main ROIs and an interest of this thesis. 

 

Optimal Quantisation tackles negative effects of variable thermal range scenes on ROI 

tracking 

Temperature of materials such as the human cutaneous skin, is affected by numerous 

environmental factors, in particular ambient temperatures. This leads to difficulties in selecting a 

temperature range for colour-mapping and feature identification which is important in either 

tracking ROIs or analysing spatial surface temperature patterns. However, a fixed thermal range 

has been generally used in the literature which explores the use of thermal imaging. To address 

this, we have proposed the Optimal Quantisation which adaptively adjusts the thermal range of 

interest along with environmental temperature effects.  

An interesting advantage of the method is its ability in improving tracking performance 

of existing methods. To test this, we have targeted an indoor office setting. The choice of this 

environment is due to the mental stress-related environment in the literature, for example, the call 

centre in Hernandez et al. (2011). The indoor (but unconstrained) settings are the main 

environments targeted in later chapters exploring mental stress-related physiological patterns. 

Rather than conducting systematic analysis, we have focused on more real world-like situations, 

not controlling room temperatures and participants’ mobilities.  

As shown in Table 4.1, the state-of-the-art ROI tracking algorithms showed imperfections 

in tracking facial ROIs from thermal images even in this office environment with varying ambient 
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temperatures. On the other hand, the use of the proposed quantisation method integrated with one 

of the best state-of-the-art algorithms (Median Flow) significantly enhanced the performance. 

Given this result, we expect the capability can fundamentally improve the capability of thermal 

imaging in extracting physiological signals and assessing mental stress in many situations where 

temperature is uncontrolled.  

 

Generalisation power of the quantisation process 

As explored in Section 4.6, the quantisation process is important for a thermal 

investigation of not only the skin temperature but also other material temperatures in real world, 

outdoor environments. In particular, we have aimed to demonstrate the generalisation power of 

the proposed process to unconstrained, high thermal dynamic scenes far more dynamic than 

indoor settings. For doing so, we have collected temperatures of a variety of outdoor materials 

found from the wild, which have very high thermal dynamics ranging from between 0.341°C to 

28.744°C as shown in Figure 4.10. Very interestingly, in the material classification tasks we have 

targeted here, the use of the proposed quantisation method significantly improved the 

classification performance of one of the state-of-the-art machine learning classifier, i.e. spatial 

transformer-CNN (from mean accuracy of 19.369% to 84.526%), showing the general capability 

of the proposed pre-processing method under different illumination, temperature conditions and 

point of views. The use of the deep learning technique also leads to a discussion of how to push 

its boundary by focusing on enhancing the input data in Chapter 8. 

This generalisation capability has also contributed to building other HCI applications. 

Beyond thermal imaging, novel technological sensing approaches have been central to HCI 

innovations within many recent studies (Bell et al., 2015; Sato et al., 2015; Yeo et al., 2016; 

Wang et al., 2016). Researchers have investigated material recognition to support material 

awareness. Building upon them, we contribute mobile thermal imaging as a new recognition 

modality to supplement some of the limitations of existing approaches. Powered by the 

quantisation process, our approach particularly offers higher flexibility when used in the wild 

where there are a variety of materials and environmental factors (for example, RGB vision-based 

approaches are susceptible to lighting conditions). 

Another benefit from this approach is that it does not require contact between the sensor 

and the material, reducing safety concerns, social issues and creating more seamless types of 

interactions and applications. We have benefited from the use of low-cost thermal cameras which 
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can be handheld, helping to collect thermal images from outdoors more easily. Through the 

author’s repository website17, the collected datasets are also open to the research community.  

 

Limitations, future opportunities and connection to next chapters 

Given the main purpose of this chapter (to address environmental thermal changes), our 

approach does not directly handle motion artefacts which are fundamental issues in improving 

ROI tracking methods. Furthermore, although ambient temperatures in the indoor settings used 

for evaluating tracking performance in this chapter were not controlled, the level of 

environmental thermal dynamics in the settings was still limited. Given this, in the following 

chapter, we investigate how to further advance the state-of-the-art methods for automatic tracking 

of ROIs and respiration built on our proposed Optimal Quantisation. Furthermore, we bring 

thermal imaging into the real-world outdoor environments which have highly variable thermal 

range scenes in order to thoroughly test the capability of our advanced ROI tracking methods and 

make mobile thermal imaging more feasible in HCI applications.  

 

 

4.8. Chapter Summary 

In this chapter, we have proposed a novel thermal image processing technique, Optimal 

Quantisation, which continuously adapt colour mapping of thermal data to ambient temperature 

dynamics, in turn compensating for negative effects of variable thermal range scenes. The main 

contribution of the proposed Optimal Quantisation is two-fold. Firstly, this method has 

significantly improved performance of the state-of-the-art algorithms in tracking the skin ROIs 

on thermal images collected from indoor unconstrained settings without constraining room 

temperatures and participants’ mobility. Secondly, our proposed technique has enabled the latest 

deep learning algorithm to properly analyse and classify other material temperatures (than human 

skin temperatures). To the best of our knowledge, this work provides the first demonstration that 

spatial thermal patterns of materials can be used to enable automatic material recognition tasks 

with very good performance (above 84% mean accuracy from 17 outdoor materials, which is 

significantly higher than the model without our quantisation method:19.369%). 

                                                 
17 http://youngjuncho.com/datasets  

http://youngjuncho.com/datasets
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We have leveraged a mobile, low-frame rate thermal camera to collect datasets in 

unconstrained settings. In particular, this helped to create a large dataset (26,584 images in 

Section 4.6, and additionally, 14,860 images in Appendix E) of variant thermal information of 

materials. All the collected datasets and API built in this chapter have been released to foster this 

research. 
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Novel Physiological Computing Techniques 
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Chapter 5 

 

Robust Respiration Tracking in 

Unconstrained Settings 
 

In this first part of Stage II, we aim to build a computational method for reliably estimating 

respiration patterns through mobile thermography in unconstrained settings. Major challenges 

concerned here are how to improve the performance of the nostril ROI-tracking in real world-

like unconstrained situations and how to reliably extract respiration cues from the tracked ROI 

sequence given the low signal quality of mobile thermal imaging. Accordingly, two 

computational methods are proposed in this chapter: Thermal Gradient Flow for nostril-ROI 

tracking and Thermal Voxel Integration for estimating respiration patterns. The proposed 

techniques are thoroughly evaluated using datasets collected from both controlled and 

unconstrained situations. 

Section 5.1 discusses background and our research question. Section 5.2 proposes the 

main computational methods. Sections 5.3 and 5.4 describe experimental protocols, datasets and 

evaluation methods, which are followed by Section 5.5 where evaluation results are presented. 

The chapter ends with a discussion and a summary in Section 5.6 and 5.7, respectively. 

 

 

5.1. Background and Research Question 

Monitoring respiratory rate plays a key role in a range of applications that span from direct 

diagnosis of and treatment for lung problems (e.g. hyperventilation, apnoea and interstitial lung 

disease) and cardiovascular conditions to supporting a person’s psychological needs (e.g. stress, 

anxiety regulation) (Grossman, 1983; Everly Jr & Lating, 2012; West, 2012). Despite its 

importance, it has been largely disregarded in real world healthcare technology applications 
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(Cretikos et al., 2008). One possible reason is the inconvenience of conventional respiration 

measurement systems, such as chest-belts or oronasal probes, which demand direct physical 

contact as discussed in the literature (Kumar et al., 2015; Pereira et al., 2015; Gastel et al., 2016). 

These systems are often uncomfortable to wear and prone to motion artefacts which might cause 

incorrect sensor readings. In addition, in some medical and chronic conditions, where monitoring 

everyday physiological processes may be pivotal, direct contact with the skin may not be 

acceptable, such as Complex Regional Pain Syndrome (Birklein, 2005).  

Contactless ways to measure respiration-related signatures can help address these 

limitations. They are remote-photoplethysmography (PPG) (Poh et al., 2011; Gastel et al., 2016), 

Doppler radar (Droitcour et al., 2009) and thermal imaging (Murthy & Pavlidis, 2006; Fei & 

Pavlidis, 2010; Abbas et al., 2011; Lewis et al., 2011; Pereira et al., 2015) based measurements. 

However, they have not been investigated in the context of ubiquitous and mobile computing 

situations. 

With the assistance of ambient lights (e.g. natural sunlight, lamp), a digital image sensor 

such as an RGB-based camera can be used as a remote PPG sensor (Verkruysse et al., 2008; Poh 

et al., 2011; Xu et al., 2014; Kumar et al., 2015; Gastel et al., 2016) for monitoring blood volume 

pulse related parameters (e.g. heart rate). Poh et al. (2011) and Gastel et al. (2016) found that 

PPG could also detect periodic respiratory periodic cycles in a known respiratory rate range (10-

40 BPM in Gastel et al., 2016), opening the potential of real-time contactless breath tracking in 

stationary environments. However, although the sensors for PPG can be mobile, fundamental 

issues with PPG itself limit its flexibility and mobility. In particular, RGB-based cameras rely on 

moderate, stable ambient light levels. Therefore, they cannot easily support physiology 

monitoring in extreme lighting conditions which are either very dark or very bright. Furthermore, 

they struggle in situations where the light conditions continually change. As a result, most 

research with remote PPG has been applied in controlled conditions where the ambient lighting 

levels can be controlled (e.g. a constant 500 lux brightness in Kumar et al., 2015).  

Other approaches can be used which are immune to ambient lighting conditions. Active 

sensors such as radar provide their own illumination. However, for respiratory rate tracking (such 

as Droitcour et al., 2009) they are restricted to monitor physiological parameters in stationary 

settings and indoors, where it is easier to ensure stillness of both the person and of the hardware 

installation, limiting their application in real-world deployments. 

On the other hand, thermal imaging does not have many of these constraints. As reviewed 

in Chapter 2, thermal imaging interprets the electromagnetic radiation which is naturally emitted 
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from any object; hence, it can measure temperature in a passive way and does not require lighting 

sources. Work on thermography has shown it is possible to track respiration in a contactless 

manner by monitoring the temperature changes around the nostrils which are caused by inhalation 

and exhalation breathing cycles (Murthy & Pavlidis, 2006; Fei & Pavlidis, 2010; Abbas et al., 

2011; Lewis et al., 2011; Pereira et al., 2015). However, even state-of-the-art methods in tracking 

respiration through thermal imaging require to constrain a person’s mobility (Lewis et al., 2011; 

Pereira et al., 2015). More importantly, all the methods depend on the use of large-sized, 

immobile thermal imaging systems demanding large indoor spaces for the hardware installation, 

similar to radar systems. This leads to the research question: Can respiratory signatures be 

recovered through thermography in unconstrained HCI settings? If so, how can we build methods 

for robust respiration tracking using thermal imaging? 

With the use of low-cost, lightweight and very small thermal cameras, we aim to push the 

boundary of thermal imaging-based respiration tracking by bringing them into mobile situations. 

However, as discussed in Chapter 4, mobile thermal imaging is also challenged in scenes with 

high thermal dynamic ranges (e.g. due to the different environmental temperature distributions 

indoors and outdoors). This challenge is further amplified by general problems such as motion 

artefacts and low spatial resolution, leading to unreliable breathing signals. Below are detailed 

descriptions of such challenges.  

 

Challenge I: Difficulty in Tracking the Nostril under Motion Artefacts  

A recent body of work on thermal imaging and remote-PPG has employed motion-

tracking algorithms to extract physiological features from a ROI under motion. For example, 

Kumar et al. (2015) and Gastel et al. (2016) used the Lucas-Kanade (KLT) algorithm (Lucas & 

Kanade, 1981; Shi & Tomasi, 1994) to track facial areas where the PPG signal can be extracted. 

Pereira et al. (2015) applied Mei et al.(Mei & Ling, 2011)’s Sparse Representation-based tracker. 

Although the body of work has achieved high performance of the tracking of ROIs in indoor 

constrained situations where just a small amount of a person’s head motion is allowed, 

unconstrained motion artefacts have not been generally tested.  

In particular, the thermally expressed nostril shape can undergo a significant amount of 

deformations. These deformations result mainly from a person’s movements. For example, the 

deformations shown in Figure 5.1a result from the participant turning their head and laughing. 

Therefore, although static contexts have been the main target for research, it is not possible to 
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guarantee, in real-world settings, that a person’s nostril will be in a fixed, known shape. Therefore, 

new tracking algorithms must be developed which are robust to deformation of ROIs.  

 

 

(a)                               (b) 

Figure 5.1. Key challenges in respiration tracking through thermal imaging in real-world 

settings: (a) difficulty in tracking the nostril ROI: the shape of the nostril is affected by one’s 

mobility and thermal dynamics, (b) low signal quality of respiration patterns: four examples of 

thermal images show the tracked nostril region while breathing. The traditional average 

temperature is not ideal in extracting respiratory patterns when the respiration-driven thermal 

variance is weak, e.g. during shallow breathing (Case 2) compared with deep breathing (Case 

1). The low spatial resolution of mobile thermal imaging also leads to the weak signal. 

 

 

Challenge II: Low Quality of Respiratory Signals from Mobile Thermal Imaging 

The most common way to track respiration rate is to analyse sequences of an average 

temperature in a tracked nostril region, which fluctuate caused by the expiration and inspiration 

cycles (Murthy & Pavlidis, 2006; Fei & Pavlidis, 2010; Abbas et al., 2011; Lewis et al., 2011; 

Pereira et al., 2015). However, in many cases, the temperature change associated with breathing 

can be fairly small and affect only a small number of pixels. Figure 5.1b for example, illustrates 

the difference between shallow and deep breathing. Another difficulty is that the average 

temperature can be strongly affected by subtle location changes of the ROI bounding box and 

windy situations which can cause sudden global changes in the temperature distribution. A final 

difficulty is that when a person’s viewing direction changes, it can also decrease the number of 

pixels that contain respiratory information. This is even more important for mobile thermal 

imaging systems, which often have low spatial resolution. Consequently, for the enhancement of 
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the respiratory signal quality, there is a need to design a new computational method which is 

robust to the various factors as discussed above. 

 

 

5.2. Proposed Computational Methods 

To overcome the challenges mentioned above, a key technical strategy is proposed here. 

The strategy is built on the Optimal Quantisation proposed in Chapter 4 (i.e. adaptive conversion 

of two-dimensional temperature matrixes into colour-mapped thermal images reflecting different 

thermal dynamic range scenes). Figure 5.2 illustrates the overall process. As the process for the 

extraction of respiratory signs from thermal imaging sequences, the proposed method consists of 

(i) Thermal Gradient Flow – a nostril tracking algorithm to reduce effects of motion dynamics 

and (ii) Thermal Voxel-based Respiration Estimation to enhance the respiratory signal quality. 

Details of each component are described below. 

 

 
Figure 5.2. (a) Overall procedure of thermal imaging-based respiration tracking, (b) key 

components: 1) Optimal Quantisation (proposed in Chapter 4), 2) Thermal Gradient Flow –

nostril-region tracking method based on the thermal gradient magnitude computation and points 

tracking methods, 3) Thermal Voxel-based Respiration Estimation – extracting the respiratory 

signals by integrating the unit thermal-voxels inside the nostril. 
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5.2.1. Robust Nostril-ROI Tracking: Thermal Gradient Flow 

To achieve robust performance in the tracking of the nostril, we propose a new algorithm called 

Thermal Gradient Flow. Given the colour-mapped images produced through the Optimal 

Quantisation, this algorithm computes the thermal gradient magnitude matrix for each frame and 

employs the Median Flow algorithm (Kalal et al., 2010) which uses forward-backward error 

estimation on points tracked by Lucas-Kanade’s disparity-based tracker (Lucas & Kanade, 1981). 

To enhance robustness, we compensate for the loss of feature points by resetting a ROI based on 

the gradient-based two-dimensional normalised cross correlation, as illustrated in Figure 5.2b-2. 

 

 

Figure 5.3. Example shots of conversion from thermal images to thermal-gradient magnitude 

maps: the proposed method can help to preserve the morphology of the nostril region during 

motion (Zoomed-in-areas are rotated for the visual representation). 

 

 

The human homeothermic metabolism and the relatively low thermal conductivity of the 

human skin act as low pass filters. As a result, the shape of nasal and nostril areas is often blurred, 

leading to a weak differentiation between key facial features which are required to support ROI 

trackers (Shi & Tomasi, 1994). To obtain clearer features, we enhance the boundary between the 

nostril and the ala of the nose by converting the quantised thermal image  into the two-

dimensional thermal-gradient magnitude map : 

 

  (5.1) 

 

where x and y are the coordinates in the x-y plane of the image space. As illustrated in Figure 5.3, 

the more distinct morphological shape of the nostril can be obtained from the thermal-gradient 

u



22
( , ) ( , )

( , )
u x y u x y

x y
x y

   
 = +   

    



133 

based image than the normal thermal image under combined artefacts (i.e. motion and respiration 

dynamics). The converted image can then be used to collect the positions of features representing 

the nostril for the motion-tracking. 

The thermal-gradient map of the nostril-ROI, , is chosen by selecting the nostril as 

a ROI of size of  pixels in the first frame. In this thesis, the initial selection of ROIs is 

done manually. As our point tracker, we use the Median Flow algorithm (Kalal et al., 2010) 

because it has proven its tracking performance on thermal imaging in a non-biomedical sector 

(Abouelenien et al., 2017). This algorithm calculates the forward-backward error defined as  

  (5.2) 

 

where the thermal-gradient image sequence is , the forward trajectory is

 and the backward trajectory  produced by 

backward tracking up to the initial frame t (and t+k is the current frame). Here,  and 

 is the Euclidean distance between the two points (facial features). In this algorithm, the 

points are tracked using the KLT (Lucas & Kanade, 1981). In our case, the points are selected 

from the nostril ROI on the thermal-gradient magnitude map. For more details on the 

implementation, we refer to the Median Flow (Kalal et al., 2010). 

As a final strategy to handle the case when the features from facial areas are completely 

lost, we can use two-dimensional normalised-cross correlation (Lewis, 1995). In particular, the 

combination of correlation with gradient has been shown to give high performance in the 

registration of deformable components in neuroimaging (Avants et al., 2008, 2011). Similarly, 

we enhance the tracking performance of the nostril by searching for a new position of the ROI 

which maximises the gradient-based normalised-cross correlation coefficient 
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where x is a set of (x,y) in Equation (5.1) which is situated at the centre of square (i.e. 

same with the size of a ROI), x  is another set of (x,y) which falls in the region under the ROI at 
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the previous frame, (x)ROI
  is the mean of (x)ROI . When the number of tracked points 

falls below a certain threshold, this method resets the ROI and finds new gradient-based point 

features. This method can also be applied to the automated ROI selection at the initial frame in 

case we have a plenty of nostril-image sets. 

 

5.2.2. Respiration Estimation by Thermal Voxel Integration 

Heat exchange in nostrils during inhalation and exhalation is determined by a person’s breathing 

pattern. The most frequently used method to represent breathing signals is the averaging of 

temperatures inside the nostril ROI (Murthy & Pavlidis, 2006; Fei & Pavlidis, 2010; Abbas et al., 

2011; Lewis et al., 2011; Pereira et al., 2015). By applying this to every single thermal image 

frame, we can extract a breathing-related time series.  

However, there are critical issues with the use of the averaging method. Therefore, in this 

section, we present a new three-dimensional Thermal Voxel-based feature to further enhance the 

quality of the breathing signals. Inspired by the use of voxels in neuroimaging (Ashburner & 

Friston, 2000), the proposed approach maps each two-dimensional thermal element into a thermal 

voxel in a virtual three-dimensional space as visualised in Figure 5.4a and 5.4b. This feature can 

be immune to issues regarding low quality of breathing information and global changes of spatial 

thermal distribution since it can help to extract breathing-induced thermal volume changes inside 

the nostril by computing the quantity of inside thermal voxels as shown in Figure 5.4b. It can be 

constructed from 

 

  (5.4) 

 

where  is the integral of the thermal voxels in the nostril in a cross section with the 

temperature ,  is the absolute temperature on the tracked region and 

 

is the upper 

boundary to integrate the concave volume which is set to a temporal moving average (here, n=2 

to which is empirically set) of the spatial mean temperature values to not only have a stable 

boundary but to consider global thermal changes. If the ROI tracker loses track of the nostril 

region,  would need to be reset from the next frame to reject its value from the misplaced 
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bounding box. The misplacement could be detected by inspecting a sudden change (i.e. 

differential) of statistical skewness on the thermal distribution: 

.   (5.5) 

 

 

Figure 5.4. Extraction of respiratory patterns through Thermal Voxel integration: (a) a person’s 

nostril and its thermogram sequences along the time in 3D (top) and 2D (bottom), (b) the 

concave volume corresponding to heat variances in the nostril, (c) the extracted respiratory 

signals compared with ground truth signals, and (d) a comparison of the filtered voxel-based 

signals with the traditional method as the participant changes their head. The voxel method 

closely tracks ground truth, but the traditional method fails. 
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To estimate respiratory rate, both frequency domain approaches, such as peak frequency 

detection (Gastel et al., 2016), and time-domain approaches, such as the Bayesian approach based 

on short-time estimators (Brüser et al., 2013) employed in (Pereira et al., 2015), could be used. 

In this work, we used the short-time power spectral density, which analyses the self-similarity of 

the thermal voxel feature  to determine the rate. This is achieved by computing the Fourier 

transform  of the short-time autocorrelation function (Gray & Davisson, 2004). To decrease 

ripples in the frequency domain due to the truncated short-time window, we use the Gaussian 

window  

 ,  . (5.6) 

 

The window length  is , where is the upper time limit of respiration and 

 is the sampling frequency. The value of 
maxt̂ is determined by the expected minimum 

respiratory rate of interest. For our experiments, we use the same range of expected breathing rate 

as in (Pereira et al., 2015) of 0.1Hz to 0.85Hz. Therefore, = 10s. Once  has been 

computed, its value is normalised by feature scaling. The output is filtered through a third order 

elliptic filter (a passband ripple of 3 dB and a stopband attenuation of 6 dB) with passband cut-

off frequency of 0.1Hz and 0.85Hz. Given this, we estimate the respiratory rate by searching for 

frequency f which maximises the power spectral density  

  (5.7) 

 

where  is the short-time autocorrelation of the filtered .  

The proposed technical components are thoroughly evaluated in both laboratory and real-

world settings using the datasets produced from the experimental protocol in Section 5.3. 

Accordingly, the contribution made in this chapter is a robust respiration tracking method which 

can support both the controlled and unconstrained settings.  
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5.3. Experimental Protocols and Datasets 

(ThermalBreath I, II) 

To evaluate the proposed methods, we aim to gather thermal images which contain respiration 

information from situations with different levels of complexity in terms of thermal dynamics and 

motion artefacts. With this purpose, we target three situations:  

Situation 1) controlled respiration in environments with non-constant temperature 

Situation 2) unconstrained respiration during desk activity with natural motion artefacts 

Situation 3) unconstrained respiration in fully mobile context and varying thermal dynamic 

range scenes 

As we can notice here, Situation 2 is where we have collected the ROITracking dataset in Chapter 

4. In addition to this, we have conducted two different experiments to create two datasets along 

with the first and third situations. In total, three datasets are used in the evaluation process.  

 

ThermalBreath I: Controlled respiration in environments with non-constant temperature 

(Situation 1) 

The aim of this experiment is to carry out a systematic evaluation of our approach. 5 

healthy adults (2 female) (aged 29-38 years, M=31.4, SD=3.78) were recruited from the 

university subject pool. Following the protocol used in studies on non-contact breathing 

monitoring (Pereira et al., 2015; Gastel et al., 2016), participants were asked to maintain a stable 

posture and breathing according to a set of predefined breathing patterns presented to them on a 

screen in an indoor environment with controlled room temperature. Unlike the protocols in the 

literature, we repeated the same task with the breathing exercise in different environments with 

dynamically varying ambient temperature. This is to systematically explore the effect of variable 

environmental temperatures on ROI tracking as well as respiration tracking. 

Figure 5.5 shows the design for this experiment. As shown in Figure 5.5a, all the 

participants were given a thermal camera attached to an Android smartphone to record their facial 

temperatures and an additional smartphone that provided the breathing patterns (guide). Figure 

5.5b shows the three guiding breathing patterns composed of slow (10 breaths/min), normal (15 

bpm) and fast speed (30 bpm). Each breathing pattern lasted for 30 seconds. The guiding 

breathing patterns were displayed dynamically on the screen. Participants were given a 60 

seconds-training period. Taking advantage of mobile thermal imaging, participants were able to 
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monitor themselves by aiming the camera at their face. The distance between the face and the 

device ranged from 35cm to 55cm. Four different places in which the task was repeated are: a 

controlled room (“Place A”), entrance of the building (wind from outside and heat from inside) 

(“Place B”), a street corner (windy) (“Place C”) and park (“Place D”). Each person was asked to 

remain as still as possible. All sessions were run in winter. The collected dataset (ThermalBreath 

I) consists of approximately 80 minutes recordings (5 participants x 4 places x 4 minutes). 

 

 

Figure 5.5. Experiment with controlled respiration in environments with non-constant 

temperature: (a) to obtain different thermal dynamic range scenes (i.e. environments with non-

constant dynamic temperature), four different places were chosen (Place A: room, B: entrance 

of the building, C: corner on the street, D: park), the last image-shot is a thermal image 

collected in Place D, the experiment was run in winter, (b) the guiding breathing patterns are 

composed of three different rates (10(slow), 15(normal), 30(fast) breaths/min). 

 

 

 

ThermalBreath II: unconstrained respiration in fully mobile context and varying thermal 

dynamic range scenes (Situation 3) 

The last experiment aims to measure the respiration patterns from people undertaking 

natural, unrestricted actions. We recruited 8 healthy adults (5 female), aged 23-31 years (M=27.0, 

SD=2.93) from various ethnical backgrounds. In order to enable mobility, the thermal camera 

was attached to a headset-microphone-shaped mount whose distance from the face ranged 

between 20cm and 30cm as shown in Figure 5.6 (an example of collected thermal images is also 

shown here). To simulate a variety of fully unconstrained situations, the experiment had two main 

sessions: i) indoor physical activity and ii) outdoor physical activity. 
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Figure 5.6. Experiment with unconstrained respiration in both indoor and outdoor light 

physical activities. 

 

The first session consisted of three tasks of 2 minutes each: walking through a corridor, 

standing in a dark room while having small movements and climbing and descending stairs. The 

second session was carried out outdoor on a street pavement and in a windy park to involve 

varying thermal dynamic range scenes. During the session, participants were guided to walk slow, 

walk fast, and stroll in natural paces. Each walking pattern lasted for 2 minutes. All sessions were 

run in summer. The final dataset (ThermalBreath II) includes thermal imaging sequences of 

approximately 96 minutes (8 participants x 2 sessions x 3 activities x 2 minutes). 

 

Note that, following Gastel et al. (2016), only 5 participants were invited for collecting 

the first dataset (ThermalBreath I). Given the very controlled nature of this experiment, this 

number was considered sufficient to ensure the robustness of the test. On the other hand, a slightly 

higher number was used since higher variability between participants breathing patterns was 

expected for the other two situations (the dataset ThermalBreath II here and ROITracking in 

Chapter4). Due to ethics restrictions, only mild physical activity was used at this phase and only 
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healthy participants were invited. The slightly higher number was considered sufficient to cover 

the expected amount of variability.  

In collecting all three independent datasets (ThermalBreath I, II from here, ROITracking 

from Chapter 4), a commercial respiration sensor was used to evaluate the performance of our 

approach for respiration tracking. Participants were required to wear a chest belt-based respiration 

sensor (ProComp Infiniti Resp/SA9311M, Thought Technology). This reference respiration 

sensor produces the respiration waveform by monitoring expansion and contraction of the chest 

or the abdomen. The reference sensor collects the data at 256Hz. Therefore, to allow a direct 

comparison, we up-sampled the data sequences from the Thermal Voxel-based method with 

spline interpolation to 256Hz. Additionally, we also collected blood volume pulse using a finger 

PPG sensor (ProComp Infiniti BVP/SA9308M, Thought Technology) with the purpose to build 

a rich physiological dataset 

The ROI sequences which were completely tracked by Optimal Quantisation and Thermal 

Gradient Flow from all the datasets are publicly available. 

 

 

5.4. Evaluation Method 

Evaluating ROI-tracking performance 

Three state of the art visual tracking algorithms proposed between the 1990s and 2010s 

were implemented to evaluate the ROI-tracking performance of the Optimal Quantisation based 

Thermal Gradient Flow method. As in the previous chapter which explores how the Optimal 

Quantisation can boost the performance of existing tracking methods, we implemented the Mode-

seeking (also called mean-shift) (Cheng, 1995) and Median Flow (Kalal et al., 2010). 

With the aim to compare the proposed method with the state-of-the-art method in thermal 

imaging-based respiration tracking (Pereira et al., 2015), we further implemented Mei et al.’s 

Sparse Representation (Mei & Ling, 2011) which is the backbone of Pereira et al.’s latest work. 

As in Chapter 4, the benchmark algorithms were built on the dominantly used quantisation 

technique that takes into consideration temperatures only within a fixed thermal range of interest, 

e.g. [28°C, 38°C] in Fei and Pavlidis (2010). 
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In most cases, the algorithms stopped working when a tracking fault occurred, i.e. tracker 

going off beyond approximately 50% of the nostril region. We also manually checked the 

tracking faults to confirm the number of fully tracked frames. This number was used to describe 

tracking performance levels. For the parameter settings with both the Median Flow and the 

Thermal Gradient Flow, the maximum backward-forward error allowed (i.e. Equation (5.2)) was 

set to 5 for ThermalBreath I and ROITracking datasets (i.e. ‘small’ ROI), and to 25 for the 

ThermalBreath II dataset  (i.e. ‘big’ ROI). The setting of the values was also based on the physical 

distance between the camera and the nostril.  

As in the previous chapter (Section 4.5), we used Friedman’s analysis of variance 

(ANOVA) test to investigate the statistical difference of means of ROI-tracking results for each 

algorithm type. By contrast with Situations 2 and 3 (ROITracking and ThermalBreath II) where 

the type of environments did not vary substantially across each case, the first situation 

(ThermalBreath I) included multiple environmental temperature settings; hence, we carried out 

the significance test separately for the indoor (i.e. indoor room Place A) and outdoor groups (i.e. 

outdoor places: Place B-D). Lastly, the Friedman one-way ANOVA was followed by the 

Wilcoxon signed ranks test for post hoc pairwise comparisons. 

 

Evaluating respiration rate tracking performance 

To evaluate tracking of respiratory rate, the Thermal Voxel based respiration estimation 

method was compared with the standard and state-of-the-art approach of using the average 

temperature over the nostril ROI (Murthy & Pavlidis, 2006; Fei & Pavlidis, 2010; Abbas et al., 

2011; Lewis et al., 2011; Pereira et al., 2015). In this evaluation, we used the ROI-sequences that 

were automatically tracked by Optimal Quantisation-based Thermal Gradient Flow tracking 

method. The proposed and benchmark methods were implemented in MATLAB (2015b, The 

MathWorks). The validation process was carried out on a 64-bit Windows 7 desktop (Core i3-

4160T 3.10GHz process, Intel) with 8GB RAM. 

As reference signals, the waveforms collected from the chest-belt-respiration sensor were 

used as described in Section 5.3. To enable the comparison of the two sensed signals, these were 

automatically synchronized using the Maximum-Amplitude of Cross-Correlation (MACC) 

alignment expressed as  where Rfg is the cross-correlation between the reference 

signals and the estimated signals, and  is the discrete lag. As shown in Figure 5.7a, we 

synchronized the two signals by analysing periodic similarity. Even though periodicity changes 

max( ( ))fgR 


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throughout the experiment, correct alignment could be achieved when the cross correlation is 

applied across all the data for a single trial. Here, the length of the time-window (i.e. Equation 

(5.6)) was set to 20 seconds with 15 seconds overlap (i.e. 75%). 

To statistically compare two different respiratory rate measurements, we used the Bland-

Altman plot and the root mean square error (RMSE) as in Kumar et al. (2015). In particular, the 

Bland-Altman method is to analyse the agreement between two different methods, compensating 

for the correlation analysis (Altman & Bland, 1983).  

 

 

Figure 5.7. Statistical methods for evaluations: (a) automated-synchronization between 

estimated signals and reference signals using the maximum-amplitude of cross-correlation 

(MACC), (b) respiration-related goodness probability as a respiratory signal quality index 

(SQI). 

 

To examine the respiration signal quality, we use a respiratory Signal Quality Index (SQI) 

which helps to identify moments when the extracted signals are of poor quality due to 

malfunctioning of the sensor. We adapted the goodness metric concept introduced by Kumar et 

al. (2015), which analysed the power level of physiological signs in frequency ranges of interest 

(e.g. breathing rate: 0.1Hz to 0.85Hz used in Pereira et al., 2015) to assess the quality of extracted 
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signals. Both contact and non-contact respiration sensors are known to be influenced by motion 

artefacts. For example, the accuracy in measuring the respiration pattern is affected by physical 

activity. In the case of the chest-belt sensor, the movement of a person (e.g. while walking) may 

lead to changes in the belt position and hence to its tension. We extend the goodness metric 

proposed in Kumar et al. (2015) by dividing the band of interest by the total energy within a half 

of the sampling frequency (e.g. here 128Hz from 256Hz) to satisfy a statistical probability 

condition. As a respiratory SQI, we define the respiration-related goodness probability Pr as 

  (5.8) 

 

where , 

 

is the power spectral density in Equation (5.7), and , are the 

lower (e.g. 0.1Hz) and upper (e.g. 0.85Hz) boundaries of the expected breathing rate, respectively. 

Figure 5.7b shows the concept and the area between the dotted lines as the numerator of Equation 

(5.8). This is an equivalent form to the relative power Signal Quality Index (pSQI) which has 

been used as a measure of cardiac pulse signal quality (Clifford et al., 2012; Elgendi, 2016). 

 

 

5.5. Results 

5.5.1. Nostril-region Tracking Performance 

We assessed the performance of each tracking method - Mode Seeking (Cheng, 1995), Sparse 

Representation (Mei & Ling, 2011), Median Flow (Kalal et al., 2010) and the proposed Thermal 

Gradient Flow which is based on Optimal Quantisation - by computing the percentage of frames 

which were successfully tracked over all the trials as in Chapter 4. Before assessing the tracking 

performance, we briefly explore the level of motion artefacts across datasets collected from 

Situation 1 (ThermalBreath I: controlled respiration in environments with thermal dynamic 

changes), Situation 2 (ROITracking: unconstrained respiration during sedentary activity) and 

Situation 3 (ThermalBreath II: unconstrained respiration during physical activity).  

Figure 5.8 compares the level of motion artefacts by using a Euclidian distance (unit: pixel) 

between the origin of a ROI in the first frame and that in the current frame. Compared with those 

max

min

ˆ

ˆ

min max

( )
ˆ ˆ( )

( )

f

V
f

r

V
total

S f df

P f f f
S f df

  




0 1rP  VS minf̂ maxf̂



144 

from the controlled conditions, the sedentary activity and physical activity produced the higher 

levels of motion artefacts. Furthermore, different types of motion artefacts were found according 

to the type of activity: high peaks of the tracker’s movement due to change of one’s head direction 

during the sedentary activity and high fluctuations of the movement due to the oscillation of the 

mount during the physical activity. Figure 5.9 summarises the results for the nostril-region 

tracking. We discuss details of each situation below. 

 

 

 

 

Figure 5.8. Quantified motion artefacts using the relative Euclidean distance from the origin of 

the nostril-ROI at the first frame: (a) example from ThermalBreath I (fully controlled), (b) from 

ROITracking (sedentary activity), and (c) from ThermalBreath II (physical activity).   
 

