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In this technical note, we address an unresolved challenge in neuroimaging statistics:

how to determine which of several datasets is the best for inferring neuronal responses.

Comparisons of this kind are important for experimenters when choosing an imaging

protocol—and for developers of new acquisition methods. However, the hypothesis that

one dataset is better than another cannot be tested using conventional statistics (based

on likelihood ratios), as these require the data to be the same under each hypothesis.

Here we present Bayesian data comparison (BDC), a principled framework for evaluating

the quality of functional imaging data, in terms of the precision with which neuronal

connectivity parameters can be estimated and competingmodels can be disambiguated.

For each of several candidate datasets, neuronal responses are modeled using Bayesian

(probabilistic) forward models, such as General Linear Models (GLMs) or Dynamic Casual

Models (DCMs). Next, the parameters from subject-specific models are summarized at

the group level using a Bayesian GLM. A series of measures, which we introduce here,

are then used to evaluate each dataset in terms of the precision of (group-level) parameter

estimates and the ability of the data to distinguish similar models. To exemplify the

approach, we compared four datasets that were acquired in a study evaluating multiband

fMRI acquisition schemes, and we used simulations to establish the face validity of the

comparison measures. To enable people to reproduce these analyses using their own

data and experimental paradigms, we provide general-purpose Matlab code via the SPM

software.

Keywords: dynamic causal modeling, DCM, fMRI, PEB, multiband

INTRODUCTION

Hypothesis testing involves comparing the evidence for different models or hypotheses, given some
measured data. The key quantity of interest is the likelihood ratio—the probability of observing the
data under one model relative to another—written p

(

y
∣
∣m1

)

/ p(y|m2) for models m1 and m2 and
dataset y. Likelihood ratios are ubiquitous in statistics, forming the basis of the F-test and the Bayes
factor in classical and Bayesian statistics, respectively. They are the most powerful test for any given
level of significance by the Neyman-Pearson lemma (Neyman and Pearson, 1933). However, the
likelihood ratio test assumes that there is only one dataset y–and so cannot be used to compare
different datasets. Therefore, an unresolved problem, especially pertinent to neuroimaging, is how
to test the hypothesis that one dataset is better than another for making inferences.

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org/journals/neuroscience#editorial-board
https://www.frontiersin.org/journals/neuroscience#editorial-board
https://www.frontiersin.org/journals/neuroscience#editorial-board
https://www.frontiersin.org/journals/neuroscience#editorial-board
https://doi.org/10.3389/fnins.2018.00986
http://crossmark.crossref.org/dialog/?doi=10.3389/fnins.2018.00986&domain=pdf&date_stamp=2019-01-10
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles
https://creativecommons.org/licenses/by/4.0/
mailto:peter.zeidman@ucl.ac.uk
https://doi.org/10.3389/fnins.2018.00986
https://www.frontiersin.org/articles/10.3389/fnins.2018.00986/full
http://loop.frontiersin.org/people/284047/overview
http://loop.frontiersin.org/people/140709/overview
http://loop.frontiersin.org/people/52916/overview
http://loop.frontiersin.org/people/20407/overview
http://loop.frontiersin.org/people/168084/overview


Zeidman et al. Optimizing Data With DCM

Neuronal activity and circuitry cannot generally be observed
directly, but rather are inferred from measured timeseries. In the
case of fMRI, the data are mediated by neuro-vascular coupling,
the BOLD response and noise. To estimate the underlying
neuronal responses, models are specified which formalize the
experimenter’s understanding of how the data were generated.
Hypotheses are then tested by making inferences about model
parameters, or by comparing the evidence under different
models. For example, an F-test can be performed on the General
Linear Model (GLM) using classical statistics, or Bayesian Model
Comparison can be used to select between probabilistic models.
From the experimenter’s perspective, the best dataset provides
the most precise estimates of neuronal responses (enabling
efficient inference about parameters) and provides the greatest
discrimination among competing models (enabling efficient
inference about models).

