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Abstract

In decision making systems involving multiple classifiers there is the need to assess classifier (in)congruence,
that is to gauge the degree of agreement between their outputs. A commonly used measure for this purpose
is the Kullback-Leibler (KL) divergence. We propose a variant of the KL divergence, named decision
cognizant Kullback-Leibler divergence (DC-KL), to reduce the contribution of the minority classes, which
obscure the true degree of classifier incongruence. We investigate the properties of the novel divergence
measure analytically and by simulation studies. The proposed measure is demonstrated to be more robust
to minority class clutter. Its sensitivity to estimation noise is also shown to be considerably lower than that
of the classical KL divergence. These properties render the DC-KL divergence a much better statistic for
discriminating between classifier congruence and incongruence in pattern recognition systems.

Keywords Kullback-Leibler divergence, diver-
gence clutter, classifier incongruence

1. Introduction1

Decision making systems often benefit from the2

use of multiple classifiers [1]. As a part of a pat-3

tern recognition system, these classifiers can, for4

example, represent models trained with different5

sensors, trained with different sets of features, or6

also created in order to work in different levels of7

data abstraction [2]. In these scenarios the classi-8

fiers are designed to output similar probability es-9

timates when predicting classes for an input. How-10

ever, when the predictions diverge, we may have11

classifier incongruence.12

Classifier incongruence and its applications have13

been the subject of studies in the last decade [3, 4,14

5]. It may point to the presence of an unexpected15

event, or an unwanted particularity of one of the16

classifiers. As such, assessing classifier incongru-17

ence may be useful in controlling a classifier fusion18
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process designed to enhance the decision-making19

system performance, or as an indicator of poten-20

tial anomaly: incongruent support for a hypothesis21

provided by different sensor modalities, or by con-22

textual and noncontextual classifiers, or generic and23

specific classifiers. Thus, there is interest in tools24

for measuring and detecting classifier incongruence.25

Examples of applications include transfer learn-26

ing from automatic interpretation of videos of ten-27

nis singles to tennis doubles, where the failure of the28

domain models to explain the observed data can be29

interpreted as a classifier incongruence [4]. In the30

detection of subcategories of objects in images it is31

possible to train a general classifier for some cate-32

gory, e.g. motorbike, and then specific classifiers for33

each known subcategory e.g. cross, road and sport34

bikes; if there is congruence among the classifiers35

then the object belongs to a known category; other-36

wise, a new subcategory is detected [6]. Another ex-37

ample is the out-of-vocabulary word detection sce-38

nario [7], in which a phoneme detector may have39

strong confidence for each observation (phoneme),40

but the classifier dealing with a whole sequence of41

phonemes rejects the hypothesis because the word42

corresponding to the phoneme sequence does not43

exist in the system vocabulary, indicating a proba-44

ble out-of-vocabulary word rather than an error [4].45

Incongruence may be detected by divergence,46

which measures the difference between two prob-47
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ability distributions — in the context of classifiers48