 

 

 

 

Figure 5.9. Overall results of the nostril-tracking performance of the proposed Thermal 

Gradient Flow (black) compared with existing methods: (a) ThermalBreath I (controlled but in 

non-constant temperature scenes), (b) ROITracking (unconstrained respiration during sedentary 

activity), (c) ThermalBreath II (unconstrained respiration during physical activity). 
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Controlled Respiration (ThermalBreath I): Overall results  

For the data collected at Place A (a room, which has a low thermal dynamic range), while 

Mode Seeking performed the worst, the other three produced highly reliable results similarly as 

shown in Figure 5.9a (Place A). On the other hand, for the data collected in Places B-D (i.e. 

outside) characterized by high thermal dynamic ranges, the proposed approach produced 

significantly better results and was able to track all frames in all situations (Mode-seeking: 

M=47.25%, SD=33.04, Sparse Representation: M=71.31%, SD=29.37, Median Flow: 

M=76.35%, SD=26.16, and our approach: M=100.00%, SD=0.0). 

As described in Section 5.4, we conducted tests of significance to examine whether the 

difference in the success rates across algorithms within each group (i.e. outdoor and indoor 

settings) was statistically significant. As some sets of the data were skewed, we used the 

nonparametric Friedman method. In the outdoor group (Place B-D) which has high thermal 

dynamics, there was a strong significant effect of the type of algorithm on the success rate 

(χ2(3)=18.822, p<0.001). The post hoc Wilcoxon signed ranks test (with α=0.0083 ≈0.05/k where 

k=6) showed significant differences of our performance from others (with Mode-Seeking: 

p=0.001; Sparse Representation: p=0.003; Median Flow: p=0.005). On the other hand, there was 

no significant differences between the performance of the tracking algorithms for the indoor 

condition (χ2(3)=7.0, p=0.072). This result is consistent with findings from the literature which 

reports existing ROI tracking methods can perform reliably in indoor constrained situations where 

motion of participants and room temperature are controlled (Pereira et al., 2015), indicating state-

of-the-art methods were reliably implemented for our experimental evaluation. 

 

Unconstrained Respiration (ROITracking, ThermalBreath II): Overall results 

For data collected while the persons were on the move, our approach outperformed all the 

other methods (Situation 2 (ROITracking) in Figure 5.9b: Mode-seeking: M=28.47%, 

SD=28.37, Sparse Representation: M=76.70%, SD=31.58, Median Flow: M=67.95%, SD=34.65, 

and Proposed: M=99.84%, SD=0.49;  Situation 3 (ThermalBreath II) in Figure 5.9c: Sparse 

Representation: M=78.21%, SD=26.86, Median Flow: M=48.19%, SD=35.02, and Proposed: 

M=100.0%, SD=0.0). Considering the low performance of Mode-Seeking found in the first and 

second datasets, we excluded this method in the comparisons for ThermalBreath II.  
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Friedman’s ANOVA test results showed strong significant effects of algorithm types on 

success rate results with χ2(3)=22.367 (p<0.001) for ROITracking and χ2(2)=17.698 (p<0.001) 

for ThermalBreath II. The pairwise post-hoc analysis confirmed significantly higher performance 

of our proposed method than the existing state-of-the-arts in the situation where both high thermal 

dynamic ranges and motion artefacts existed (ThermalBreath II) (Median Flow: Z=-3.18, 

p=0.001; Sparse Representation: Z=-2.803, p=0.005, here α=0.05/3). On the other hand, no 

significant differences were found between our proposed approach and the advanced tracking 

methods in the case of motion artefacts only (ROITracking) (compared with Median Flow: Z=-

2.201, p=0.028; Sparse Representation: Z=-2.023, p=0.043, i.e. higher than α=0.0083≈0.05/k 

where k=6). Once again, we found that Mode-Seeking performed significantly worse than the 

three advanced algorithms (Sparse Representation: p=0.008, Median Flow: p=0.008, Thermal 

Gradient Flow: p=0.008). By all accounts, our method appears to be the most robust in high 

dynamic temperature range scenes.  

 

 

 

5.5.2. Respiration Tracking Performance 

Figure 5.10 compares Thermal Voxel-based respiration estimation method with the temperature 

averaging approach to extracting respiratory signals. Figure 5.10a, 5. 10c, 5. 10e show, in the 

time domain, the respiratory signals extracted from both methods and the ground truth (belt-

sensor) for a subject randomly chosen as an example: (a) for subject S5 from Situation 1 

(ThermalBreath I), (c) for subject S10 from Situation 2 (ROITracking), and (e) for subject S7 

from Situation 3 (ThermalBreath II).  

The respiration-related goodness probability Pr (see Equation (5.8)) from each time-

window was computed and the overall data from every subject is described in the histogram chart 

in Figure 5.10b, 5.10d, 5.10f. In Situation 1 (ThermalBreath I), the Pr of each measurement shows 

similar distributions for the three methods (the proposed Thermal Voxel-based: M=0.9895, 

SD=0.0103, average-based: M=0.9815, SD=0.0181, ground-truth: M=0.9825, SD=0.0174), 

indicating that respiration rates calculated by each measurement were generally reliable.  
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Figure 5.10. Results of respiratory signature extraction: (a,c,e) time-domain signals, (b,d,f) the 

respiration-related goodness metric values. The proposed Thermal Voxel-based method is more 

robust than the traditional averaging-based method for Situation 1 (a-b) and Situation 2 (c-d). 

For Situation 3 (e-f) (i.e. fully mobile contexts), the ground truth shows less reliability in the 

respiration tracking, except for the segment A in (e) (i.e. standing with small movement). 
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In Situation 2 (ROITracking) and situation 3 (ThermalBreath II) on the other hand, 

different Pr distributions were found. Overall, lower signal quality levels were observed in 

comparison with the controlled situations. More specifically, for Situation 2 (i.e. unconstrained 

sedentary activity), while the Thermal Voxel-based method and the ground truth had a similar 

distribution (Thermal Voxel-based: M=0.9639, SD=0.0468, ground-truth: M=0.9694, 

SD=0.0437), the quality of signals extracted by the traditional average-based method appeared 

to be more deteriorated (M=0.9287, SD=0.0771). In the case of Situation 3 (i.e. fully 

unconstrained physical activity), our method produced the highest signal quality while the ground 

truth from the belt-sensor suffered more from the physical movement (Thermal Voxel-based: 

M=0.9640, SD=0.0434, average-based: M=0.9555, SD=0.0490, ground-truth: M=0.9170, 

SD=0.0964). In particular, except for the segment involving a stationary task (i.e. labelled as A 

in Figure 5.10e): standing with a small movement in a dark room where there were less motion 

artefacts), the ground truth method produced relatively noisy patterns.  

 

Controlled Respiration (ThermalBreath I): Bland-Altman and RMSE analysis 

Figure 5.11 summarises the overall accuracy results of the respiratory rate estimation for 

Situation 1 (ThermalBreath I). The proposed Thermal Voxel integration method produced highly 

reliable performance: mean bias of 0.0882 bpm with the 95% limits of agreement being -0.7956 

to 0.9721 bpm (Figure 5.11a). By contrast, the traditional averaging method produced the mean 

bias of 0.0755 bpm with the 95% limits of agreement being -1.8670 to 2.0179 bpm (Figure 5.11b). 

In addition, the Thermal Voxel-based method shows stronger correlations with the ground truth 

(r=0.9987, p<0.001) from the belt sensor than the traditional averaging method (r=0.9936, 

p<0.001) does. As summarised in Figure 5.11c, the RMSE of Thermal Voxel integration method 

(0.459bpm) was lower than the error of the traditional averaging method (0.993bpm).  

 

 

 

Figure 5.11. Overall results from Situation 1 (ThermalBreath I): Bland-Altman plots of (a) 

Thermal Voxel integration method, (b) the traditional averaging method, and (c) overall RMSE 

comparisons.  
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Finally, we compare the results of the methods separately over each type of environment 

provided in Situation 1 (ThermalBreath I). Figure 5.12 summarises the results of the analysis for 

different environments. In particular, the performance of the traditional method tends to be more 

affected by the different range of thermal dynamics in comparison with our method (RMSEs of 

the proposed Thermal Voxel integration method: 0.452bpm for Place A, 0.525bpm for Place B, 

0.420bpm for Place C, 0.429bpm for Place D; RMSEs of the widely-used averaging method: 

0.651bpm for Place A, 1.286bpm for Place B, 1.181bpm for Place C, 0.686bpm for Place D). 

 

 

 

 
Figure 5.12. Separate results along with the different environment in Situation 1 

(ThermalBreath I): (a) Bland-Altman plots of Thermal Voxel integration method and the 

traditional averaging method, and (b) RMSE comparisons for Place A – D.  
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Unconstrained Respiration (ROI Tracking & ThermalBreath II): Bland-Altman and 

RMSE analysis 

 Given the signal quality of the ground truth measurements for the second and third 

datasets were much poorer than those for Situation 1 (ThermalBreath I) (see Figure 5.10b, 5.10d, 

5.10f), the belt sensor could not act as the ground truth. Therefore, we tested the agreement by 

extracting the estimated respiration rates of which pSQI is greater than or equal to the mean from 

the ground truth in ThermalBreath I (i.e. Pr ≥ 0.9825).  

For Situation 2 (ROITracking), Thermal Voxel integration method produced a mean bias 

of 0.0650 bpm with 95% limits of agreement being -1.9591 to 2.0890 bpm (Figure 5.13a), while 

the traditional averaging method showed a mean bias of -0.2735 bpm with 95% limits of 

agreement being -4.4010 to 3.8540 bpm (Figure 5.13b). Accordingly, samples derived from the 

proposed Thermal Voxel integration method and the traditional approach were correlated with 

the reference r=0.9579 (p<0.001) and r=0.8743 (p<0.001), respectively. The RMSE was also 

reduced more than twice from 2.11bpm (i.e. averaging method) to 1.03bpm (i.e. Thermal Voxel 

integration) as shown in Figure 5.13c. 

For Situation 3 (ThermalBreath II), both methods produced less reliable results (Figure 

5.14) (Thermal Voxel-based: mean bias = -0.1405 bpm, 95% limits of agreement: -4.9480 to 

4.6670 bpm, r=0.8270 (p<0.001), RMSE=2.45bpm), the traditional one: mean bias=0.1921 bpm, 

95% limits of agreement: -5.2682 to 4.8840 bpm, r=0.7990 (p<0.001), RMSE=2.59bpm).  

 

 

 
Figure 5.13. Situation 2 (ROITracking): Bland-Altman plots of (a) Thermal Voxel integration 

method, (b) the traditional averaging based estimation method, and (c) overall RMSE 

comparisons. The mean Pr value (pSQI) from the ground truth in Situation 1 (ThermalBreath I) 

was set as exclusion criterion (Pr ≥0.9825). 
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Figure 5.14. Situation 3 (ThermalBreath II): Bland-Altman plots of (a) Thermal Voxel 

integration method, (b) the traditional averaging method, and (c) overall RMSE comparisons. 

The mean Pr value (pSQI) from the ground truth in Situation 1 (ThermalBreath I) was set as 

exclusion criterion (Pr ≥0.9825). 

 

 

 

Finally, we demonstrate the performance of our proposed nostril-ROI and respiration 

tracking algorithms together through examples in Visualisation 118 (S1 in place C from Situation 

1, ThermalBreath I), Visualisation 2 (S9 from Situation 2, ROITracking), and Visualisation 3 (S3 

from Situation 3, ThermalBreath II). These visualizations (available online as supplementary 

materials) show the results for existing state-of-the-art algorithms (Nostril-ROI tracking: Median 

Flow, and respiration tracking: averaging method) and for our proposed advanced approach. 

 

 

 

 

5.6. Discussion 

The ability of thermal imaging in extracting respiration signals in constrained indoor and 

stationary settings has been explored in the literature (Murthy & Pavlidis, 2006; Fei & Pavlidis, 

2010; Abbas et al., 2011; Lewis et al., 2011; Pereira et al., 2015). This chapter has aimed to 

enhance this power by moving into unconstrained, ubiquitous, real-world-like settings. For this, 

we have focused on two separate computational phases which are necessary to automate the 

respiration tracking process. They are: i) tracking of the nostril ROI and ii) tracking of the 

respiratory rate. Along with the first phase, we have proposed a novel nostril ROI tracking method 

named Thermal Gradient Flow built on the Optimal Quantisation method proposed in Chapter 4. 

                                                 
18  Visualisations are to additionally demonstrate our proposed nostril ROI and respiration tracking 

performance on thermal videos (and comparing ours with existing state-of-the-art algorithms). Visualisation 

1,2,3 are uploaded to the journal (Biomedical Optics Express) repository: 

https://www.osapublishing.org/boe/abstract.cfm?uri=boe-8-10-4480#articleSupplMat  

Details can be found from Cho et al. (2017c). 

https://figshare.com/articles/2844457_mp4/5285854
https://figshare.com/articles/2844463_mp4/5285857
https://figshare.com/articles/2844464_mp4/5285863
https://www.osapublishing.org/boe/abstract.cfm?uri=boe-8-10-4480#articleSupplMat
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For the second phase, we have proposed a novel physiological signal representation technique, 

Thermal Voxel Integration.  

 

Robust tracking of the nostril ROI in unconstrained settings 

Robust nostril-region tracking is critical to monitoring respiratory signs as discussed in 

the works that achieved state-of-the-art performance (Lewis et al., 2011; Pereira et al., 2015). To 

the best of our knowledge, Pereira et al. (2015) achieved the highest performance in tracking the 

nostril region by adopting Mei et al.’s Sparse Representation method (Mei & Ling, 2011) which 

is one of the most advanced motion tracking algorithms. However, this was achieved in highly 

constrained laboratory experiments in terms of environmental temperature and motion artefacts. 

Outside the laboratory however, key challenges in tracking the nostril, such as noise amplified 

by motions and highly varying thermal dynamic ranges, have not been addressed. To overcome 

these challenges, we have proposed the Thermal Gradient Flow algorithm (proposed for dealing 

with motion artefacts) which is built on the top of the Optimal Quantisation proposed in Chapter 

4 (for handling the environmental thermal change issue). We have thoroughly explored the 

performance of the proposed approach by comparing its performance with state-of-the-art nostril 

tracking algorithms. 

From systematic evaluation environments to unconstrained real-world settings, the 

proposed method achieved new state-of-the-art performance. In particular, we found the 

environment with high thermal dynamic ranges greatly (negatively) influences the performance 

of the existing state-of-the-art methods even when participants’ motion was controlled in 

Situation 1 (ThermalBreath I dataset). On the other hand, our approach was less affected by 

environments with changes in ambient temperature. This is an important finding helping to bring 

thermal imaging into more real-world-like situations.  

 In scenes with low thermal dynamic ranges in Situation 1 on the other hand, both the 

recent advanced methods (Mei & Ling, 2011), Median Flow (Kalal et al., 2010) and our Thermal 

Gradient Flow similarly produced almost perfect results. Similarly, in the case of sedentary-

motion scenario (i.e. Situation 2: ROITracking dataset), the three methods performed 

significantly better than the earlier approach (Mode-Seeking) without statistically significant 

differences between each other, despite the fact that our approach produced the highest 

performance. All in all, the results indicate benchmark algorithms were properly implemented. 
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 In the case of tracking the nostril in fully unconstrained physical activity settings (i.e. 

Situation 3: ThermalBreath II dataset), our approach performed significantly better than all other 

methods, showing its robustness in the nostril-region tracking to challenges present in everyday 

settings, as shown in Figure 5.9. 

 

Importance of physiological signal representation in achieving reliable respiration 

monitoring performance 

In the body of work exploring the use of thermal imaging as a physiological sensing 

channel including respiration tracking, the step to represent thermal signals has by and large been 

overlooked by adopting the simple averaging method (Murthy & Pavlidis, 2006; Fei & Pavlidis, 

2010; Abbas et al., 2011; Lewis et al., 2011; Pereira et al., 2015). As discussed earlier, averaging 

tends to ignore fairly small but important changes in an array of temperature elements. Low-

resolution thermal imaging makes this situation worse, losing the informative thermal variation. 

Hence, we have focused on newly representing thermal signatures and, accordingly, proposed the 

Thermal Voxel Integration method.  

Through the second phase of this work, we aimed to compare our Thermal Voxel based 

approach with the temperature averaging method commonly used for extracting respiration 

patterns (Murthy & Pavlidis, 2006; Fei & Pavlidis, 2010; Abbas et al., 2011; Lewis et al., 2011; 

Pereira et al., 2015). The comparison was run on the same nostril-ROI sequences which were 

completely tracked by our Optimal Quantisation based Thermal Gradient Flow. The results show 

that the Thermal Voxel integration method outperformed traditional averaging approaches.  

This new approach is capable of improving accuracy, even in controlled situations 

designed to simulate guided respiratory rates (Situation 1: ThermalBreath I). It is noteworthy that 

the traditional temperature averaging method tends to be negatively affected by environments 

with a wider range of ambient temperature variances, for example, Place B and C in Figure 5.5 

and 5.12, while our Thermal Voxel integration method is relatively less susceptible to these 

changes. Under motion artefacts (Situation 2 and 3: ROITracking and ThermalBreath II datasets), 

both methods showed relatively low agreement with the chest-belt respiration sensor; however, 

the quality of the reference signal was also low. In particular, the quality of the reference data 

from participants who were involved in physical activities was worst (pSQI=0.917), while our 

proposed method still showed high quality data (pSQI=0.964). This indicates that the breathing 

belt-type sensor which has been used as a gold standard breathing measurement is susceptible to 
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motion artefacts. This could be explained by physical activities inducing loose fitting of the 

sensor on one’s upper body.  

 

Limitations, future opportunities and connection to next chapters 

There are still places for improvements. First, the conducted experiments do not cover all 

the possible scenarios. These include extreme cases where there are sudden transitions between 

scenes with different levels of ambient temperature (e.g. leaving a heated building in winter) or 

under varying levels of humidity (e.g. swimming pool, sauna) which could influence thermal 

patterns (Lloyd, 2013).  

Secondly, the low-cost thermal camera characteristics may have contributed to some of 

the calculation errors. For example, thermal data collected from the system includes sporadically 

a few extreme values (e.g. over 100°C or lower than -30°C), wrongly calculated due to lens-

inducing errors (e.g. lens focusing, misted edges of lens), which could possibly degrade the 

performance in respiration tracking. Fortunately, the statistical-outlier reduction used in the 

Optimal Quantisation technique (proposed in Chapter 4) is capable of minimising negative effects 

of the issue. Other than this, the resolution-related aspects are less likely to be fundamentally 

improved by algorithmic approaches; for instance, a one or two successive thermal image frames 

are sometimes blurred due to the low-quality issue, leading to temporary tracking errors. This is 

further discussed in Chapter 6.  

Similarly, the performance of our approach may be affected by extremely fast breathing 

rate beyond the range of breathing rates observed in our experiments. This is due to the fact that 

the temporal resolution of the low-cost thermographic system we use depends on software 

schedulers of a mobile operating system (i.e. Android in our case) which leads to producing 

unsteady sampling rates. As discussed in the literature (Kumar et al., 2015), higher sampling rate 

can directly improve the precision of respiratory indices. Given this, we expect that the better the 

spatial resolution of the data, the more enhanced the signals will be. All in all, it is important to 

note that our approach has achieved the state-of-the-art performance even with the use of low-

cost, low-resolution systems and we can expect further enhancements in the respiration tracking 

performance in the case where we use higher resolution thermal imaging, for example those used 

in the literature (Murthy & Pavlidis, 2006; Fei & Pavlidis, 2010; Abbas et al., 2011; Lewis et al., 

2011; Pereira et al., 2015).  
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Finally, despite our focus on the extraction of respiratory rates in the second phase of this 

work, the underlying advantage of our proposed method is not just about strong agreements with 

the reference sensor in this respiratory index. As shown in Figure 5.10a, 5.10c, 5.10e, tracked 

signals contains rich, continuous information of breathing19, which is far more informative for 

inferring one’s mental and physical condition than the rate itself. Given this, we will explore how 

to utilise the information and capture stress-related cues in Chapter 8.  

 

 

5.7. Chapter Summary 

In this chapter, we have proposed a novel respiration tracking method which reliably tracks the 

position of the nostril on thermal images and extracts respiration patterns from temperatures 

inside the nostril. To build a mobile thermal imaging-based practical respiration sensor, we have 

identified major challenges: difficulty in tracking the nostril and low respiratory signal quality 

from mobile thermal imaging in unconstrained situations. To overcome the identified issues, we 

have proposed a novel thermal gradient map-based ROI tracking technique, Thermal Gradient 

Flow which builds on the Optimal Quantisation proposed in Chapter 4. Furthermore, we have 

proposed a novel Thermal Voxel-based integration method to strengthen the respiratory signal 

quality.  

With datasets collected from the conducted experiments, we have evaluated the 

performance of our methods in tracking the nostril region and the respiratory rate. We have 

achieved state-of-the-art performance (e.g. strong correlation with ground truth respiration-belt 

sensing data in controlled situations, r=0.9987. Note that the prior art performance is r=0.974 in 

Pereira et al. 2015). We have also demonstrated that this new nostril-tracking strategy performs 

significantly better in scenes with high thermal dynamic ranges compared to the three state-of-

the-art algorithms.  

 

 

 

 

 

                                                 
19 An example of rich, continuous breathing information tracked by the proposed method is demonstrated 

in a news article which featured this work: https://phys.org/news/2017-09-software-mobile-phone-

accessory.html 

https://phys.org/news/2017-09-software-mobile-phone-accessory.html
https://phys.org/news/2017-09-software-mobile-phone-accessory.html
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Chapter 6 

 

Robust Tracking of Stress-induced Nasal 

Thermal Variability  
 

This chapter aims to build computational methods for improving the capture of 

vasoconstriction/dilation related cardiovascular thermal signatures from the nasal area, whose 

responses to mental stressors have been explored in the literature. Key challenges which have 

emerged in the literature are: i) high-levels of constraints given for tracking the nose tip area and 

extracting temperature (e.g. control of room temperature and a person’s motion); and ii) the 

limited capability of the widely-used single metric, that is, temperature difference between two 

moments (e.g. stress-induction and resting sessions), which is susceptible to noise. To address 

this, we focus on developing a technique that can continuously and automatically monitor the 

temperature of the nose tip, in turn helping minimise such constraints. We also introduce a richer 

set of metrics addressing limitations of the use of the single metric.  

Section 6.1 discusses the background and key challenges. Section 6.2 proposes our new 

methods and Section 6.3 describes the conducted experimental studies and collected datasets. 

Evaluation methods and results are described in Sections 6.4 and 6.5, which are followed by a 

discussion in Section 6.6, and a chapter summary in Section 6.7. 

 

 

6.1. Background and Research Question 

Physiological signal sensing plays an important role in monitoring a person’s mental stress. As 

discussed in Section 2.3, it has been shown that thermal imaging has potentials to sense 

vasoconstriction and vasodilation patterns from the skin (on vessels). Such patterns that cause 

blood flow to drop or increase are influenced not only by ambient temperatures (e.g. local cooling 

or warming) (Pergola et al., 1993), but also mental stress (Elam & Wallin, 1987). In particular, 
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earlier works using thermal imaging have documented vasoconstriction-related temperature drop 

of the nose tip tissues is one of the key cardiovascular events which happen as a reaction to mental 

stressors (Veltman & Vos, 2005; Or & Duffy, 2007; Engert et al., 2014; Ioannou et al., 2014). In 

order to observe the stress-related signature, the literature has mostly focused on capturing the 

direction in thermal variations of the nose tip.  

During data capturing, a majority of studies have drawn upon visual inspections and also 

imposed motion constraints (using a chinrest) (Veltman & Vos, 2005, Engert et al., 2014; Salazar-

López et al., 2015). A few studies have used motion (ROI) tracking algorithms; however, 

participants have still been required to keep their head still (Abdelrahman et al., 2017). As 

discussed in previous chapters, this is one of the main challenges, keeping thermal imaging from 

being used in unconstrained, real-world-like settings.  

The use of ROI tracking methods proposed in Chapters 4 and 5 might help to address this 

challenge. However, the nose tip area is an area which is difficult to track on thermal images. For 

instance, Figure 6.1 shows examples of thermal images of a person’s face which we collected 

from an office, and the nose tip area which is selected as a ROI. The shape of the local facial skin 

region is often blurred and not consistent on thermal images. This does not provide a sufficient 

number of key facial features which are required for ROI tracking. This is due to the 

homoeothermic metabolism and relatively low thermal conductivity of a person’s skin (here, the 

nose tip) keeping a very narrow range of temperature distributions on it. In the case of the nose 

tip, the conversion of raw thermal data to a thermal-gradient magnitude map proposed in Chapter 

5 (Equation (5.2)) is less likely to help obtain strong feature points from the area, as shown in 

Figure 6.2 right (there is no facial feature inside the bounding box on the nose tip). This leads to 

our research question: Can we continuously monitor stress-induced vasoconstriction/dilation 

patterns from the nose tip in unconstrained settings? 

 
Figure 6.1. Examples of thermal images of a person’s face and the nose tip selected as a ROI: 

the ROI from each thermal image has different temperature distribution, not providing common 

point features or patterns across thermal images which are required for the ROI tracking. 
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Figure 6.2. Selection of a larger ROI that includes the nose tip (small ROI) to obtain strong 

facial point features to enable reliable ROI tracking: (left) raw thermal image, (right) thermal 

gradient image. White stars (*) represent facial point features.  

 

Another unsolved challenge is how to enrich the quality of information derived from 

vasoconstriction/dilation-induced temperature changes. In the literature, temperature difference 

between two time points (positive/negative direction and its amplitude in temperature change, 

e.g. average of -0.56°C after being exposed to stressors in Or & Duffy, 2007) have been 

dominantly used as a single metric. However, a person’s skin temperature is influenced by 

physiological activities (e.g. vasoconstriction and vasodilation) as well as external factors such 

as environmental temperature. Hence, the single metric could be sensitive to other factors beyond 

the stress-induced physiological reaction. Indeed, incongruent results have been reported by 

studies where the metric was mainly used (Veltman & Vos, 2005 and Engert et al., 2014). This 

indicates there is a need for building a richer set of metrics to compensate for the limited 

capability of a single metric, which is likely to lose important physiological information of one’s 

mental stress. This may explain another reason why thermal imaging-based vasoconstriction and 

vasodilation monitoring has not yet been used in real-world applications. This leads to a follow-

up research question: Can we build a rich set of metrics to quantify variations in the patterns? 

In the next section, we propose computational methods to address the challenges 

mentioned above. Firstly, we introduce a technique to continuously track the nose tip temperature 

from peripheral nasal areas in less constrained settings. Following this, we propose a set of 

metrics to capture richer information from the nose tip temperature. This helps capture thermal 

variability rather than only the thermal directionality on which the existing metric is based (Genno 

et al., 1997; Veltman & Vos, 2005; Or & Duffy, 2007; Engert et al., 2014; Abdelrahman et al., 

2017; Di Giacinto et al., 2014). 
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6.2. Proposed Computational Methods 

In this section, we propose a tracking technique that builds upon the Optimal Quantisation 

(Chapter 4) and the Thermal Gradient Flow (Chapter 5). We then introduce a set of novel metrics. 

 

6.2.1. Continuous Tracking of Nasal Temperature 

Given the blurred and inconsistent shape of the nose tip (skin) on a thermal image (Figure 6.1 

and Figure 6.2), this section proposes to select a larger ROI including the nose tip where more 

distinct morphological shape can be obtained for the tracking, as visualised in Figure 6.2 right, 

rather than the nose tip area itself (Or & Duffy, 2007; Abdelrahman et al., 2017). The selection 

of a larger ROI enables our Optimal Quantisation-enabled Thermal Gradient Flow (proposed in 

Chapter 5) to continuously track the area and estimate the nose tip temperature. Figure 6.3 

illustrates a series of computations we propose, which contain i) the selection, and tracking, of a 

larger ROI, ii) computation of spatial average of temperatures within the ROI, iii) reduction of 

outliers with a sliding window and iv) low pass filtering. 

Following the literature (Or & Duffy, 2007; Engert et al., 2014; Abdelrahman et al., 2017), 

we compute the spatial average of temperatures in the ROI from every single frame to obtain a 

one-dimensional time series of thermal data, as shown in Figure 6.3 (Step II). Even if we achieve 

good performance in tracking ROIs, temporary errors are likely to occur due to blurred frames 

(e.g. just one or two frames) to which the low-resolution, low-cost thermal imaging leads (e.g. 

lens-inducing errors, calibration errors produced by a thermal camera). Hence, the third step is to 

remove such outliers related to temporary tracking errors as shown in Figure 6.3 (Step III). This 

can be done by excluding values beyond a range computed from Tukey’s hinge (g=1.5) (Tukey, 

1977), which has been widely used in outlier rejection processes. The range can be expressed by 

1 3 1 3 3 1[ ( ), ( )]Q g Q Q Q g Q Q− − + −
   (6.1) 

where Q1 and Q3 are the first and the third quartiles from temperature distribution and g is the 

Tukey’s constant. To compute the range and remove the outliers, we use a sliding window and 

set the length of the window to one third of the total length of data.  
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Now, a remaining step is to minimise a person’s respiration artefacts as i) we choose a 

larger ROI which includes part of nostrils and ii) breathing does also cause thermal changes in 

the area close to the nose tip. Figure 6.4a shows examples of thermal images taken from 

participants during the data collection study (introduced in the next section). From our 

observations, we found that respiration influenced the nasal tip temperature measurement in some 

cases. For instance, in Figure 6.4b, sequential thermal images of a person’s nose tip surface show 

that inhaled air influences the nose tip temperature. This indicates a need to remove such effects 

from the ROI to achieve reliable measures. This is necessary despite the fact breathing 

information itself could be one of the significant indicators of mental stress (which is thoroughly 

discussed in Chapter 8). For this, we propose to use a low-pass filter with a cut-off frequency 

lower than the normal range of breathing rates of healthy people, for example the range [0.1-

0.85Hz] considered in Chapter 5. As a thermal directional change is a relatively slow 

physiological event (Kuraoka & Nakamura, 2011), we set this to 0.08Hz which is lower than the 

low boundary. For the implementation, we used a zero-phase filtering (seventh-order, 

Butterworth) to avoid a phase-shifted result. Figure 6.3 (Step IV) shows the continuously tracked 

signal representing temperature variations of the nose tip.   

 

 

Figure 6.4. A person’s respiratory activity influences the nasal tip temperature: (a) examples of 

thermal images (view angles were not constrained), (b) the nasal temperature changes during 

inhalation (yellow: warmer, red: moderate, black: colder). 
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6.2.2. Metrics for Quantification of Nasal Thermal Variability 

This section aims to develop a possible set of metrics that can help capture thermal 

variability of a tracked nasal thermal variance sequence including directional information. For 

this, this chapter introduces a further post-processing step whose key components are i) down-

sampling and ii) feature scaling, as shown in Figure 6.5. Down-sampling is to address the 

unsteady sampling rate of the thermal camera (~8.7Hz) and then compute successive temperature 

differences sampled at regular temporal points. Here, we simply use a linear interpolation to 

down-sample (1Hz) the sequence. Feature scaling (Figure 6.5b) is to minimize the effect of 

difference of nasal temperatures across participants and sessions (called individual physiological 

difference, Hernandez et al., 2011). The two components are of help whilst exploring thermal 

(temporal) variability from a single measurement. For the scaling, we used one of the widely used 

methods: min-max feature scaling. This considers the entire sequence collected from a session 

for each participant and can be expressed by 

min

max min

( )
( )

x k x
m k

x x

−
=

−
         (6.2) 

where [0, 1]k n − , ( )x k  is the resampled sequence. With the aim to capture thermal 

variability, we label the resampled outcome as thermal variability sequence and the feature-

scaled outcome as feature-scaled thermal variability sequence from which we produce a richer 

set of metrics.  

 

 

Figure 6.5. Post-processing (down sampling and feature scaling using the min-max approach) 

for the extraction of one-dimensional feature-scaled thermal variability sequence from a 

person’s nose tip. 
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Table 6.1 describes the set of metrics we propose to represent thermal variability. The first 

metric is derived from the literature (Genno et al., 1997; Or & Duffy, 2007; Engert et al., 2014; 

Abdelrahman et al., 2017), i.e.,  

• TD (Temperature Difference between two points, here we select temperatures from 

the start and the end). 

Inspired by HRV (Heart Rate Variability) metrics (Pagani et al., 1986; Camm et al., 1996; 

Hjortskov et al., 2004; Williamon et al., 2013; Shaffer & Ginsberg, 2017), the second and third 

metrics are to capture variances: 

• SDSTV (Standard Deviation of Successive differences of Thermal Variability 

sequence, i.e. the difference between each interval on the down-sampled data), 

• SDTV (Standard Deviation of Thermal Variability sequence). 

Additionally, the fourth metric is to capture a global thermal directional change by using the slope 

from a linear polynomial fitting (used in Engert et al. 2014): 

• STV (Slope of Thermal Variability sequence). 

We applied the four metrics to our proposed feature-scaled thermal variability sequence 

and TD and STV to non-feature-scaled sequence (explored in the literature) for the comparison 

purpose. This set of metrics are summarised in Table 6.1 with their supporting equations.  
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Table 6.1. A novel set of metrics to quantify Thermal Variability  

Metrics Definition and Equation 

Feature scaled thermal variability sequence, ( )m k , [0, 1]k n −  

TDF  

Temperature Difference between feature scaled data from the start 

and the end 

 

ΔTm= ( 1) (0)m n m− −  

 

SDSTVF 

Standard Deviation of Successive differences of feature scaled 

Thermal Variability sequence 

 

s m̂  =
2ˆ ˆ( )

1

m m

n

−

−

 ,  ˆ ( ) ( 1) ( )m k m k m k= + −  

 

SDTVF 

Standard Deviation of feature scaled Thermal Variability sequence 

 

sm =
2( )

1

m m

n

−

−

  

 

STVF 

Slope of feature scaled Thermal Variability sequence 

 

βm=
1 ,   

0 1y m  = + + (from linear polynomial fitting) 

 

Thermal variability sequence, ( )x k , [0, 1]k n −   

TD  

Temperature Difference between data from the start and the end* 

 

ΔTx= ( 1) (0)x n x− −  

 

* This is derived from the existing, widely used, metric (Genno et al., 1997; 

Or & Duffy, 2007; Engert et al., 2014; Abdelrahman et al., 2017). 

STV 

Slope+ of Thermal Variability sequence 

 

βx=
1 ,   

0 1y x  = + +  (from linear polynomial fitting) 

 
+ This is derived from the slope used in Engert et al. (2014). 

 

 

6.3. Experimental Protocols and Datasets (NoseTracking, 

StressNose) 

The main aim of the data collection is two-fold: i) to systematically evaluate the use of a larger 

ROI on thermal images collected from carefully controlled situations (Dataset I: NoseTracking), 

and ii) to verify the capability of the proposed metrics in quantifying mental stress induced by 

sedentary stressful tasks (Dataset II: StressNose). 
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NoseTracking dataset: Relaxation on a Chin Rest 

Figure 6.6 shows the experimental setup for the data collection (the image was taken by a 

thermal camera). The aim was to compare outcomes produced by the proposed method with a 

reference signal (a temperature sequence from a small ROI only containing the nose tip). Hence, 

participants’ motion had to be carefully controlled. Following Veltman & Vos (2005), we used a 

chin rest on which each participant relaxed in order to maintain the position of her/his nose to 

remain as still as possible. 

10 healthy adults (aged 22-50 years, 4 females) took part in the data collection study. The 

study took place in a quiet lab room with no distractions (and no room temperature control). 