Here, we introduce Bayesian data comparison (BDC)—a set
of information measures for evaluating a dataset’s ability to
support inferences about both parameters and models. While
they are generic and can be used with any sort of probabilistic
models, we illustrate their application using Dynamic Causal
Modeling (DCM) for fMRI (Friston et al., 2003) because it
offers several advantages. Compared to the GLM, DCM provides
a richer characterization of neuroimaging data, through the
use of biophysical models, based on differential equations that
separate neuronal and hemodynamic parameters. This means
one can evaluate which dataset is best for estimating neuronal
parameters specifically. These models also include connections
among regions, making DCM the usual approach for inferring
effective (directed) connectivity from fMRI data.

By using the same methodology to select among datasets as
experimenters use to select between connectivity models, feature
selection and hypothesis testing can be brought into alignment
for connectivity studies. Moreover, a particularly useful feature
of DCM for comparing datasets is that it employs Bayesian
statistics. The posterior probability over neuronal parameters
forms a multivariate normal distribution, providing expected
values for each parameter, as well as their covariance. The
precision (inverse covariance) quantifies the confidence we place
in the parameter estimates, given the data. After establishing that
an experimental effect exists, for example by conducting an initial
GLM analysis or by reference to previous studies, the precision
of the parameters can be used to compare datasets. DCM also
enables experimenters to distinguish among models, in terms
of which model maximizes the log model evidence ln p(y|m).
We cannot use this quantity to compare different datasets,
but we can ask which of several datasets provides the most
efficient discrimination among models. For these reasons, we
used Bayesian methods as the basis for comparing datasets, both
to provide estimates of neuronal responses and to distinguish
among competing models.

This paper presents a methodology and associated software
for evaluating which of several imaging acquisition protocols
or data features affords the most sensitive inferences about
neural architectures. We illustrate the framework by assessing
the quality of fMRI time series acquired from 10 participants,
who were each scanned four times with a different multiband

acceleration factor. Multiband is an approach for rapid
acquisition of fMRI data, in which multiple slices are acquired
simultaneously and subsequently unfolded using coil sensitivity
information (Larkman et al., 2001; Xu et al., 2013). The rapid
sampling enables sources of physiological noise to be separated
from sources of experimental variance more efficiently, however,
a penalty for this increased temporal resolution is a reduction
of the signal-to-noise ratio (SNR) of each image. A detailed
analysis of these data is published separately (Todd et al.,
2017). We do not seek to draw any novel conclusions about
multiband acceleration from this specific dataset, but rather we
use it to illustrate a generic approach for comparing datasets.
Additionally, we conducted simulations to establish the face
validity of the outcomemeasures, using estimated effect sizes and
SNR levels from the empirical multiband data.

The methodology we introduce here offers several novel
contributions. First, it provides a sensitive comparison of
data by evaluating their ability to reduce uncertainty about
neuronal parameters, and to discriminate among competing
models. Second, our procedure identifies the best dataset for
hypothesis testing at the group level, reflecting the objectives
of most cognitive neuroscience studies. Unlike a classical GLM
analysis—where only the maximum likelihood estimates from
each subject are taken to the group level—the (parametric
empirical) Bayesian methods used here take into account the
uncertainty of the parameters (the full covariance matrix), when
modeling at the group level. Additionally, this methodology
provides the necessary tools to evaluate which imaging protocol is
optimal for effective connectivity analyses, althoughwe anticipate
many questions about data quality will not necessarily relate to
connectivity.We provide a singleMatlab function for conducting
all the analyses described in this paper, which is available in
the SPM (http://www.fil.ion.ucl.ac.uk/spm/) software package
(spm_dcm_bdc.m). This function can be used to evaluate any
type of imaging protocol, in terms of the precision with which
model parameters are estimated and the complexity of the
generative models that can be disambiguated.

METHODS

We begin by briefly reprising the theory behind DCM and
introducing the set of outcome measures used to evaluate data
quality. We then illustrate the analysis pipeline in the context
of an exemplar fMRI dataset and evaluate the measures using
simulations.