the aposteriori probability outcomes. A significant49

range of different divergence measures has been50

studied and organized [8]. These measures may51

have properties which make them uniquely suited52

to the solution of a particular problem, or for use53

in specific applications. However, with the excep-54

tion of the work of Weinshall et al. [3] and Kittler et55

al. [4], interest in this field has not extended far into56

the study of divergences as a measure of classifier57

incongruence.58

The Kullback-Leibler (KL) divergence [9] is a59

widely used information theoretic measure of the60

divergence between two probability distributions.61

It involves averaging the log ratio of the probabil-62

ities in the distribution, and due to its theoretical63

properties, it has been used in a wide range of pat-64

tern recognition fields such as dimensionality reduc-65

tion [10], feature selection [11] and estimating prior66

class probabilities on training data [12]. It is shown67

to have connections to the statistical learning the-68

ory when used in the problem of regularized loss69

functions minimization [13]. Recent studies also70

use approaches based on the KL divergence in order71

to detect anomalies or rare events [14, 15]. In the72

context of classification, we highlight a classifier se-73

lection method using KL minimization to aggregate74

class posterior probabilities [16], a study on the re-75

liability of classifiers outputs [17], and the use of76

probabilistic kernels for generative/discriminative77

learning [18].78

KL divergence is also the classical tool to de-79

tect incongruence between two classifiers [3], each80

of which compute the posteriori class probabilities81

to make a decision. It is coined Bayesian surprise82

by Itti and Baldi [5]. However, the KL divergence83

treats all class probabilities in the same way. It84

does not give any special consideration to the dom-85

inant hypothesis which are of particular interest in86

classification scenarios. In multiclass problems, the87

averaging over the nondominant classes introduces88

a clutter which can seriously distort the measure-89

ment of the intrinsic classifier incongruence as de-90

fined by the dominant classes identified by the two91

classifiers.92

We propose a modified version of KL divergence,93

referred to as decision cognizant Kullback-Leibler94

(DC-KL) divergence, which attempts to reduce the95

amount of clutter of the nondominant hypotheses96

by merging them into a single event. The aim of97

this paper is to demonstrate the beneficial proper-98

ties of the new divergence in the context of measur-99

ing classifier incongruence. In order to achieve our100

aim we report a theoretical study of DC-KL, and a101

series of simulated experiments exploring the rela-102

tionship between the regular KL and the proposed103

divergence as well as an experiment to study error104

sensitivity of both methods. We show both theoret-105

ical and empirical evidence that the DC-KL is more106

reliable than the regular KL, in particular scenar-107

ios involving many classes, while also providing a108

stronger framework for the definition of thresholds109

for congruence and incongruence, thus facilitating110

its use in a pattern recognition system. It also dis-111

plays predictable behaviour when faced with noisy112

scenarios (such as sensor noise), which makes it bet-113

ter suited for real-world applications.114

This paper is organized as follows: in Section 2,115

we describe the decision cognizant Kullback-Leibler116

divergence and its theoretical properties, in partic-117

ular regarding the clutter, i.e. the influence of non-118

dominant hypothesis probabilities. In Section 3, we119

report a series of experiments in order to demon-120

strate the behaviour of the proposed method under121

different scenarios, including studies on clutter and122

error sensitivity. Finally, Section 4 is devoted to123

the conclusions and final remarks.124

2. The Decision Cognizant Kullback-Leibler125

divergence126

We shall consider a pattern recognition problem127

involving k classes in Ω = {ω1, · · · , ωk}. Based128

on pattern vectors x and y, respectively, the clas-129

sifiers compute the posterior class probabilities130

P (ωi|x),∀i and P̃ (ωi|y),∀i and engage a Bayesian131

decision rule to effect the class assignment. Note132

that, x and y are vectors representing a given ob-133

ject, even though not necessarily by the same set of134

features or data source. P and P̃ relates, respec-135

tively, to the posterior probabilities of two different136

models when classifying an object.137

We are concerned with the problem of measuring138

the incongruence of these two classifiers in support-139

ing the respective hypotheses. The classifiers would140

be deemed congruent if the two probability distri-141

butions agree and incongruent if the two probability142

distributions are different. For the sake of clarity,143

in the following discussion we shall drop the refer-144

ence to specific instances x,y and adopt a simplified145

notation for the class probabilities as Pi and P̃i, i.e.146

Pi = P (ωi|x) P̃i = P̃ (ωi|y) ∀i (1)
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As discussed in Section 1, we shall be using the147

Kullback-Leibler divergence as our baseline. The148

K-L divergence P̃i from Pi is defined as:149

DK(P ||P̃ ) =
∑
i

P̃i log
P̃i
Pi
. (2)

Let P̃i

Pi
= ui. Then it can alternatively be ex-150

pressed using the following notation:151

DK(P ||P̃ ) =
∑
i

Pi
P̃i
Pi

log
P̃i
Pi

=
∑
i

Piui log ui,

(3)
in which u log u is a convex function of variable u152

satisfying u ≥ 0.153

Inspecting Equations 2 and 3, the K-L divergence154

has the following properties:155

1. It is assymetric, i.e: DK(P ||P̃ ) 6= DK(P̃ ||P ).156

2. It is unbounded.157

3. It is decision agnostic, that is, the measure ag-158

gregates contributions from all the classes, re-159

gardless of the decision made by the classifiers.160

4. It is nonnegative by virtue of the convex-161

ity property, as using Jensen’s inequality162

DK(P ||P̃ ) can be bounded from below as:163

DK(P ||P̃ ) ≥

[∑
i

Piui

]
log

[∑
i

Piui

]
=

=

[∑
i

P̃i

]
log

[∑
i

P̃i

]
= 0.

(4)

Whether classifiers agree or disagree is in the first164

instance determined by their consensus regarding165

the dominant hypothesis. These are the classes166

identified by the classifiers as being most probable.167

Any differences regarding their support for non-168

dominant hypotheses would be deemed less impor-169

tant. Thus, ideally, we would like to use a measure170

which deemphasises the contribution of the non-171

dominant classes, which we refer to as clutter.172

The effect of clutter can significantly be reduced173

by the following argument. When we compare the174

outputs of two classifiers, there are only three out-175

comes of interest: the dominant class ω identi-176

fied by the classifier with probability distribution177

P , the dominant class ω̃ identified by the other178

classifier, and neither of the two, in other words179

ω̄ = {Ω− ω − ω̃}. Let P̃ω̄ and Pω̄ be the sum of180

all posterior probabilities in ω̄ for each classifier,181

respectively. We thus define a new decision cog-182

nizant Kullback-Leibler divergence, DD,183

DD(P ||P̃ ) =
∑

iε{ω,ω̃}

P̃i log
P̃i
Pi

+ P̃ω̄ log
P̃ω̄
Pω̄

, (5)