Thermal image sequences were recorded using a low-cost thermal camera (FLIR One 2G) 

integrated into a smartphone which was placed in front of each participant (circa 50cm).   

 

Figure 6.6. Experimental setup (the image was taken by a thermal camera) for the data 

collection for Dataset I: a chin rest was used to maintain the position of the nose of each 

participant still. The small ROI (reference) includes only the nose tip and the large ROI 

contains the nose tip and its surrounding area (e.g. part of the nostril). 

 

StressNose dataset: Stress-induction task using Mathematical Serial Subtraction  

In this experiment, amongst two widely used stress induction tasks discussed in Section 

3.3, we used the mathematical serial subtraction task (denoted as Math) to induce mental stress 

for the stress induction. We invited 12 healthy adults (6 females) (aged 18-60 years) from the 

subject pool service of University College London. Each participant was given the information 

sheet and informed consent form prior to data acquisition. Ambient temperature and participants’ 

movements were not controlled.  
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This task was divided into a resting period, experimental (MathHard) and control 

(MathEasy) sessions. Before starting the experimental and control sessions, participants were 

asked to rest for 5 minutes. The experimental condition required the participants to repeatedly 

subtract (mentally) a two-digit number, such as 13, from a four-digit number (e.g. 5000), for 5 

minutes. In the control session, the subtracted number was set to 1, transforming the task to an 

easy counting-down test with the aim of inducing significantly lower stress levels (or to not 

induce stress). Both control and experimental sessions were counterbalanced. The task flow is 

summarised in Figure 6.7. Between the sessions, participants were asked to take a break, 

encouraging participants to fully recover (without any measurements or constraints), in order to 

avoid potential effects from previous sessions. 

 

 

Figure 6.7. Flow chart of the study protocol (*Counterbalanced in Latin squared design). 

  

  

The recording setup is shown in Figure 6.8. During the experiment, each participant 

answered the mental arithmetic questions using a mouse on a laptop and was thermal-video-

recorded using the low-cost thermal camera (FLIR One, connected to an Android smartphone). 

After answering each question, participants received sound feedback which informs them 

whether the answer was correct or not. Before and after control and experimental sessions, 

participants were asked to fill in a short questionnaire (denoted as Q in Figure 6.7) to report their 

perceived stress level. As explained in Section 3.3, we used the Visual Analogue Scale (VAS) 

(Bijur et al., 2001; Lesage et al., 2012) to have participants self-report their stress scores. Only 

one experimenter was present in the room during the data collection but kept his distance from 

the participant (further than 1.5 m). All the tests were programmed and run in MATLAB (2015b, 

The MathWorks). The program sources are publicly available from the author’s GitHub 

repository20. 

                                                 

20 https://github.com/deepneuroscience/Paced-Math-Test (DeepBreath project: Cho et al., 2017a, 2017b). 

https://github.com/deepneuroscience/Paced-Math-Test
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Figure 6.8. Experimental setup: a smart phone with a low-cost thermal camera was installed 

and running on the desk while each person participated in the tasks. The participant was not 

asked to constrain their movements. 

 

 

6.4. Evaluation Method 

Evaluating the use of a Larger ROI in tracking Nasal Thermal Variance 

The first evaluation phase aims to check if nasal thermal variances extracted from the larger ROI 

which includes the nose tip and its surrounding areas can be a surrogate for the nose tip 

temperature changes. Using the first dataset NoseTracking where motion artefacts were fully 

controlled, we were able to directly compare the average temperature collected from the large 

ROI with that from the small ROI (only including the nose tip area which has been thoroughly 

explored in the literature), excluding effects of ROI tracking. We compared the Pearson 

correlation coefficients.  

We then tested how much participants’ respiratory cycled events affected nose tip 

temperature measurements and how much the filtering method handled the effects. For this, we 

used the relative power Signal Quality Index (pSQI), which is to assess the strength of 

physiological signals in a frequency range of interest, as a measure of quality (Clifford et al., 

2012; Kumar et al., 2015; Elgendi, 2016), seen in Chapter 5. The respiratory pSQI for the raw 

thermal variability sequence can be expressed by:  

   

max

min

ˆ

ˆ

min max

( )
ˆ ˆ( )

( )

f

x
f

x
total

S f df
P f f f

S f df
  



    (6.4) 
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where 0 1P  , 
xS

 

is the power spectral density of ( )x k , and 
minf̂ , 

maxf̂  are the lower and 

upper boundary of expected Breathing Rates (BR), respectively. Here, we set the expected BR 

range to [0.1Hz, 0.85Hz], as seen in Chapter 5.  

 

 

Evaluating Metrics for Stress-related Thermal Variability 

The aim of the second phase was to evaluate the capability of the proposed thermal 

variability metrics in stress assessment for less controlled settings where participants’ motion was 

not controlled. For this, the second dataset StressNose was used. We investigated effects of a 

session type (i.e. Rest, Control: MathEasy and Experimental: Mathhard) on self-reports of mental 

stress levels. This was to check whether the study protocol was designed properly. Like studies 

using the VAS (described in Section 3.3) to assess perceived stress levels, we planned to use an 

one-way repeated measures analysis of variance (ANOVA) test. However, scores for Rest were 

not normally distributed, violating assumptions of the ANOVA. Hence, we instead used 

Friedman’s ANOVA that can be performed on data with non-normality. For post hoc pairwise 

comparisons, we used the nonparametric Wilcoxon signed ranks test. Similarly, we used a one-

way repeated measures ANOVA with a session type as an independent variable and each metric 

value as a dependent variable as collected metrics data met the assumptions of the ANOVA test 

(e.g. normality and sphericity). 

 

 

6.5. Results 

6.5.1. Comparison between Small and Large ROIs 

From the first dataset with 10 participants, we collected four sets (average temperature and 

filtered average temperature sequences from the both ROIs) of 1000 thermal elements (10 

participants x 100 temperature samples from the 1Hz resampled sequence of 100s). The size of 

each chosen ROI was: i) height (M=8.6 pixels, SD=2.17), width (M=8.5 pixels, SD=2.37) for 

Small ROI; ii) height (16.2 pixels, SD=4.39), width (M=23.7 pixels, SD=7.82) for Large ROI. 

Figure 6.9 shows an example of the four sets taken from one participant’s thermal images (P2) 

during the data collection study. Here, we correlated each average temperature timeseries from a 
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small and a large ROI and then tested correlations between each filtered data from both ROIs. 

Overall, both data from the large ROI maintained a high correlation with the data from the small 

ROI (r=0.999, p<0.001 for both cases) as shown in scatter plots in Figure 6.10.  

 

 

Figure 6.9. An example of extracted average temperature and (temporally) filtered temperature 

sequences from a small ROI and a large ROI on facial thermal images of Participant 2. 

 

 

Figure 6.10. Scatter plots of (a) average temperatures and (b) (temporally) filtered average 

temperatures from the chosen small ROI and the large ROI (from 10 participants, N=1000). 
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As a wide range of temperatures from every participant could bring the power in achieving 

high correlation coefficients, we took a look at individual data and correlated them from each 

pair (small and large ROIs) for every participant. From this, we obtained 10 Pearson correlation 

coefficients from 10 participants (we correlated each pair of 100 samples for each participant). 

As it can be seen in Figure 6.11, the results from correlations of individual data still showed high 

levels of correlations between average temperature timeseries from the small and large ROIs 

(M=0.926, SD=0.055). Temporally filtered average temperatures, which were to be less affected 

by breathing artefacts, had stronger correlations between both ROIs (M=0.987, SD=0.016). 

 

Figure 6.11. Bar plot of Pearson correlation coefficients between each pair of samples (both 

data from small and large ROIs) for every individual (10 participants, each coefficient was 

computed from each participant’s samples (N=100)): (a) average temperature timeseries and (b) 

the filtered data. 

 

As mentioned in Section 6.4, we explored levels of respiratory artefacts contained in the 

collected data using the relative power SQI (pSQI). Figure 6.12 demonstrates how good 

respiratory quality each extracted nasal temperature data has. Interestingly, average temperature 

time series from both ROIs (small and large) strongly engaged with respiratory cyclic events 

(respiratory pSQI from the small ROI: M=0.681, SD=0.058; from the large ROI: M=0.692, 

SD=0.127) in comparison with the filtered data (M=0.023, SD=0.013) whose pSQI was 

significantly different from others (p<0.001). This indicates that, regardless of the ROI size, 

temperature from the nasal area is affected by breathing, potentially leading to wrong 

measurements. This strongly supports a need to filter respiratory information on 

vasoconstriction/dilation-related nasal thermal variance data. 
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Figure 6.12. Box plots of respiratory signal quality test results about average temperatures from 

both small and large ROIs and the filtered average temperatures from the large ROI (the 

proposed signal to use) using the respiratory pSQI. 

 

 

 

 

 

 

6.5.2. Effect of Stressors on Thermal Variability Metrics  

First, we analysed self-reported stress scores with the aim of evaluating whether the stress-

induction protocol was properly conducted. Boxplots in Figure 6.13 show the distributions of the 

self-reported scores across each session. Overall, it is clear that the stress elicitation procedure 

did produce significantly higher stress levels under the experimental condition (MathHard) than 

the ones from the other conditions (Rest: M=1.46, SD=1.99; MathEasy: M=2.63, SD=1.68; 

MathHard: M=5.43, SD=2.74), despite having one outlier from one participant (P7, Rest). 

 

 

Figure 6.13. Boxplot (95% confidence interval) of the self-reported perceived mental stress 

scores of 12 participants across each task (Rest, Math Easy, Math Hard). * describes the 

significant difference. o7 (P7, Rest) is an statistical outlier. 
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Although distributions of scores collected during both arithmetic tasks were sufficiently 

normally distributed (MathEasy: W=0.931, p=0.394; MathHard: W=0.927, p=0.347 from the 

Shapiro-Wilk test), the data from the rest period were skewed (p=0.002). Hence, we carried out 

the Friedman test on the 12 participants’ scores. We found significant differences between each 

session (including the resting period) (χ2(2)=11.261, p=0.004). Post-hoc Wilcoxon signed ranks 

test showed the experimental session (MathHard) elicited significantly higher stress levels than 

other tasks (Rest – Math Hard: Z=-2.667, p=0.008; Math Easy – Math Hard: Z=-2.937, p=0.003). 

On the other hand, there was no significant effect of the session type on participants’ VAS scores 

over the resting and easy math sessions (Z=-1.609, p=0.108), indicating other components 

involved in tasks (e.g. using a mouse to answer questions) did not significantly affect stress levels. 

Hence, we could take difficult mental arithmetic as a mental stressor. 

For testing the effect of a session type on the metrics in Table 6, we first examined 

normality of the computed data. Data from a participant (P2) collected during the rest period had 

extreme values making every metric value for the resting condition not normally distributed (e.g. 

TDF for Rest: p=0.031 from the Shapiro-Wilk test); hence, we discarded the participant’s data so 

that we had normally distributed data (e.g. TDF for Rest without P2: p=0.321 from the Shapiro-

Wilk test). Then, we conducted the ANOVA analysis with repeated measures. Table 6.2 provides 

a summary of  statistical results. The results showed a significant effect of the session type on 

TDF (F(2,20)=10.297, p=0.001, ηp
2=0.507), STVF(F(2,20)=6.089, p=0.009, ηp

2=0.378), 

TD(F(2,20)=6.847, p=0.005, ηp
2=0.406), STV(F(2,20)=5.78, p=0.01, ηp

2=0.366) and 

approaching significance on SDTVF(F(2,20)=2.876, p=0.08, ηp
2=0.223).  

The post-hoc paired t-test with Bonferroni correction on each metric showed that only 

STVF (our feature scaling-based metric) had a significant difference between resting and 

MathHard sessions (p=0.013) with no significant difference between MathEasy and resting 

sessions (p=0.136). This indicates that feature-scaling helps enhance the capability of thermal 

directionality in assessing mental stress. 
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Table 6.2. Significance test to assess the effect of a session type on each metrics derived from the 

proposed filtered sequence using a one-way repeated measures ANOVA 

Source Measure 
Sum of 

squares 
df Mean square F p-value 

Partial 

Eta 

squared 

Task TDF 4.477 2 2.238 10.297 0.001 0.507 

 SDSTVF 8.88E-05 2 4.44E-05 0.628 0.544 0.059 

 SDTVF 0.005 2 0.003 2.876 0.08 0.223 

 STVF 110.135 2 55.068 6.089 0.009 0.378 

 TD 4.823 2 2.412 6.847 0.005 0.406 

 STV 126.792 2 63.396 5.78 0.01 0.366 

Error (Task) TDF 4.348 20 0.217    

 SDSTVF 0.001 20 7.07E-05    

 SDTVF 0.018 20 0.001    

 STVF 180.871 20 9.044    

 TD 7.044 20 0.352    

 STV 219.377 20 10.969    

 

 

 

6.6. Discussion 

As discussed in Chapter 2, the literature has primarily focused on capturing thermal directional 

changes on certain facial areas in association with a person’s affective states (Genno et al., 1997; 

Pavlidis et al., 2002, 2012; Gane et al., 2011; Engert et al., 2014). Amongst areas, the nose tip 

has been shown to be a key area showing a significant decrease in temperature in response to 

mental stressors and mental workload (Genno et al., 1997; Veltman & Vos, 2005; Or & Duffy, 

2007; Engert et al., 2014; Abdelrahman et al., 2017). This chapter has aimed to contribute to this 

body of work by building computational methods that can more reliably capture richer 

information of this physiological phenomenon.  

 

Reliable, continuous tracking of nasal thermal variances 

Throughout previous chapters, we have discussed the importance of automated ROI 

tracking in supporting situations beyond controlled laboratory settings where participants’ 

mobility is highly constrained. Automatizing ROI tracking can also be a key player in innovating 

the extraction of nasal thermal variances as the literature has mostly relied upon motion-

constrained settings (often using a chinrest) so as to enable visual inspections on thermal images 

to work (Veltman & Vos, 2005, Engert et al., 2014; Salazar-López et al., 2015). However, 

tracking the nose tip area on thermal images is not an easy task since its shape gets often blurred 
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due to many factors such as motion and breathing, which low-resolution, low-cost thermal 

cameras make it even worse as discussed in Section 6.1. Hence, we have addressed this by 

proposing the selection of a larger ROI including the nose tip and surrounding areas (e.g. part of 

the nostril) and conducting systematic evaluation. 

Use of the ROI as a surrogate of the nose tip area has not been explored in the literature. 

Hence, we have investigated their relationship on the NoseTracking dataset which we collected 

in highly motion-constrained environments and found strong correlations. This is highly 

encouraging considering the possibility of deploying thermal imaging in real world contexts. In 

addition, continuously tracked signatures can be of use to capture richer information than a just 

discrete value such as a temperature difference. This is important as the nasal thermal variation 

occurs with a dynamic process of narrowing and widening of nasal peripheral vessels 

(vasoconstriction/dilation) under stressful conditions (Elam & Wallin, 1987; Ioannou et al., 2014). 

Given this, we have also focused on building a set of metrics to capture richer information.  

 

Importance of capturing multiple aspects of nasal thermal variability in assessing 

mental stress 

The proposed tracking method allows for taking into account temporal variability of the 

nose tip temperature changes rather than a single discrete quantity to represent thermal 

directionality dominantly explored in the literature. Capturing multiple aspects of physiological 

variability has been shown to be important in assessing mental stress levels; for example, multiple 

metrics have been proposed to capture heart rate variability related to mental states (Billman, 

2013; McDuff et al., 2016). However, this has not yet been explored for vasoconstriction/dilation 

related nasal thermal variation. Therefore, we have proposed a novel set of metrics with the aim 

to capture complex aspects of the physiological phenomenon beyond just a temperature 

difference and tested their capability in quantifying mental stress on the StressNose dataset. 

The main component we used for building metrics is feature scaling of a nasal thermal 

variability sequence. As we discussed in Section 6.2.2, the aim was to consider interpersonal 

variability in physiology which has been repeatedly reported in the literature exploring other 

signals (e.g. skin conductance in Hernandez et al., 2011). From the experiment, we found feature 

scaling-applied metrics could bring more power in assessing mental stress than those to which 

feature scaling is not applied. The finding is interesting as it helps address limitations of earlier 

studies which have generally ignored individual differences in physiological patterns 
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(Abdelrahman et al., 2017). In addition, it supports the need to track nasal thermal variances 

continuously. In situations where we have to collect limited samples of temperatures discretely 

(e.g. the start and end), it is difficult to consider individual differences. 

This work also highlights the importance of avoiding collapsing complex phenomena of 

variability into a single metric. In our study, using the dominantly used metric temperature 

difference alone did not help discriminate the stressful event from the baseline. One possible 

reason for this could be the fact we did not constrain room temperatures influencing our skin 

temperature. The proposed set of metrics compensated for this, stressing the importance of 

capturing richer information of thermal variability beyond thermal directionality particularly in 

unconstrained environments. 

 

Limitations, Future Opportunities and Connection to Next Chapters 

Despite the above findings, there are limitations opening up future research opportunities. 

First, we used the spatial averaging method to summarise two dimensional thermal information 

on the nasal area (dominantly used in the literature). This could lead to losing important 

vasoconstriction/dilation induced local thermal variances. This is similar to the issue of averaging 

respiratory thermal variances inside the nostrils, which we addressed in Chapter 5. Hence, we 

further explore how to achieve better quality of spatial representation of thermal signals than 

averaging in Chapter 7. Second, this work drew upon hand-engineered metrics in quantifying 

mental stress. As hand-engineering even carefully can hardly capture all complex aspects of 

signals (LeCun et al., 2015), we explore how to automatically learn informative features using 

machine learning algorithms in Chapters 8 and 9.  

 

 

6.7. Chapter Summary 

In this chapter, we have proposed a novel method to continuously track stress-induced thermal 

variability patterns on a person’s nasal area. From the literature, we have identified the following 

issues: i) difficulty in tracking the nose tip area and its temperature continuously under motion 

artefacts and ii) a limitation of using a single metric in quantifying mental stress. Addressing the 

issues, this chapter has contributed: i) a novel tracking technique that is built on the Optimal 

Quantisation and Thermal Gradient Flow methods proposed in previous chapters, ii) a novel set 
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of metrics that can provide richer information of stress-induced cardiovascular events on the nose 

tip than the single metric designed to capture only the thermal directionality. We have evaluated 

the contributions with a series of experiments: one was conducted with 10 participants in a highly 

controlled situation for a systematic evaluation, and the other was conducted with 12 participants 

in unconstrained situations with stressful arithmetic solving tasks. The findings of this chapter is 

linked to Chapter 9 where we aim to build an instant stress recognition system using continuously 

tracked nasal thermal variability sequences.  
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Chapter 7 

 

Exploring Stress-induced Cortical 

Thermal Signatures from the Scalp 
 

Most work to date has explored facial temperature variation in relation to mental stress. However, 

as described in Section 2.4, mental stress induces changes in regional Cerebral Blood Flow (CBF) 

which could engage with heat propagation throughout the scalp. Hence, in this chapter we aim to 

explore whether stress-related thermal signatures can be captured from the scalp. The ultimate 

goal is to build a novel low-cost, mobile, non-contact way for observing cortical activities, which 

could be useful in many real-world applications (Boto et al., 2018). In this chapter, we focus on 

exploring scalp temperature under sedentary stressful conditions. As explored in the previous 

chapters, use of low-cost mobile thermal imaging can support an easy set-up, particularly for 

near-a-person’s scalp monitoring in comparison with high-cost, heavyweight thermal imaging 

systems. 

In Section 7.1, we review cortical regions which have been shown to respond to mental 

stressors from brain imaging studies and discuss possible metrics for quantifying cortical thermal 

signatures. Section 7.2 introduces an initial investigation of cortical thermal signatures in a study 

we conducted within unconstrained sedentary desk activities. It reports findings and challenges 

which are considered in designing the protocol of a second controlled study in Section 7.3, where 

we investigate a representation of cortical thermal signatures and propose metrics to quantify the 

represented signatures. The chapter ends with a discussion and chapter summary in Section 7.4 

and Section 7.5. 
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7.1. Background and Research Question 

As discussed in Chapter 2, while the majority of studies in the literature have focused on a 

person’s facial area to identify if certain affective states induce binary directional changes in 

temperature, there is evidence that other body regions could also provide such thermal signatures. 

The scalp is the region this chapter focuses on. The very initial, however direct evidence of its 

thermal relation to brain activities can be found from Lombard’s earlier work one and half 

centuries ago (Lombard, 1878). Using surficial mercury thermometry, the author showed how 

cognitive and emotional functions were associated with an emission of heat from the brain. 

Although, ever since Lombard’s discovery, there has been no rigorous investigations on, and 

attentions to, the scalp temperature in relation to emotions or affects. Indirect evidence can be 

found from recent neuroscientific studies on Cerebral Blood Flow (CBF) of local regions in the 

brain near the scalp, which engages in a cerebral heat production potentially influencing scalp 

temperature (Busto et al., 1987; Kiyatkin, 2010; Wang et al., 2014a; Li et al., 2017). From this 

evidence, we hypothesise thermal imaging may capacitate to capture CBF activation-induced 

thermal signatures from certain local regions on the scalp.  

 

Stress-activated brain areas 

It has been observed for over two decades that regional changes in CBF can occur during 

stress response amongst other types of affective responses. From studies using fMRI, PET, and 

fNIRS which are used to measure CBF patterns in the brain (Taylor et al., 1997; Soufer et al., 

1998; Wang et al., 2005; Pruessner et al., 2008; Dedovic et al., 2009; Causse et al., 2017; 

Rosenbaum et al., 2018), one of the main regions commonly activated in response to mental 

stressors is the left inferior frontal gyrus (Taylor et al., 1997; Soufer et al., 1998; Pruessner et 

al., 2008). This region is known to be involved in semantic and phonological processing 

(Costafreda et al., 2006). Using the Neurosynth platform21 (Yarkoni et al., 2011), Figure 7.1 

illustrates the location of the region in the MNI coordinate space (with x,y,z values, D: Dorsal, 

V: Ventral, A: Anterior, P: Posterior, L: Left, R: Right). This visualisation is helpful to localise 

the ROI on a thermal image of the scalp. From the z-axis image (on which “z=-12” is written) in 

Figure 7.1, we can see that the region is situated near the scalp. At the same time, the location is 

                                                 
21  Neurosynth is a web-based platform for large-scale, automated synthesis of fMRI data 

(http://neurosynth.org/). 
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in the low-middle on the x-axis image (“x=-44”), indicating the scalp frontal view would be more 

appropriate than the top view for the thermal camera to be able to capture the ROI.  

 

 

Figure 7.1. Location of the left inferior frontal gyrus (Red and yellow colour), the most 

commonly activated region under stress conditions (Taylor et al., 1997; Soufer et al., 1998; 

Pruessner et al., 2008): on the brain images synthesised using the Neurosynth platform 

(Yarkoni et al., 2011), we additionally draw facial landmarks for the purpose of visualisation. 

x,y,z values represent MNI coordinates and D: Dorsal, V: Ventral, A: Anterior, P: Posterior, L: 

Left, R: Right. 

 

The second region is the right PreFrontal Cortex (PFC) which is also one of the most 

frequently reported “stress” activated regions (Wang et al., 2005; Causse et al., 2017; 

Rosenbaum et al., 2018). The right PFC, in particular the right dorsolateral PFC, has been 

known to be associated with emotions (Knoch et al., 2006). Compared with the left inferior 

frontal gyrus (Figure 7.1), the right PFC seems more suitable to be monitored from the top view 

of thermal imaging as it is located near the top of the scalp (the x-axis images in Figure 7.2). In 

Figure 7.2, we additionally segment the z-axis brain images (“z=+10”, “z=+14”) into three 

(vertical: anterior, middle, posterior) x two (horizontal: left, right) areas in order to facilitate the 

localisation of each region on a scalp thermal image (it shows the region is located in the right 

anterior area).  

Other “stress” activated regions we found from the literature are the occipital cortex 

(involved in the visual perception) and the right inferior parietal lobules (involved in the 

perception of emotion and mathematical and linguistic operations) in the occipital/parietal lobes 

(Taylor et al., 1997; Pruessner et al., 2008). Figure 7.3 shows both regions (which are closely 

situated to each other) are located near the scalp (from x-axis images with labels A and P). From 
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z-axis images with segmentation, we can see the area is located in the right posterior area. Beyond 

the three regions which have been frequently reported, the left PFC (Figure 7.4a) and the left 

premotor area (Figure 7.4b) were also activated in Pruessner et al. (2008)’s study. Interestingly, 

stress appears to induce deactivation of some regions – the superior temporal gyrus (Figure 7.5) 

was deactivated in Taylor et al. (1997) and Pruessner et al. (2008). 

 

 

Figure 7.2. Location of the right prefrontal cortex and the right dorsolateral prefrontal cortex, 

the most commonly activated region under stress conditions (Wang et al., 2005; Causse et al., 

2017; Rosenbaum et al., 2018): we segment the brain into 3 (anterior, middle, posterior) x 2 

(left, right) areas on the z-axis images. x,y,z values represent MNI coordinates and D: Dorsal, V: 

Ventral, A: Anterior, P: Posterior, L: Left, R: Right. 

 

 

 

Figure 7.3. Location of the parietal/occipital lobes (the occipital cortex and right inferior 

parietal lobules), the frequently reported “stress” activation region (Taylor et al., 1997; 

Pruessner et al., 2008): we segment the brain into 3 (anterior, middle, posterior) x 2 (left, right) 

areas on the z-axis images. x,y,z values represent MNI coordinates and D: Dorsal, V: Ventral, 

A: Anterior, P: Posterior, L: Left, R: Right. 
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                                      (a)                                                                                        (b) 

Figure 7.4. Localisation of the documented “stress" activation region: (a) the left PFC 

(Pruessner et al., 2008), (b) the left premotor area (Pruessner et al., 2008). x,y,z values represent 

MNI coordinates and D: Dorsal, V: Ventral, A: Anterior, P: Posterior, L: Left, R: Right. 

 

 

 

Figure 7.5. Localisation of the reported “stress" deactivation region: the superior temporal 

gyrus (Taylor et al., 1997; Pruessner et al., 2008). x,y,z values represent MNI coordinates and 

D: Dorsal, V: Ventral, A: Anterior, P: Posterior, L: Left, R: Right. 

 

 

 

Thermal signal representation approaches 

The stress-activated brain areas which have emerged from the literature have led to our 

research question: can thermal responses of such brain regions to mental stress be observed by 

using low-cost thermal cameras? If so, how can we build methods and metrics to capture cortical 

thermal signatures? To answer this, we review existing approaches (focusing on facial thermal 
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signatures) to represent thermal signals on a ROI, so as to build metrics to quantify novel cortical 

thermal signatures in our two studies. Schmidt documented earlier “The average … can be 

calculated with minimal cost. Calculating the average is meaningful for data from nearly any 

sensor” (Schmidt, 2002). His comment reflects the fact that the average has been used as a major 

spatial representation method in studies using thermal imaging in order to capture spatial thermal 

trends of physiological information (Murthy & Pavlidis, 2006; Fei & Pavlidis, 2010; Abbas et al., 

2011; Lewis et al., 2011; Gane et al., 2011; Pavlidis et al., 2012; Pereira et al., 2015; 

Abdelrahman et al., 2017). 

Based on averaging, most authors have simply computed a difference between two 

selected mean temperatures as a metric (e.g. from baseline and from the final minute of a task in 

Abdelrahman et al., 2017, or from the start and the end of a task session in Or & Duffy, 2007) . 

A few authors have also applied basic statistical functions to a mean temperature time series 

extracted from sequential thermal image frames (e.g. the range, mean, variance, skewness of the 

mean temperature data in Gane et al. 2011). However, as we discussed in Chapters 5 and 6, the 

average-based spatial representation method and simple metrics built upon this may not be 

sufficient to capture complex aspects of thermal signatures, particularly, from the scalp. Thus, in 

this chapter we investigate potential metrics for capturing complicated cortical thermal signatures. 

 

 

7.2. Study I: Initial Exploration in Unconstrained Setting  

This section aims to undertake an initial exploration of cortical thermal signatures by conducting 

a study using the mental arithmetic task-based protocol used in Chapter 6. In particular, we 

hypothesise that if a person perceives mentally stressed, his/her scalp area above (around) the 

documented stress activated brain regions will produce thermal directional changes and thermal 

imaging will help capture them. As in Chapter 6, this study was conducted in an indoor 

unconstrained setting (we conduct our second study in a highly constrained setting in order to 

consider limitations found from this study).  

We propose a thermal recording set-up, introduce an experimental protocol for this study 

and then discuss the collected dataset, evaluation method and results.  
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7.2.1. Recording Set-up 

In order to observe stress-induced thermal signatures from the scalp, we use two low-cost, mobile 

thermal cameras (FLIR One Pro in Table 2.1) as the main sensing channels of this work. Figure 

7.6 shows the proposed thermal recording set-up to monitor cortical thermal signatures. The first 

low-cost thermal camera is placed on a desk in front of a person to monitor the scalp from the 

frontal view (distance: 40-70cm, to enable participants’ natural movement and postural changes). 

This is to primarily observe the scalp near the left inferior frontal gyrus (Figure 7.1) whose CBF 

is activated under stressful conditions, as discussed earlier. In this case, the camera can be directly 

attached to a smartphone (which controls the camera and stores data). The second thermal camera 

is installed above a person’s head using a tripod and an additional mount (wire-based) to observe 

the scalp from the top view (distance: 40-60 cm). This is to investigate the other documented 

“stress activation” regions (i.e. left, right PFC, occipital/parietal lobes). Here, we take advantage 

of the lightweight portability of mobile thermal imaging in the installation. To reduce the weight 

further, an extension cable can be used to connect the camera to the smartphone (this setup helps 

a mobile thermal imaging device to be attached anywhere). 

 
Figure 7.6. The proposed measurement architecture to monitor cortical thermal signatures. A 

low-cost thermal camera (directly attached to a smartphone) placed on a desk is to monitor the 

scalp from the front view. Another low-cost thermal camera (connected to a smartphone via a 

cable) is installed above the head of a person to monitor it from the top view. 

 

 

7.2.2. Experimental Protocol and Dataset (ThermalBrain I) 

This section describes the experimental protocol and the collected dataset. Amongst stress 

induction protocols used in neuroscientific experiments, the most frequently used task is mental 

arithmetic (Soufer et al., 1998; Dedovic et al., 2005, 2009; Wang et al., 2005; Pruessner et al., 
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2008; Al-Shargie et al., 2016; Rosenbaum et al., 2018). Hence, we used the mathematical serial 

subtraction protocol introduced in Chapter 6 where stress-induced thermal variability on the nasal 

area was explored. Although the protocol followed Soufer et al. (1998)’s introduction of time 

pressure in their PET study (i.e. 7.5 second for each mathematical question), mental arithmetic 

itself lacks other types of stressors (e.g. psychosocial stressors as addressed in Dedovic et al. 

2009) so our protocol also included social evaluative threats and negative sound feedback as 

discussed in Section 3.3. Figure 7.7 describes the flow chart of the conducted study where the 

counting was used as the controlled session and the subtraction was used as the experimental 

session. In this data collection study, we collected thermal images from both cameras during the 

control and experimental sessions as the relaxation and control session induced significantly low 

stress levels, similarly to the experiment in Chapter 6.  

 

 

Figure 7.7. Flow chart of the study protocol: stress-induction task using mathematical serial 

subtraction (*Counterbalanced in Latin squared design). 

 

 

We invited 10 participants (2 females with very long hair: 30cm~, 1 bald male and 7 males 

with short hair: 5cm ~ 10cm) who had not experienced the tasks before with a mean age of 31.2 

(SD=11.67). Before conducting the experiment, participants were given the information sheet 

and consent form, as well as an additional demographics form used to check for any history of 

mental disease (see Appendix H) which could influence neural responses to mental stressors 

(Soufer et al., 1998). Based on participants’ self-report, no one had any history of mental diseases 

such as neurological disorder, substance abuse, head injury and psychiatric disorder, as well as 

severe physical illnesses. As shown in Section 6.3, each participant was instructed to rate 

subjective stress scores on a 10-cm Visual Analogue Scale (VAS). Any constraints such as 

limiting head movements were not imposed on participants in order to identify challenges in this 

unconstrained setup. The total experimental time for each participant was about 40-50 minutes. 

This produced a dataset of thermal images – we named this ThermalBrain I dataset (thermal 

sequences from 2 sessions x 5 minutes x 10 participants). 
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7.2.3. Evaluation Method 

Firstly, we tested the significance of subjective stress self-reports (VAS-based scores) to evaluate 

the study design (as conducted in Chapter 6). For this, we checked data normality and used a one-

way repeated measures analysis of variance (ANOVA) with an independent variable: a session 

type with three conditions (resting, control and experimental). 

The main aim of this study was to make an initial investigation of underexplored cortical 

thermal signatures near the documented stress-related local regions using the widely used metric 

to quantify the thermal signature. The metric is the difference between average temperatures at 

two temporal points. Motivated by our findings of the limitation of spatially averaging 

temperatures in Chapter 5, we further used two basic statistical functions (maximum, skewness), 

and one information-theoretic measure (entropy) for spatial representation. Based on the chosen 

four representation methods, we computed the difference between each spatially represented data 

from the start and end of a session. The four metrics used in this study are summarised in Table 

7.1.  

 

Table 7.1. Metrics for thermal directional changes based on four basic statistical measures (Average, Max, 

Skewness, Entropy) to represent thermal signatures from a ROI. 

Metrics using Different types of Thermal Signature Representation  

Metric 

N1 

Difference between 

[the data in the right column] 

from the start and the end of a 

session 

Mean of 2D temperature elements on a ROI 

(*averaging: the most widely used representation) 

Metric 

N2 
Maximum of 2D temperature elements on a ROI 

Metric 

N3 Skew of 2D temperature elements on a ROI 

Metric 

I1 Entropy of 2D temperature elements on a ROI 

 

We applied the four metrics to five scalp sub-regions near the occipital lobe, left, right 

PFC, left premotor, and left inferior frontal gyrus which all are CBF-activated regions in response 

to mental stressors. The computation of each value was manually done without the use of the ROI 

tracking algorithm used in earlier chapters. Paired-samples t-tests with a session type as IV (two 

conditions: control and experimental) were used to identify significant effects of mental stress 

(represented by the self-reported scores) on the thermal metrics from each region.   
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7.2.4. Results 

Figure 7.8 shows examples of thermal images taken from both thermal cameras according to the 

set-up in Figure 7.6. Given a lack of registration methods for this, the bounding boxes were 

manually placed on the five ROIs (i.e. near the left inferior frontal gyrus (Figure 7.8a and 7.1) 

and near the left, right PFC, left premotor, and occipital lobe (Figure 7.8b and Figure 7.2-7.4), to 

extract the four metrics for thermal directional changes. We calculated each differential value 

from the first and last frame of thermal images. Results obtained 40 metrics values (5 ROIs x 2 

main tasks x 4 metrics) from each participant. 

 

Figure 7.8. Examples of thermal images taken from (a) the frontal view thermal camera and (b) 

the top view thermal camera. The bounding boxes are placed on main ROIs: (a) near the left 

inferior frontal gyrus and (b) near the left, right PFC, left premotor, occipital lobe. 

 

Figure 7.9 and 7.10 show examples of thermal images of the scalp collected from the 

experimental condition (Figure 7.9a, 7.10a) and the controlled condition (Figure 7.9b, 7.10b) in 

a chronological order. In the case of people with no hair (Figure 7.9), regions near the left 

prefrontal cortex (Figure 7.9a-1, top left circle) and occipital/parietal lobes (Figure 7.9a-8, bottom 

middle circle) showed a considerable increase in temperature under the stressful condition. 