Dynamic Causal Modeling
DCM is a framework for evaluating generative models of time
series data. At the most generic level, neural activity in region
i of the brain at time t may be modeled by a lumped or neural
mass quantity zit . Generally, the experimenter is interested in the
neuronal activity of a set of interconnected brain regions, the
activity of which can be written as a vector z. The evolution of
neural activity over time can then be written as:

ż = f
(

z, u, θ (n)
)

(1)
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Where ż is the derivative of the neural activity with respect
to time, u are the time series of experimental or exogenous
inputs and θ (n) are the neural parameters controlling connectivity
within and between regions. Neural activity cannot generally
be directly observed. Therefore, the neural model is combined
with an observation model g, with haemodynamic/observation
parameters θ (h), specifying how neural activity is transformed
into a timeseries, y:

y = g
(

z, θ (h)
)

+ ǫ(1) (2)

Where ǫ(1) is zero-mean (I.I.D.) additive Gaussian noise, with
log-precision specified by hyperparameters λ = λ1 . . . λr for each
region r. The I.I.D. assumption is licensed by automatic pre-
whitening of the timeseries in SPM, prior to the DCM analysis.
In practice, it is necessary to augment the vector of neuronal
activity with hemodynamic parameters that enter the observation
model above. The specific approximations of functions f and g
depend on the imaging modality being used, and the procedures
described in this paper are not contingent on any specific models.
However, to briefly reprise the basic model for fMRI—which we
use here for illustrative purposes—f is a Taylor approximation to
any nonlinear neuronal dynamics:

ż =



A+
∑

j

uj(t)B
j



 z + Cu(t) (3)

There are three sets of neural parameters θ (n) = (A,B,C)
and j experimental inputs. Matrix A represents the strength of
connections within (i.e., intrinsic) and between (i.e., extrinsic)
regions—their effective connectivity. Matrix B represents the
effect of time-varying experimental inputs on each connection
(these are referred to as modulatory or condition-specific effects)
and the corresponding vector uj(t) is a timeseries encoding the
timing of experimental condition j at time t. Matrix C specifies
the influence of each experimental input on each region, which
effectively drives the dynamics of the system, given u(t) which is
the vector of all experimental inputs at time t.

The hemodynamics (the observation model g above) are
modeled with an extended Balloon model (Buxton et al., 2004;
Stephan et al., 2007), which comprises a series of differential
equations describing the process of neurovascular coupling by
which activity ultimately manifests as a BOLD signal change. The
majority of the parameters of this hemodynamic model are based
on previous empirical measurements; however, three parameters
are estimated on a region-specific basis: the transit time τ, the rate
of signal decay κ, and the ratio of intra- to extra-vascular signal
ǫ(h).

The observation parameters θ (h) are concatenated with the
neural parameters θ (n) and the hyperparameters λ and a
prior multivariate normal density is defined (see Table 1). The
parameters are then estimated using a standard variational
Bayes scheme called variational Laplace (Friston et al., 2003;
Friston, 2011). This provides a posterior probability density for
the parameters, as well as an approximation of the log model
evidence (i.e., the negative variational free energy), which scores

TABLE 1 | Priors on DCM parameters.

Parameter(s) Prior expectation Prior variance

A 0 1/64

B 0 1

C 0 1

τ 0 1/256

κ 0 1/256

ǫ(h) 0 1/256

λi 6 1/128

the quality of the model in terms of its accuracy minus its
complexity.

Group Analyses With PEB
Having fitted a model of neuronal responses to each subject
individually (a first level analysis), the parameters can be
summarized at the group level (a second level analysis). We used
a Bayesian GLM, implemented using the Parametric Empirical
Bayes (PEB) framework for DCM (Friston et al., 2016). With
N subjects and M connectivity parameters for each subject’s
DCM, the group-level GLM has the form:

θ = Xβ + ǫ(2) (4)

The dimensions of this GLM are illustrated in Figure 1. Vector
θ ∈ R

NM×1 are the neuronal parameters from all the subjects’
DCMs, consisting of all parameters from subject 1, then all
parameters from subject 2, etc. The design matrix X ∈ R

NM×M

was specified as:

X = 1N ⊗ IM (5)

Where 1N is a column vector of 1 s of dimension N and IM
is the identity matrix of dimension M. The Kronecker product
⊗

replicates the identity matrix vertically for each subject. The
use of a Kronecker product at the between subject level reflects
the fact that between subject effects can be expressed at each
and every connection. In this instance, we are just interested
in the group mean and therefore there is only one between-
subject effect. The resulting matrix X has one column (also
called a covariate or regressor) for each connectivity parameter
(Figure 1). The regressors are scaled by parameters β ∈ R

M×1,
which are estimated from the data and represent the group
average strength of each connection. Finally, the errors ǫ(2) ∈

R
NM×1 are modeled as zero-mean additive noise:

ǫ(2) = N(0, 5−1) (6)

Where precision matrix 5 ∈ R
NM×NM is estimated from

the data. This captures the between-subject variability in the
connection strengths, parameterised using a single parameter γ :

5 = IN ⊗
(

Q0 + e−γQ1

)

(7)

This is a multi-component covariance model. Q0∈ R
M×M is the

lower bound on precision and ensures it is a positive number.
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FIGURE 1 | Form of the General Linear Model (GLM). The M parameters from

all N subjects’ DCMs are arranged in a vector θ . This is modeled using a

design matrix X that encodes which DCM parameter is associated with which

element of θ . After estimation of the GLM, parameters β are the group average

of each DCM connection. Between-subjects variability ǫ(2) is specified

according to Equation 6. In this figure, white = 1 and black = 0. Shading in

parameters θ , β, ǫ is for illustrative purposes only.

Matrix Q1∈ R
M×M is the prior precision. When the parameter γ

is zero, the precision is equal toQ0+Q1. More negative values of
γ equate to higher precision than the prior and vice versa. The
Kronecker product

⊗

replicates the precision matrix for each
subject, giving rise to thematrix5 of dimensionNM×NM where
the leading diagonal is the precision of each DCM parameter θ .

Prior (multivariate normal) densities are specified on the
group-level parameters representing the average connection
strengths across subjects β and the parameter controlling
between-subject variability γ :

β = N
(

µβ ,6β

)

γ = N(µγ ,6γ ) (8)

Where µβ∈ R
MN×1, 6β∈ R

MN×MN , µγ ∈ R
1, σγ ∈ R

1. The
prior on β is set to be identical to the prior on the corresponding
DCM parameter at the first (individual subject) level. In
the example analysis presented here, parameters governing
condition-specific neural effects (B) with prior p (Bi) = N(0, 1)
for each parameter i were taken to the group level. The prior on
γ , the log precision of the between-subject random effects, was
set to p (γ ) = N(0, 1/16). This expresses the prior belief that
the between-subject variance is expected to be much smaller (16
times smaller) than the within-subject effect size.

To summarize, within and between-subject parameters
are estimated using a hierarchical scheme, referred to as
Parametric Empirical Bayes (PEB). Model estimation provides
the approximate log model evidence (free energy) of the group-
level Bayesian GLM—a statistic that enables different models
to be compared (see Appendix 1). We take advantage of the
free energy below to compare models of group-level data. For

full details on the priors, model specification, and estimation
procedure in the PEB scheme, see Friston et al. (2016). Readers
familiar with Random Effects Bayesian Model Selection (RFX
BMS) (Stephan et al., 2009) will note the distinction with the
PEB approach used here. Whereas, RFX BMS considers random
effects over models, the PEB approach considers random effects
at the group level to be expressed at the level of parameters;
namely, parametric random effects. This means that uncertainty
about parameters at the subject level is conveyed to the group
level; licensing the measures described in the next section.

Outcome Measures
Parameter Certainty
To measure the information gain (or reduction in uncertainty)
about parameters due to the data, we take advantage of the
Laplace approximation used in the DCM framework, which
means that the posterior and prior densities over parameters are
Gaussian. In this case, the confidence of the parameter estimates
can be quantified using the negative entropy of the posterior
multivariate density over interesting parameters:

Sθ = −0.5ln
∣
∣2πe 6β

∣
∣ (9)

Equation 9 uses the definition of the negative entropy for
the multivariate normal distribution, applied to the neuronal
parameter covariance matrix 6β . This has units of nats (i.e.,
natural units) and provides a summary of the precision associated
with group level parameters—such as group means—having
properly accounted for measurement noise and random effects
at the between-subject level.

Datasets can be compared by treating the entropies as
log Bayes factors (detailed in Appendix 1: Bayesian data
comparison). In brief, this follows because the log Bayes factor
can always be decomposed into two terms—a difference in
accuracy minus a difference in complexity. The complexity is
the KL-divergence between the posteriors 6β and the priors
60, and it scores the reduction in uncertainty afforded by the
data, in units of nats. Under flat or uninformative priors, the
KL-divergence reduces to the negative entropy in Equation 9. A
difference in entropy between 1.1 nats and 3 nats is referred to
as “positive evidence” that one dataset is better than another, and
corresponds to a difference in information gain between e1.1 ≈ 3
fold and e3 ≈ 20 fold (Kass and Raftery, 1995). Similarly, a
difference in entropy between 3 and 5 nats is referred to as “strong
evidence,” and differences in entropy beyond this are referred
to as “very strong evidence.” These same labels apply for the
measures below.