which retains the properties 1, 2 and 4 but it is no184

longer decision agnostic.185

2.1. Clutter186

The motivation for introducing the decision cog-187

nizant divergence is to reduce the contribution188

to the divergence measure made by the nondom-189

inant classes, referred to as clutter. Therefore it190

is pertinent to investigate the relationship between191

the clutter of the standard and decision cognizant192

KL divergences. For brevity, we will be denoting193

DK(P ||P̃ ) simply as DK , and similarly for DD.194

The clutter affecting the classical KL divergence is195

given by196

DKclutter
=

∑
iεω̄

P̃i log
P̃i
Pi

(6)

whereas the DC-KL clutter is given as197

DDclutter
= P̃ω̄ log

P̃ω̄
Pω̄

(7)

By virtue of the log sum inequality we have:198

DKclutter
≥ DDclutter

(8)

Thus the DC-KL clutter is always lower than the199

KL divergence clutter.200

The difference between the clutters will be partic-201

ularly accute in common scenarios where the poste-202

rior probabilities for non-dominant hypotheses are203

low, i.e. Pi ≈ 0 for some i ∈ ω̄, in which case KL204

divergence can be dominated by a high term com-205

ing from such classes in the clutter, whereas in the206

decision cognizant form this effect is minimized.207

It is also interesting to note that the decision cog-208

nizant clutter is a function of P̃ω̄ log P̃ω̄ plus a lin-209

ear term of P̃ω̄, which is parameterised by logPω̄.210

Thus, in certain scenarios DDclutter
can assume val-211

ues approaching infinity. This will occur when the212

residual probabilities Pω̄ for one of the classifiers213

approaches zero. Even when two classifiers are con-214

gruent, but the relative strengths of their support215

for the dominant class differ, the clutter can induce216
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misleading results even for the DC-KL divergence.217