Although the patterns were similarly shown on the thermal images of a participant with short hair, 

shown in Figure 7.10, we found that the hairs interfered with monitoring temperatures of the 

scalp. In particular, amongst the five ROIs, the scalp region above the left inferior frontal gyrus 

was hidden by very long hair of two female participants, which meant the data in the analysis had 

to be discarded.  
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(a) During the experimental session 

 
(b) During the controlled session 

 

Figure 7.9. The scalp thermal imaging samples of a bald participant taken during (a) the 

experimental condition (i.e. the arithmetic subtraction and social evaluative pressures discussed 

in Section 3.3) and (b) the controlled condition (i.e. the arithmetic counting). Two circles were 

drawn to highlight temperature changes from the two regions (around left PFC and 

parietal/occipital lobes) in (a). 
 

 

 

 

 

 
(a) During the experimental session 

 

 
(b) During the controlled session 

 

Figure 7.10. The scalp thermal imaging samples of a participant with a short hair taken during 

(a) the experimental condition (i.e. the arithmetic subtraction with social evaluative threat) and 

(b) the controlled condition (i.e. the arithmetic counting).  
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As in brain imaging studies with fMRI, PET (Pruessner et al., 2008), where neural 

responses of participants during stress-induction sessions are directly compared with responses 

during controlled sessions, we analysed subjective ratings collected from ten participants to see 

if the stress induction protocol was properly designed to induce considerable differences of 

mental stress levels. The Shapiro-Wilk test confirmed that perceived self-reported scores for each 

condition were approximately normally distributed (resting: p=0.379, control: p=0.464, 

experimental: p=0.233). Using one-way repeated ANOVAs with a session type as IV, we found 

significant difference across each session (i.e. the controlled session using counting, experimental 

session using subtraction and the resting period) (F(2,18)=16.458, p<0.001, ηp
2=0.646). From the 

Bonferroni adjusted post-hoc analysis, the controlled condition is not significantly different to 

the baseline (i.e. resting period) (p=0.743), while the experimental condition is significantly 

different from both the baseline and control condition (p=0.006 with the controlled condition; 

p<0.001 with the resting condition).  

For the significance test on the metrics, thermal recordings from one participant were 

excluded due to his considerable head movements making it difficult to even manually localise 

and register the same area on each thermal image, in particular from the top view, as the main 

ROIs on the participant’s head were not visible (due to the angle). This indicates that, for a better 

registration of each ROI in the follow-up study, we may need to limit a participant’s head 

movement or build a method that computationally aligns the orientation and position of the scalp 

on a thermal image with others. Additionally, the recordings from two participants were also 

excluded as we found they gave up the subtraction task due to the extreme difficulty they 

experienced from the brief interview done after the end of all sessions, indicating a need to adjust 

the difficulty levels according to participants. This exclusion also led to data normality. 

Paired-samples t-test (IV: a session type with two conditions) were used to analyse effects 

of mental stress on each thermal metric value (see metrics in Table 7.1). Figure 7.11 visualised a 

summary of the significance test results. We found significant differences between the stress-

induction experimental session (i.e. arithmetic subtraction) and controlled one (i.e. counting-

down) from the region over the left inferior frontal gyrus (N1: the difference of the mean data, 

t(4)=4.964,  p<0.01; N2: the difference of the maximum data, t(4)=2.849,  p<0.05) in Figure 

7.11a and over the occipital lobe (N1: t(6)=4.34,  p<0.05; N2: t(6)=2.85,  p<0.05) in Figure 7.11b. 

As illustrated in Figure 7.12 (Left, Middle), both regions produced heat during the stress-

induction task, while they tended to lose heat in the controlled condition. Furthermore, we found 

an approaching significance result for the skewness-related metric (N3) applied to the region over 
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the left premotor area (t(6)=2.45,  p=0.05) with an increase in skews under the experimental 

condition, as shown in Figure 7.11c.  

 

 

Figure 7.11. Significance test results visualised on each thermal image from (a) the frontal 

view thermal camera and (b) the top view thermal camera. The bounding boxes are placed on 

main ROIs: (a) near the left inferior frontal gyrus and (b) near the left, right PFC, left premotor, 

occipital lobe. 

 

 

Figure 7.12. Box plots of 95% confidence intervals in selected (examples) metrics values 

across each session (control vs. experimental). Left: Metric N2 (the difference of the maximum 

data) from the left inferior frontal gyrus, Middle: Metric N2 from the occipital gyrus, Right: 

Metric N3 (the difference of the skewness data) from the left premotor area.  

 

 

7.2.5. Reflection on Study I: Identified Challenges 

The results are encouraging as we have found initial evidence of measurable thermal propagation 

from CBF-activation regions using low-cost thermal cameras. However, we have also identified 

challenges in this study protocol: i) long hair hampering the scalp temperature, ii) head movement 
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inducing registration difficulty, iii) extreme difficulty of mental arithmetic leading to a participant 

giving up. In addition, we have found other types of spatial representation methods beyond 

averaging (e.g. maximum, skewness-based methods in Table 7.1) that could be used for building 

metrics for quantifying cortical thermal signatures. Given these initial results, in the follow-up 

study in Section 7.3, we design and conduct a highly controlled study in terms of the three 

challenges and investigate metrics for improving the capture of cortical thermal signatures. 

 

 

7.3. Study II: London Arithmetic Stress Task (LAST) in 

Constrained Setting 

Based upon the identified challenges and findings from the first study in Section 7.2, this section 

aims to undertake an in-depth investigation on cortical thermal signatures by introducing a highly 

constrained setting, limiting hair length and head movement. In addition, we introduce a more 

refined study protocol built on the mental arithmetic task by following an exemplary experimental 

protocol used in neuroscientific studies on mental stress. As in Study I, the key hypothesis in this 

study is: if a person perceives mentally stressed, his/her scalp area above (around) the 

documented stress activated brain regions will produce thermal directional changes and thermal 

imaging will help capture them. Subsections below present the methods, materials and collected 

dataset. This section ends with reporting the results. 

 

7.3.1. Recording Set-up 

Figure 7.13 shows the proposed recording set-up to monitor cortical thermal signatures. This 

setup is primarily designed to limit head motions (one of the identified challenges) of each 

participant, and to support the registration of each local region. As shown in Figure 7.13a and 

7.13b, a chin rest is installed on a desk where a laptop is placed. Instead of using one top-view 

thermal camera in Figure 7.6, here we introduce two top-side (top-left, top-right) view thermal 

cameras (the lost cost, mobile ones) to monitor each part of the scalp over left and right 

hemispheres of the brain more closely. Because we use the chin rest (with two poles) which 

interferes with the frontal view, we only focus on the two top-side view in this experiment. As 

seen in Section 7.2.1, a wire-based mount and an extension cable (connecting a smartphone and 

a camera) are used to support the installation of each camera above the scalp. 
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Figure 7.13. The proposed measurement architecture to monitor cortical thermal signatures. To 

limit each participant’s head motion, (a) a chin rest is installed on (b) a desk where a laptop is 

placed. (c) Two low-cost thermal cameras are installed above one’s head to monitor (than the 

setup in Figure 7.6) each part of the scalp over left and right hemispheres of the brain more 

closely. 

 

 

 

Figure 7.14 illustrates how each thermal camera in Figure 7.13 captures the scalp 

temperature. With this setup, although it is difficult to capture temperatures over the left inferior 

frontal gyrus due to the chin rest hiding the area, we can capture better close-up images of each 

part of the scalp over the left and right hemispheres in comparison with the setup used in the first 

study (Section 7.2). Following Lombard’s earlier approach (1878), the red circle segmented into 

three subregions (anterior, middle, posterior) is used to register local regions on each hemisphere. 

This also helps to directly compare the three (vertical: anterior, middle, posterior) by two 

(horizontal: left, right) segmented areas on brain images in Figure 7.1-7.5 where the documented 

CBF activation/deactivation regions are highlighted. More details of the data extraction are 

described in Section 7.3.2. 

 

 

Figure 7.14. Examples of thermal images capturing the scalp over the left and right 

hemispheres. The red circle with two lines inside the thermal images segments the scalp region 

into 6 subregions following Lombard’s earlier approach (1878). More details are described in 

Section 7.3.2. 
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7.3.2. Proposed Computational Methods 

Using the measurement architecture proposed in Section 7.3.1, we propose a new method to 

extract time-varying cortical signatures from scalp thermal images and new metrics to quantify 

cortical thermal activation and its variability. 

 

7.3.2.1. Extraction of Time-varying Cortical Signatures 

Figure 7.15 illustrates a series of computations we propose for extracting temporal (time series) 

cortical thermal signatures. It consists of four steps: i) motion correction, ii) registration, iii) 

segmentation, and iv) cortical signature representation. In Step I, despite the use of a chin rest to 

limit a person’s head motion, we use the ROI tracking algorithm (the Optimal Quantisation-based 

Thermal Gradient Flow in Chapter 4 and 5) in order to correct even a very subtle motion artefact 

which could lead to noisy signals. For this, we chose the entire head as a ROI to track. Step II is 

to register each hemisphere (right and left) on thermal images. This is done by choosing three 

points around each hemisphere to draw a circle using the Hough transform (Duda & Hart, 1972). 

In Step III, following Lombard (1878), we segment the circular area into three local areas (A: 

anterior, M: middle, P: posterior). The anterior area roughly includes the PFC, the middle and the 

posterior areas include the premotor/primary motor areas and parietal/occipital lobes, 

respectively. The final step (Step IV) is to extract cortical thermal signatures from each 

segmented region using basic statistical functions (maximum, average, skewness). An example 

pair of spatial skew signals from the three segmented areas is shown in Figure 7.15 (Step IV, 

right): we collected skew signals from a participant’s right hemisphere during a stress-induction 

section. The signal from the right PFC area (A in the figure) was highly fluctuated, possibly 

reflecting the areas response to mental stress.  

 

Figure 7.15.  The proposed method for extracting time-varying cortical signatures from the 

scalp: Step I) motion correction by selecting the scalp as a main ROI and using a ROI tracking 

algorithm, Step II) registration of each hemisphere by choosing three points to draw a circle 

(using the Hough transform), Step III) segmentation into three areas (A: anterior, M: middle, P: 

posterior) following Lombard (1878), Step IV) extracted cortical thermal signatures from each 

segmented region using basic statistical functions (maximum, average, skewness). 
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7.3.2.2. Metrics for Quantification of Cortical Thermal Signatures 

As explored in Section 7.2, not only the average, however also the skewness and maximum 

measurements can help to represent cortical signatures from a ROI on a thermal image. Extending 

the metrics (N1-N3) in the initial investigation (Table 7.1), we propose a set of basic metrics to 

quantify cortical thermal activation and deactivation. Similarly to N2, we compute the difference 

between the maximum data from the end of a session (control or experimental) (for example, the 

value from the posterior area (P) at 170s in Figure 7.16 bottom) and the mean of the maximum 

time series from a baseline period (for example, the average of timeseries from the P area in the 

baseline period in Figure 7.16 top). The same can be applied to the mean and skew, building 

metrics N4-6 as in Table 7.1. 

 

Figure 7.16.  Examples of a maximum-based time series from each ROI. Top: from a baseline, 

Bottom: from a controlled or experimental session.  

 

As used in Engert et al. (2014), we compute the slope (using a linear polynomial fitting) 

from the mean, maximum, skew timeseries, building metric N7-9. As in Chapter 6 we have 

demonstrated the key ability of feature-scaling in handling physiological interpersonal 

differences, we apply feature scaling (z-score based) to the nine metrics N1-9, resulting in another 

set of nine metrics N10-18. Normalisation using baseline data (Vizer et al., 2009) was also 

considered to build the last nine metrics N19-27. The discussed basic metrics are summarised in 

Table 7.2. 
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Table 7.2. A set of basic metrics to quantify cortical thermal signatures. 

Basic metrics for cortical thermal signatures  

Metric N1 Difference between 

[the data in the right column] 

from the start and the end of a session 

Mean (of 2D thermal data on a ROI) 

Metric N2 Maximum 

Metric N3 Spatial Skew  

Metric N4 Difference between 

[the data in the right] from baseline (mean 

of the data) and the end of a session 

Mean 

Metric N5 Maximum 

Metric N6 Spatial Skew  

Metric N7 
Slope (using a linear polynomial fitting) of  

[the time series data in the right] 

Mean 

Metric N8 Maximum 

Metric N9 Spatial Skew  

Metric N10 Difference between 

[the data in the right column] 

from the start and the end of a session 

Feature scaled Mean (across a session) 

Metric N11 Feature scaled Maximum 

Metric N12 Feature scaled Spatial Skew  

Metric N13 Difference between 

[the data in the right] from baseline (mean 

of the data) and the end of a session 

Feature scaled Mean  

Metric N14 Feature scaled Maximum  

Metric N15 Feature scaled Spatial Skew  

Metric N16 
Slope (using a linear polynomial fitting) of  

[the time series data in the right] 

Feature scaled Mean  

Metric N17 Feature scaled Maximum  

Metric N18 Feature scaled Spatial Skew  

Metric N19 Difference between 

[the data in the right column] 

from the start and the end of a session 

Normalised Mean (using baseline data) 

Metric N20 Normalised Maximum 

Metric N21 Normalised Spatial Skew 

Metric N22 Difference between 

[the data in the right] from baseline (mean 

of the data) and the end of a session 

Normalised Mean (using baseline data) 

Metric N23 Normalised Maximum 

Metric N24 Normalised Spatial Skew 

Metric N25 
Slope (using a linear polynomial fitting) of  

[the time series data in the right] 

Normalised Mean (using baseline data) 

Metric N26 Normalised Maximum 

Metric N27 Normalised Spatial Skew 

 

However, it is expected that the proposed basic metrics N1-N27 in Table 7.2 would not 

be very sensitive to variability in thermal signatures as discussed in Chapter 6. Hence, we develop 

a set of metrics to quantify cortical thermal variability in the mean, max, skew time series. In 

particular, it has been shown that the skewness measurement can be sensitive at detecting a 

differentiated state of tissue composition on a local ROI in other domains, such as breast cancer 

detection in breast x-ray imaging (Byng et al., 1996). Inspired by this, we assume that skewness 

can be a good measure of spatially changing patterns in CBF-induced thermal propagation on the 

scalp. Spatial skew
1 ( )k  at kth frame can be measured by 
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where ( )ijT k is a temperature element at (i, j) in the x-y plane (a two-dimensional space) from the 

kth frame. 
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To quantify variability of the spatial skewness timeseries, we propose a series of pre-

processing steps and measures based upon it as summarised in Figure 7.17. The first step is to 

resample the signal to address the unsteady frame rate of the low-cost thermal camera, as 

addressed in Chapters 5 and 6. For the implementation, we used a linear interpolation to resample 

signals (16Hz). Here, with the assumption that the quality of such time-varying signals is affected 

by low- and high-frequency noise (e.g. motion artefacts) similar to fNIRS data (Rosenbaum et 

al., 2018), we perform a bandpass filtering (0.01-0.1 Hz) as in (Rosenbaum et al., 2018). Finally, 

using the filtered signal, we propose two measures to capture variability: the first is a square root 

of the number of zero crossing points (with respect to a border between negative-positive skews) 

and the second is a square root of the number of local maxima. For counting local maxima, we 

simply used a Matlab function findpeaks with a condition of 10% minimum peak prominence 

(empirically chosen). Additionally, we apply both measures to the mean, maximum time series, 

leading to four metrics (V3-V6). The proposed metrics are summarised in Table 7.3. 

 

Figure 7.17.  Pre-processing (interpolation & resampling and bandpass filtering) for building 

measures to quantify variability of the skewness timeseries from a ROI. The first measure is the 

number of zero-crossing points, and the second is the number of local maxima using a Matlab 

function findpeaks with a condition of 10% min peak prominence.  
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Table 7.3. A set of metrics to quantify variability of cortical thermal signatures. 

Proposed metrics to quantify cortical signature variability  

Metrics Measures Targeted time series data 

Metric V1 Number of zero-crossing points 
Spatial Skew 

Metric V2 Number of local maxima  

Metric V3 Number of zero-crossing points 
Mean 

Metric V4 Number of local maxima 

Metric V5 Number of zero-crossing points 
Maximum 

Metric V6 Number of local maxima 

 

 

7.3.3. Experimental Protocol and Dataset (ThermalBrain II) 

This section describes the experimental protocol and the collected dataset. With the proposed 

recording set-up (Figure 7.13), helping to minimise motion artefacts, the study aims to explore 

complicated aspects of cortical thermal signature (beyond thermal directionality) in highly 

controlled settings. We design this protocol built on the protocol used in Section 7.2 (using mental 

arithmetic, social evaluative, time pressures, and negative sound feedback). Given a lack of 

ground truth measurements (because existing neural activity measurement tools interfere with 

collecting scalp thermal images), we also follow the timeline and conditions used in the 

exemplary neuroscientific experimental protocol (mental arithmetic-based) of Pruessner et al. 

(2008). The protocol in Pruessner et al. (2008) uses a block design with two repeated runs. Each 

run consisted of three sessions: i) rest, ii) control, and iii) experimental sessions. Each session 

lasts for 3 minutes and the beginning condition is counterbalanced between participants with the 

consistent sequence of the three sessions (e.g. … - rest - control - experimental - …), as shown 

in Figure 7.18. The timeline of the built task procedure, named as London Arithmetic Stress Task 

(LAST), is summarised in Figure 7.18a. Again, following Pruessner et al. (2008), we use one 

LAST block as a training session before the main LAST (Figure 7.18b).  
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Figure 7.18. Timeline of the London Arithmetic Stress Task (LAST): (a) the LAST has two 

runs and each run consists of three conditions, rest (baseline), control, experimental over the 

course of the nine minutes as in Pruessner et al. (2008). While the beginning condition (rest, 

stress or control) is counterbalanced between participants, the sequence of the three conditions 

is kept constant between participants: control was following rest and preceding stress. (b) A 

training session is included in the entire LAST protocol as in Pruessner et al. (2008). 

 

 

Considering the remaining challenges identified from Study I (i.e. long hair hampering 

the scalp temperature, extreme difficulty of mental arithmetic leading to a participant giving up), 

in this study we chose participants with a specific type of hair (bald or short) and modified our 

mental arithmetic question program so as to adapt its difficulty levels to each participant’s 

performance. We programmed this to choose a subtractor from a set of prime numbers along with 

a participant’s latest correct rates (e.g. the last three questions), i.e., if a user chooses wrong 

answers for three times in a row, the subtractor is set to a lower prime number, for example from 

13 to 11. This can help participants remain fully engaged during the mental arithmetic task 

(Soufer et al., 1998).  

We invited 10 healthy male participants (aged 21-48 years, M=34.4, SD=7.56) of varying 

ethnicities and different skin tones (pale white to black) from the University College London and 

non-research community through the UCL psychology subject pool system. They all had very 

short hair (almost bald) which are summarised in Table 7.4 (visually inspected with a scale). 

Participants completed pre-screening through the system which was designed to exclude 

participants with any history of psychiatric disorders or medicine intakes which may influence 
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their cortical signatures. No one had any history of mental diseases like neurological disorder, 

substance abuse, head injury and psychiatric disorder as well as severe physical illnesses.  

 

Table 7.4. Hair types of participants for Study II. 

Participant Hair Type 

P1 0.5-1cm (curly) 

P2 0.5cm (curly) and almost bald 

P3 0.5cm_almost bald 

P4 2-3cm 

P5 Almost Bald 

P6 5-6cm 

P7 Bald 

P8 Bald 

P9 Almost Bald 

P10 Bald 

 

 

Every participant was asked to place their chin on the chin rest during each session as 

shown in Figure 7.19. Before the start of each run, we checked whether the chin rest was 

comfortable, otherwise we adjusted the height and the position of the equipment according to 

participant’s needs. During the rest sessions, participants were asked to rest as they wanted to 

ensure they could relax. As in Study I, each participant was instructed to rate subjective stress 

scores on a 10-cm Visual Analogue Scale (VAS). As shown in Figure 7.19, with two top-view 

low-cost thermal cameras, an additional thermal camera was installed in front of a person; 

however, as explained in Section 7.3.1, the chin rest interfered with monitoring the area around 

the inferior frontal gyrus. We did not use the data from the frontal camera for the analysis. We 

also measured blood volume pulse, skin conductance, breathing signals using a finger PPG 

(ProComp Infiniti BVP/SA9308M, Thought Technology), two bracelet-based GSR/PPG sensors 

(worn on each left, right wrist, Empatica E4) and a breathing belt (ProComp Infiniti 

Resp/SA9311M, Thought Technology) in order to build a rich physiological dataset (however, 

the thesis only uses data from the two top-view thermal cameras for the analysis). The total 

experimental time for each participant was about 75-90 minutes. This produced a dataset of 

thermal images and physiological signals – we named this ThermalBrain II dataset. 
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Figure 7.19. Experimental setup: with two top-view thermal cameras, an additional third 

camera was installed in front of a person. A finger PPG, two bracelet-based GSR/PPG sensors 

(worn on left, right wrists) and a breathing belt were used to build a rich physiological dataset. 

 

 

7.3.4. Evaluation Method 

In this study with a highly controlled setup, we would like to answer these questions: i) Can we 

find significant cortical thermal changes from the documented “stress” regions when noise due 

to head motion and hair condition is controlled?, ii) Are the findings consistent over repeated 

tasks?, iii) if so, which metrics will play significant roles in capturing cortical signatures? 

Firstly, we conducted significance tests on subjective stress self-reports (VAS-based 

scores) to check if the protocol was properly designed in terms of whether the repetition 

influences perceived stress scores. We planned to use a two-way repeated measures analysis of 

variance (ANOVA) test with two Independent Variables (IVs): a task type (three conditions: 

baseline, control and experimental), repetition (two conditions: first and the second run). 

However, self-reported scores for two cases were skewed; thus, we instead conducted a 

Friedman’s ANOVA test with a task type as IV separately for the two runs. Then, we carried out 

the nonparametric Wilcoxon signed ranks test to compare each pair. 

Secondly, we tested for effects of the two IVs (i.e. task type and repetition) on the proposed 

metrics applied to the six segmented areas as dependent variables. As metrics already use the 

baseline information, we removed the baseline from the condition for the first IV. Lastly, with 

the focus on the data from the first run, we tested significance of the task type on each metric to 

confirm any differences from the second run. As values from each metric were normally 
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distributed and met all assumptions (e.g. sphericity) for each case, we used the ANOVA test 

which is followed by pairwise post-hoc Bonferroni tests with adjustment (Girden, 1992) to 

compare the performance of the different algorithms.   

 

 

 

7.3.5. Results 

Analysis of perceived stress levels 

From the stress-induction study, we collected 60 self-reported scores (10 participants x 3 sessions 

x 2 runs). The boxplot in Figure 7.20 shows the distribution of the self-reported scores over the 

resting, control and experimental session from each run. It is clear that the experimental condition 

(mental arithmetic, social evaluative threats, time pressure and negative sound feedback) 

generally induced much higher levels of stress than the resting condition while the control 

condition (counting down) did not (From the first run: Rest M=1.36, SD=1.21; Control M=1.67, 

SD=1.71; Experimental M=4.47, SD=2.10; From the second run: Rest M=1.16, SD=1.92; 

Control M=1.50, SD=1.32; Experimental M=4.53, SD=2.44).  

 

 

Figure 7.20. Boxplots (95% confidence interval) of self-reported stress scores from the 10 

participants across each section (rest1, control1, experimental1 from the first run and rest2, 

control2, experimental2 from the second run). 

 

As the data for Control1 and Rest2 were skewed (p=0.026, p<0.001 from the Shapiro-

Wilk test), we conducted the Friedman test on the 10 participants’ scores for each run separately. 

The results showed a significant effect of the task type on the perceived stress levels for both runs 

(χ2(2)=14.6, p=0.001), indicating that the task type is the main factor differentiating a 

participant’s mental stress. Wilcoxon signed ranks test showed that the experimental condition 

induced significantly higher levels of mental stress than the two other sessions for each run (Run 
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1: Experimental – Baseline: Z=-2.803, p=0.005, Experimental – Control: Z=-2.599, p=0.009; Run 

2: Experimental – Baseline: Z=-2.803, p=0.005, Experimental – Control: Z=-2.701, p=0.007), 

whilst the control condition did not show significant difference from the baseline condition (Run 

1: Z=-1.07, p=0.285; Run 2: Z=-0.968, p=0.333), indicating that stressors used in the 

experimental sessions were the dominant factor inducing high-levels of mental stress. On the 

other hand, there were no significant effects of repetition (i.e. each run) on perceived mental stress 

levels for each task (Baseline: Z=-1.478, p=0.139; Control: Z=-0.255, p=0.799; Experimental: 

Z=-0.051, p=0.959), confirming that the study protocol was designed properly. 

 

Analysis of proposed metrics in assessing mental stress 

From 120 collected thermal images (10 participants x 3 sessions x 2 runs x 2 thermal 

cameras), we extracted 792 metrics values (33 metrics from Table 7.2 and Table 7.3 x 6 

segmented local areas x 2 sessions x 2 runs: as data from baseline periods are used to compute 

these metrics values, here we have 2 sessions). Using the data, we tested the effect of a session 

type (control and experimental) on each metric value applied to each segmented local areas (left 

anterior, left middle, left posterior, right anterior, right middle, right posterior). 

 From a two-way repeated measures ANOVA analysis test with two IVs (task type and  

repetition), we found that the metric V1 (based on zero-crossing points of the spatial skew time 

series) showed significant effects of task type on the right anterior (F(1,9)=8.03, p=0.02, 

ηp
2=0.472) and right middle areas (F(1,9)=6.844, p=0.028 ηp

2=0.432) as visualised in colour in 

Figure 7.21 (strong red: p<0.01, light red: p>0.10), whilst the same metric showed no significant 

effects of repetition and no significant interaction effects upon each area (the data for each 

combination of IVs were normally distributed with p-values ranged between 0.103 and 0.971 

from the Shapiro-Wilk test). As shown in Figure 7.22, the metric V1 value was significantly 

higher in the experimental condition than in the control condition for each run, which may 

indicate that stress-induced cortical activities lead to rapidly fluctuating thermal patterns (rather 

than just increasing or decreasing temperature).  
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Figure 7.21. Results from significance tests of the task type over the two runs on the metric V1 

(based on zero-crossing points of the spatial skew time series) are visualised on each thermal 

image of the scalp over the left and right hemispheres. The right anterior and middle areas 

(above the right PFC and superior temporal gyrus) had significance. 

 

 

 

 

Figure 7.22. Bar plots of the metric V1 values from the right anterior and middle areas across 

each run and each task condition.  

 

Likewise, as visualised in Figure 7.23 and 7.24, we also found the metric V2 (based on 

local maxima of the spatial skew time series) from the right anterior area had significant increases 

under the experimental condition (F(1,9)=14.857, p=0.004, ηp
2=0.623) and the metric on the right 

posterior area had an approaching significant effect of the task type (F(1,9)=4.72, p=0.058, 

ηp
2=0.344). There were no significant effects of repetition and no interaction effects of the IVs. 

The data for each case were normally distributed (p-values ranged between 0.118 and 0.929 from 

the Shapiro-Wilk test). On the other hand, all the other metrics (basic N1-N27 and variability V3-

V6) applied to all six areas showed no significant effects for both task type and repetition.   
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Figure 7.23. Results from significance tests of the task type over the two runs on the metric V2 

(based upon local maxima of the spatial skew time series) are visualised on each thermal image 

of the scalp over the left and right hemispheres. The right anterior (above the right PFC) had 

significance and the right posterior area (above the right parietal/occipital lobes) had an 

approaching significance. 

 

 

Figure 7.24. Bar plots of the metric V2 values from the right anterior and posterior areas across 

each run and each task condition.  

 

Lastly, in order to test effects of the repetition on the power of basic metrics which were 

designed to capture directional changes in each timeseries (which showed significant effects of 

the task type from some regions in Study I – e.g. the area above occipital lobe in Figure 7.11b), 

we additionally conducted a paired-samples t-test on the basic metrics N4,N5 (extended from 

N1,N2 - directional change in mean / maximum temperature timeseries- using baseline data) 

values from the first run and the second run separately. Here, the IV is the task type. Interestingly, 

the results showed both N1 and N4 (based on the average representation) from the first run 

showed a significant effect of the task type on the left anterior (F(1,9)=5.172, p=0.049), while 

those from the second run showed no significant effect of the task type on it (F(1,9)=1.213, 

p=0.299). Likewise, both N2 and N5 (based on the maximum representation) from the first run 

showed a significant effect of the task type on the right posterior (F(1,9)=6.563, p=0.031), whilst 
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those from the second run showed no significant effect of the task type (F(1,9)=0.001, p=0.975). 

The results are summarised in Figure 7.25. As can be seen, there were significant increases of 

these discussed values during the experimental session from the first run. 

 

 
 

Figure 7.25. Results from significance tests of the task type only from the first run on basic 

metrics N4, N5 (Directional change in mean/maximum temperature timeseries -compared to 

baseline) are visualised on each thermal image of the scalp over the left and right hemispheres. 

The left bar plot shows the N4 values from the left anterior area across each condition. The 

right bar plot shows the N5 values from the right posterior area across each condition.  

 

 

7.4. Discussion 

Inspired by Lombard’s earlier investigation on the scalp temperature associated with cognitive 

and emotional functions in 1878, we have explored the use of low-cost thermal cameras to capture 

cortical thermal signatures in relation to mental stress. To the best of our knowledge, this is the 

first investigation of the scalp temperature using thermal imaging. Accordingly, we have mainly 

contributed i) a novel contactless way to study stress-related cortical activity and ii) 

computational methods to capture cortical thermal signature and its variability. 
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Mobile thermal imaging enabling studies on cortical thermal signatures 

From the neuroscientific, neurological literature exploring the brain of rats, we have found 

two interesting phenomena: i) regional CBF activation/deactivation pattern could be correlated 

with brain core temperature (Li et al., 2017); and ii) brain core temperature affects cortical 

temperature and temporalis muscle (Busto et al., 1987). Given this, we have assumed that it is 

possible to relate regional CBF to the scalp, cortical temperature although the phenomena were 

found from rats. With this starting point, we have explored temperature patterns on the scalp local 

areas above documented CBF activated regions in association with mental stress. Amongst 

documented regions, the most frequently reported main “stress” regions are: right PreFrontal 

Cortex (PFC) (Wang et al., 2005; Causse et al., 2017; Rosenbaum et al., 2018), left inferior 

frontal gyrus (Taylor et al., 1997; Soufer et al., 1998; Pruessner et al., 2008) and local regions in 

occipital/parietal lobes (Taylor et al., 1997; Pruessner et al., 2008). 

In exploring thermal signatures from such regions, we must confront installation issues 

with thermometry (such as mercury thermometry used in Lombard, 1878 or modern resistance-

based type) or heavy-weight thermal imaging systems which have been dominantly used in recent 

thermal imaging studies (as discussed throughout this thesis, they have focused on facial 

temperatures). Given this, we have taken advantage of the portability and lightweight of mobile 

thermal imaging to avoid any installation issues, in turn proposing novel recording set-ups, as 

shown in Figure 7.6 and Figure 7.13. The setups do not require heavy equipment or large spaces 

which are considered as main limitations of existing brain imaging methods (Boto et al. 2018). 

The proposed setups have allowed us to easily conduct studies using existing protocols such as 

mental arithmetic-based stress induction studies.   

 

Importance of capturing variability of cortical thermal signature in assessing mental 

stress 

In two separate studies (Study I: in unconstrained settings as an initial investigation in 

Section 7.2; Study I: in highly constrained settings to reliably obtain time varying cortical thermal 

signals in Section 7.3), firstly, we have explored the metrics capturing thermal directional 

information (metrics in Table 7.1 and 7.2). From both Study I and the first run in Study II,  the 

scalp area above the occipital lobe (one of the main stress activated regions) produced a 

significantly higher amount of heat (increase) under the stress condition than the control, as 
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shown in Figure 7.12 Middle and Figure 7.25 Right. However, the phenomenon was not 

replicated in the second run of Study II. This may indicate that measuring directional changes in 

temperatures (increase in N5 in Figure 7.25 Right) is not a good way to capture cortical thermal 

signature. By contrast, the metric V2 - which is designed to improve the capturing of variance 

levels (in Table 7.3) - was able to capture highly varying signal patterns on the area during the 

experimental session than the control condition from both runs in Study II (Figure 7.24 Right). 

This can lead to a discussion of the important role of variability in assessing mental stress as in 

Chapter 6.  

Furthermore, by contrast with Study I where we have focused on thermal directionality, 

the use of variability-driven metrics V1 and V2 in Study II has shown significant thermal 

activations on the right anterior area which the right PFC is situated underneath. As more recent 

studies including the one conducted in real world contexts beyond laboratory mental arithmetic 

(e.g. a stressful aviation task using a flight simulator in Causse et al. 2017) have repeatedly 

reported the significant activation of the right PFC (particularly, dorsolateral) in response to 

mental stressors (Wang et al., 2005; Al-Shargie et al., 2016; Causse et al., 2017; Rosenbaum et 

al., 2018), the statistically stronger activation we found from the area is very encouraging. 

However, V1 has also shown significant thermal activations on the right middle area. This is not 

supported by the literature exploring stress-induced CBF activation regions. The reason could be 

two fold: i) temperature on the area may be affected by the strong activation of the right PFC, or 

ii) the superior temporal gyrus (in Figure 7.5), which has been reported as a stress-induced CBF 

deactivation region (Taylor et al., 1997; Pruessner et al., 2008), may affect thermal variability on 

the area. 

Amongst variability-related metrics (V1-V6), only skewness (spatially applied to a local 

ROI) based measures V1 and V2 have shown significant stress-induced cortical thermal 

activations. As we have assumed earlier, this result confirms that the spatial skewness 

measurement can be a good way to represent and track spatially differentiating patterns related 

to CBF-induced thermal propagation. This is interesting because spatial skewness has not yet 

been used to spatially represent two-dimensional temperature elements on a thermal image, whilst 

averaging has been the most widely used method in the literature (exploring facial thermal images) 

(Murthy & Pavlidis, 2006; Fei & Pavlidis, 2010; Abbas et al., 2011; Lewis et al., 2011; Gane et 

al., 2011; Pavlidis et al., 2012; Pereira et al., 2015; Abdelrahman et al., 2017). As we addressed 

in Chapter 5 (robust respiration tracking), the main limitation is that the averaging method is 
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prone to ignore small spatial changes and we have found that the use of skewness measurement 

can address the issue.  

 

Limitations and future opportunities 

Despite promising results and greater potentials of this work, there are limitations. Firstly, 

there is still a need for more refined registration techniques. Even with a controlled setup in 

Section 7.3, the orientation, size and shape of the head can affect the registration of local ROIs. 

If this is addressed, a higher spatial resolution (segmentations) of cortical measurement (than the 

current six segmented areas in Study II) can possibly be used, compared to the state-of-the-art 

EEG and fNIRS devices. One way to possibly contribute towards a better registration is to 

virtually project the brain on a scalp thermal image as illustrated in Figure 7.26. Secondly, 

participants’ hair type is an issue to keep this approach from being adapted to more general cases 

since a thermal imaging device has difficulty in seeing through hairs or other organic materials. 

 

 

 Figure 7.26. Visualisation of a virtual (mock-up) cortical mapping on a thermal image of the 

scalp to help a better registration. 