Information Gain (Parameters)
The data quality afforded by a particular acquisition scheme
can be scored in terms of the relative entropy or KL-divergence
between posterior and prior distributions over parameters.
This measure of salience is also known as Bayesian surprise,
epistemic value or information gain and can be interpreted as
the quantitative reduction of uncertainty after observing the data.
In other words, it reflects the complexity of the model (the
number of independent parameters) that can be supported by
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the data. This takes into account both the posterior expectation
and precision of the parameters relative to the priors, whereas
the measure in part (a) considered only the posterior precision
(relative to uninformative priors).

The KL-divergence for the multivariate normal distribution,
between the posterior N1 and the prior N0, with mean µ1 and µ0

and covariance 61 and 60, respectively, is given by:

DKL (N1 ‖ N0) =
1

2

(

tr
(

6−1
0 61

)

+ (µ0 − µ1)
T 6−1

0

(µ0 − µ1) − k+ ln
det60

det61

)

(10)

Where k = rank(60). This statistic increases when the posterior
mean hasmoved away from the priormean or when the precision
of the parameters has increased relative to the precision of the
priors. Note that this same quantity also plays an important
role in the definition of the free energy approximation to
log model evidence, which can be decomposed into accuracy
minus complexity, the latter being the KL-divergence between
posteriors and priors.

Themeasures described so far are based on posterior estimates
of model parameters. We now turn to the equivalent measure of
posterior beliefs about the models per se.

Information Gain (Models)
The quality of the data from a given acquisition scheme can
also be assessed in terms of their ability to reduce uncertainty
about models. This involves specifying a set of equally plausible,
difficult to disambiguate models that vary in the presence or
absence of experimental effects or parameters, and evaluating
which dataset best enables these models to be distinguished.

Bayesian model comparison starts with defining a prior
probability distribution over the models P0. Here, we assume
that all models are equally likely, therefore P0 = 1/p for each
of p models. This prior is combined with the model evidence,
to provide a posterior distribution over the models, P. To
quantify the extent to which the competing models have been
distinguished from one another, we measure the information
gain from the prior P0 to the posterior P. This is given by the
KL-divergence used above for the parameters. After describing
how we specified these models, we provide an example of this
KL-divergence in practice.

Typically with Bayesian inference (e.g., DCM), the
experimenter embodies each hypothesis as a model and
compares the evidence for different models. In the example
dataset presented here, we did not have strong hypotheses
about the experimental effects, and so we adopted the following
procedure. We first estimated a “full” group-level Bayesian GLM
with all relevant free parameters from the subjects’ DCMs. Next,
we identified a set of reduced GLMs that only differed slightly
in log evidence (i.e., they were difficult to discriminate). To do
this we eliminated one connection or parameter (by fixing its
prior variance to zero) and retained the model if the change
in log evidence was >-3. This corresponds to a log odds ratio
of approximately one in e3 ≈ 20, meaning that the model was
retained if it was no more than 20 times less probable than the

full model. We repeated this procedure by eliminating another
parameter (with replacement), ultimately obtaining the final
model space. This procedure was performed rapidly by using
Bayesian Model Reduction (BMR), which analytically computes
the log evidence of reduced models from a full model (Friston
et al., 2016).

Having identified a set of plausible but difficult to
disambiguate models (GLMs) for a given dataset, we then
calculated the posterior probability of each model. Under flat
priors, this is simply the softmax function of the log model
evidence, as approximated by the free energy (see Appendix 1).
We then computed the KL-divergence between the posterior
and prior model probabilities, which is defined for discrete
probability distributions as:

DKL (P ‖ P0) =
∑

i=1...k

(

Pi ln Pi
)

+ ln k (11)

The behavior of the KL-divergence is illustrated in Figure 2,
when comparing k = 10 simulated models. When one model
has a posterior probability approaching one, and all other
models have probability approaching zero, the KL-divergence is
maximized and has the value DKL = ln k = 2.30 (Figure 2A).
As the probability density is shared between more models,
so the KL-divergence is reduced (Figures 2B,C). It reaches its
minimum value of zero when all models are equally likely,
meaning that no information has been gained by performing the
model comparison (Figure 2D).