However, for a given Pω̄ and P̃ω̄, the decision cog-218

nizant divergence clutter is deterministic. In con-219

trast, classical divergence clutter is a function of220

the distribution of the constituting elements of P̃ω̄221

and P̃ω̄, and this further fuzzifies the classifier in-222

congruence measure landscape as chartered by the223

classical Kullback-Leibler divergence.224

By analysing the behaviour of the two clutters in225

different scenarios we can easily demonstrate that226

the decision cognizant divergence clutter has su-227

perior properties. For instance, by differentiating228

Equation 7 with respect to P̃ω̄ we find the con-229

dition for the lowest decision cognizant clutter to230

be P̃ω̄ = Pω̄

e (considering the natural logarithm) in231

which the decision cognizant divergence clutter will232

be DDclutter
= −P̃ω̄. Thus the lowest clutter value233

will vary from zero to minus the residual probabil-234

ity value of one of the classifiers. When the resid-235

ual probabilities for both classifiers are comparable,236

DDclutter
will approach zero. Thus there is a spec-237

trum of operating conditions when the clutter cor-238

rupting decision cognizant divergence will be low239

and will not hide the underlying value of classifier240

(in)congruence. However, even when the decision241

cognizant divergence clutter is low, the classical di-242

vergence clutter can assume values at infinity. This243

clearly demonstrates the advantageous properties244

of the decision cognizant divergence.245

3. Simulation experiments246

In order further to demonstrate the behaviour247

of the proposed decision cognizant Kullback-Leibler248

divergence and how it compares with the regular249

Kullback-Leibler divergence, two sets of simulation250

experiments are carried out.251

First, we study strong/weak agree-252

ment/disagreement between two classifiers. In253

particular we are interested in how the confidence254

outcomes, i.e. the posterior class distribution255

of the classifiers, affect each divergence. In this256

set of simulations we also investigate the relative257

sensitivity of DC-KL and KL to estimation errors.258

Second, we sample the space of posterior class259

probability distributions P and P̃ in order to pro-260

duce a broader dataset. Then we compare both261

divergences in terms of their differences, the clutter262

and also their respective error sensitivity.263

3.1. Case study experiments264

We study controlled experiments for a different265

number of classes k = {3, 6, 10, 30} and pairs of266

posterior probability vectors — one per classifier267

— with some fixed and arbitrary posterior proba-268

bilities for the dominant hypotheses ω and ω̃. The269

following cases are investigated:270

1. Agreement (ω = ω̃):271

– SA (strong agreement) P̃ω = 0.8, Pω = 0.8;272

– WA (weak agreement) P̃ω = 0.8, Pω = 0.6;273

2. Disagreement (ω 6= ω̃) with P̃ω̃ fixed with274

a high probability and making P̃ω = (1 −275

P̃ω̃)/(k − 1), so that it retains some amount276

of the remaining probability:277

– SD (strong disagreement) P̃ω̃ = 0.8, P̃ω =278

0.2/(k − 1) and Pω = 0.8, Pω̃ = 0.2/(k − 1);279

– WD (weak disagreement) P̃ω̃ = 0.8, P̃ω =280

0.2/(k − 1) and Pω = 0.6, Pω̃ = 0.4/(k − 1);281

3. Uncertain scenarios (lower confidences for282

dominant hypothesis):283

– UWA (uncertain, weak agreement) P̃ω̃ = 0.8,284

Pω = 0.4 with ω = ω̃;285

– UWD (uncertain, weak disagreement) P̃ω̃ =286

0.4, P̃ω = 0.2 and Pω̃ = 0.2, Pω = 0.4 with287

ω 6= ω̃.288

For each item above with fixed probabilities for289

ω and ω̃, we produced 1000 probability vectors by290

randomly drawing values – using a uniform distri-291

bution – for the remaining non-dominant classes292

ω̄ = {Ω− ω − ω̃}, and normalizing them in order293

to assure unity sum. Three types of scatterplots are294

shown: (i) DD×|Pω− P̃ω|, which shows in Figure 1295

how the decision cognizant divergence behaves re-296

garding differences on a given dominant hypothesis;297

(ii) DD × DK , showing a comparison of the range298

of divergence values for each scenario in Figure 2;299

and (iii) DD(clutter) × DK(clutter), which shows300

in Figure 3 how the clutter influences each diver-301

gence. Note that there are some cases in which DC-302

KL and KL divergences are similar, but in general303

those produced by the former suffer from a large304

variance for a given scenario.305

The first interesting result is the log-shaped curve306

obtained for values from lower to higher diver-307

gences, i.e. DD × |Pω − Pω̃|, in Figure 1, from308

congruent values (concentrated near zero) to incon-309

gruent values (spanning values above 0.3). As ex-310

pected, the DC-KL was invariant to changes in clut-311

ter, while regular KL often showed high variance312
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(a) k = 3 (b) k = 6 (c) k = 10 (d) k = 30

Figure 1: Scatter plot of the dominant hypothesis differences as a function of DD for different number of classes: 3 (a), 6 (b),
10 (c) and 30 (d). The points refer to the cases of SA (strong agreement), PA (weak agreement), SD (strong disagreement),
PD (weak disagreement), UPA (uncertain, weak agreement) and UPD (uncertain, weak disagreement).

(a) k = 3 (b) k = 6 (c) k = 10 (d) k = 30

Figure 2: Scatter plot for DK as a function of DD for different number of classes: 3 (a), 6 (b), 10 (c), and 30 (d). In (a),
KL and DC-KL are similar for disagreement scenarios and therefore all fall in a single point in the scatter plot. The points
refer to the cases of SA (strong agreement), PA (weak agreement), SD (strong disagreement), PD (weak disagreement), UPA
(uncertain, weak agreement) and UPD (uncertain, weak disagreement).

(a) k = 3 (b) k = 6 (c) k = 10 (d) k = 30

Figure 3: Scatter plot for DK(clutter) as a function of DD(clutter) for different number of classes: 3 (a), 6 (b), 10 (c), and
30 (d). The points refer to the cases of SA (strong agreement), PA (weak agreement), SD (strong disagreement), PD (weak
disagreement), UPA (uncertain, weak agreement) and UPD (uncertain, weak disagreement).
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(see Figure 2). A closer look at how clutter influ-313

ences the divergence shows that, in general, KL di-314

vergence hampers in particular the congruent cases315

due to its sensitivity to clutter variations.316

Sensitivity to estimation error analysis for the case317

study. In order to study the sensitivity of each mea-318

sure, Gaussian noise with zero mean and standard319

deviation σ = 0.05 · (1/ log(k)) was added to each320

probability vector 100 times, generating 100 noisy321

versions and totaling 100,000 probability distribu-322

tions for each scenario. Note that defining σ accord-323

ing to the number of classes was necessary in order324

to add a fair amount of noise while keeping the dom-325

inant hypothesis still valid. Considering the case-326

studies as a controlled scenario without noise in the327

labels, we want to make sure that after adding noise328

the following should still hold:329

arg max
i

P (ωi|x) = ω, (9)

arg max
i

P̃ (ωi|y) = ω̃. (10)