 

 According to Boto et al. (2018), there is a need for new techniques which can be more 

accessible to the general public than existing equipment for cortical activity measurements. Once 

the discussed limitations are resolved, this new mobile thermal imaging-based approach could 

provide new opportunities for a variety of real-world applications. As a next step towards this, 

we plan to build an open source platform for expanding this initial work and contributing to the 

research community in future work with such software libraries and data sets. 
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7.5. Chapter Summary 

Based upon neuroscientific findings in the literature, we have undertaken a novel investigation 

on cortical thermal signatures using thermal imaging. Given the strong relationship between 

regional CBF activation and temperature propagation, we have proposed novel framework, 

computational methods and metrics to capture stress-induced cortical thermal variations. From 

our two separate studies conducted in both constrained and unconstrained settings, we have 

demonstrated that the key documented CBF stress activation regions can be associated with 

temperature. We have also identified the issue of head movement and hair type which interfere 

with capturing cortical thermal signatures. Finally, we have shown the importance of capturing 

variability of thermal signature (in this chapter, cortical thermal signature) in assessing mental 

stress. 

Unlike respiratory (in Chapter 5) and vasoconstriction/dilation-related cardiovascular 

thermal signatures (in Chapter 6), which has achieved robustness in monitoring, this very initial 

finding is less likely to contribute to building automated stress recognition systems due to a lack 

of algorithms needed to automate the procedure of signature extraction. Hence, on the rest of this 

thesis we will focus on the more investigated signatures, respiratory and vasoconstriction/ 

dilation-related cardiovascular signatures. Nonetheless, these findings in this chapter have shown 

positive possibilities of building a novel low-cost, mobile, non-contact way to observe cortical 

activities which can support a wide range of real-world contexts. 
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STAGE III 

Novel Automatic Mental Stress Recognition Systems  
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Chapter 8 

 

Automated Mental Stress Recognition 

using Respiratory Signature 
 

In Stage III, we aim to contribute novel methods that can automatically recognise a person’s 

mental stress based on mobile thermography-driven physiological computing, which has been 

proposed in previous chapters. Rather than just combining multiple signatures together to obtain 

better performance, we explore each signature in depth and its contribution to mental stress 

inference since their roles have shown to be weak in the computing literature (Engert et al., 2014; 

McDuff et al., 2016). In this chapter, we focus on respiratory thermal signature. Although it has 

been shown that stress significantly affects breathing patterns in the psychological, physiological 

literature (Grossman, 1983), existing computational methods have often failed to use breathing 

information in reliably assessing mental stress (McDuff et al., 2016). To bridge this gap, we aim 

to build a novel technique to improve capturing of stress-related breathing information and 

achieve state-of-the-art performance in detecting mental stress levels.  

In Section 8.1, we review existing techniques to automatically detect mental stress. In 

Section 8.2 we propose our computational approach which revisits the ability of breathing 

information in inferring mental stress levels. In Sections 8.3 and 8.4 we conducted a data 

collection study, dataset and evaluation methods. Section 8.5 proposes a labelling technique 

based on perceived mental stress levels, which is followed by reporting results in Section 8.6. 

This chapter ends with a discussion in Section 8.7 and a chapter summary in Section 8.8. 

 

  

 

 



216 

8.1. Background and Research Question 

Breathing is an important vital process controlled by the Autonomic Nervous System (ANS). The 

monitoring of breathing patterns can be informative of a person’s mental and physical condition. 

Given the fact that psychological stress affects the physiological processes mediating human vital 

signs (Grossman, 1983; Brosschot et al., 2006; Nash & Thebarge, 2006), researchers have 

investigated the possibility of using breathing signals together with other physiological signatures, 

for instance, from cardiovascular activity (heart rate, heart rate variability, blood pressure), 

perspiratory activity (e.g. skin conductance level) and neural activity (e.g. alpha, beta waves from 

EEG), to automatically assess people’s stress levels (e.g. Healey and Picard, 2005; Hernandez et 

al., 2011; Hong et al., 2012; Hosseini and Khalilzadeh, 2010; McDuff et al., 2016; Puri et al., 

2005). 

 

Minor role of breathing features in automatically detecting mental stress 

The majority of approaches for building automatic stress recognition systems require 

already defined hand-engineered features representing physiological cues. In the case of 

respiratory activity, average breathing rate and tidal volume from a time window (e.g. 2 minutes) 

have been most widely used (Hong et al., 2012; McDuff et al., 2016). However, the results of 

studies using such features have shown weak contributions of breathing features compared with 

features from other physiological signals. For instance, McDuff et al. (2016) show the most 

informative feature is HRV with breathing rate playing a minor role in a binary stress 

classification task (in their case, resting and stressful sessions as binary classes) using multiple 

physiological features (i.e., heart rate, breathing rate and HRV), from which their computational 

model achieves 85% accuracy. This may indicate that breathing rate itself is not the best 

informative metric for respiration. Indeed, directional changes in respiration rate during stressful 

conditions have often been reported inconsistently. For instance, while Masaoka et al. (1997) 

reported an increase of a person’s breathing rate in response to mental stressors, Hong et al. (2012) 

reported a significant drop of the rate along with stress.  

Despite the minor role of breathing features in automatically assessing mental stress and 

the incongruent findings of breathing rate changes from the literature, it is inarguable to say that 

a person’s respiration pattern is varied when experiencing stressful events (Grossman, 1983). In 

addition, when exploring HRV which is known to be informative to mental stress, multiple 

parameters are computed to capture its complex dynamics. This may indicate a need for exploring 
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the complexity of breathing patterns rather than just discrete rate. Furthermore, as respiratory 

activity is often coupled with cardiac activity (for instance, respiration rate can be roughly 

estimated from blood volume pulse measurement, e.g. photoplethysmography, Gastel et al., 

2016), even only the use of the information for breathing dynamics may contribute to automated 

mental stress recognition as much as HRV does.  

This leads to our key research question: How can respiratory thermal signature itself 

contribute to building automatic stress recognition systems? Accordingly, in this chapter, we 

explore how to capture and represent complexity of breathing dynamic patterns (i.e. variability 

rather than just rate) to improve its ability in inferring a person’s stress levels. From this, we can 

take newly represented breathing information as low level features from which advanced machine 

learning techniques learn informative high level features. 

 

Automatic feature learning techniques  

Automatic feature learning is a power centralised in most successfully and widely used 

deep learning approaches in computer vision and pattern recognition (LeCun et al., 2015). This 

helps automatically find good features during the machine learning process. As even carefully 

hand engineered-feature extractors could fail to generalise to unseen data sets (LeCun et al., 2015), 

this could be a potential solution to improve our understandings of physiological and behavioural 

patterns in relation to a person’s affective states. 

Indeed, feature learning techniques have been explored to detect facial and voice affective 

expressions. For instance, Liu et al. (2014) used the deep belief network for better 

characterisation of features in relation to a certain type of facial expressions. Lane et al. (2015) 

proposed a model which could analyse multiple large scale speech datasets using a coupled deep 

neural network for automated stress detection. These approaches have achieved greater 

performance in classification tasks, in comparison with non-automatic feature learning classifiers 

(e.g., SVM, Gaussian mixture models).  

More recently, researchers have shown the capability of Convolutional Neural Network 

(CNN) based models (LeCun & Bengio, 1995; Krizhevsky et al., 2012; Lin et al., 2013; Szegedy 

et al., 2015) in a variety of problems spanning from image classification to semantic segmentation, 

demonstrating that the models themselves can produce better learning performance than earlier 

learning approaches. The recent accomplishments in CNNs have been adopted to improve affect 

recognition performance: for instance, arousal and valence prediction in audio (Trigeorgis et al., 
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2016), facial action unit identification (Ghosh et al., 2015), and facial expression recognition in 

video (Yu & Zhang, 2015), but not for respiratory signals. Accordingly, this chapter explores the 

use of CNNs for automatically learning more informative features from condensed breathing 

information, in turn revisiting roles of breathing signals in assessing mental stress and 

contributing towards state-of-the-art stress recognition systems. 

 

8.2. Proposed Computational Methods 

In this section we propose 1) a novel representation of breathing pattern dynamics; 2) an 

automatic feature learning framework which does not require feature hand-crafting. Although the 

proposed approach for automatic stress detection is sensor-independent, this is implemented on 

mobile thermography-based respiration tracking proposed in Chapter 5. 

 

8.2.1. Novel Representation of Respiration Variability 

Figure 8.1 illustrates the process for collecting breathing patterns using the low-cost mobile 

thermal imaging camera (dimension: 18mm x 26mm x 72mm). Thermal videos are captured using 

the camera attached to a smartphone placed at a maximum distance of 55cm from a person’s 

nostril area (i.e., our ROI) as shown in figure 8.1a. We use our respiration tracking algorithm 

proposed in Chapter 5 to recover one-dimensional breathing signals from the nostril ROI on the 

thermal videos as shown in figure 8.1b.  

  
Figure 8.1.  Process for the respiration variability spectrogram collection through thermal 

imaging. 
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Figure 8.1c shows a two-dimensional spectrogram automatically transformed from one-

dimensional signal sequences. This is for condensing dynamic time-frequency domain 

information (i.e., respiration variability) into an image (we call this Respiratory Variability 

Spectrogram, RVS, afterwards). More specifically, a two-dimensional spectrogram can be 

constructed by stacking a Power Spectral Density (PSD) vector of short-time-window respiration 

signals (i.e., Equation (5.7) in Chapter 5) over time until the end of recordings. The PSD function 

handles the short-time autocorrelation that identifies similarities between neighbouring signal 

patterns, being of use to examine respiration variations in a short period. The RVS can be 

expressed as:  

                     
2ˆ ˆ( , ) ( , ) j fk

ww
k

RVS f t R k t e −=                 (8.1) 

where ˆ( , )wwR k t  is the short-time autocorrelation output of windowed breathing signals from 

Equation (5.6) in Chapter 5, k is a time lag to examine the similarity, t̂ is the discrete time 

information (e.g., ˆ [1 ,100 ]t s s ), and f is the frequency domain information.  

For the implementation, as used in Chapter 5, the normal breathing frequency range of 

healthy adults, [f1=0.1Hz, f2=0.85Hz], was used to band-pass filter a one-dimensional breathing 

signal in Equation (8.1) for reducing magnitudes of frequencies beyond the range of interest.  f in 

Equation (8.1) has the same range scale. The time length of the short-time window is set to 20 

seconds (as = 10s in Equation (5.6)) and moves forwards in 1 second intervals. Lastly, so as 

to produce an integer RVS matrix (i.e., to be easily taken as a grey-image), we converted the 

frequency in 1 2[ , ]f f into an integer in a new scale [1, m] (here, m=120) using a linear 

transformation ( )y f=  . Note that this new bi-dimensional input signature can be applicable to 

any type of breathing measurement (e.g., chest-belt, expensive high-resolution thermal camera), 

despite our focus upon low-cost low-definition thermal imaging. 

Examples of the RVSs (collected during our stress-induction study in the next section) are 

shown in Figure 8.2. As discussed in the literature (Hernandez et al., 2011), physiological signals 

can vary strongly between people; for example, S4 shows a particularly different spectrogram 

from the others in Figure 8.2a. Although the breathing dynamics (i.e., variation patterns) are 

different between every individual, the higher the levels of stress a person experienced, the more 

irregular the patterns appear to be.  

maxt̂
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Figure 8.2.  Examples of respiration spectrograms clustered according to participants’ self-

reported stress scores: (a) No-stress, (b) Low-level stress, (c) High-level stress. 

  

 

8.2.2. Automatic Feature Learning using Convolutional Neural 

Network (CNN)       

In comparison with other physiological signatures (e.g. heart rate, EEG), breathing patterns 

usually have a narrow and low frequency bandwidth (e.g., between 0.1Hz and 0.85Hz). In other 

words, it requires relatively long-term measurements to collect a sufficient amount of data which 

can be used in an automatic feature learning process. One possibility is to use a pre-trained 

network which is trained on a larger dataset, referred to as an efficient way to learn about small 

datasets (LeCun et al., 2015). However, low-level features learnt from other domains, such as 

ImageNet data (Krizhevsky et al., 2012), may not fit dynamic breathing patterns. Inspired by 

basic transformation-based data augmentation methods in deep learning frameworks (e.g. 

cropping, zoom-in) (Krizhevsky et al., 2012), we propose a unidirectional sliding cropper with a 

square window to augment the RVS dataset while preserving each label, defined as:  

         
1( , ) ( ( ), )iI x y RVS y i x−=  +

, {1,2,..., }x m          (8.2)  

where 
max
ˆ{1, 2,..., 1}i t m − +  

is in an ascending order (1 second interval), m is the length of each 

unit image, y in Equation (8.2) is inversely transformed (T-1) to f (in Equation (8.1)), in turn 

producing 
max
ˆ( 1)t m− + images of size m x m x 1 (height x width x channel). With m set to 120 in 

the subsection above, each unit spectrogram image has 120x120 size as visualised in Figure 8.3.  
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Figure 8.3.  Proposed data augmentation technique using a uni-directional sliding cropper with 

a 120x120 square window. The colour scale indicates the frequency magnitude (i.e. PSD). 

 

 

 

The CNN network in Figure 8.4 consists of two convolutional layers, two pooling layers, 

and one fully connected layer. Although additional modifications can be applied to this basic 

form of CNN (LeCun & Bengio, 1995), our aim in this chapter is to investigate the possibility of 

using automatic feature learning to improve assessment of stress levels from physiological 

patterns. In addition, we aim to build a low computational cost deep learning network for running 

on embedded or mobile systems, as seen in Figure 8.1a. Each image patch of 120 x 120 is resized 

to 28 x 28 using a basic bi-cubic interpolation to be fed forward to the first convolutional layer. 

The size of the resized patch was chosen to use the CNN structure proposed in (LeCun & Bengio, 

1995). The first layer filters the resized input image with n kernels (this value is set according to 

the number of levels to classify in Section 8.4) of size 5 x 5, the second convolutional layer has j 

kernels of size 5 x 5 and each pooling layer has averaging filters of size 2 x 2 applied with a stride 

of 2. A sigmoid function, widely used in artificial neural networks, is connected to every 

convolutional and fully connected layer to induce non-linearity. In the case where a large dataset 

is available, a Rectified Linear Unit (ReLU) can replace this to boost the learning speed 

(Krizhevsky et al., 2012). The output of the final pooling layer is fully connected to each output 

neuron which corresponds to each targeted class. Stochastic gradient descent (SGD) is applied to 

supervised fine-tuning during back propagation to reflect classification errors on training data 

sets.  
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Figure 8.4.  The mainly used CNN architecture consisting of two convolutional layers, two 

pooling layers and one fully connected layer.  

 

 

8.3. Experimental Protocol and Dataset (DeepBreath) 

As discussed in Section 3.3, two widely used tasks for inducing mental stress were selected for 

our purpose: the Stroop Colour Word test (Stroop, 1935) (denoted as Stroop) and the mathematics 

test (denoted as Math) used in Pruessner et al. (2008), Hong et al. (2012) and McDuff et al. 

(2016). Each task has both an easy and a hard session. This is to ensure a good spread of induced 

stress levels within each task. In the Stroop task, all participants were required to name the colour 

of a word. In the easy session of the first task, the meaning of a word and its font colour were 

congruent (e.g. the word red written in red). In the hard session, they were incongruent (e.g. the 

word yellow, but written in red). The Math task requires the participants to repeatedly subtract 

(mentally) a certain number (e.g. 1, 13) from a four-digit number (e.g. 5000), as used in Chapters 

6 and 7. It is expected that difficult sessions in Math and Stroop tests would lead to higher stress 

levels than the easy sessions.  

8 healthy adults (3 females) (aged 18-53 years, M=30.75, SD=10.22) were invited from 

the subject pool service of University College London. Each participant was given the 

information sheet and provided informed consent prior to data acquisition. The study took place 

in a quiet lab room with no distractions (and no room temperature control). During each Stroop 

and Math task, each participant answered the task questions using a mouse on a laptop. In the 

Stroop task condition, participants had to click-select the right answer amongst different colour 

options while pronouncing the colour aloud. Every question was shown for 1.5 seconds as in 

(Åkerstedt et al., 1983). In the Math task condition, each participant typed an answer using a 

mouse on a virtual keypad (i.e. GUI in the screen). Each arithmetic question was shown for 7.5 
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seconds which was set based on a pilot study. After each answer, participants received sound 

feedback that informs them whether the answer was correct or not. 

The flow for our experimental design is shown in Figure 8.5. After a 5-minute relaxation 

period, each participant was asked to go through the two types of cognitively demanding tasks 

(i.e., Stroop, Math). Before and after each demanding task (i.e., during Q), all participants were 

instructed to rate the subjective feeling based on a continuous 10-cm Visual Analogue Scale 

(VAS). VAS is a standard approach used to avoid the non-parametric property of the Likert scale 

(Bijur et al., 2001). In this study, the main question was: “Did you feel mentally stressed?” 

(ranging from 0cm, not at all, to 10cm, very much). The easy and difficult sessions of each task 

type (i.e., Stroop 1,2 and Math 1,2) were counter-balanced.  

 

 
Figure 8.5.  Flow chart of the proposed mental workload/stress induction experimental 

protocol: the first session is Stroop Colour Word task and the second session is the arithmetic 

solving task. *Tasks in each session were counterbalanced in Latin squared design.  

 

 

The face of each participant was recorded using a low-cost thermal camera (as in Figure 

3.2 in Section 3.2) only during Stroop and Math tasks in Figure 8.5. The whole sessions took 63 

minutes - 72 minutes per each participant. Using the techniques proposed in Section 8.2, each 

video segment was transformed into an augmented set of spectrograms with the associated self-

reported stress level (i.e. the scores reported at the end of each session). This process produced 

3936 augmented input images (DeepBreath dataset) of size 120 x 120 (i.e. an average of 492 

(SD=91.49) for each 8 participant) which are publicly available at http://youngjuncho.com. 
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8.4. Evaluation Method 

First, we tested significance on subjective stress self-reports (VAS-based scores) across two 

different stress induction tasks. This is to mainly check whether four tasks (easy and hard sessions 

of the Stroop and Mental Arithmetic) induce different stress levels. With one Independent 

Variable (IV): a task type with four conditions (along with the four tasks), we conducted the 

normality test using the Shapiro-Wilk method with the aim to see if the scores are normally 

distributed for each level of the IV. As one set of data was skewed, we used Friedman’s analysis 

of variance (ANOVA). For the post hoc analysis of paired conditions, we conducted the 

nonparametric Wilcoxon signed rank test.  

Second, we conducted two separate classification tasks: three-classes and binary tasks for 

evaluating stress detection performance of the proposed methods. The three-class classification 

task is to test the capability in discriminating multiple stress levels. As shown in Figure 8.2, 

breathing patterns labelled as high and low-level stress share a certain level of similarities. Given 

this, we also undertook a binary classification problem by combining the low-and high-level 

stress into a stress class to discriminate events of stress from no-stress. As for parameters of the 

proposed methods, the number (n) of kernels (i.e., filters) of the first convolutional layer was set 

to 12 for the three-class classification (i.e., three levels of stress classification) and 9 for the binary 

classification. The number (j) of kernels of the second convolutional layer was set to 24 and 18, 

respectively. In a training process, a fixed learning rate of 0.5 and a batch size of 50 were used 

for 300 epochs.  

Furthermore, we implemented three single hidden-layer neural networks as basic 

automatic feature learning methods to compare performance of the proposed CNN-based model. 

The first single hidden-layer neural network (denoted as NN1) uses the resized image patches 

(i.e., 28x28 in the proposed model in Figure 8.4) as input and includes one hidden layer of node 

size 30. The second shallow network (denoted as NN2) uses half-sized image patches (60x60) 

and a hidden layer of size 45. The last network (denoted as NN3) uses the original images 

(120x120) and a hidden layer of size 300.  

We trained and tested each model using a k-fold leave-one-subject-out (LOSO) cross-

validation. This cross validation method has been widely used to test the ability to generalize to 

unseen participants’ physiological data (Hernandez et al., 2011). As illustrated in Figure 8.6, at 

every fold, all data sequences from the participants except for one were used to train the networks, 

and the data from the left-out participant was used for testing.  
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Figure 8.6.  k-fold leave-one-subject-out (LOSO) cross validation method: (a) dataset collected 

from k participants, (b) splitting the dataset into training and testing sets for each fold. 

 

 

8.5. Perceived Mental Stress Levels and Labelling 

The boxplot in Figure 8.7 shows the distribution of the self-reported scores over the four tasks: 

StroopEasy M=2.00, SD=2.07; MathEasy M=2.00, SD=2.27; StroopHard M=4.18, SD=2.75; 

MathHard M=4.75, SD=2.87. As data for the easy arithmetic task were not normally distributed 

violating the normality assumption of repeated measures ANOVA (Shapiro-Wilk: p=0.033), we 

conducted the Friedman test to determine whether there was a statistical mean difference in the 

perceived mental stress levels across the four tasks. The results showed a significant effect of the 

task type on the perceived stress levels (χ2(3)=9.554, p=0.023). From the post-hoc analysis using 

the Wilcoxon signed rank test with an alpha value of 0.008 (≈0.05/k where k=6, the number of 

pair-wise comparisons, which can be calculated by n(n-1)/2 where n is the number of conditions), 

perceived stress scores were not significantly different across tasks (e.g. StroopHard - StroopEasy: 

Z=-1.577, p=0.115; MathHard - MathEasy: Z=-2.41, p=0.016; MathHard - StroopEasy: Z=-2.136, 

p=0.033). This makes a difficulty in using the task type as a label for stress classification tasks. 

This leads us to developing a new labelling strategy based on perceived mental stress scores. 
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Figure 8.7. Boxplots (95% confidence interval) of self-reported stress scores from the 8 

participants across each task (StroopEasy, MathEasy, StroopHard, MathHard). 

 

 

First, we normalised participants’ stress ratings to reflect inter-person variability in ratings 

(Hernandez et al., 2011). For each participant, the normalisation was based on feature scaling 

using his/her minimum and maximum scores. Second, we used k-mean algorithm to cluster the 

normalised scores into the three stress classes. We used k-means because it had been shown to be 

effective in dealing with self-reported ratings (Salmivalli et al., 1999; Kjeldstadli et al., 2006). 

The clusters were then used to label the breathing spectrogram dataset, i.e., each spectrogram was 

labelled using the cluster the person’s self-report belongs to. Figure 8.8 summarises the results. 

As intended, the distribution of normalised self-reports (Figure 8.8a) shows different levels of 

perceived stress across each task session. Figure 8.8b shows the clustering of the normalised 

subjective ratings into the stress classes. This new label technology is explored more in-depth in 

Chapter 9. 

 

   
                   (a)                                                         (b) 
 

Figure 8.8. Normalised subjective VAS scores: (a) distribution of the self-report per participant 

(95% confidence interval), (b) clustered results using k-means. Colours and shapes of each 

point indicate the task type and difficulty levels. (Easy: Stroop 1(S1) and Math 1(M1); 

Difficult: Stroop 2(S2), Math 2(M2)).  
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Here we note that we used the data collected from the four task sessions (i.e., S1: easy 

Stroop, M1: easy Math, S2: difficult Stroop, M2: difficult Math), however not the ones from the 

initial relax period (widely used as baseline). There are rationales for this: first, the tasks 

effectively induced the different stress levels from no stress to the high level of stress given that 

there were significant differences between each pair of clustered groups (all t-test comparisons 

had p<0.001; none-low: t(18)=8.939, low-high: t(20)=13.390, none-high: t(20)=23.651). In 

addition, there were no significant differences between subjective ratings collected from the 

initial relax period and those clustered into no-stress group (t(16)=1.211, p=0.244), suggesting 

the no-stress ratings to be a good baseline. Second, the recognition of non-stress in the relax 

periods would have been easier because of the lack of verbalisation and movement (e.g., mouse 

clicking) which could all affect the breathing patterns (independently of stress levels) (Hong et 

al., 2012). Indeed, the tasks including the easy and difficult sessions had been purposely designed 

to verify the robustness of the approach to work in verbal contexts and unconstrained sedentary 

movement settings and the use of the relax periods as baseline would have reduced the validity 

of the evaluation. 

 

 

8.6. Results 

The dataset is composed of the augmented breathing spectrogram sequences of size 120 (i.e. 

frequency range) x 120 (window length) x 3936 (the number of two-dimensional spectrograms) 

and the stress labels (i.e. either with binary or three-class labels). In the three-class classification 

task, data sets were almost balanced (No-stress: 1305, Low-stress: 1207, High-stress: 1424 

instances). For the binary classification task, however, combining both low- and high-stress 

classes resulted in an uneven class distribution (Stress class: 2631 instances). 

 

Three-class classification task 

Figure 8.9 shows accumulated confusion matrices and accuracies from 8 LOSO fold 

testing sets for the classifiers CNN and NN1, which have the same input of size 28x28. Compared 

with the majority case (the ratio of the number of data in the majority class to the total number of 

dataset: 1424/3936=36.18%), both models achieved higher accuracies (CNN: 56.73%, NN1: 

51.47%). the highest accuracy (M=56.52%, SD=17.58%) was achieved with the CNN model, 
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while M=51.89% (SD=10.36%), M=51.02% (SD= 8.33%), 53.65% (SD=10.39%) were the 

results from NN1, NN2, NN3, respectively, as shown in Figure 8.10.  

 

 

 

Figure 8.9.  Test results from the three-class classification task (None, Low, High-level stress) 

with the CNN and the single hidden layer neural network NN1: (a) accumulated confusion 

matrix from 8 LOSO folds testing sets (each block consists of the sum and average over the 

LOSO cross validation results, the colour represents the number of each prediction (i.e., black: 

highest, white: lowest)), (b) accumulated accuracy from 8 LOSO fold testing sets. 

 

 

 

Figure 8.10.  Summary of mean classification accuracy results across 8 LOSO fold testing sets 

for three-class classification (i.e., none, low, high-level stress). CNN: 5 layers CNN using low 

resolution RVS images (28x28), NN1: single hidden layer using low resolution RVS images 

(28x28), NN2: single hidden layer using medium resolution RVS images (60x60), NN3: single 

hidden layer using high resolution RVS images (120x120). 
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Binary classification task 

Figure 8.11 shows accumulated confusion matrices and accuracies from 8 LOSO folds. 

Compared with the majority case (2631/3936=66.84%), both models achieved higher accuracies 

(CNN: 81.71%, NN1: 72.99%). The accuracy results for each LOSO fold confirmed that the CNN 

produced a much higher accuracy (M=84.59%, SD=19.34%) than the shallow networks (NN1: 

M=74.89%, SD= 19.12%, NN2: M=74.81%, SD=17.58%, NN3: M=77.31%, SD=19.45%), as 

shown in Figure 8.12. In comparison with NN1, the CNN performed significantly better in 

predicting both the no-stress (713 corrected predictions from CNN versus 467 from NN1) and 

stress states (2503 from CNN versus 2406 from NN1) as shown in Figure 8.11. Overall, the 

results showed the CNN-based automatic feature learning model outperformed in classifying the 

condensed breathing information on our proposed RVSs for each labelled group.  

 
 

 

Figure 8.11. Results from the binary classification task (No-stress and stress) with the CNN 

and the single hidden layer neural network NN1: (a) accumulated confusion matrix from 8 

LOSO fold testing sets (each block consists of the sum and average over the LOSO cross 

validation results, the colour represents the number of each prediction (i.e., black: highest, 

white: lowest)), (b) accumulated accuracy from 8 LOSO fold testing sets. 

 

 

 

Figure 8.12.  Summary of mean classification accuracy results across 8 LOSO fold testing sets 

for binary classification (i.e., no-stress, stress). CNN: 5 layers CNN using low resolution RVS 

images (28x28), NN1: single hidden layer using low resolution RVS images (28x28), NN2: 

single hidden layer using medium resolution RVS images (60x60), NN3: single hidden layer 

using high resolution RVS images (120x120). 
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8.7. Discussion 

Contributing to the design of novel low-cost, non-contact thermography-based stress recognition 

systems, in this chapter we have focused on how to capture respiration variability concisely. 

Accordingly, we have contributed a new input signature: (i) respiration variation spectrogram 

condensing breathing dynamics, (ii) an automatic feature learning method supported by a deep 

learning framework, and (iii) a new thermal image dataset labelled with the stress levels from our 

structured multi-level stress induction tasks. Below are detailed discussions of these contributions. 

 

The use of the respiratory signature alone contributes to the state-of-the-art stress 

inference performance 

Given the fact that stress affects physiological processes (Grossman, 1983; Brosschot et 

al., 2006; Nash & Thebarge, 2006), respiration amongst other physiological processes have been 

explored for automatic detection of stress (Healey & Picard, 2005; Hong et al., 2012; McDuff et 

al., 2016). Most of these works have focussed on gross statistical features. In particular, in the 

case of breathing, average breathing rate (over a specified window) has been mainly used, 

however its contribution to automatic stress recognition to date has been weak (Hong et al., 2012; 

McDuff et al., 2016). Inspired by Grossman (1983)’s note of breathing irregularity which could 

be induced by mental stress, we have gone deeper into stress-induced breathing dynamic patterns, 

proposing a new way to represent breathing variability. This representation technique is based on 

a bi-dimensional spectrogram of a uni-dimensional breathing signal to represent breathing 

variability in order to capture, in a compact way, breathing dynamics over time. The compactness 

of the representation enables the use of advanced machine learning techniques. 

The accuracy of results from the first approach show that the proposed deep learning-

based stress recognition model produces better performance (mean accuracy across 8 folds: 84.59% 

in the binary case, 56.52% in the multi-class case) than the best results from the shallow learning 

method (single-layer NN: binary 77.31%, multi-class 53.65%). However, these accuracy results 

were not significantly different. This may be related to the relatively small number of participants, 

although this number was set following existing work (Åkerstedt et al., 1983). Regardless of this 

differentiation of deep and shallow networks made in this evaluation, this is the first study aimed 

at learning breathing patterns to automatically recognise a person’s mental stress level without 

hand-engineered feature extractors which require in-depth domain knowledge and highly 

matured skills. In particular, our proposed respiration variability spectrogram inputs (RVSs) are 
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able to capture the dynamic breathing information from a very short-lasting (e.g., a sudden drop 

and increase) to long-lasting respiration changes. The proposed convolutional kernels-based 

model can support automatic feature learning of the input of low-level features (RVSs), and in 

turn contribute towards state-of-the-art stress detection performance with the use of only 

breathing information.  

Compared with the literature suggesting low discriminative power of breathing in 

discriminating between stress levels (McDuff et al., 2016), the proposed model shows that 

respiration signals alone can lead to above chance levels in 3-classes recognition (i.e., high, low, 

no stress). In addition, in the case of binary recognition, our performance was similar to the one 

reported in the work achieving state-of-the-art performance (McDuff et al., 2016) with the 

difference that multiple physiological channels were used rather than just breathing (McDuff et 

al., 2016). We assume that our high performance is due to the use of breathing variability rather 

than just breathing rate. Hence, we expect the combination of breathing variability with other 

signals may lead to further improvement in the stress recognition performance. This should be 

tackled as future work. 

It should be noted that despite the fact that the evaluation tasks did not intentionally require 

large movements, people were free to move as needed (e.g., inputting their responses, or 

displaying stress related expressions e.g. turning or bending the head to escape the source of stress 

and frustration, Kleinsmith & Bianchi-Berthouze, 2013). We expect that even larger movements 

and outdoor situations would be acceptable, as in Chapter 5 the nostril ROI tracking and 

respiration tracking were thoroughly tested in both highly mobile contexts and highly-variable 

thermal range scenes.  

 

Generalisation of the proposed Representation-based Approach to Other 

Physiological Signatures 

Despite the focus of this thesis upon thermal imaging, our approach to automatic stress 

detection is sensor-independent. In particular, the representation approach proposed to capture 

respiration variability can be generalised to other periodic physiological signals (e.g. blood 

volume pulse from PPG) as shown in Figure 8.13 - a spectrogram generation network is to help 

to generate variability spectrograms along with each type of physiological cues. The output of 

this network can be connected to an artificial neural network for automatic feature learning. 

Figure 8.14 shows examples of a pair of the RVS and blood volume pulse variability spectrogram 
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from a rest period and a stress induction task period (here, the Math hard). As the high 

performance was achieved from this approach, other types of physiological signals may benefit 

from this representation to produce more informative stress signatures (e.g. in Chapter 9, we show 

HRV metrics derived from blood volume pulse are poorly correlated with perceived mental 

scores). We believe this would be an interesting future direction in solving a wide range of affect 

recognition problems. 

 

Figure 8.13. A generalised representation model for different types of physiological signals: a 

spectrogram generation network is to help generate variability spectrograms of each 

physiological pattern (e.g. blood volume pulse, etc). The output of this network can be 

connected to an artificial neural network for automatic feature learning.  

 

 

 

Figure 8.14. Examples of pairs of the respiration variability spectrogram and blood volume 

pulse variability spectrogram from a rest period and a stress induction task period (the Math 

hard).  
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8.8. Chapter Summary 

In this Chapter, we have proposed a new system which automatically recognises people’s 

psychological stress level from their breathing patterns which are tracked through the robust 

respiration tracking method proposed in Chapter 6. This approach contributes in three ways. 

Firstly, instead of creating hand-crafted features to capture aspects of the breathing patterns, we 

transform the uni-dimensional breathing signals into two-dimensional respiration variability 

spectrogram (RVS) sequences. The spectrograms can capture the complexity of the breathing 

dynamics in a compact form. Secondly, a spatial pattern analysis based on a Convolutional Neural 

Network (CNN) is applied to the spectrogram sequences without the need of hand-crafting 

features (automatic feature learning). Thirdly, this model has achieved state-of-the-art 

performance. The proposed method was thoroughly evaluated through a multi-level, multi-task 

stress induction study - the model was trained and tested with data collected from people exposed 

to two types of cognitive tasks (Stroop Colour Word Test, Mental Computation test) with sessions 

of different difficulty levels. Using normalised self-report as ground truth, the proposed system 

only using breathing information reaches state-of-the-art performance (accuracy: 84.59%) in 

discriminating between two levels of stress under unconstrained settings (i.e. verbal expressions 

and movement). As the tracking of the respiration had been thoroughly tested in Chapter 5 for 

movement and outdoor scenes, we expect this approach will perform as a reliable stress measure 

in mobile, real-world settings. 

 

 

 

 

 

 

 

 

 

 



234 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



235 

 

 

 

Chapter 9  

 

Instant Automated Inference of Mental 

Stress using Cardiovascular Signatures 
 

 

In this second part of Stage III, we aim to build another stress recognition system based on 

vasoconstriction/dilation driven nasal thermal variability which has been explored in Chapter 6.  

Like the proposed system in Chapter 8 which focuses on respiration variability, we aim to explore 

how to improve the capturing of nasal thermal variability in association with mental stress. In 

particular, we explore how this type of cardiovascular thermal signature can contribute to 

automatic mental stress detection together with other type of cardiovascular signals, HRV. 

Furthermore, inspired by a finding in the literature that the nose tip thermal variances occur 

quickly in response to mental load (Abdelrahman et al. 2017), we target a specific task, instant 

stress inference, which only takes a very short time measurement, in turn helping improve real-

world use cases of automatic stress detection.  

In Section 9.1, we review the background and key challenges. In Sections 9.2 and 9.3, we 

propose novel recording setup and computational approach for instant stress inference. In 

Sections 9.4, 9.5, we describe the conducted data collection study, collected dataset and 

evaluation methods. Section 9.6 provides in-depth analysis of a perceived stress score-based 

labelling technique which is proposed in Chapter 8. Section 9.7 reports results. This chapter ends 

with a discussion in Section 9.8 and a chapter summary in Section 9.9. 