Summary of Measures and Analysis
Pipeline
A key contribution of the measures introduced in this paper
is the characterization of information gain in terms of both
the parameters, and the models that entail those parameters.
Together they provide a principled means by which to
characterize the optimality of a given scheme for acquiring data.
These are intended for use where the presence or absence of
experimental effects in the data is already known—for example,
based on previous studies and/or the results or an initial analysis
collapsed across datasets (e.g., a mass-univariate GLM analysis).

We now suggest a pipeline for applying these measures
to neuroimaging data. Step 1 provides estimates of neuronal
parameters from each dataset. Steps 2 and 3 use the estimated
parameters from all datasets to automatically identify a suitable
model architecture (and could be skipped if the experimenter has
strong priors as to what the model architecture should be). Steps
4 and 5 provide estimates of the group level parameters for each
dataset and compare them using the measures described above.
For convenience, steps 2–5 of this procedure can be run with a
single Matlab function implemented in SPM (spm_dcm_bdc.m):

1) Model each subject’s data using a Bayesianmodel (e.g., DCM).
The objective is to obtain posterior estimates of neuronal
parameters from each dataset. These estimates take the form of
a multivariate probability density for each subject and dataset.

2) Identify the optimal group-level model structure. This step
identifies a parsimonious model architecture, which can be

Frontiers in Neuroscience | www.frontiersin.org 5 January 2019 | Volume 12 | Article 986

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles


Zeidman et al. Optimizing Data With DCM

FIGURE 2 | Illustration of the KL-divergence in four simulated model comparisons. The bars show the posterior probabilities of 10 models and the titles give the

computed KL-divergence from the priors. (A) Model 1 has posterior probability close to 1. The KL-divergence is at its maximum of ln10 = 2.3. (B) The probability

density is shared between models 1 and 2, reducing the KL-divergence. (C) The probability density shared between 3 models. (D) The KL-divergence is minimized

when all models are equally likely, meaning no information has been gained relative to the prior.

used to model all datasets (in the absence of strong hypotheses
about the presence and absence of experimental effects).
A Bayesian GLM is specified and fitted to the neuronal
parameters from all subjects and datasets. To avoid bias, the
GLM is not informed that the data derive from multiple
datasets. The estimated GLM parameters represent the average
connectivity across all datasets. This GLM is pruned to remove
any redundant parameters (e.g., relating to the responses of
specific brain regions) that do not contribute to the model
evidence, using Bayesian Model Reduction (Friston et al.,
2016). This gives the optimal reduced model structure at the
group level, agnostic to the dataset.

3) Re-estimate each subject’s individual DCM having switched
off any parameters that were pruned in step 2. This step equips
each subject with a parsimonious model to provide estimates
of neuronal responses. This is known as “empirical Bayes,” as
the priors for the individual subjects have been updated based
on the group level data. Again, this is performed analytically
using Bayesian Model Reduction.

4) Fit separate Bayesian GLMs to the neuronal parameters
of each dataset. This summarizes the estimated neuronal
responses for each dataset, taking into account both the
expected values and uncertainty of each subject’s parameters.

5) Apply the measures outlined above to compare the quality or
efficiency of inferences from each dataset’s Bayesian GLM—in
terms of parameters or models.

Collectively, the outcome measures that result from this
procedure constitute an assessment of the goodness of different
datasets in terms of inferences about connection parameters and
models. Next, we provide an illustrative example using empirical
data from an experiment comparing different fMRI multiband
acceleration factors.