In order to illustrate how the probabilities are330

affected by the noise, in Figure 4 we plot lines con-331

necting the class posterior probability distributions332

after adding noise multiple times as a way of vi-333

sualizing the effect of noise. Each line represents a334

noisy instance of the posterior, showing the variance335

caused by the noise and how it increases uncertainty336

in the dominant classes.337

For each k we compare the expected divergence338

(the one obtained in the noise-free data) with the339

estimates under noise by computing a histogram of340

the divergences on noisy data for: strong agreement341

(SA), weak agreement (WA), strong disagreement342

(SD) and weak disagreement (WD). The results of343

the error sensitivity experiments are shown in Fig-344

ure 5 for 3 classes, Figure 6 for 6 classes, Figure 7 for345

10 classes, and Figure 8 for 30 classes. For k = 3,346

because the divergences are different only by one347

term, the DC-KL divergence shows its advantages348

only in SA. The desired properties become clearer349

for k > 3.350

An analysis of the results shows the robustness351

of DC-KL over the regular KL in particular un-352

der strong agreement (SA), but also for strong dis-353

agreement (SD) and weak disagreement (WD). In354

WA cases both DC-KL and KL behave similarly. In355

WD scenarios with k > 3, DC-KL is more robust356

to noise than regular KL, which in k = 6 produces357

lower values, towards congruence, while the actual358

state is incongruent (see Figure 6). In some dis-359

agreement scenarios the decision cognizant diver-360

gence can degrade to congruence in the presence361

of both noise and high uncertainty regarding the362

dominant hypotesis.363

We believe the experimental evidence in the case364

study favors, overall, the decision cognizant over the365

regular Kullback-Leibler divergence. In the next366

section a more complete simulation is performed to367

analyze the behaviour of both methods.368

3.2. Experiments sampling over the space of poste-369

rior probability distributions370

In order to analyse the performance of the DC-371

KL divergence more thoroughly, an investigation372

was conducted by sampling the posterior probabil-373

ity distribution space. This simulation can be con-374

sidered a more complete analysis of the behaviour375

of the DC-KL divergence measure given different376

outcomes for the pair of classifiers.377

The simulation involved two posterior probability378

vectors P and P̃ created by fixing the first two class379

probabilities using values in the range [0.02, 0.98)380

with a step of 0.02, in order to cover all valid permu-381

tations that do not result in a zero probability value382

for any class. After the first probability (for class383

ω1) is chosen, the available values for the second one384

are sampled in the range of [0.02, 1.0 − Pω1
) with385

step 0.02. The values for the non-dominant classes386

were not sampled, but randomly drawn from a uni-387

form distribution, and normalized so that the vector388

sums up to 1. For each fixed combination, 10 differ-389

ent non-fixed class sets were drawn, so that the ef-390

fects of randomly generating probabilities could be391

reflected in the results. Thus, a total of 1.382.976392

probability vector pairs were created for the simu-393

lation.394

3.2.1. Exploration by sampling the probability space395

Similarly to the controlled experiments, the fol-396

lowing scatterplots are shown to characterize the397

divergences over the probability distribution space:398

(i) DD × DK in Figure 9 and (ii) DD(clutter) ×399

DK(clutter), which shows in Figure 10 how the400

clutter influences each divergence. In order to vi-401

sualize the scatterplots, five scenarios were arbi-402

trarily assigned to colors: strong agreement, when403

ω = ω̃ and Pω, P̃ω̃ ≥ 60%; strong disagreement,404

when ω 6= ω̃ and Pω, P̃ω̃ ≥ 60%; weak agreement,405
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(a) k = 3, ω = ω̃ (b) k = 6, ω 6= ω̃ (c) k = 10, ω = ω̃ (d) k = 30, ω 6= ω̃

Figure 4: Examples of noise added to probability distributions – probabilities on the vertical axis and classes on the horizontal
axis: (a) strong agreement with 3 classes, (b) strong disagreement with uncertainty involving 6 classes, (c) weak agreement
with 10 classes (c) weak disagreement involving 30 classes.

(a) ω = ω̃ SA (b) ω = ω̃ WA (c) ω 6= ω̃ SD (d) ω 6= ω̃ WD

Figure 5: Error sensitivity results for 3 classes, showing the histograms of divergences obtained after applying noise: (a) strong
agreement – SA, (b) weak agreement – WA, (c) strong disagreement – SD; and (d) weak disagreement – WD. The vertical lines
are divergence values computed over noise-free data.

(a) ω = ω̃ SA (b) ω = ω̃ WA (c) ω 6= ω̃ SD (d) ω 6= ω̃ WD

Figure 6: Error sensitivity results for 6 classes, showing the histograms of divergences obtained after applying noise: (a) strong
agreement – SA, (b) weak agreement – WA, (c) strong disagreement – SD; and (d) weak disagreement – WD. The vertical lines
are divergences values computed over noise-free data.

7



(a) ω = ω̃ SA (b) ω = ω̃ WA (c) ω 6= ω̃ SD (d) ω 6= ω̃ WD

Figure 7: Error sensitivity results for 10 classes, showing the histograms of divergences obtained after applying noise: (a) strong
agreement – SA, (b) weak agreement – WA, (c) strong disagreement – SD; and (d) weak disagreement – WD. The vertical lines
are divergences values computed over noise-free data.