 

 

9.1. Background and Research Question 

The literature exploring thermal signatures in relation to mental stress has mostly focused on 

capturing the binary direction of stress-induced temperature variations in certain facial ROIs. 
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Amongst such ROIs, the most consistently reported area is the nose tip whose thermal pattern is 

related to vasoconstriction/dilation (a type of cardiovascular activities) (Genno et al., 1997; 

Veltman & Vos, 2005; Or & Duffy, 2007; Engert et al., 2014). Whilst it is evident that thermal 

imaging has the greater potential for automatic stress recognition, the contribution of this type of 

cardiovascular thermal signature to automatic stress recognition has remained very weak up to 

date. For example, Engert et al.(2014) achieved slightly above chance accuracy in detecting 

mental stress using thermal directional information from multiple facial ROIs including the nose 

tip. This result was also limited in terms of highly constrained situations used in the work, which 

limit one’s head movement and control ambient temperature.  

Hence, there are needs for a new technique for improving stress detection performance 

when using such signature and for a method to make this thermal imaging-based approach more 

feasible in real-world ubiquitous settings. As have been demonstrated throughout this thesis, 

mobile thermal imaging is a new pathway for physiological measurements. In particular, Chapter 

6 has proposed a new method to enable a low-cost thermal camera attached to a smartphone to 

track nasal vasoconstriction/dilation events. Building on this smartphone-based setup and 

physiological measurement, we aim to address the discussed issues above. 

 

Another cardiovascular signature, HRV which can be simultaneously measured with 

vasoconstriction/dilation related nasal thermal signature 

Interestingly, recent studies have also demonstrated that it is possible to use smartphone 

RGB cameras to measure Blood Volume Pulse (BVP) (Jonathan & Leahy, 2010; McManus et al., 

2013; Xu et al., 2014; Chan et al., 2016; White & Flaker, 2017). These encouraging results 

suggest that smartphones could become a powerful apparatus for monitoring and supporting 

mental stress management on a daily basis through biofeedback (Yu et al., 2018). Indeed, the 

combination of thermal and RGB cameras into one device has the potential to provide a very 

large set of physiological measurements for stress monitoring. Given this, we aim to add to this 

body of work by investigating two important cardiovascular signals that can be measured by low 

cost and low resolution sensors. The main aim is to explore how nasal thermal variability can 

contribute to stress inference together with another type of cardiovascular patterns. 

Heart Rate Variability (HRV) is the time series of variation in heartbeats. It has been used 

to measure a person’s mental stress (Pagani et al., 1986; Camm et al., 1996; Bernardi et al., 2000; 

Hjortskov et al., 2004; McDuff et al., 2016; Mohan et al., 2016; Jobbágy et al., 2017; Zhu et al., 
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2017). HRV’s popularity arises from the fact that it has been shown to provide information about 

the sympathovagal balance between the SNS and PSNS. When confronted with a stressor, the 

autonomic nervous system can produce a sequence of fight-or-flight responses (Everly Jr & 

Lating, 2012). These manifest themselves as alternations of accelerated and decelerated 

cardiovascular patterns (Everly Jr & Lating, 2012; Shaffer et al., 2014). 

To characterize the HRV, various authors (Pagani et al., 1986; Camm et al., 1996; 

Hjortskov et al., 2004; Williamon et al., 2013) have proposed a variety of hand-crafted HRV 

metrics that are computed over the time intervals between heartbeats. Although most of the HRV 

metrics were originally built based on the R-R intervals from ECG (Electrocardiogram) 

measurements (Billman, 2011), the metrics have been applied to the P-P intervals from PPG 

measuring blood volume pulse (Heathers, 2013; McDuff et al., 2016; Mohan et al., 2016; Jobbágy 

et al., 2017). In the case of PPG, the term Pulse Rate Variability (PRV) or PPG HRV are often 

used to clarify the different type (even if related) of event measured (Giardino et al., 2002; Schäfer 

& Vagedes, 2013; Heathers, 2013; Shaffer et al., 2014) with respect to ECG. 

Amongst the most commonly used are statistical metrics (such as the standard deviation 

of R-R or P-P intervals) and frequency-band metrics (e.g. the normalised power in a frequency 

band of interest). In particular, various studies have found that the Low Frequency (LF; 0.04Hz 

– 0.15Hz) and High Frequency (HF; 0.15Hz – 0.4Hz) bands of the time intervals in heart rates 

appear to reflect the SNS and PSNS activities (Camm et al., 1996). Given this observation, many 

studies have used the LF/HF ratio as a stress indicator (Pagani et al., 1986; Hjortskov et al., 2004; 

Salahuddin & Kim, 2006; Zhu et al., 2017). However, the single HRV metric as a feature does 

not strongly contribute to the inference of a person’s physiological response to stress (automatic 

stress recognition using machine learning techniques) as discussed in Chapter 6 and Chapter 8. 

Hence, multiple HRV metrics have been used together with features from other physiological 

activities such as perspiration and respiratory activities for automatically inferring mental stress 

(e.g. for driving tasks in Healey & Picard, 2005 and desk activities in McDuff et al., 2016).  

 

Existing stress recognition systems require relatively long-term physiological 

measurements, limiting real-world applications 

To ensure reliable measurements with such features, a relatively long term window of data 

(several minutes to a few hours) must be used (McDuff et al., 2016). Given this, the system 

proposed in Chapter 8 also uses a 2 minutes time window. Although this is acceptable in specialist 
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settings or with medical devices, it would be highly inconvenient in the real world with 

unstructured settings using low cost devices. For example, in the case of the smartphone PPG, if 

a mobile device such as smartphones were to be used, a user would have to continuously make 

sure their finger is held stably in front of the PPG sensor. Another issue is that changes in light 

levels, as a user moves around, can corrupt long-term measurements. In addition, they require to 

measure baseline signals.  

The same can be found from studies exploring the relation of the nose tip temperature 

variations with mental stress levels. To compute the thermal direction, thermal imaging-based 

studies also requires long-term measurements as well as baseline temperatures, for example, 5 

minutes of separate sessions in Engert et al. (2014). This limits their use in real-life applications. 

These limitations led to our research question: How can the nasal vasoconstriction/dilation 

related thermal signatures contribute to very fast stress recognition together with other types of 

cardiovascular signals from another mobile sensing channel (HRV from PPG)? Accordingly, 

this chapter focuses on building a novel instant stress inference method which only requires a 

very short time measurement of both types of cardiovascular signals. 

 

 

9.2. Recording Set-up 

This section presents a method that enables quick inference of a person’s perceived stress level 

with nasal thermal variability (main outcome from Chapter 6) and PPG derived HRV as main 

inputs to machine learning models. We call these measurements instant measurements to 

differentiate them from the short measurements (typically between 2min and 5min) which have 

been previously defined in the literature (Shaffer & Ginsberg, 2017). Below is a description of a 

recording set-up we implemented to measure nasal thermal variations and PPG-derived HRV 

profiles simultaneously.  

 

Towards Smartphone as Multiple Cardiovascular Measures 

The main cardiovascular sensing channels of this work are the rear RGB camera of a 

mobile phone (LG Nexus 5) and a low-cost thermal camera (FLIR One 2G) attached to the phone. 

Figure 9.1 shows the smartphone, the attached thermal camera, the procedure for collecting 

measurements, and the physiological measurement interface.  
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Figure 9.1.  Thermal and Smartphone RGB cameras-based physiological measurement: (a) a 

smartphone with an add-on thermal camera, (b) flash LED emission for PPG measurement, (c) 

developed software to collect nasal thermal signature from the nose and BVP from the finger. 

 

 

Although the smartphone-imaging-based PPG measurement can be performed in either a 

contact (Jonathan & Leahy, 2010; Chan et al., 2016) or a contactless manner (Xu et al., 2014), in 

our work we only focus on a contact-based imaging PPG. The reason is based upon previously 

repeated investigation within clinical studies (Chan et al., 2016; White & Flaker, 2017) given its 

higher accuracy. In addition, given that a normal RGB camera is only sensitive to a narrow 

electromagnetic spectral range of visible light in the so-called visible spectrum (Cho et al., 2018), 

adequate lighting is required before it can be used as a PPG sensor. Hence, a light emission from 

the rear flash LED is used and a user is required to hold the smartphone body and place his/her 

finger over both the back camera and flash light (Figure 9.1a, 9.1b).  

Unfortunately, the use of the back flash limits the duration of the measurements in some 

devices since its heat can potentially burn a person’s skin. As shown in Figure 9.2, a large amount 

of heat is produced by the LED emission from the chosen smartphone (LG Nexus 5) in just 25-

30 seconds of operation. A similar amount of heat was observed from another mobile phone 

(Samsung Galaxy 6 in Figure 9.1b). Since temperatures above 50 °C are potentially damaging to 

human skin tissues, for example, skin erythema could occur from 25 seconds heating at 51.07°C 

(Yarmolenko et al., 2011), we limit the cardiovascular measurement to a 20 second time period. 

This is also the required minimum duration for obtaining valid HRV metrics values, in particular, 

LF/HF (Shaffer & Ginsberg, 2017). 
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Figure 9.2.  Heat produced by the rear flash LED of a smartphone (LG Nexus 5) measured by 

a thermal camera (FLIR One): (a) before turning on the LED (36.3°C), (b) after 10-15 

seconds (43°C), and (c) after 25-30 seconds (53.7°C). 

 

To capture a time series of nasal thermal variability and blood volume pulse sequence, we 

used the method proposed in Section 6.2 for the former and the method proposed in Appendix F 

for the latter. The recording interface stores the time stamp with each image frame. 

 

 

9.3. Proposed Computational Method 

In this section, we propose low-level features which can be fed to automatic feature 

learning frameworks as discussed in Chapter 8. 

 

Low-level Features and Automatic Feature Learning 

As in Chapter 8, this approach is for capturing variability of physiological signals as low-

level features and having automatic feature learning procedures to learn informative high-level 

features by themselves. As the 2D representation proposed in Chapter 8 (section 8.2.1) is 

designed to require relatively long-term measurements, we take a different strategy for signals 

from very short-term measurements (20 seconds). Figure 9.3 summarises a workflow of low-

level features and feature learning. Here we propose to use the feature-scaled thermal variability 

sequence (from the nasal area) proposed in Section 6.2 (see Figure 6.5b) as low-level features. 

We then use an artificial Neural Network (NN) to automatically learn the mapping between the 

extracted set of low-level features and stress levels. The use of artificial neural networks can 

empower automatic learning of informative physiological features with back-propagation to 
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repeatedly tune internal parameters of a machine learning model to let the features emerge from 

the data (this is also called representation learning). Likewise, we applied the same strategy to 

the P-P intervals as low-level features in Appendix F.1 (Figure F.1c), which can be 

simultaneously produced by the developed interface (Figure 9.1c). This low-level feature set can 

represent variability of cardiovascular activities.  

 

 

Figure 9.3. Low-level features and feature learning: we take the feature-scaled thermal 

variability sequence proposed in Chapter 6 as low-level features which are fed to an automatic 

feature learning model using a single-hidden layer neural network.  

 

 

9.4. Experimental Protocol and Dataset (InstantStress) 

Based on the experimental protocol used in Chapter 8, this study protocol consisted of: 

• waiting in the corridor, introduction and entering the study room (5-10 min) 

• information/consent/demographics forms filled in (5-10 min) 

Session 1 

• [Rest 1] sitting, resting (5 min) 

• 20s measurement and self-reporting of perceived stress (1-2 min) 

• [Task 1]  Stroop Test 1 (5 min) 

• 20s measurement and self-reporting of perceived stress (1-2 min) 

• break (5 min) 

• [Task 2] Stroop Test 2 (5 min) 

• 20s measurement and self-reporting of perceived stress (1-2 min) 

• break (3 min) 

Session 2 

• [Rest 2] sitting, resting (5 min) 

• 20s measurement and self-reporting of perceived stress (1-2 min) 

• [Task 3] Math Test 1 (5 min) 

• 20s measurement and self-reporting of perceived stress (1-2 min) 

• break (5 min) 

• [Task 4] Math Test 2 (5 min) 

• 20s measurement and self-reporting of perceived stress (1-2 min) 

• break (5 min) 

Closing 

• wrap-up and participant’s feedback (5-20 min) 
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As described above, heat caused by the use of the smartphone PPG limited our data 

gathering to a 20 second window immediately after each task. The aim is to capture the 

cardiovascular changes related to stress responses and their dynamics immediately after the 

stressor has ended instead of measuring the signals during each task (Figure 9.4). For the 20s 

physiological measurements, the person was asked to hold their index finger on the smartphone 

RGB camera while keeping the smartphone add-on thermal camera facing their nose, as shown 

in Figure 9.4b. We call the dataset collected from this instant measurement, InstantStress. 

 

 

 
Figure 9.4.  Experimental setup and self-report question: (a) during each stress-induction task 

session, (b) 20 second physiology measurement after sessions. 

 

 

 

A total of 17 healthy adults (mean age 29.82 years, SD=12.02; 9 female) of varying 

ethnicities and different skin tones (pale white to black) were recruited from the University 

College London and non-research community through the UCL psychology subject pool system. 

Participants completed pre-screening through the system which was designed to exclude 

participants with any history of psychiatric disorders or medicine intakes which may influence 

their physiological signatures. The study was conducted in a quiet lab room with no distractions 

and without controlling the room temperature. 
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9.5. Evaluation Method  

First, to understand how existing metrics of cardiovascular signatures work properly in instant 

stress measurements, we tested correlations between self-reported stress ratings (which we 

collected using VAS-based questionnaires in Appendix H) and metrics values. As for metrics for 

nasal thermal signatures, together with the most widely used metric to capture thermal 

directionality (Temperature Difference, TD), we also used two further metrics which we proposed 

in Section 6.2: Standard Deviation of Successive differences of Thermal Variability sequence 

(SDSTV) and Standard Deviation of Thermal Variability sequence (SDTV). We used feature-

scaling-based metrics as they performed better than original metrics in Chapter 6 (i.e. TDF, 

SDSTVF, SDTVF in Table 6.1). As for metrics for blood volume pulse from PPG, we followed 

earlier studies on stress inference using HRV metrics (in our case, PPG HRV or PRV metrics) 

(Healey & Picard, 2005; Wang et al., 2013; Hovsepian et al., 2015; McDuff et al., 2016): LF 

Power, HF Power, LF/HF ratio, SDPP (Standard Deviation of P-P intervals), RMSSD (Root 

Mean Square of the Successive Differences of P-P intervals) and pPP50 (proportion of the 

number of the successive differences of P-P intervals greater than 50ms of the total number of 

the intervals).  

Second, to evaluate stress inference performance of our proposed approach, we used such 

metrics as high-level features: 

1) Thermal F1: TDF,  Thermal F2: SDSTVF,  Thermal F3: SDTVF, 

2) HRV F1: LF Power,  HRV F2: HF Power,  HRV F3: LF/HF ratio,  HRV F4: SDPP,  

HRV F5: RMSSD,  HRV F6: pPP50. 

With these features, we used the k-Nearest Neighbour algorithm (denoted as kNN, k=1) as a 

benchmark stress inference model given that this is typically used in this area (Wang et al., 2013). 

By choosing this, we aim to assess the limitations of the use of handcrafted features which may 

simplify a person’s dynamic physiological events, and in turn possibly miss out some fast, 

informative moments. In particular, in the case of instant measurements (short period of time), 

this cannot be compensated by the use of a sliding window producing sequential feature values 

(e.g. a 120 seconds sliding window used in McDuff et al., 2016 to continuously produce PPG-

HRV features during a 180 second task session).  

For the implementation of the neural network, we tested two sizes of hidden layer nodes: 

a) small (n=80, NN1) and b) large (n=260, NN2) – each node size was empirically chosen. The 

mean and standard deviation of the training dataset were used to normalise both the training and 
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testing dataset. The sigmoid was used as an activation function. In the training process, a fixed 

learning rate of 0.5 was used for 100 epochs.  

 

 

9.6. Perceived Mental Stress Levels and Labelling 

Given the focus on automated inference of a person’s perceived stress level, the labelling of self-

reported stress scores is an important step. However, as discussed in Chapter 8 interpersonal 

variability has been repeatedly found from self-reports of perceived mental stress (Hernandez et 

al., 2011; Zhu et al., 2017). This is a key issue which must be addressed if we are to create 

automatic stress recognition systems that can generalise across people.  

Using the labelling technique proposed in Chapter 8, we normalise all perceived stress 

scores collected from each participant through feature scaling that identifies the minimum and 

maximum scores for a participant and rescales all the scores so the range is the same across all 

participants. Then, the K-means algorithm (k=3) is used to group the participants’ VAS scores 

into three levels of perceived stress scores corresponding to “None or low stress”, “Moderate” 

and “Very high” on the VAS we used (see Figure 3.4 in Section 3.3). In this chapter, we focus 

on discriminating between two levels of stress, No-stress and Stress given the limited amount of 

data for a more refined discrimination. Hence, a third step is required. We split the labels into 

two groups: the No-Stress group referring to the K-mean “None or low stress scores” cluster and 

the Stress group containing both the K-mean “Moderate” and “Very high” score clusters. Two 

obtained labelled groups are hence used to label the related physiological signatures from each 

20s window (L1).  

Furthermore, we explore the possible effect of different data labelling strategies: a) L2: 

combining the first and second K-means clusters (from k=3) into No-stress by contrast with L1, 

b) L3: K-means with k=2, and lastly, c) L4: the original stress scores divided by directly dividing 

the VAS scale intro three equal sections and then combining the “moderate” and “Very high” 

stress classes into one, i.e. “Not at all” and “Moderate + Very high” (threshold at point 3.334 on 

the VAS scale in Figure 3.4). The aim of L2 and L3 was to understand the sensitivity of our 

approach in separating the moderate level of stress with the other two classes. L4 was used as a 

way to compare with more standard techniques used in the field (Sano & Picard, 2013).  
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9.7. Results 

From the 17 participants, we collected 102 sets of thermal variability sequences, estimated BVP 

and P-P intervals from 20s-instant measurements taken after each Stroop and Math task and after 

each resting session. However, 2 sets of data were not recorded due to phone battery issues at the 

end of one experiment, and 1 set was not recorded as one participant clicked the turn-off button 

on the phone by mistake. 6 further sets had to be discarded because some participants’ nose was 

not visible by the thermal camera (nose outside of the range of view due to sudden severe 

coughing during the 20sec, or because of head turned towards the experimenter, or the nose was 

covered by a person’s hand). Although these disturbances were often transient, they meant that 

data could not be collected within the 20s immediately following the end of the stressor.  

An analysis of the thermal data from Rest 1 also showed some extreme patterns in the 

nose tip temperature (e.g. sudden increase in temperature). This may be explained by the fact that 

the experiment was conducted during the winter and temperatures outside of the experimental 

room were often significantly lower. This included both outdoors, and indoors in the corridor 

where the participants waited for the experiment. Despite the temperature changes, the Rest 1 

data was kept in the dataset. A total of 93 sets were used for the study. 

 

Self-reported stress ratings and hand-engineered metrics  

An important step was the analysis and possible normalisation of the self-reported stress 

scores. The boxplot in Figure 9.5 shows the distribution of the self-reported scores over the 

resting periods and the different sessions and tasks. Overall, the stress elicitation procedures 

produced the wanted levels of stress with the hard sessions scoring higher than the easy sessions 

and the latter scoring higher than the resting periods (Rest from Session 1: M=1.49, SD=1.94; 

Rest from Session 2: M=1.30, SD=1.26; Stroop Easy: M=2.17, SD=1.46; Math Easy: M=2.66, 

SD=1.80; Stroop Hard: M=3.92, SD=2.11; Math Hard: M=5.17, SD=2.55) despite two outliers. 

However, the wide boxplots also show inter-subject variability in self-reporting. In addition, the 

ranges (maximum - minimum) in scores for each participant differ quite highly (Maximum range: 

8.75, Minimum range: 1.5, Mean: 4.7, Std: 2.1) further suggesting the need for normalisation of 

the scores.  
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Figure 9.5. (Boxplot) Inter-subject variability shown from the original self-reported stress 

scores of the 17 participants (box plot, 95% confidence interval) across each section (Rest1, 

Stroop Easy, Stroop Hard, Rest2, Math Easy, Math Hard). 

 

Therefore, the data for each participant was normalised with respect to their range of 

scores over all the sessions. Figure 9.6a shows the original data and Figure 9.6b shows the 

normalised data. The normalisation helps to identify two main modes in the score distributions 

suggesting the presence of two main clusters of stress levels. Given the subjectivity of stress 

ratings and the limited amount of data sets to carry a multi-level model, in this chapter we focused 

on binary classification of perceived mental stress: no/low stress vs medium/high (or very high) 

stress. To this end, we used the K-means based labelling technique to cluster the normalised 

perceived scores into two groups as described in Section 9.6. The K-means separation between 

the two clusters is represented by each different colour in Figure 9.6b 

 

 
 

Figure 9.6. Overall self-reported stress score distributions (from 17 participants over the 

sessions including the resting periods) - (a) original scores, (b) normalised stress scores 

(normalisation of scores from each participant) clustered into No-stress and Stress groups along 

with outputs of K-means. 
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We tested the correlations between the original self-reported scores, normalised self-

reported scores and the high-level features extracted from the HRV and thermal signatures as 

summarised in Table 9.1 (using Pearson correlation coefficients). The normalised self-scores 

maintained a high correlation with the original scores (r=0.752, p<0.001). While some features 

from each physiological sensing channel were significantly correlated between themselves (e.g. 

HRV F2 - F4: r=0.838, p<0.001; Thermal F1 - F3: r=0.803, p<0.001), the correlation values were 

lower across sensing channels. In addition, only Thermal F2 features show approaching 

significance but low correlation with the self-report scores (r = .196, p=0.059), indicating that 

each individual engineered feature alone could not lead to high discrimination between perceived 

levels of stress.  

 

 

 
Table 9.1. Pearson correlation coefficients across self-reports, PPG derived HRV and thermal high-level 

features. S1=Normalised self-reported scores, S2=original self-reported scores.      

 
 

 

 

Figure 9.7 shows values of each pre-crafted metric across the sessions (rest and four 

stressful events, i.e. Stroop easy/hard and Math easy/hard) and across the labels produced by the 

labelling technique. As shown in Figure 9.7a, there was no common pattern found between two 

easy or hard tasks, although they were designed to induce similar levels of mental stress (e.g. 
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easy: low stress level, hard: high stress level). For example, Thermal F1 appeared to strongly 

decrease during the Math hard task but not during the Stroop hard task, Thermal F2 increased 

with the Stroop hard task, but less during the Math hard task. HRV F5 was generally high after 

both Math easy and hard task sessions than Stroop hard session. This can indicate further that 

each feature alone from the instant measurement is less likely to contribute to the inference of 

each session. On the other hand, when we applied our labelling technique, Thermal F1 values 

grouped into stress were generally lower than no-stress data as shown in Figure 9.7b, which were 

consistent with findings from literature (Genno et al., 1997; Or & Duffy, 2007; Engert et al., 

2014). 

 

 

Figure 9.7. Box plots of 95% confidence intervals in values of each pre-crafted metric across 

(a) each session (R1: Rest 1, Se: Stroop easy, Sh: Stroop hard, R2: Rest 2, Me: Math easy, Mh: 

Math hard) and (b) label produced by our labelling technique. The three features (having best 

correlations with self-reports) are HRV F5:RMSSD, root mean square of the successive 
differences of P-P intervals, Thermal F1:TD, temperature difference between from the start 

and the end (a red line is drawn to show negative or positive thermal direction), F2:SDTV, 

standard deviation of the successive differences of thermal variability sequence. 
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Instant Stress Inference Results 

To evaluate the performance of instant stress recognition, we used a 17-fold leave-one-

subject (participant)-out (LOSO) cross-validation (see Figure 8.6). LOSO was chosen to test the 

ability to generalize to unseen participants (one size fits all) as in Chapter 8. Figure 9.8 and 9.9 

summarise the accuracy results of the three classifiers (NN1, NN2, kNN) using LOSO (N=17) 

for three different cases: a) multimodal-approach by simply combining features from both sensing 

channels (HRV, Thermal), b) unimodal approach using thermal features, and c) unimodal 

approach using HRV features. Both neural networks NN1 and NN2 used our proposed low-level 

features only (i.e. P-P intervals and thermal variability sequences). Data sets were not balanced 

(No-stress: 52, Stress: 41 instances), leading to the ratio of the number of data in the majority 

class to the total number of dataset (52/93=55.91%). Overall, the NN2-based multimodal 

approach produced the highest mean accuracy of 78.33% (SD=15.43) (mean F1 score=77.92%) 

in discriminating between no-stress and stress (see confusion matrix in Figure 9.8a for details). 

The NN1 (whose hidden layer is smaller than that for NN2) produced a lower accuracy 

(M=66.76%, SD=21.75). From all cases of modality, the kNN with the high-level features (i.e. 

the hand-engineered 6 HRV and 3 thermal features) performed worst. A similar pattern can be 

seen for the HRV unimodal channel (NN1: M=65.78%, SD=20.55; NN2: M=68.53%, SD=18.89; 

kNN: M=50.20%, SD=19.63). For the thermal channel, the NN1 appears to perform marginally 

better (M=58.82%, SD=21.11) than the NN2 (M=56.67%, SD=18.79), but again both NNs 

performed better than the kNN (M=48.14%, SD=16.52).  

However, it should be noted that, for all the models, the confusion matrices for the thermal 

case (Figure 9.8a - Thermal) show a clear bias towards the no-stress class. Given this bias and 

the fact that thermal data from the Rest 1 sessions appeared to be affected by the large variation 

in temperature between the waiting space and the experiment room (in addition, some participants 

had just arrived from the outside while others had been already indoor for sometimes), we re-ran 

the models discarding the data from the Rest 1 sessions. Whilst the overall performance over this 

modality did not change largely (NN1: M=58.14%, SD=23.33; NN2: M=58.14%, SD=21.59; 

kNN: M=55.88%, SD=22.38) and the NN1 and NN2 still performed better than the kNN with 

hand-engineered features, all the confusion matrices (Figure 9.8b) show more balanced results 

and a better prediction of the stress class overall. 
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Figure 9.8. Summary of accumulated (from 17 fold testing sets - LOSO) confusion matrices 

and accuracies (a) for the three classifiers NN1, NN2 and kNN along with each set of 

modalities (Multimodal: HRV+Thermal, Unimodal: Thermal, HRV), (b) for the temperature-

based unimodal approach built without the Rest 1 data. Each number in the confusion matrices 

refers to the number of instances. 

 

 

 
Figure 9.9. Summary of mean inference accuracy results (testing) across 17 folds for the three 

classifiers NN1, NN2 and kNN along with each set of modalities (Multimodal: HRV+Thermal, 

Unimodal: Thermal, HRV) 
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Lastly, we investigated the effect of the normalisation and K-means clustering of self-

reported scores in inferring the perceived stress levels. For this part of the study we removed the 

Rest1 data. There were two reasons for this. First, we wanted to avoid the noise from those set of 

data affected the comparison between the labelling methods. Second, this was also to obtain a 

more balanced number of instances in each class for testing different labelling methods, less 

biasing the learning process. The comparison of models over the different labelling techniques 

did not aim to obtain better performance, but to understand how normalisation and different 

clustering approaches could affect the modelling by acting on class separation and inter-person 

variability in subjective self-reports. We were also interested in understanding how sensitive the 

system was in separating stress scores by using the same dataset and merging the intermediate 

levels with one of the two classes (L1 and L2).  

We tested the three models (NN1, NN2, kNN) for the multimodal-approach with the 

different labelling strategies (L2-L4, introduced in the previous section). Figure 9.10 summarises 

the accuracy results for four different strategies - L1: the main method, L2: K-means with k=3, 

but combining no-stress and moderate level stress scores as one group, L3: K-means with k=2, 

dissecting the moderate level scores into no-stress and stress, and L4: original scores divided by 

a point between no-stress and moderate levels (i.e. 3.334 of 10, see Figure 3.4 in Section 3.3). 

The results showed that the L1 performed best in separating the bimodal distribution of 

normalised self-reported scores and helped address the inter-personal variability issue. Indeed, 

all three models obtained the best accuracy with L1 and the worst performance for L3 and L4 

with L4 being marginally better than L3. Finally, it should be noted that in the case of L3 and L4, 

the best performance was obtained with NN2 rather than NN1. This may indicate that mapping 

feature values to perceived stress scores may benefit from a larger hidden layer to capture the 

complexity of the relation.   
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Figure 9.10. Summary of (a) inference accuracy along with (b) different labelling approaches 

(L1: K-means with k=3 and combining moderate and high stress scores, L2: K-means with k=3 

and combining no-stress and moderate level stress scores, L3: K-means with k=2, L4: original 

scores divided by the border between no-stress and moderate levels). 

 

 

9.8. Discussion   

In this chapter we have focused on how to quickly capture variability of vasoconstriction/dilation 

related cardiovascular signature in order to build a novel instant stress inference system. In 

addition, we have explored how this strategy can improve performance of stress detection models 

using another sensing channel when combined with other types of cardiovascular signature, PPG-

derived HRV. Accordingly, we have mainly contributed (i) an exploration of the role of existing 

metrics in instant inference tasks, (ii) a novel instant stress detection model based on a novel 

feature set to improve the capturing of nasal thermal variability and heart rate variability, (iii) a 

further investigation of effects of clustering self-report scores to take into account the subjectivity 

of the self-report and ensure clear separation between the level of stress to be modelled. Below 

are detailed discussions of these contributions. 
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Traditional cardiovascular metrics do not capture stress-related variability from an 

instant measurement 

The contribution of the widely used thermal metric (i.e. TD: Temperature Difference) 

from the short-term measurement to stress quantification was very weak. This may explain 

inconsistent findings in the literature where the single metric has been used to capture thermal 

responses to stressful events (Veltman & Vos, 2005 and Engert et al., 2014). Capturing dynamical 

information of skin temperature may help improve our understanding of its complex phenomenon.   

Similarly, we found that the capability of the hand-engineered HRV metrics, which were 

used as high-level features in the literature (McDuff et al., 2016; Mohan et al., 2016; Jobbágy et 

al., 2017), in instantly quantifying stress was very limited (see Table 9.1). It should be noted that 

we used PPG-derived metrics rather than the more investigated ECG-derived metrics in this 

chapter. However, strong correlations have been found between the two signal metrics in the case 

of healthy participants and limited physical movement (Heathers, 2013; Plews et al., 2017). 

Furthermore, it should be noted that stressors in general affect cardiac pulse-related events even 

if the two types of events (heart rate and blood volume pulse) may be differently affected within 

non-healthy or elderly population and extreme situations (hot temperature) (McKinley et al., 2003; 

Allen, 2007; Shin, 2016). 

 

New representations of nasal thermal variability and heartrate variability contribute 

state-of-the-art performance in instant stress inference 

On the basis of the low correlation between perceived mental stress levels and typically 

engineered metrics for these two signals, we proposed to use thermal variability and P-P interval 

sequences as a novel set of low-level features to capture stress responses of cardiovascular 

activities. With this, we investigated how to benefit from automatic feature learning capabilities 

of machine learning classifiers (i.e. NNs) in instantly inferencing mental stress. The results 

showed clear improvements in performance. Indeed, our proposed method with the two 

cardiovascular signatures achieved 78.33% correct recognition accuracy (NN2 model in Figure 

9.9), whereas the kNN with the widely used high level features produced much lower accuracy 

(60.59%). Similarly, using the HRV-related features only, there was an improvement by 18.33% 

with respect to the traditional approach (50.20%). The improvement on the thermal channel was 

smaller but still evident from the results.   
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In addition, two further contributions can be highlighted from our approach to the 

modelling of automatic stress inference: instant measurements and no need for baseline. First of 

all, previous work required relatively long-term measurements of between 2 to 5 minutes (Tsuji 

et al., 1996; Engert et al., 2014; McDuff et al., 2016). Indeed, our results demonstrated the 

possibility to use just a 20 seconds measurement to automatically discriminate between stress and 

non-stress moments. This approach achieved state-of-the-art performance when compared with 

approaches using much longer measurements (up to around 70 - 80% correct recognition from 

LOSO cross-validation; e.g. Hernandez et al., 2011). This is very important given that stillness is 

critical during PPG measurements and to a certain extent for thermal imaging. In fact, even if 

automatic ROI tracking methods may help with thermal measurements, people tend to easily 

move away from the camera or cover their nose with their hands (5 participants did so at least 

once even for 20 seconds).   

Lastly, our approach (more reliable signal and richer features) led to state-of-the-art results 

without the use of a baseline. This is critical to everyday life settings as in everyday life such 

baselines may be difficult to establish. Resting periods just before a stressful event cannot be 

planned and continuously gathering such measures can be costly, whilst at the same time non-

stressful resting periods would also need to be automatically detected. In addition, our data from 

resting periods shows that such a gold standard resting situation does not exist and environment 

temperature may change drastically, affecting skin temperature. This could have been due to a 

lab effect, but general everyday situations may also have specific effects on the data. In the 

existing works, even when using differential features (e.g. temperature differences between two 

areas of the face - forehead and nose tip), a baseline period was used (Abdelrahman et al., 2017). 

The lack of baseline is overcome here by proposing richer features capturing informative 

physiological variations over time.  

 

How do we define the ground truth: what is the best approach? 

Setting the ground truth is a difficult process when dealing with subjective reports.  How 

to use self-reports to label the data is a critical issue in the field due to their subjectivity. 

Interpersonal variability has been repeatedly reported as a critical barrier for building stress 

inference or quantification systems that can generalize across people (Hernandez et al., 2011; 

Zhu et al., 2017). The inter-subjectivity of self-reports and the need to reduce the number of 

classes along with types of applications or the size of the dataset require some decisions on how 

to refine the labels to be taken. In doing so, there is the danger to add noise to the dataset and 
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hence to the modelling process. We explored how different labelling techniques may affect the 

modelling process.   

We proposed to address this problem. The first step was to use a standard normalization 

technique to take into account personal score ranges over all tasks that aimed to induce a wide 

range of stress levels (from none to medium to quite high). This transformation led to a bimodal 

distribution highlighting at least two opposite levels of stress (low and high - see Figure 9.6b), 

whilst it still maintained their strong correlation with the original scores (r=.752, p<0.001). The 

bimodal distribution is interesting as, given the low number of participants, it suggests the 

moderate level of stress is not well separated from the other two classes. A binary classification 

was hence a sensible approach to take in this chapter, however with larger datasets a more refined 

analysis and modelling should be carried out. Second, we used a machine learning clustering 

technique, K-means, to improve separation of the scores into two classes of stress. The results 

obtained from the comparison of our approach (L1) with its variation (L2) and the more typically 

used approaches (L3 and L4) led to an interesting lesson on how to create a more reliable ground 

truth rather than increase noise in labelling. 

Then, how should the data be clustered?: according to the number of stress levels to be 

recognized, or according to the number of stress levels the data collection experiment was set to 

induce? The latter approach appeared to be more successful. All labelling methods using K=3 

(L1, L2 and to a certain extent L4) performed better than L3 using K=2. This suggests that directly 

clustering according to the number of classes to be recognized (2 in our case) may spread 

instances with similar stress level responses (in this case medium responses) across classes 

introducing noise rather than overcoming the problems of intersubjectivity. However, it should 

be noted that the normalization step was important. Indeed, the models built on either L1 and L2 

using the normalized scored performed better than L4 where the original scores were used instead.  

Another important issue to be addressed is: how should the data be grouped when the 

number of classes to be detected is smaller than the number of levels induced? This decision 

could be needed either because there were no sufficient instances for a more refined inference or 

because the application at hand did not require such level of granularity (at the risk of introducing 

noise due to intersubjective variability). The results showed that L1, collapsing the moderate level 

with the high one into one class, led to better performance than L2 where medium and no/low 

stress scores were instead combined. This may suggest that, unless the stress level is very low, 

stress responses share more similarities than with no-stress responses. A more in-depth analysis 
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of this aspects could be part of a future work and it may require an in-depth analysis of individual 

responses and validations over other datasets.  