(a) ω = ω̃ SA (b) ω = ω̃ WA (c) ω 6= ω̃ SD (d) ω 6= ω̃ WD

Figure 8: Error sensitivity results for 30 classes, showing the histograms of divergences obtained after applying noise: (a) strong
agreement – SA, (b) weak agreement – WA, (c) strong disagreement – SD; and (d) weak disagreement – WD. The vertical lines
are divergences values computed over noise-free data.
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when ω = ω̃ and Pω, P̃ω̃ ≥ 40% but the require-406

ments for strong agreement are not met; weak dis-407

agreement, when ω 6= ω̃ and Pω, P̃ω̃ ≥ 40% but the408

requirements for strong disagreement are not met;409

and uncertainty, for all remaining combinations of410

values. These scenarios are meant to be used as a411

visual guide of easily recognizable scenarios in the412

plots of Figures 9 and 10.413

These results reinforce the findings of the case414

study, showing that a clear, class-independent415

threshold for congruence can be established for the416

DC-KL divergence, for an arbitrarily decided no-417

tion of congruence, while the regular KL divergence418

may output similar values for agreement and dis-419

agreement. In the k = 3 scenario, it is easy to420

see that the measures only differ when the classi-421

fiers agree on the dominant class, which is a natu-422

ral conclusion of grouping the clutter together. As423

the class count increases, the regions previously de-424

fined remain within the same range of values for425

DD, something that DK cannot reliably achieve.426

Based on these and the case study results for427

the DC-KL measure, we have established that any428

DD ≤ 0.3 can be considered congruent. The thresh-429

old for incongruence, on the same basis, can be es-430

tablished at DD ≥ 0.7. Note that defining such431

thresholds becomes more challenging with the KL432

divergence, as can be seen in Figure 9, if one draws433

a horizontal line, cutting the space of possible out-434

comes for DK , there is a stronger confusion among435

the possible scenarios for a given divergence value.436

In Figure 10 the results show what was expected:437

the stronger the effect of the dominant classes, the438

less clutter present. In some strong agreement sce-439

narios, the value of the clutter alone can go over440

1.5 for the regular KL divergence, while the deci-441

sion cognizant one presents much more reasonable442

clutter for the same scenarios, never crossing 1.0.443

3.2.2. Sensitivity analysis of estimation error444

The sensitivity to estimation errors was inves-445

tigated by choosing all probability vectors whose446

divergence measure was close to a desired point447

and adding Gaussian noise with zero mean and448

σ = 0.05 · (1/ log(k)) to each of these probability449

vectors 300 times. Note again that defining the σ450

according to the number of classes was necessary in451

order to keep the dominant hypothesis still valid.452

However, because this dataset – differently from the453

case studies – spans the whole probability space,454

we cannot guarantee that the dominant classes of455

the noisy vectors will always be the same as of the456

true vector. This effect make it possible to produce457

incorrect labels when the original estimates are al-458

ready uncertain.459

The error sensitivity results for k = 3, 10 and 30460

classes are shown in Figure 11 for congruent val-461

ues, sampled around 0.15, which is the mean of the462

congruent interval 0 ≤ DD ≤ 0.3, in Figure 12 for463

uncertain values (for which the state of congruence464

or incongruence is unclear), sampled around 0.5,465

the mean of the interval 0.3 < DD < 0.7, and Fig-466

ure 13 for incongruent values, sampled around 1.2,467

the densest point for DD ≥ 0.7.468

As the number of classes increases, all histograms469

display the same effects: they become narrower470

and their means shift closer to zero. For the 30471

class scenario, on Figure 13 (c), it is possible to see472

that the incongruent sample DD = 1.2 can even473

cross the threshold into the uncertainty region after474

the addition of noise, with a tail on the congruent475

interval. This reflects both the properties of the476

Kullback-Leibler divergence itself (as it is depen-477

dent on the value of the dominant class and may478

change significantly as the noise affects them) and479

of our choice of noise generation, which tends to480

increase uncertainty by shifting up low probability481

values, while decreasing the probability of dominant482

hypothesis. In fact, the true cases which tended to483

produce congruent results had either Pω̃ or P̃ω close484

to 5%. Adding noise to these low probability val-485

ues would have a significant impact on the resulting486

divergence value.487

However, it is safe to say that the measure is488

robust with regards to noise added to a truly con-489

gruent probability vector pair. Figure 11 demon-490

strates that the vast majority of noised samples re-491

main within the defined threshold.492

Finally, note that the shift of the mean correlates493

with regard to the noise and the number of classes.494

For instance in the 30 class scenario, the mean shifts495

from 0.15 to 0.1, from 0.5 to 0.4 and from 1.2 to 0.9.496

In order to study the behaviour of this shift we sam-497

pled the distribution shift and fitted a polynomial498

function f(x) = a ·x2 +b ·x+c log(x)+d. We found499

a ≈ 0, and with a low least squares fitting error, the500

following function describes well how a divergence x501

shifts under noise: f(x) = 0.63x+0.07 log(x)+0.13.502

This indicates that, by having some knowledge503

about the noise, it is possible to estimate how it504

would change the divergence outputs, offering a505

mechanism for compensating for its effect.506

9



(a) k = 3 (b) k = 10 (c) k = 30

Figure 9: Scatter plot for DK as a function of DD for different number of classes: 3 (a), 10 (b) and 30 (c).

(a) k = 3 (b) k = 10 (c) k = 30

Figure 10: Scatter plot for DK(clutter) versus DD(clutter) for different number of classes: 3 (a), 10 (b) and 30 (c).

(a)k = 3 (b) k = 10 (c) k = 30

Figure 11: Error sensitivity results: (a) 3 classes, (b) 10 classes, and (c) 30 classes. The vertical dashed line shows the previously
defined threshold for congruence (0.3). The vertical solid line is the true divergence value DD = 0.15.
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(a)k = 3 (b) k = 10 (c) k = 30

Figure 12: Error sensitivity results: (a) 3 classes, (b) 10 classes, and (c) 30 classes. The vertical dashed lines show the previously
defined thresholds for congruence and incongruence (0.3 and 0.7, respectively). The vertical solid line is the true divergence
value DD = 0.5.

(a)k = 3 (b) k = 10 (c) k = 30

Figure 13: Error sensitivity results: (a) 3 classes, (b) 10 classes, and (c) 30 classes. The vertical dashed lines show the previously
defined thresholds for congruence and incongruence (0.3 and 0.7, respectively). The vertical solid line is the true divergence
value DD = 1.2.
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3.3. Impact on practical applications and future507

work508

In this paper we focused on theoretical aspects509

and simulated using the entire posterior probabil-510

ity subspace the conditions under which the pro-511

posed measure provides a more principled way to512

define thresholds for congruence and incongruence.513

As mentioned in Section 1, there are several appli-514

cations in which detecting (in)congruence is useful515

such as domain anomaly detection [4], subclass de-516

tection [6] and speech recognition, in particular the517

out-of-vocabulary word detection [7]. As both the518

theory and the empirical evidence shows, DC-KL519

would benefit in particular scenarios with multi-520

ple classes and noisy data. Examples of such cases521

are the use of divergence to assess fusion of multi-522

ple classifiers with uncertain estimates due to noisy523

data [19] and the use of classifier diversity to gen-524

erate pattern recognition systems that are more ro-525

bust to noise [20]. The DCKL divergence can also526

replace the KL divergence when evaluating proba-527

bility estimates over time [21] with more stability528

regarding clutter variations.529

4. Conclusions530

We set out to investigate a measure of divergence531

which could be better suited for detecting classifier532

incongruence than the KL divergence, by diminish-533

ing the impact of non-dominant classes — or clut-534

ter — on the final measure. This is based on the535

fact that classifiers are designed to output dominant536

classes. Our decision cognizant measure was shown537

to behave in a much more predictable and desirable538

way when compared with the regular KL divergence539

in this context. In particular the results point to the540

possibility of establishing much clearer boundaries541

between congruence and incongruence. Addition-542

ally, the DC-KL divergence is capable of detecting543

partial agreement — when classifiers disagree, while544

supporting the opposing dominants with relatively545

high probability values. In contrast, the regular KL546

often lacks this capability.547

One drawback of the decision cognizant KL diver-548

gence is its lack of robustness to noise when faced549

with incongruent cases. This is a characteristic550

inherited from the regular KL divergence, but in551

a different shape: the decision cognizant measure552

tends to estimate values closer to zero, misclassi-553

fying incongruent cases, while the regular measure554

tends to estimate values closer to a specific, non-555

zero point, misclassifying congruent cases. Care556

must be taken in the definition of thresholds for557

congruency and incongruency when faced with a558

context where noise is a significant issue. We be-559

lieve that the simulations spanning the probability560

space provide evidence that DC-KL divergence will561

be more robust then KL divergence in general, but562

real applications are still to be investigated. Also,563

future work can explore the new divergence from564

the point of view of domain anomaly and classifier565

diversity.566

Acknowledgements567

This work was carried out as part of EP-568

SRC project “Signal processing in a networked569

battlespace“ under contract EP/K014307/1 and570

“FACER2VM” reference EP/N007743/1. The EP-571

SRC financial support is gratefully acknowledged.572

We also would like to thank FAPESP for the finan-573

cial support (grants 2015/24652-2 and 2015/13504-574