Whilst the results provide some interesting insights on how to cluster data from 

experiments, a question remains on how to deal with data from real-life situations. It is expected 

that in real-life situations larger datasets may enable finer levels of discrimination personalized 

to a specific person. In such situations, as the dataset grows, parameters for labelling may need 

to be adapted to optimize the personalization. However, such rules we used could be helpful to 

bootstrap models on the basis of experimental datasets or well-structured initial real-life data 

collections. The bootstrapped models could then be personalized to specific users and recognition 

levels as data would be continuously collected by the person.  

 

Limitations and Future Directions  

Despite the findings and contributions described above, there is still space for 

improvement. First, our proposed approach did not perform properly on multiple levels of stress 

(labelling the data using perceived self-scores). As discussed, this was most probably due to the 

limited size of the dataset, especially for the medium level of stress (out of three levels). 

Deploying built software in real life could be a way to build a larger dataset (Mehrotra et al., 

2017). With a function to collect self-reported person’s perceived stress scores (e.g. digitalized 

VAS sliding bar in an app), this data collection in the wild could produce a sufficient size of 

cardiovascular signals sets to support more reliable performance in inferencing multiple levels. 

In addition, it would be interesting to investigate how the transformation of the self-reported 

scores could be used to support multi-class classification.  

Secondly, this work focused on sedentary situations (but without constraining one’s 

mobility) and did not include physical activity (e.g. walking). It is well known that physical 

activity induces cardiovascular changes, in turn affecting stress inference performance (e.g. Hong 

et al., 2012). Hence, it would be interesting to test the instant stress inference ability of our system 

in situations where there is a considerable amount of physical activities, for example, industrial 

factory work floor.  
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9.9. Chapter Summary 

In this chapter, we have explored the contribution of nasal thermal variability to automatic stress 

recognition together with other type of cardiovascular measure, heart rate variability. In particular, 

with the long-term aim of building a stress monitoring system for mobile, everyday use, the 

approach has focused on how to quickly infer a person's perceived level of stress from instant 

physiological measurements.  

Building on the findings from Chapter 6, we have investigated (i) the performance of high-

level features from nasal temperature in instant inference tasks, (ii) then proposed novel low-level 

features to represent thermal variability, and (iii) built perceived stress recognisers based on 

unimodal and multimodal channels. Through the data collection study with 17 participants and a 

series of stress inducing tasks with different levels, we have demonstrated how this approach is 

able to achieve state-of-the-art performance using 20 seconds of data, rather than the 2 to 5 

minutes required by existing methods. Furthermore, we have investigated effects of clustering 

self-report scores (to build the ground truth) to take into account the subjectivity of the self-report 

and ensure clear separation between the level of stress to be modelled. 
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Chapter 10 

 

Conclusions 
 

The aim of this thesis was to propose a new pathway to thermal imaging-based physiological and 

affective computing, addressing limitations of static thermal imaging in highly constrained 

settings - which has been dominantly used in this area - and in turn providing practical solutions 

that work in HCI in-situ and in mobile contexts. Towards this goal, we have explored how to 

reliably extract multiple physiological thermal signatures and to automatically monitor a person’s 

mental stress levels in less constrained, more real-world like settings.  

Built on the diagram summarising findings from the literature, which we have elaborated 

in Chapter 2 (Figure 2.2), Figure 10.1 illustrates our contributions we have achieved throughout 

the proposed three-stages approach. Below is a summary of the key contributions filling the gaps 

that have emerged from the literature.  

 

STAGE I. Novel Signal Processing Techniques for Mobile Thermal Imaging  

In Chapter 4 we have identified the effect of environmental temperature which is one of 

the key issues keeping thermal imaging from being used in unconstrained, mobile settings. To 

address this, we have proposed a novel pre-processing technique that adaptively converts 

temperatures into thermal images so that graphical components can remain more consistent 

against variable thermal scenes, in turn improving automated ROI tracking performance. 

 

STAGE II. Robust Physiological Computing through Mobile Thermography  

 In Chapters 5 and 6, we have proposed novel computational methods capable of 

automatically tracking respiratory (Chapter 5) and vasoconstriction/dilation related 

cardiovascular (Chapter 6) thermal signatures and computing their rich metrics more reliably in 
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unconstrained settings. In Chapter 7, we have explored novel cortical thermal signatures, from 

underexplored scalp local areas. Accordingly, we have proposed methods for cortical mapping, 

timeseries data extraction, and metrics for capturing cortical thermal variability, which can foster 

this new brain study tool within this community.  

 

STAGE III. Improved Automatic Recognition of a Person’s Mental Stress based on Mobile 

Thermography  

 In Chapter 8, we have proposed a novel representation of respiration that helps condense 

complex stress-related respiration variability with two-dimensional data, from which automatic 

feature learning (e.g. deep CNN) methods can search for informative features. The built 

respiration-based stress recognition system has achieved state-of-the-art performance despite the 

use of only the breathing signature. In Chapter 9, we have proposed a novel instant stress 

detection system which combines vasoconstriction/dilation data with another type of 

cardiovascular signature, PPG-derived HRV. By focusing on capturing physiological variability, 

the system has also achieved very good performance for inferring mental stress levels.  

 

Across the three stages, this thesis also contributes to datasets of thermal data in both 

constrained settings and everyday settings. The datasets were incrementally built according to 

each type of analysis conducted in each study chapter. They have been released to foster mobile 

thermal imaging-empowered research.  

In the following sections, we further discuss our contributions, their impacts and insights 

as well as future directions. 
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Figure 10.1. A summary diagram of key contributions of this thesis. Red bold lines (border, 

arrows) indicate what we have explored and improved with respect to state-of-the-arts. Yellow 

boxes with red borders highlight new perspectives of our novel contributions to this research 

area, filling the gaps on the diagram summarising the literature in Figure 2.2.   
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10.1. Mobile Thermal Imaging: Bringing Thermal 

Imaging into Unconstrained, Mobile, Real-world 

Settings 

The ability to monitor physiological vital signs and psychological states is extremely important 

for medical treatment, healthcare and fitness sectors. In many situations, mobile methods, which 

allow users to undertake every day activities, are required. However, typically used technology 

for the monitoring can be obtrusive, requiring users to wear sensors such as chest belts, probes 

and electrodes (Healey & Picard, 2005; Hong et al., 2012; Alberdi et al., 2016). Alternatively, 

contactless digital image sensor based remote-photoplethysmography (PPG) can be used 

(Verkruysse et al., 2008; Xu et al., 2014; McDuff et al., 2016; Gastel et al., 2016). However, 

remote PPG requires an ambient source of light, and does not work properly in dark places or 

under varying lighting conditions. It also raises privacy issues. Thermal imaging, a non-contact 

method to measure heat patterns of materials and organisms, can be free from those constraints.  

Initial evidence of possible use of thermal imaging in physiological and affective 

computing were discovered from earlier studies, for example, monitoring breathing rate (Murthy 

& Pavlidis, 2006; Lewis et al., 2011; Pereira et al., 2015) and affective states (Genno et al., 1997; 

Puri et al., 2005; Nhan & Chau, 2010; Engert et al., 2014; Abdelrahman et al., 2017). However, 

findings from their constrained, systematic laboratory settings are hard to generalise towards the 

real-world environment given constraints involved in the studies: controlled environmental 

temperature and one’s mobility, as well as the use of high-cost and heavy thermographic systems. 

To tackle the issues and support one’s real-life situations, we have proposed a new concept: 

Mobile Thermal Imaging.  

Recent advances in thermographic systems have shrunk their size, weight and cost, to the 

point where it is possible to create mobile monitoring devices that are not affected by lighting 

conditions. Although all our computational methods proposed in this thesis which achieved state-

of-the-art performance are sensor-independent, we have mainly used low-cost, low-resolution 

thermal cameras (in Table 2.1, Figure 3.2) as main thermographic channels in this thesis. This 

provides two benefits. By doing so, we have been able to i) measure temperature anywhere in 

mobile, temperature varying situations and ii) challenge our computational models given the 

unconstrained situations and low signal quality. As we discuss details of the latter in the 

following sections, here we talk more about our design concepts for mobile thermal imaging 

explored in this thesis. 
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Proposed design concepts for mobile thermal imaging 

In exploring mobile thermal imaging in unconstrained situations, we have presented two 

types of usage concepts: i) hardware-aided design (Figure 10.2), ii) non-hardware-aided design 

(Figure 10.3). As for the first design concept, the camera can be integrated into devices already 

used: rigid (e.g. PC, desk) or non-rigid (e.g. headset with microphone and Augmented Reality 

interface like HoloLens) structures to unobtrusively monitor a person’s temperature. In Chapters 

4, 5 and 7 we have built, and used, some of these physical structures, as shown in Figure 10.2, 

similar to set-ups used in other studies (Harrison et al., 2011; Cho et al., 2016b). To monitor a 

person’s temperature while sitting on a chair (even wheelchairs), a hardware mount can be 

attached to place thermal cameras near a person’s face, upper body (Figure 10.2a) and near the 

head (Figure 10.2b). 

 

 

Figure 10.2. Design concept for mobile thermal imaging (hardware-aided design): a) a 

hardware frame attached to a chair for monitoring a person’s upper body and face as in Chapter 

4, b) the frame attached to a tripod for monitoring the head in Chapter 7, c) a head-set interface 

attached to a cap for the camera closely viewing a person’s face in Chapter 5. 

 

 

 

 

 

To closely monitor a person’s facial thermal signatures while walking and moving, a 

headset-shaped interface shown in Figure 10.2c can be used. This can also be used together with 

a wearable device such as the Microsoft augmented reality device Hololens. Even if not 

investigated in this thesis, with this setup as shown in Figure 10.3, our new approaches could 

possibly enable improved assessment of wellbeing of a worker in their work environment by 

monitoring multiple physiological cues together through the single thermal imaging channel. At 
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the same time, the worker can be informed of detected stress levels to help to tailor work 

schedules to his/her psychological needs. For this, multimodal feedback (e.g. tactile and auditory 

feedback as the author has explored beyond this thesis in Cho et al., 2016a and Cho 2018) may 

also be used. 

 

  

Figure 10.3. Mobile thermal imaging-based in-the-wild stress intervention and management for 

a human worker in a factory (the EU H2020 Human research project). 

 

 

As alternative setups, Figure 10.4 describes non-hardware-aided design concepts. In 

particular, the handheld design used in Chapter 9 (and Figure 10.4a) provides more flexibility 

and scalability for recovering physiological signatures and recognising mental stress. Users can 

then use the system ad-hoc in situations when they need to monitor their condition. For example, 

a person can just hold a smartphone facing his/her face whilst walking to monitor breathing 

patterns, as shown in Figure 10.5. The visualised breathing pattern is produced by our proposed 

robust respiration tracking algorithm in Chapter 5. This flexible handheld setup enables many 

other uses, such as attaching the system on a desktop, desk, a lamp or handle of the bicycle, at a 

dashboard or even on a window in the car (Figure 10.4b, 10.4c, 10.4d). This flexible setup can 
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help thermographic cameras to effectively capture physiological thermal signatures of interest, 

whilst at the same time they do not interfere too much with a person’s view.  

 

 

Figure 10.4. Design concept for mobile thermal imaging (without the aid of hardware): a) a 

handheld concept in Chapter 9, b) the camera can be also attached to, or near, a monitor as in 

Chapters 6, 8, alternatively, it can be simply attached to c) a lamp, even d) a window. 

 

 

Figure 10.5. Mobile thermal imaging-powered anytime, anywhere with breathing monitoring 

(which is based upon our proposed robust respiration tracking algorithm in Chapter 5). 

 

 

All in all, mobile thermography-based physiological computing and stress recognition, 

which this thesis has brought to the world for the first time, can perform in-the-wild settings, 

including outdoors and places under night illumination (i.e. key limitations of remote PPG, 

Verkruysse et al., 2008), as well as removing the need to wear sensors (e.g. breathing belt) that 
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may not be suitable or unpleasant. For example, in the gym people may find sensors unpleasant 

due to sweat or constrained movements. Another case would be people with a certain type of pain 

such as CRPS (Birklein, 2005) who tend to reduce the number of clothes and objects that touch 

their skin. Given this, this new concept, mobile thermal imaging, could drive its scalability in real 

world settings. 

 

 

10.2. ROI Tracking and Environmental Temperature 

Changes 

To capacitate mobile thermal imaging to function, an important step is to automatically track 

Regions-Of-Interest (ROIs) on thermal images. In unconstrained contexts, this is inevitable to 

extract a certain type of physiological signature from each appropriate area (e.g. respiration: 

capturing heat exchanges in nostrils by inhalation and exhalation cycles of mammal breathing, 

Murthy & Pavlidis, 2006; Lewis et al., 2011; Ebisch et al., 2012). Some earlier studies conducted 

in highly constrained settings have also used ROI tracking algorithms originally built for RGB 

vision image sequences in order to improve performance in obtaining thermal signatures under 

motion artefacts (Sun et al., 2005; Garbey et al., 2007; Tsiamyrtzis et al., 2007; Zhou et al., 2009; 

Ebisch et al., 2012; Shastri et al., 2012; Manini et al., 2013).  

Beyond laboratory environments with stable temperature only, ambient temperature 

changes influence morphological and graphical properties of thermal images dynamically, 

negatively (e.g. Figure 4.1), making it harder to track ROIs. This has never been addressed in this 

area given the focus of the literature on static thermal imaging in highly controlled environments. 

To address this, in Chapter 4 we have proposed the Optimal Quantisation technique that 

adaptively quantises temperature values to complement environmental thermal dynamics on 

thermal images. We have identified how use of the method alone can significantly enhance 

performance of existing algorithms in tracking ROIs (e.g. periorbital area in Table 4.1) on thermal 

imaging sequences even in indoor laboratory settings with varying environmental temperatures 

in Chapter 4. We have used this technique as the backbone to build our computational methods 

proposed in other chapters for robust tracking of physiological signals and automatically 

detecting mental stress in more unconstrained settings. For example, with our nostril-ROI 

tracking algorithm proposed in Chapter 5, the Optimal Quantisation has achieved extreme 

robustness in tracking the area even during the outdoor physical exercise session. 
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Furthermore, we have also shown how positively this method can generalise to other 

material types than the human skin. In other mobile, ubiquitous applications using thermal 

imaging beyond physiological and affective computing, we have found the significant role of the 

quantisation process. With a deep learning framework (transformer network-based convolutional 

neural network; Jaderberg et al., 2015) shown together in Chapter 4, dynamically quantising a 

thermal matrix makes it possible to learn spatial thermal patterns of material surfaces outdoor so 

computing devices can recognise their types. We believe this fascinating capability can boost the 

general use of thermal imaging in enhancing our experiences within many HCI settings. 

 

 

10.3. Representation of Physiological Thermal Signature 

How to represent signals is an important question in physiological computing to obtain reliable 

physiological cues. Averaging has been the most common, simplest way to represent a 

physiological signal. For example, averaging temperatures within a nostril ROI (usually, 

rectangular shape) has been most frequently used to represent a breathing cue on a thermal image 

(Murthy & Pavlidis, 2006; Fei & Pavlidis, 2010; Abbas et al., 2011; Lewis et al., 2011; Pereira 

et al., 2015). The same applies to capturing thermal directionality which has been a main focus 

in the literature (Veltman & Vos, 2005; Or & Duffy, 2007; Di Giacinto et al., 2014; Engert et al., 

2014; Abdelrahman et al., 2017). Beyond the main scope of this thesis, methods that enable a 

camera-based PPG are all based on this averaging technique (averaging intensity values on 

images as explained in Appendix F.1).  

However, in mobile, unconstrained, outdoor situations, it is hard to ensure the acquisition 

of a high quality of this certain type of physiological thermal signature, in particular, through 

mobile thermal imaging (even if an enhanced quantisation process adjusts environmental thermal 

effects). For example, a person’s shallow breathing would accompany very subtle heat exchanges, 

resulting in blurred patterns on thermal images (e.g. Figure 5.1b). In this case, averaging is likely 

to lose the fairly small but important information, as discussed in Chapter 5. Towards this end, 

we have introduced a novel signal representation based on the new concept of Thermal Voxel 

(Section 5.2.2), which helps to obtain a higher quality of respiratory signals in comparison with 

the traditional method (i.e. average temperature), as shown in Figures 5.10-5.14.  
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Likewise, in Chapter 7, we have also identified the same need for improved capturing of 

a cortical physiological cue from a spatial thermal pattern, rather than averaging. Exploring novel 

stress related cortical thermal signatures from the unexplored area, the scalp, we have shown that 

a timeseries of spatial skew helps to capture cortical activation/deactivation-induced thermal 

variations over the scalp whilst averaging does not. In turn, our novel signal representation 

techniques have enhanced signal quality of physiological patterns extracted through thermal 

imaging, providing temporally richer information where we can capture physiological variability. 

 

 

10.4. Important Role of Tracking Physiological 

Variability in Stress Assessment 

Extreme robustness of physiological measurements has to be made in order to reliably, 

automatically assess a person’s physiological and psychological states, in particular, mental stress. 

Robust methods which this thesis has contributed for extracting respiratory patterns (Chapter 5) 

and vasoconstriction/dilation-induced nasal temperature variation patterns (Chapter 6), can 

produce richer, less noisy physiological signals than existing methods do. This can play a 

significant role in automated stress inference. By richness, we are referring to the complexity of 

physiological signatures.  

As for the respiratory signature, our method (Chapter 5) can capture variations along with 

respiratory cycles. Likewise, as for the cardiovascular signature from the nose tip area, our 

method (Chapter 6) can capture complex variations along with vasoconstriction and vasodilation 

patterns. This can help to explore variability beyond single metric values, such as a simplistic 

respiratory rate or a binary thermal direction which has been primarily explored in the literature. 

In particular, studies where thermal imaging is used for affective computing have mostly focused 

on exploring the relationship between the binary direction of thermal changes on facial or palm 

areas and affective states (Genno et al., 1997; Pavlidis et al., 2001; Puri et al., 2005; Gane et al., 

2011; Engert et al., 2014). In addition, the use of the single metric has resulted in inconsistent 

findings (e.g. Pavlidis et al., 2001 and Gane et al., 2011).  

As discussed in Chapter 6, the multiple metrics which are designed to capture variations 

helped produce significance while the existing single metric did not in quantifying mental stress. 

Given this, the richer physiological information gathered by our methods can now empower the 
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exploration of the role of each physiological thermal signature in mental stress recognition in 

Chapters 8 and 9 where the contribution of each signature to automatic stress inference has been 

separately investigated (Chapter 8: revisiting the role of breathing in existing stress inference 

protocols, Chapter 9: exploring the role of nasal thermal variability in instant stress recognition). 

The literature of mental stress recognition or quantification (including thermal imaging-

based studies) has mostly focused on gross statistical features. For example, in the case of 

breathing, average breathing rate over a specified time window (e.g. 2 minutes) has been used as 

the main feature (Hong et al., 2012; McDuff et al., 2016). However, given that mental stress 

induces complex physiological phenomenon (Everly Jr & Lating, 2012), the contribution of such 

gross statistical feature has been very weak or unclear towards mental stress recognition (McDuff 

et al., 2016; Masaoka & Homma, 1997; Hong et al., 2012). Inspired by heart rate variability 

metrics (e.g. LF/HF ratio, SDNN) that help assess sympathovagal balance between the SNS and 

PSNS (Billman, 2013; Shaffer & Ginsberg, 2017), we have focused on how to represent 

variability of the rich respiratory (Chapter 8) and vasoconstriction/dilation-induced nasal thermal 

signatures (Chapter 9).  

In particular, with the case of respiration, stressful situations induce irregular breathing 

patterns, according to Grossman (1983). This may be due to our fight-or-flight responses of the 

ANS to stressors (Everly Jr & Lating, 2012). Given this, we have proposed a new method with 

the use of bi-dimensional spectrogram to capture variability of breathing patterns in a compact 

way, considering both the time and frequency domains, discussed in Chapter 8. Following this, 

we have also proposed the use of automatic feature learning (representation learning) using 

artificial neural networks (e.g. deep convolutional neural network, LeCun et al., 2015) to 

automatically find good features in relation to mental stress during the learning process from the 

newly represented low-level feature (i.e. Respiration Variability Spectrogram, RVS).  

Likewise, we have also proposed to use representation learning techniques by taking the 

uni-dimensional nasal thermal variability sequence (Figure 9.3) from a short-term measurement 

as low-level features in Chapter 9. This strategy can eliminate the need for feature handcrafting 

(i.e. carefully designing metrics and use them as machine learning features). As discussed in 

LeCun et al. (2015), even carefully hand engineered-feature extractors could fail to generalise 

towards unseen data sets. Throughout the conducted evaluation study for each approach, we have 

demonstrated that i) a new representation of breathing variability has enabled to achieve the state-

of-the-art stress recognition performance from the use of 2 minutes-breathing signals only 

(accuracy of 84.59%, LOSO validation) and ii) the use of the new nasal cardiovascular thermal 
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variability together with blood volume pulse from another channel has helped achieve an 

accuracy of 78.33% from a very short term measurement (20 seconds, we call this instant stress 

detection), which is also the latest performance.  

 

 

10.5. Limitation and Future Directions 

There is still room for improvement towards building reliable physiological monitoring and 

mental stress recognition systems. Despite the improved quantisation process which helps to 

address effects of environmental temperature on thermal imaging of a person’s facial or scalp 

morphological shape, the ambient temperature still influences one’s physiological pattern. For 

example, from the study for instant stress inference in Chapter 9, data in Rest 1 was affected by 

the difference in temperature between the waiting area and experiment area. This effect was 

further enhanced when the participants had just arrived from outdoors with the body temperature 

being strongly influenced by colder outdoor weather (winter season). This is important, as if the 

system has to be used, it is crucial that the person uses it in the same environment where the 

stressor occurs. It should also be tested in future studies if the decrease in nose tip temperature 

may be saturated by very cold environment temperatures and therefore would be less informative 

in such situations for stress detection. For real world applications, it is critical to take into account 

such factors in signal processing or to inform users that the system is not reliable in the case of 

saturation. 

Furthermore, there is a need to explore how this mobile thermal imaging-enabled 

physiological computing and stress recognition capability can help manage stress. Indeed, 

smartphone apps with such capabilities are increasingly desired as possible tools for facilitating 

stress self-management (Konrad et al., 2015; Coulon et al., 2016; Ptakauskaite et al., 2018), as 

people are often unaware of their level of stress as well as being stress-sensitive to particular 

situations; for example, chronic pain can cause a fear of movement (Felipe et al., 2015). There is 

also strong interest within the industry to complement typically used questionnaires which enable 

improved assessment of wellbeing with personnel, as well as revisiting work plans and work 

environments (Fleck et al., 2015). As discussed in Section 10.1, mobile thermal imaging sensing 

channels could be embedded into employees’ aids for ease of use. While these low-cost sensors 

are still not perfect, we have contributed towards enhancing their capability. At the same time, 
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we hope our work contributes to the literature in general using these signals as a measure of 

mental stress (Mohan et al., 2016; Jobbágy et al., 2017; Charlton et al., 2018). 

Although our main aim for Stage III of this thesis was to build representation techniques 

that can enhance the stress inference performance of existing machine learning classifiers, we 

need to note the limitations of machine learning algorithms we used, in particular, convolutional 

neural networks. Given that the model has a large number of parameters, it is generally 

susceptible to overfitting, leading to poor performance on unseen data. The dropout technique 

can help address this issue as discussed in Section 4.6 (Srivastava et al., 2014). In addition, CNNs 

are not ideal to handle physiological signals that are time-varying rather than just spatially variant. 

Hence, in future work, we plan to implement further machine learning algorithms which are to 

process sequential data, such as, a Recurrent Neural Network (RNN). In addition, attention 

mechanisms could be used to overcome the limitation of CNN. Recent literature has shown that 

CNN may become as powerful as RNN if such mechanisms are used. In parallel, we also plan to 

merge different classifiers into one decision model so as to fuse stress-related information from 

multiple thermal signatures.  

Lastly, we have found that constraints arise from the resolution and imaging quality of 

low-cost thermal imaging systems themselves. In particular, low spatial resolution limits the 

distance at which physiological patterns can be measured (in our conducted data collection 

studies, less than 0.7 meters). In addition, the thermal sensitivity (<0.1°C) was also limited, which 

may interfere with capturing subtle physiological patterns (e.g. cortical thermal signatures from 

the scalp – there may be more subtle, delicate cortical signals as signals EEG can detect). When 

we first undertook this work, only the FLIR One (2G) was available as a mobile thermographic 

channel. However, now we can see more options coming to the market such as Therm-App Hz 

(see Table 2.1). Given high performance produced by our proposed methods, we can expect that 

by using new low-cost, but more thermal sensitive cameras which are emerging, their 

performance will get even better. Indeed, most of our proposed solutions are camera-parameter 

independent and therefore may lead to further improvements with enhanced camera properties. 

Higher quality mobile thermal imaging will to a greater extent open up exciting prospects for 

physiological and affective computing, as well as HCI. 
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Appendices 
 

Appendix A.  (Extra Study) Skeletal Muscle Activation as 

a New Thermal Signature from Underexplored ROIs: 

Understanding of Thermal Signatures of Physical Stress 

during Anaerobic Exercise 

Together with mental distress, physical stress is an important physiological phenomenon and one 

of the facets of stress (Ursin & Eriksen, 2007). Even though this thesis mainly focuses on a 

psychological facet of stress, the ability to detect physical stress would provide a variety of 

benefits. In sports for example, people are likely to overdo exercises without respect to fatigue or 

physical stress, probably leading to injury. Providing sensory feedback concerning physical 

overload cues could help in such situations and could be used in rehabilitation and physical 

therapy. Hence, we review the literature of muscular physiology of heat production. We then 

conduct a pilot study, and report results, to explore temperature variations in healthy adults who 

attend anaerobic exercise sessions to induce repeated muscle contractions leading to physical 

stress. 

 

A.1. Background: Physical Stress and Muscle Temperature 

Although the scope of this thesis is limited to psychological stress, this section provides reviews 

of physiology of muscle temperature in relation to physical stress and then discusses further 

insights.  

Given that it is difficult to attain perfect efficiency in the catabolic processes of cells in 

human beings, some of the energy is lost which causes heat transformation. Skeletal muscle, the 

voluntary muscle tissue in the human body which can be controlled by our will,  strongly 

contributes to the production of a high amount of heat, helping to maintain our regular bodily 

temperature (Patton, 2015; Hall & Guyton, 2015). 
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The relationship between muscle stress and heat production can be explained by the 

balance between energy demand and supply. Bringing forward the term of biochemical reactions, 

(Barclay et al., 1995) assessed the energy supply and demand by measuring muscle heat 

production, calling phosphocreatine (𝑃𝐶𝑟 ) breakdown and its re-synthesis as the ‘initial’ and 

‘recovery’ process, respectively. The results of their experiment indicate that in non-fatigued 

muscle adenosine triphosphate (ATP), which is a key energy source to the organism activation, 

this would be rapidly resynthesized by a series of biochemical reaction, an imbalance between 

the demand for the 𝑃𝐶𝑟 , and its supply which causes muscle fatigue.  

Each contraction of a muscle instantly produces the ‘initial’ heat on the muscle, and the 

‘recovery’ heat is followed at a relatively slow rate between contractions. The ratio between the 

initial and recovery heats (‘recovery’ per ‘initial’ heat) increases steeply at early contractions, 

however it comes across a stable status in successive contraction cycles as if it encounters the 

steady-state after the transient response in the electric circuit or mechanical structure. The authors 

identified the mean value of the ratio over the last ten cycles as proportional to a decline of force 

produced by the muscle in accordance with contraction sequences. The insufficient amount of 

resynthesized 𝑃𝐶𝑟  causes the feeling of fatigue and presents an amount of heat change. Although 

they targeted mouse skeletal muscles, the findings could be applied to human beings. It is 

expected to possibly observe the specific tendency of heat production in human skeletal muscle 

in accordance with mismatch between energy demand and supply process caused by the excessive 

muscle contraction arousing physical and general fatigue. 

In particular, muscle contraction plays a central role in the production of heat on the 

skeletal tissues and needs an energy source called ATP. The biochemical reaction referred to as 

creatine phosphokinase reaction can be expressed as  

𝑃𝐶𝑟 + 𝐴𝐷𝑃 → 𝐴𝑇𝑃 + 𝐶𝑟.                                                   (A.1) 

During the reaction, an amount of heat is produced. In terms of metabolic expense, neuronal 

activity requires a metabolically high cost. According to Laughlin et al. (1998), approximately 

104 ATP molecules are used to transmit a slight amount of information at a chemical synapse, 

and almost 106-107 ATPs are needed to recharge a neuron for a single action potential. Certainly, 

this is followed by the generation of a considerable amount of heat. 

Prolonged and strong contraction of the skeletal muscle leads to physical fatigue.  

According to Smets et al. (1995), a general fatigue, which is a subjective feeling of tiredness and 

physical fatigue, is related to muscular distress. This is highly inter-correlated regardless of 
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different individual occupations or health conditions. The fatigue is accompanied by a decrease 

in performance of both psychological and behavioural activities and results in a failure to sustain 

the needed behaviour (Smets et al., 1995). Among several factors contributing to the feeling of 

fatigue, such as the central nervous system activity, sarcolemma and calcium, the by-products 

related to ATP present their main contribution towards fatigue during muscle activity. 

The process of physical fatigue can be explained through a mechanism relevant to ATP 

synthesis. Firstly, muscular activity continually requires energy sources, and steadily lessens the 

ability of the muscular tissues to reproduce ATP at a quicker pace. This leads to a shortage of 

ATP, making myosin heads incapable of producing the necessary force for prolonged muscle 

contraction and causing physiological muscle fatigue. In addition, blood flow through a muscle 

is repeatedly interrupted during the prolonged muscle contractions, causing the loss of nutrient 

supply, as well as loss of oxygen or glucose in muscle fibres. This in turn leads to low levels of 

ATP due to the loss of nutrients disrupting re-synthesis of ATP, resulting in making people feel 

fatigue (Patton, 2015; Hall & Guyton, 2015).  

As for the relationship between the physical muscle fatigue and psychological fatigue, 

Patton (2015) documented that while performing mild physical activities, a person hardly 

experiences “complete” physical fatigue (or stress) which makes him/her unable to contract 

muscles anymore and what the person feels is highly likely to be psychological fatigue. Instead, 

psychological fatigue (this term is defined as “a subjective sensation characterised by lack of 

motivation and of alertness”), according to Sharpe (1991) and Smets et al., (1995), provokes 

mental tiredness which makes a person discontinuing a physical movement (Patton, 2015). 

Therefore, it is expected that a pattern of heat production during a muscular activity could provide 

thermal signatures of human physical stress, and particular skeletal muscles activated in physical 

activities could be valid ROIs as shown in Figure A.1. 

 

   
 

Figure A.1. Superficial muscle dissection of the neck and back. 
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Empirically, Bartuzi et al. (2012) analysed the effect of physical stress on the temperature 

variance of muscles using thermography and the superficial Electromyography (EMG) signal. 

The EMG has been broadly employed in measurements of muscular activations and is one of key 

techniques to assess muscle fatigue (physical stress). The authors conducted the study with 10 

male participants performing 5%, 15%, and 30% of maximum voluntary contraction (MVC) 

lasting 5 minutes with biceps brachii of their right upper limb. As a result, they documented the 

root mean square of the EMG scores as showing a statistically positive correlation with thermal 

values on the biceps brachii muscle, and the mean power frequency and median frequency of the 

EMG were negatively correlated with the temperature.  

In addition, they identified the higher the level of muscle contraction a participant 

performs, the higher the increase of temperature can be observed. However, the experiment was 

limited to a one-off contraction, not the repeated contractions, so further exploration should be 

followed in order to understand detailed patterns of thermal signatures of fatigue and to bring the 

thermography-based measurement into our daily lives. 

 

 

A.2. Experimental Protocol and Dataset 

In this study, a push up, one example of numerous popular anaerobic exercises, is employed to 

find thermal signatures in association with fatigue. In particular, the pilot study concentrates on 

thermal cues of the upper trapezius muscle which is actively contracted during the exercise 

(Calatayud et al., 2014).  

In the pilot study, 4 healthy adults (1 female) (aged 25-31 years, M=28.75, SD=2.63) were 

recruited from the University College London and non-research community. Each subject was 

given the information sheet and the informed consent form prior to data acquisition. The 

experiment was conducted in a quiet lab room with no distractions and took approximately   half 

an hour per participant.  

The task was split into three segments: a rest period (2-minutes), 3 times repeated exercise 

including a set of push-ups as well as a rest period, and a post-rest (3-minutes). The segments are 

shown in Figure A.1. During each session all participants were asked to fill out a questionnaire 

which consists of demographics and question-sets which were recorded by a thermal camera (see 

Figure 1.2b). Specifically, the left-upper trapezius muscle undergoing contraction and relaxation 
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along a set of push-ups were centrally focused. Before the start of the exercise, each subject was 

asked “how many push ups do you usually do during each set” in order to provide the maximum 

number of push-up repetitions. In addition, participants were required to take off their shirts (male) 

or wear light sportswear (female) and perform the push-ups in the same pose and location, as well 

as making sure their physical conditions were fully recovered during the rest period before 

starting the next segment.  

After the end of each rest period, every subject was asked to answer three questions based 

on a ten score Visual Analogue Scale (VAS), which is a straight line allowing participants to 

answer on an analogue basis, instead of using the Likert scale, in order to avoid its non-parametric 

properties (Bijur et al., 2001). The three questions were: 1) Do you feel mentally fatigued or 

tiredness? (Psychological fatigue is a subjective sensation characterized by lack of motivation 

and of alertness) (ranging from 0, no fatigue, to 10, total exhaustion), 2) Do you feel physically 

tired or fatigued? (ranging from 0, no fatigue, to 10, total exhaustion), and 3) Do you feel relaxed? 

(ranging from 0, not at all, to 10, very much). 

After the end of each set of the exercise, every subject was required to answer six questions 

based on the VAS which were: 1) Did you feel mentally fatigued or tiredness? (Psychological 

fatigue is a subjective sensation characterized by lack of motivation and of alertness) (ranging 

from 0, no fatigue, to 10, total exhaustion), 2) Did you feel physically tired or fatigued? (ranging 

from 0, no fatigue, to 10, total exhaustion), 3) Difficulty of the task? (ranging from 0, low, to 10, 

high), 4) How much do you feel you engaged in the task? (ranging from 0, low, to 10, high), 5) 

How much do you think you performed in the task? (ranging from 0, low, to 10, high), and 6) 

Did you feel pain in your muscles? If so, where? and how much?  (0-10). The last question was 

designed to investigate interaction effects between fatigue and pain conditions for special use. 
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A.3. Results 

Figure A.3 shows a series of thermal images which were subsequently collected while a 

subject (P2) was performing a trial of push-ups. The upper trapezius muscle activation can be 

thermally observed as depicted in Figure A.3b. The activation could be possibly quantified by 

using statistical features such as the integral-ratio based on thresholding and skewness, and 

information theoretic features such as entropy. Although a significance test should be done as 

part of future work, different values of the features were gathered in accordance with thermal 

activation patterns on the upper trapezius muscle as shown in Figure A.4. Thermograms on the 

upper trapezius muscles collected during a push-up session were presented in Figure A.3e. While 

the maximum temperature on the ROI is not able to provide the full information about two-

dimensional thermal distribution in relation to muscle activation (Figure A.4a), the integral ratio, 

skewness, and entropy reflect the dimensionality and could be selected as main features indicating 

the skeletal muscle activation. In other words, these features can be used in automatic recognition 

of fatigue in case there are significant differences between each feature.  
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Figure A.3. (a) thermograms collected during the push-up sessions (Participant 2), (b) ROI: 

thermal patterns on the upper trapezius muscle in a narrow range of temperature –  just before 

‘push’ (left), ‘up’ (right). 
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Figure A.4. (a) maximum temperature, (b) integral ratio based on thresholding, (c) skewness, 

(d) entropy on (e) a specific ROI (upper trapezius muscle) (Participant 2).  