2).575

References576

[1] J. Kittler, M. Hatef, R. P. Duin, J. Matas, On com-577

bining classifiers, Pattern Analysis and Machine Intel-578

ligence, IEEE Transactions on 20 (3) (1998) 226–239.579

[2] M. Ponti Jr, Combining classifiers: from the creation of580

ensembles to the decision fusion, in: 24th SIBGRAPI581

Conference on Graphics, Patterns and Images Tutorials582

(SIBGRAPI-T), IEEE, 2011, pp. 1–10.583

[3] D. Weinshall, A. Zweig, H. Hermansky, S. Kombrink,584

F. W. Ohl, J. Anemeuller, J.-H. Bach, L. V. Gool,585

F. Nater, T. Pajdla, M. Havlena, M. Pavel, Beyond586

novelty detection: Incongruent events, when general587

and specific classifiers disagree, IEEE Trans. on Pattern588

Analysis and Machine Intelligence 34 (2012) 1886–1901.589

[4] J. Kittler, W. Christmas, T. de Campos, D. Windridge,590

F. Yan, J. Illingworth, M. Osman, Domain anomaly591

detection in machine perception: A system architecture592

and taxonomy, IEEE Trans. on Pattern Analysis and593

Machine Intelligence 35 (2014) 1,14.594

[5] L. Itti, P. F. Baldi, A principled approach to detecting595

surprising events in video, in: Proc. IEEE Conference596

on Computer Vision and Pattern Recognition (CVPR),597

2005, pp. 631–637.598

[6] D. Coppi, T. de Campos, F. Yan, J. Kittler, R. Cuc-599

chiara, On detection of novel categories and subcate-600

gories of images using incongruence, in: Proceedings601

of International Conference on Multimedia Retrieval,602

ICMR ’14, ACM, New York, NY, USA, 2014, pp.603

337:337–337:344.604

[7] L. Burget, P. Schwarz, P. Matejka, M. Hannemann,605

A. Rastrow, C. White, S. Khudanpur, H. Hermansky,606

J. Cernocky, Combination of strongly and weakly con-607

strained recognizers for reliable detection of OOVS, in:608

IEEE International Conference on Acoustics, Speech609

and Signal Processing (ICASSP), 2008, pp. 4081–4084.610

doi:10.1109/ICASSP.2008.4518551.611

12



[8] F. Liese, I. Vajda, On divergences and informations in612

statistics and information theory, IEEE Trans. Informa-613

tion Theory 52 (10) (2006) 4394 – 4411.614

[9] S. Kullback, R. A. Leibler, On information and suffi-615

ciency, The Annals of Mathematical Statistics (1951)616

79 – 86.617

[10] K. T. Abou-Moustafa, F. D. L. Torre, F. P. Fer-618

rie, Pareto models for discriminative multiclass linear619

dimensionality reduction, Pattern Recognition 48 (5)620

(2015) 1863–1877. doi:10.1016/j.patcog.2014.11.008.621

[11] J. M. Sotoca, F. Pla, Supervised feature selection by622

clustering using conditional mutual information-based623

distances, Pattern Recognition 43 (6) (2010) 2068–2081.624

doi:10.1016/j.patcog.2009.12.013.625

[12] T. F. Li, An efficient algorithm to find the MLE626

of prior probabilities of a mixture in pattern recog-627

nition, Pattern Recognition 29 (2) (1996) 337–339.628

doi:10.1016/0031-3203(95)00079-8.629

[13] J. Honorio, T. Jaakkola, A unified framework for consis-630

tency of regularized loss minimizers, in: Proceedings of631

the 31st International Conference on Machine Learning632

(ICML-14), 2014, pp. 136–144.633

[14] W. Wang, B. Zhang, D. Wang, Y. Jiang, S. Qin, L. Xue,634

Anomaly detection based on probability density func-635

tion with Kullback–Leibler divergence, Signal Process-636

ing 126 (2016) 12 – 17. doi:10.1016/j.sigpro.2016.01.008.637

[15] J. Xu, S. Denman, C. Fookes, S. Sridharan, De-638

tecting rare events using Kullback–Leibler diver-639

gence: A weakly supervised approach, Expert640

Systems with Applications 54 (2016) 13 – 28.641

doi:10.1016/j.eswa.2016.01.035.642

[16] M. Galar, A. Fernández, E. Barrenechea, H. Bustince,643

F. Herrera, Dynamic classifier selection for one-644

vs-one strategy: Avoiding non-competent classi-645

fiers, Pattern Recognition 46 (12) (2013) 3412–3424.646

doi:10.1016/j.patcog.2013.04.018.647

[17] J. Barranquero, J. Dı́ez, J. J. del Coz, Quantification-648

oriented learning based on reliable classifiers,649

Pattern Recognition 48 (2) (2015) 591–604.650

doi:10.1016/j.patcog.2014.07.032.651

[18] N. Bouguila, Bayesian hybrid generative discrimina-652

tive learning based on finite liouville mixture mod-653

els, Pattern Recognition 44 (6) (2011) 1183–1200.654

doi:10.1016/j.patcog.2010.12.010.655

[19] F. Breve, M. Ponti-Junior, N. Mascarenhas, Multilayer656

perceptron classifier combination for identification of657

materials on noisy soil science multispectral images, in:658

XX Brazilian Symposium on Computer Graphics and659

Image Processing (SIBGRAPI 2007), IEEE, 2007, pp.660

239–244.661
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