 

 

In consideration of findings from experiments which investigated mice’ heat production 

during muscle contraction by Barclay et al., 1995, initial heat and recovery heat amounts were 

supposed to be measured from different moments, just before ‘up’ (Figure A.3b, right), and ‘push’ 

(Figure A.4b, left), respectively. However, the concepts (i.e. initial-recovery) require a relatively 

long pause between each contraction to wait for the heat production. In this experiment, 

participants executed the exercise at natural speed, so the maximum thermal signals from the 

moments shown in Figure A.3b. (left) were instead collected manually to observe tendencies on 

heat production in relation to general fatigue. Table A.1 summarises the overall results. 

According to this result, heat appears to be roughly produced from the activated muscles along 

muscle contraction which was gradually saturated and started to decrease around the moment 

participants felt most fatigued. The correlation coefficient between the differential subjective 

rating on fatigue and the differential maximum temperature produced on the upper trapezius was 

-0.341. 
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Table A.1. Comparison between differential subjective ratings based on the VAS scale and difference of 

maximum temperature on the upper trapezius muscle during push-ups and rest periods. 

Parti
cipan

ts 
Score 

Base-

line 

Push-
ups 

(#1)  

Rest 

(#1) 

Push-
ups 

(#2)  

Rest 

(#2) 

Push-
ups 

(#3)  

Rest 

(#3) 
Relax 

P1 

Rating on 

general fatigue 

(VAS scale) 

2.2 3.5 2 3.8 2.2 3.6 3.2 4 

Differential 

Rating (ΔVAS) 
 1.3 -1.5 1.8 -1.6 1.4 -0.4 0.8 

Differential 

maximum 

temperature 

 -0.3 0.3 -0.65 -0.13 -0.34 -0.05 -0.36 

P2 

Rating on 

general fatigue 

(VAS scale) 

5 5.1 4 5 5 6 5 6 

Differential 

Rating (ΔVAS) 
 0.1 -1.1 1 0 1 -1 1 

Differential 

maximum 

temperature 

 0.08 -0.31 0.98 0.1 -0.25 0.55 -0.26 

P3 

Rating on 

general fatigue 

(VAS scale) 

4.6 5.9 3 7 4 9 7 6.3 

Differential 

Rating (ΔVAS) 
 1.3 -2.9 4 -3 5 -2 -0.7 

Differential 

maximum 

temperature 

 -0.23 -0.17 -0.26 0.16 -0.1 -0.39 0.39 

P4 

Rating on 

general fatigue 

(VAS scale) 

4 6.6 5 6.4 4.7 8.4 7.4 5.7 

Differential 

Rating (ΔVAS) 
 2.6 -1.6 1.4 -1.7 3.7 -1 -1.7 

Differential 

maximum 

temperature 

 -0.5 0.05 -0.43 0.26 -0.24 0.08 0.01 

 

 

Interestingly, it is noteworthy that there were specific patterns of heat variation produced 

during the rest periods after the completion of each set of push ups. As can be seen in Figure A.5. 

(maximum temperature on the upper trapezius muscle), a higher amount of heat was steadily 

created even while the participant was taking a break between push-ups sets. The subject 

responded with feeling a high level of fatigue on the VAS questionnaire after finishing the last 

set of push-ups, and a drop in the maximum temperature on the muscle was found during the last 

rest period. In parallel, the muscle deactivation could also be found, as illustrated in Figure A.6. 



303 

However, more experiments should be done to identify the thermal signatures of fatigue during 

relaxation. 

 

 

Figure A.5. Maximum temperature sequences on the upper trapezius muscle during the rest 

periods after the completion of each set of push ups (Participant 2). 

 

 

 

Figure A.6. Upper trapezius muscle activations during the rest period (participant 2). 

 

 

Lastly, there was a concerning point about the physical setting of the thermal camera. 

Because the recording position was fixed, distance to the muscle and viewing angles were 

severely changed along with each moment as well as the posture of a person working out, causing 

key ROIs to appear and disappear.  This also led to tracking errors. In future work, the concept 

of wearable thermal imaging used in Chapter 5 will be adopted in order to deal with the issue, 

and more than 20 participants will be recruited in order to reach statistically significant results. 
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Appendix B.  Extraction of Cardiac Pulse Rate 

In this section, we briefly show how to recover a person’s cardiac pulse rate from thermal images. 

Using the proposed automatic ROI tracking algorithm presented in Chapters 4 and 5, regional 

thermal sequences focusing on a blood vessels shown on the neck (see Figure B.1) were extracted, 

followed with maximum thermal signals which were collected and processed with a series of the 

proposed method including interpolation, a high-pass filter (with cutoff frequency of 0.5 Hz; 30 

beat-per-minute) and fast Fourier transformation (with a 7.5 seconds sliding window). To be 

specific, a cardiac pulse frequency is determined by searching local maxima between the average 

range of a healthy adult’s heart rate (60 bpm – 120 bpm) (Karjalainen et al., 1994; Ropers et al., 

2003). Furthermore, a thresholding technique is applied to remove ambiguous data points.  

Figure B.1b shows the calculated heart rates (empty circles) using this method and heart 

rate signals (filled circles) simultaneously collected from the wearable PPG sensor (Figure A.3) 

as a ground truth. Overall, these results show a similar tendency in the cardiac rates from the 

selected 120s sequences. Here, sparse points in the heart rate data collected from the PPG sensor 

(see Figure B.1b, filled circles) were due to calculation faults in relation to motion or contact 

artefacts.  

 
(a) 

 

 
(b) 

Figure B.1. (a) Blood vessel on the neck, (b) results: cardiac pulse rate measured by the 

proposed method (Grey-empty circles) and the rate measured by PPG sensor (Pink-filled 

circles). 
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Furthermore, using the ThermalBreath II dataset collected in Chapter 5, we evaluated 

performance of mobile thermal imaging-based pulse rate extraction using Pearson’s correlation 

coefficients and additionally, the customised accuracy index CAND used in Garbey et al. (2007) 

to align the analysis process, which can be expressed as: 

CAND-base accuracy (in Garbey et al. 2007)  =    (B.1) 

where ℛ𝑟𝑒𝑓  is a value collected from references and ℛ𝑚 is a physiological rate estimated through 

mobile thermal imaging (here, we call this approach, ThermSense).  

Figure B.2 shows the results (correlation: r=0.519, p<0.0001, CAND accuracy=90.79%, 

SD=7.364). It shows the great potential in monitoring this physiological metric using mobile 

thermal imaging under uncontrolled situations including extreme conditions, such as sudden 

appearances of hot and cold temperatures in the background. However, as discussed in Section 

2.2, we identify that the bespoke accuracy evaluation tool (CAND) tends to generally produce 

high values even in the case where correlation is weak. Given the weak correlation, there is a 

need to improve this performance so that we can use thermal imaging in measuring cardiac pulse 

rates.  

 

 

              

  (a)                          (b) 

Figure B.2. (a) Scatter plot and (b) the CAND-based accuracy histogram of cardiac pulse rates 

extracted through mobile thermal imaging in comparison with reference data (Infiniti finger 

BVP sensor). 
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Appendix C.  Extraction of Eye Blinks 

Although little has been known about how to extract eye blinks from thermal image sequences, 

it is  an important physiological response towards a person’s psychological states (Caffier et al., 

2003). However, it is difficult to automatically extract one’s eye-blink pattern from thermal 

images collected by low resolution (i.e. temporally and spatially), mobile thermal imaging since 

areas around one’s eye are likely to get blurred in a thermal image of low spatial resolution. To 

recognise thermal changes on a ROI (i.e. eye) due to eye blinks, we propose the use of Skewness 

among features introduced in Section G. It can assist with sensing a moment when an eye blinks, 

as can be seen in Figure C.1. Figure C.1a illustrates the eye-ROI on thermal image sequences 

during the moments (collected at 186.545s, 186.713s and 186.869s) and when local peaks of 

Skewness are matched with the blinks, as shown in Figure C.1b. In future work, this approach 

will be evaluated into greater depth. 

 

 

Figure C.1. Extraction of eye blinks: (a) the eye-ROI on thermal image sequences during the 

eye-blink moment, (b) skewness along with time. 
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Appendix D.  Exploration of Non-linearity in 

Quantisation Process 

D.1 Method 

Non-linearity can be taken into consideration for the quantisation process in case a thermal 

dynamic range of a certain ROI is predictable, for example, thermal changes depending only on 

homoeothermic blood flows through a vessel in controlled ambient temperature for further 

enhancing tracking performance. By contrast with a linear quantisation (Figure D.1a), a non-

linear quantisation can lessen colour variances caused by thermal dynamic changes (Figure 

D.1b,c). It can be expressed as   

 
 

                   

 

where T is temperature, Tmin is a minimum temperature of interest, Tmax is a maximum temperature 

of interest, and Tmc is an average temperature on a targeted ROI, n is the number of bits (e.g. 

8bits-pixel or 16bits-pixels),  and  are coefficients which can be calculated by Equation 

(D.2). q is another coefficient which can be chosen by the predictable range of temperature 

varience on the targeted ROI. Relying on the coefficient q in Equation (D.1), the non-linear 

quantisation decides the size of a flat section, minimizing effects of thermal changes upon colour 

variations. In the case of regions showing high temperature changes (e.g. thermal variances in the 

nostrils by the respiration activity), q should be chosen to make the flat section wide. The 

coefficient q can be selected either heuristically or statistically.  

Figure D.2 illustrates the concept of nonlinear quantisation. It can replace the optimal 

quantisation stage for the overall automated ROI tracking procedure (Figure 4.2). This could 

produce faster performances than the proposed optimal quantisation as it does not require the 

iterative computation used in our optimal quantisation. Nonetheless, these proposed methods can 

be complementary to each other since the maximum and minimum temperature of interest can be 

set to output data from the proposed optimal quantisation. 

  

                           

(D.1) 

 

 

 
                           

(D.2) 
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Figure D.1. Quantisation graphs: (a) q=1.00x2, (b) q=1.65x2, (c) q=2.65x2 

 

 

 

Figure D.2. A concept of Non-linear Quantisation 

 

 

D.2. Results 

To evaluate this concept, we implemented the Mode-seeking algorithm as a main tracker 

that was different from previous set ups shown in Section 4.3. This section showed the worst 

performance in the previous evaluation. This was to see how this non-linear quantisation concept 

can improve worst case scenarios. The Mode-seeking method generates a confidence map of the 

next frame from an image based on the histogram information (Cheng, 1995), and our non-linear 

Quantisation technique which can be applied before creating each confidence map corresponding 

to every frame sequence.  

Without the use of the experimental protocols proposed in Section 3.3, thermal images of 

several human bodies were recorded using both a high-precision thermal camera and a low cost 

mobile thermal camera (see Figure 1.1) for this evaluation (only for collecting data from different 

body areas). Examples of the collected data (see Figure D.3) show different quantised thermal 

images of a human clenched hand along with different values of q in Equation (D.1). It is 
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noteworthy that the non-linear quantisation can smoothen colour differentials over the boundary 

of a targeted area (e.g. blood vessels). 

 

 
 

Figure D.3. Quantisation results of an image (a clenched hand and blood vessel, target area: 

blood vessel): (a) q=1.00x2, (b) q=1.30x2, (c) q=1.45x2, (d) q=1.65x2 

 

Figure D.4 shows the results from the mode-seeking method with the nonlinear 

quantisation. As can be seen, one side of a parting of hair was selected as a ROI and the bounding 

box tracked the ROI completely. Table D.1 summarises the overall results achieved on different 

scenes, areas and ROIs. Here, five different scenes were recorded and eight ROIs were selected 

from the scenes (in this initial evaluation, thermal video samples collected from participants 

without protocols were used and tested). The performance of the tracking method with and 

without the pre-processing technique were compared. The coefficient q was chosen differently in 

accordance with the expected thermal variation range of each ROI. Overall, the tracking with the 

nonlinear Quantisation over-performed in comparison with the linear one. 

 

 

Figure D.4. Results from the mode-seeking with the proposed non-linear quantisation 
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Table D.1. Tracking results (based on Mean shift algorithm (Cheng, 1995)): number of successfully 

tracked frames without vs. with nonlinear quantisation (q=1.45x2, 1.65x2, 2.65x2)  

Recorded area     
Region of 

Interest     
Total frame 

Without 

Nonlinear 

Quantisation 

With 

Nonlinear 

Quantisation 

Man’s head 

(posterior-view) 

1) Whole head 

4385 frames 

4385 frames 
4385 frames 

(q= 1.45 x2) 

2) Parting 1530 frames 
4385 frames 

(q= 1.45 x2) 

Man’s head 

(top-view) 

3) Parting 

1667 frames 

1667 frames 
1667 frames 

(q= 1.45 x2) 

4) Side scalp 1010 frames 
1632 frames 

(q= 1.30 x2) 

Man’s hand 5) Blood vessel 629 frames 163 frames 
452 frames 

(q= 1.65 x2) 

Woman’s  

face 

(anterior-view) 

6) Nose/Nostril 

3792 frames 

1189 (1st Failure) 

/ 3096 (2nd 

Failure) frames 

3792 frames 

(q= 2.65 x2) 

7) Eye 1106 frames 
1339 frames 

(q= 1.45 x2) 

Man’s neck 

(lateral-view) 
8) Blood vessel  3871 frames 352 frames 

2236 frames 

(q= 1.45 x2) 

 

 

 

Appendix E.  Additional Materials for Deep Thermal 

Imaging (Material Type Recognition) 

To compare the thermal dynamics levels of outdoor materials in Section 4.6 with those of indoor 

materials which can be found in a controlled laboratory or indoor places, we collected more 

thermal images of material surfaces from indoor materials, as illustrated in Figure E.1. Indoor 

materials are encountered in the context of a house or an office where the environment is typically 

more stable and controlled. The selection of indoor materials was mainly based on recent works 

(Sato et al., 2015; Yeo et al., 2017), however this was extended to include new classes in order 

to understand the limits of the approach (e.g., bubble wrap and paper towels showing similarity 

with freezer polyethylene bags  and paper). Figure E.2 shows the thermal dynamic ranges of 

images collected from 15 indoor materials. The thermal dynamics ranged between 0.259°C and 

3.507°C (denoted as A in Figure 7) with a mean of 0.889°C (SD=0.4608). 
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Figure E.1. Example materials collected in the wild: (a) materials generally found in indoor 

places (less influenced by environmental thermal dynamics), 

 
 

 
Figure E.2. Levels of thermal dynamics of the total 14860 thermal images across the 15 indoor 

materials (a-o). The thermal dynamics were estimated by using (T2-T1) in Equation (4.5). [A] 

indicates the range of those values. 
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Appendix F.  BVP and P-P Interval Estimation through 

PPG Imaging 

As part of the methods proposed for building the cardiovascular patterns-based instant stress 

recogniser in Chapter 9, we additionally propose a technique to produce reliable PPG-derived 

HRV profiles from a smartphone camera22. 

 

F.1. Spatial Entropy-based camera PPG 

 

Figure F.1 summarises the approach we use to extract BVP and P-P intervals through the 

smartphone imaging PPG. Following existing methods (Jonathan & Leahy, 2010; Chan et al., 

2016; White & Flaker, 2017), our method estimates the BVP signals by capturing subtle colour 

variations associated with light absorptivity patterns of haemoglobin in the capillaries of a 

person’s skin. However, rather than using average values of the pixels of the red (or green) 

channel to estimate the BVP value, which is the most widely used method (Jonathan & Leahy, 

2010; McManus et al., 2013; Chan et al., 2016), we propose to use the temporal variations in 

spatial Shannon’s entropy (Shannon, 1948) of sequential R-channel images as raw BVP signals. 

This is due to averaging which tends to ignore fairly small but important variations in colour 

distribution (as in Chapter 5). The estimated BVP value ( )tB X  at a given time t can be expressed 

as:  

 

, 2 ,
( , )

( ) ( ) ( ) log ( )t t i j i j
i j

B X H X p x p x − =       (F.1) 

 

where 
,i jx is the brightness of pixel(i,j), ( )tH X  is the entropy function and 

,( )i jp x is the 

probability distribution which is generally estimated using a grayscale histogram in image 

analysis (Sonka et al., 2014) (here, for the R channel). 

 

 

 

 

 

                                                 
22 Details can be found from Cho et al. (2019). 
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Figure F.1.  Overall procedure of BVP and P-P interval estimation from a person’s finger 

through the smartphone-imaging PPG. See text for details. 

 

 

As our interest is in measuring raw P-P intervals from PPG signals, we used a simple 

signal processing technique to create similar amplitudes of each peak of BVP which helps detect 

peaks for measuring the time interval (i.e. P-P interval) between the peaks. This was calculated 

by the subtraction of the k-sample moving average signals from the raw entropy signal (Figure 

F.1b), which can be expressed by: 

11ˆ
t

t t i
i t k

B B B
k

−

= −

= −  .      (F.2) 

As a high sampling rate produces a higher sensitivity of the P-P intervals (Kumar et al., 2015), 

we up-sampled the raw sequences to 256 Hz with spline interpolation and used a 1s moving 

average to smooth heartbeat induced variations within the duration where at least one heartbeat 

of a normal person is expected to appear (Tsuji et al., 1996). Finally, we used the simple local 

maxima detection (Hamilton & Tompkins, 1986) with a 0.5 second sliding window to recover P-

P intervals (Figure F.1c). 

 

 

F.2. Result of BVP Signal Quality Test 

As the cardiac measurement capability of smartphone PPG has previously been thoroughly 

investigated in earlier studies (McManus et al., 2013; Chan et al., 2016; White & Flaker, 2017), 

we only tested the reliability of the cardiac pulse signals measured with our approach by 

comparing it with signals from the widely-used approach of mean brightness intensity (Jonathan 

& Leahy, 2010; McManus et al., 2013; Chan et al., 2016). For this, we used the relative power 

Signal Quality Index (pSQI) as seen in Chapter 6 (Section 6.4, Equation 6.4), as a measure of 
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quality (Clifford et al., 2012; Kumar et al., 2015; Elgendi, 2016). The pSQI for the BVP signals 

can be expressed by:  

max

min

ˆ

ˆˆ

min max

ˆ

( )
ˆ ˆ( )

( )

f

Bf

Btotal

S f df
P f f f

S f df
  




     (F.3) 

where 0 1P  , 
B̂

S

 

is the power spectral density of BVP signals (in our case, B̂  in Equation 

(F.2)), and 
minf̂ , 

maxf̂  are the lower and upper boundary of expected HRs, respectively. Here, 

we set the expected HR range to [0.8Hz (48bpm), 2.0Hz (120bpm)] given that HRs of healthy 

adults mostly fall into this range (Tsuji et al., 1996). To minimize effects of the baseline wander 

and high-frequency noise on this signal quality test (Chan et al., 2016; Elgendi, 2016), we used 

band-pass filtered BVP signals  (0.7-4.0Hz, Chan et al., 2016).Figure F.2 compares the pSQI 

values of the proposed method (Equation (F.2)) with those of the mean intensity method, showing 

improved quality of the estimated BVP signals B̂  (Proposed: M=0.755, SD=0.068; Traditional: 

M=0.692, SD=0.075). 

 

 

 
 

Figure F.2. Signal extraction quality comparison of our spatial entropy-based method 

(Equation(2)) with the mean intensity approach (Jonathan & Leahy, 2010; McManus et al., 

2013; Chan et al., 2016) by using pSQI: (a) box plot, (b) histogram. 
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Appendix G.  Hand-Engineered Features for Thermal 

Analysis 

Based on the findings from earlier studies on thermography-based affect recognition and machine 

learning topics, we classify general hand-engineered features into three categories: i) basic 

statistical features, ii) information-theoretic features, and iii) frequency features. Firstly, the basic 

statistical features range from standard deviation, skewness and kurtosis, to cross-correlation and 

integral ratio based on thresholding. Secondly, the information-theoretic features can be 

exemplified by Shannon’s entropy (Shannon, 1948). Entropy and cross-entropy are examples of 

these features. Lastly, the frequency domain features include a peak frequency, a bandwidth and 

a wavelet. They can also be used as metrics for quantifying physiological signatures. Table G.1 

summarises the features. The features can be computed from a specific ROI on thermal images.  

 

Table G.1. Summary of feature candidates for thermal analysis. 

Feature and abbreviation Definition 

i) basic statistical features 

Differential average 

temperature (ΔTav) 

Amount of difference between two average temperatures 

on a ROI collected from specific moments. 

Maximum temperature (Tmax) 
Arithmetic maximum temperature on a two-dimensional 

thermogram. 

Standard deviation of 

temperature (σT) 

Quantification of the amount of dispersion of a two-

dimensional temperature distribution on a ROI. 

Skewness of temperature (γT) 
A measure of the asymmetry for the probability 

distribution of a two-dimensional thermogram. 

Kurtosis of temperature (KT) 
A measure of the tailedness for probability distribution of 

a two-dimensional thermogram. 

Histogram of Oriented 

Gradients of Thermogram 

(HOGT) 

Histogram counting occurrences of gradient orientation in 

localized portions of temperature patterns on a ROI. 

Two-dimensional cross 

correlation (fT*gT) 
A measure of similarity of two dimensional thermograms. 

Integral ratio based on 

thresholding (IRth) 

Ratio of integral thermal values over a specific threshold 

to the total size of a ROI. 

ii) information-theoretic features 

Entropy (S) 
A measure of unpredictability of a thermal pattern on a 

ROI. 

Cross entropy of thermograms 

(CET) 

A measure of the difference between two thermal 

distributions. 

iii) frequency features 

Peak frequency (fpeak) Arithmetic maximum frequency in a power spectrum. 

Bandwidth (Bf) Width of valid frequency bands in a power spectrum. 

Wavelet based time-

frequency band (WBt-f) 

A measure of the relative energy in a time-frequency 

domain. 
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Appendix H.  Questionnaires 

 

      
Any others?   [                                                                ]                                                  

                          
 

        
 

          7. Have you experienced this type of task before?  [        ] 

              If so, when was the last time?   [                                       ]  

                        How many times?  [                                                   ] 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

[Optional] ethnic group? 

 

 

  

tired 
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Moderate 

Moderate 

Moderate 

Moderate 

Moderate 

Moderate 

Main questionnaire used in Stress-induction Tasks (Page 1) 
 

 
You will be asked to rate your subjective scores along with each component.  

Please rate each score with its own session number (e.g. 1,2,3 …). For example:  

 
 

 

Q1) How much mental stress did you experience? 

 

 

 
 

 

 

Q2) How much physical tiredness did you experience? 

 

 

 
 

 

 

Q3) How much cognitive load did you experience? 

 

 

 
 

 

Q4) How relaxed did you feel? 

 

 

 
 

 

Q5) Difficulty of the task? 

  

 

 
 

 

Q6) How engaged did you feel with the task? 

 

 

 

Not at 

all 

Very  

much 

Not at 

all 

Very  

much 

Not at 

all 

Very  

much 

Low High 

Not at 

all 

Very  

much 

Not at 

all 

Very  

much 
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Moderate 

Moderate 

Moderate 

Moderate 

Moderate 

Moderate 

Main questionnaire used in Stress-induction Tasks (Page 2~) 

(Repeated question sets) 
 

 

 

 

 

Q1) How much mental stress did you experience? 

 

 

 
 

 

 

Q2) How much physical tiredness did you experience? 

 

 

 
 

 

 

Q3) How much cognitive load did you experience? 

 

 

 
 

 

Q4) How relaxed did you feel? 

 

 

 
 

 

Q5) Difficulty of the task? 

  

 

 
 

 

Q6) How engaged did you feel with the task? 

 

 

 

 

 

 

Not at 

all 

Very  

much 

Not at 

all 

Very  

much 

Not at 

all 

Very  

much 

Low High 

Not at 

all 

Very  

much 

Not at 

all 

Very  

much 
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Appendix I.   Ethical Approval 

 

Information Sheet I 

You will be given a copy of this information sheet. 

Title of Project:  Emotion & Pain Project 
This study has been approved by the UCL 
Research Ethics Committee [Project ID 
Number]: STAFF/1011/005 

 

 
Name, Address and Contact Details of 
Investigators: 

 
Prof. Nadia Bianchi-Berthouze 
University College London Interaction 
Centre 
2nd Floor, 66-72 Gower Street  
London WC1E 6EA, United Kingdom  
+44 (0)20 3108 7067  
 
 

We would like to invite you to participate in this research project. You should only 
participate if you want to; choosing not to take part will not disadvantage you in 
any way. Before you decide whether you want to take part, it is important for you 
to read the following information carefully and discuss it with others if you wish. 
Ask us if there is anything that is not clear or if you would like more information.  
 
This project aims to develop technology to help patients with chronic pain by 
providing tailored feedback and support for movements performed as part of 
self-directed rehabilitation.  
 
We may interview you about the needs and uses for such technology. We will 
ask your opinion of current prototypes we have developed. We will ask you to do 
everyday activities, exercise or play computer games whilst wearing movement 
sensors and/or biosensors; The activities will be recorded using these sensors, 
thermal cameras, and video/audio recording. We will also ask you to complete 
pain questions or movement related questionnaires.  
 
All data will be handled according to the Data Protection Act 1998 and will be 
kept anonymous. Researchers working with Prof. Berthouze will analyse the 
data collected. The information gathered will be used to understand 
requirements of technology intervention for mental health and pain management.   
 
With your permission, we would like to use extracts of the video and audio 
recordings to demonstrate to people how assistive technology can be used for 
the management of their condition.  
 
With your permission, we would also like to use extracts of the video and audio 
recordings for teaching, conferences, presentations, publications, and/or thesis 
work. Please note that these presentations may be recorded by individuals 
without our knowledge and displayed on social media. 
 
It is up to you to decide whether or not to take part. If you choose not to 
participate, it will involve no penalty or loss of benefits to which you are 
otherwise entitled. If you decide to take part, you will be given this information 
sheet to keep and be asked to sign a consent form. If you decide to take part, 
you are still free to withdraw at any time without providing a reason. 
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Informed Consent Form I 

(This form is to be completed independently by the participant after reading the Information 
Sheet and/or having listened to an explanation about the research.) 

Title of 
Project:  

Emotion & Pain Project 

This study has been approved by the UCL 
Research Ethics Committee [Project ID Number]: 
STAFF/1011/005  

 

 

 

 

 

 

 

 

 
Participant’s Statement 

I  …………………………………………...................................... 

agree that I have 
 
▪ read the information sheet and/or the project has been explained to me 

orally; 

▪ had the opportunity to ask questions and discuss the study; 

▪ received satisfactory answers to all my questions or have been advised of 
an individual to contact for answers to pertinent questions about the 
research, my rights as a participant and whom to contact in the event of a 
research-related injury. 

I understand that my participation will be taped/video/sensors recorded and I am 
aware of and consent to the analysis of the recordings; 

I understand that I must not take part if I am not physically able to do the tasks; 

I agree to be invited in the future by UCL researchers to participate in follow-up 
studies. 

I agree for the videotape to be used by the researchers in this project and in 
further research studies. 

I agree for the videotape to be used by the researchers to demonstrate assistive 
technology to clinicians and people with chronic pain. and clinicians. 

I agree for the videotape to be used by the researchers for teaching, 
conferences, presentations, publications, and/or thesis work. 

I understand that these presentations may be recorded without the knowledge 
of the researchers by via media or other individuals/researchers.  

I agree for the videotape to be used in other projects by members of this 
research group.  

I agree for the videotape to be open to the community inside/outside UCL 

I understand that I am free to withdraw from the study without penalty if I so wish 
and I consent to the processing of my personal information for the purposes of 
this study only and that it will not be used for any other purpose. I understand 
that such information will be treated as strictly confidential and handled in 
accordance with the provisions of the Data Protection Act 1998. 
 

 Signed: Date: 

 
Investigator’s Statement 
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I  …………………………………………………………………….. 

confirm that I have carefully explained the purpose of the study to the 
participant and outlined any reasonably foreseeable risks or benefits (where 
applicable).  
 

 Signed: Date: 

 

 

 

Information Sheet II 

You will be given a copy of this information sheet. 

Title of Project:  HUman MANufacturing (HUMAN) 
This study has been approved by the UCL 
Research Ethics Committee [Project ID 
Number]: UCLIC/1617/003/Staff 
Julier/Berthouze  

 

Name, Address and Contact Details of 
Principal Investigator: 

Dr. Simon Julier 
University College London Interaction 
Centre 
5th Floor, 66-72 Gower Street  
London WC1E 6EA, United Kingdom  
+44 (0)20 3108 7114  

We would like to invite you to participate in the EU H2020 HUMAN research project 
(http://www.humanmanufacturing.eu/). You should only participate if you want to 
and feel capable of doing so; choosing not to take part will not disadvantage you in 
any way. Before you decide whether you want to take part, it is important for you to 
read the following information carefully and discuss it with others if you wish. Ask us 
if there is anything that is not clear or if you would like more information.  
 
The project will develop a solution that combines factory-level sensing systems 
(which monitor current status and progress) with assistance systems to provide 
cognitive and physical support to help workers when conducting difficult and 
challenging tasks. We will ask you to conduct mental stress induction tasks which 
are shown on a screen whilst using a chin rest to limit your head movement. We 
may also ask you to work at a quicker pace to explore the effects of time-related 
stress. 
 
We will ask for your permission to record you using thermal cameras and 
neural/physiological sensing data capture devices. We are investigating whether 
such sensing systems could be used to identify your stress levels and affective states. 
If you were to feel uncomfortable with any of the sensors or cognitive-load induction 
tasks you should inform us and we will stop and remove the sensors at once. You will 
also be able to take a break any time you need. 
 
In the case of thermal cameras, you may be visible but hardly recognizable. All the 
thermal cameras present will be shown and explained to you so that you can make a 
decision as to whether you wish to allow the recording or not.. You can also ask to 
look at the thermal video at the end of the study and/or to delete this video if you feel 
uncomfortable about what you did during the study. For the sensor data, we record 
information about blood volume pulse, breathing, skin conductance, muscle 
activation patterns, cortical activity, and movement. All the sensors present will be 
shown and explained to you so that you can make an informed decision as to whether 

http://www.humanmanufacturing.eu/
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or not to allow the recording. All the sensor data will be anonymously recorded. We 
will analyse and process the anonymous thermal video and data for building a 
machine learning-based system that could recognize your affective states. 
 
Again, with your permission, we would like to use extracts of the thermal video and 
sensor data recordings for teaching, conferences, presentations, publications, 
and/or thesis work. Please note that these presentations may be recorded by 
individuals without our knowledge and displayed on social media. You will be 
allowed to decide if you grant us the permission to show the thermal videos even 
though the person is hardly identifiable on every thermal video frame.  
 
All data will be handled according to the Data Protection Act 1998 and will be kept 
anonymous. Researchers working with Dr. Julier will analyse the data collected. The 
information gathered will be used to understand how the developed technology can 
be used to assist work practices.  
 
It is up to you to decide whether or not to take part. If you choose not to participate, 
there will be no penalty. If you decide to take part, you will be given this information 
sheet to keep and be asked to sign a consent form. If you decide to take part, you 
are still free to withdraw at any time during the study and without providing a 
reason. 
 
* The data gathered by the Empatica bracelet (galvanic skin changes, heart rate and 
blood volume pulse, temperature, acceleration of the arm) are automatically stored 
in the EMPATICA Ltd. cloud outside of the UK.  The data are associated to a number 
that has no relation with the person and will be fully anonymous. 

 

 

 

Informed Consent Form II 

(This form is to be completed independently by the participant after reading the Information 
Sheet and/or having listened to an explanation about the research.) 

Title of 
Project:  

HUman MANufacturing (HUMAN) 

This study has been approved by the UCL 
Research Ethics Committee [Project ID Number]: 
UCLIC/1617/003/Staff Julier/Berthouze   

 
 
 
 
 
 
 
 

NOTE: as you agree to the study, please circle and delete as appropriate 
multiple choices listed between “[…]”. 
 
Participant’s Statement 

I  …………………………………………...................................... 

 
agree that I have 
 
▪ read the information sheet and/or the project has been explained to me 

orally; 

▪ had the opportunity to ask questions and discuss the study; 

▪ received satisfactory answers to all my questions or have been advised of 
an individual to contact for answers to pertinent questions about the 
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research and my rights as a participant and whom to contact in the event of 
a research-related injury; 

▪ I understand and consent for the experiment which can be run by any 
member of the HUMAN project (and not just UCL), however I also 
understand that UCL will handle the data storage according to the 
agreement set below; 

▪ I understand that the data gathered by the Empatica bracelet (galvanic skin 
changes, heart rate and blood volume pulse, temperature, acceleration of 
the arm) are automatically stored in the EMPATICA Ltd. cloud outside of the 
UK.  The data are associated to a number that has no relation with the 
person, and will be fully anonymous. 

 

For the following, mark each point and circle as appropriate for choices in “[ …]”: 

    I consent for the researcher to take thermal video recording of me as I 
participate in the experiment..; 

    I consent for the researcher to wear sensors, the head mounted display and 
record sensor data as I participate in the experiment. I understand that I can ask 
to remove any of the sensors and the  chin rest if I feel uncomfortable; 

    I consent for the anonymous [thermal video / sensor data / notes] 
recording to be published in academic publications, presented at conferences 
and in lectures or through public engagement activity.  

    I consent for the anonymous [thermal video / sensor data / notes] 
recording to be disclosed as part of a data set to foster research in research 
communities.  

 

 

PERMISSION OF USE OF NON ANONYMIZED THERMAL VIDEO DATA 

For the following, initial each point and circle as appropriate for choices in “[ …]”: 

____I agree for the thermal videotape to be used by UCL researchers in this 
project and in further research studies   [YES / NO] 

____I agree for the thermal videotape to be used by UCL researchers for 
teaching, conferences, presentations, publications, and/or thesis works. I 
understand that these presentations may be recorded without the 
knowledge of the researchers via media or other individuals / researchers 
industries    

          [YES / NO] 

____I agree for the thermal videotape to be disclosed as part of the data set to 
foster research in research communities. 

          [YES / NO] 

 

 
PERMISSION OF USE OF NON ANONYMIZED SENSOR DATA (i.e. non 
anonymized transcripts) 

For the following, mark each point and circle as appropriate for choices in “[ …]”. 

____I agree for the sensor data recording to be used by UCL researchers in this 
project and in further research studies   [YES / NO] 

____I agree for the sensor data recording to be used by UCL researchers for 
teaching, conferences, presentations, publications, and/or thesis works. I 
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understand that these presentations may be recorded without the 
knowledge of the researchers via media or other individuals/researchers 
industries    

          [YES / NO] 

____I agree for the sensor data recording to be disclosed as part of a data set 
to foster research in research communities. 

          [YES / NO] 

 

 
Finally,  
 
I agree to be invited in the future by UCL researchers to participate in follow-up 
studies. 

 
I understand that I am free to withdraw from the study without a penalty if I so 
wish and I consent to the processing of my personal information for the purposes 
of this study only and that it will not be used for any other purpose. I understand 
that such information will be treated as strictly confidential and handled in 
accordance with the provisions of the Data Protection Act 1998. 
 
 

 Signed: Date: 

 
Investigator’s Statement 

I  …………………………………………………………………….. 

confirm that I have carefully explained the purpose of the study to the 
participant and outlined any reasonably foreseeable risks or benefits (where 
applicable).  
 

 Signed: Date: 
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