Multiband Example
For this example, we use fMRI data from a previously published
study that evaluated the effect of multiband acceleration on fMRI
data (Todd et al., 2017). We will briefly reprise the objectives

of that study. For a given effect size of interest, the statistical
power of an fMRI experiment can be improved by acquiring a
greater number of sample points (i.e., increasing the efficiency
of the design) or by reducing measurement noise. This has
the potential to enable more precise parameter estimates and
provide support for more complex models of how the data
were generated. Acquiring data with high temporal resolution
both increases the number of samples per unit time and allows
physiologically-driven fluctuations in the time series to be more
fully sampled and subsequently removed or separated from the
task-related BOLD signal (Todd et al., 2017). One approach
to achieving rapid acquisitions is the use of the multiband or
simultaneous multi-slice acquisition technique (Setsompop et al.,
2012; Xu et al., 2013); in which multiple slices are acquired
simultaneously and subsequently unfolded using coil sensitivity
information (Setsompop et al., 2012; Cauley et al., 2014). The
penalty for the increased temporal resolution is a reduction of
the signal-to-noise ratio (SNR) of each image. This is caused
by increased g-factor penalties, dependent on the coil sensitivity
profiles, and reduced steady-state magnetization arising from
the shorter repetition time (TR) and concomitant reduction in
excitation flip angle. In addition, a shorter TR can be expected
to increase the degree of temporal auto-correlation in the time
series (Corbin et al., 2018). This raises the question of which MB
acceleration factor offers the best trade-off between acquisition
speed and image quality.

We do not seek to resolve the question of which multiband
factor is optimal in general. Furthermore, there are many
potential mechanisms by which multiband acquisitions could
improve or limit data quality, including better sampling of
physiological noise, and increasing the number of samples in
the data. Rather than trying to address these questions here,
we instead use these data to exemplify comparing datasets. In
these data, physiologically-driven fluctuations—that are better
sampled with higher multiband acceleration factor due to the
higher Nyquist sampling frequency—were removed from the
data by filtering. Subsequently, the data were down-sampled so as
to have equivalent numbers of samples across multiband factors,
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as described in Todd et al. (2017). The framework presented
here could be used to test the datasets under many different
acquisition and pre-processing procedures.

Data Acquisition
Ten healthy volunteers were scanned with local ethics committee
approval on a Siemens 3T Tim Trio scanner. For each volunteer,
fMRI task data with 3mm isotropic resolution were acquired
four times with a MB factor of either 1, 2, 4, or 8 using
the gradient echo EPI sequence from the Center for Magnetic
Resonance Research (R012 for VB17A, https://www.cmrr.umn.
edu/multiband/). The TR was 2,800, 1,400, 700, and 350ms for
MB factor 1, 2, 4, and 8, respectively, resulting in 155, 310,
620, and 1,240 volumes, respectively, leading to a seven and a
half min acquisition time per run. The data were acquired with
the blipped-CAIPI scheme (Setsompop et al., 2012), without in-
plane acceleration, and the leak-block kernel option for image
reconstruction was enabled (Cauley et al., 2014).

fMRI Task
The fMRI task consisted of passive viewing of images, with image
stimuli presented in 8 s blocks. Each block consisted of four
images of naturalistic scenes or four images of single isolated
objects, displayed successively for 2 s each. There were two
experimental factors: stimulus type (images of scenes or objects)
and novelty (2, 3, or 4 novel images per block, with the remainder
repeated). This paradigm has previously been shown to induce
activation in a well-established network of brain regions that
respond to perceiving, imagining or recalling scenes (Spreng
et al., 2009; Zeidman et al., 2015).

Preprocessing
All data were processed in SPM (Ashburner and Friston, 2005),
version 12. This comprised the usual image realignment, co-
registration to a T1-weighted anatomical image and spatial
normalization to the Montreal Neurological Institute (MNI)
template space using the unified segmentation algorithm, and
smoothing with a 6 × 6 × 6mm full width at half maximum
(FWHM) Gaussian kernel.

As described in Todd et al. (2016), all data were filtered using
a 6th-order low pass Butterworth filter with a frequency cut-off
of 0.18Hz (corresponding to the Nyquist frequency of the MB
= 1 data). This removed all frequency components between the
cut-off frequency and the corresponding Nyquist frequency of
the particular MB factor. In order to ensure equal numbers of
samples per data set—regardless of MB factor used—the time
series were decimated by down-sampling all datasets to the TR
of the MB1 (TR= 2.8 s) data.

After initial processing and filtering, all data sets were
modeled with a general linear model (GLM), with a high
pass filter (cut-off period = 128 s) and regressors for motion,
and physiological effects. In addition to these confounding
effects, the stimulation blocks were modeled with boxcar
functions convolved with the canonical hemodynamic response
function. Temporal autocorrelations were accounted for with an
autoregressive AR(1) model plus white noise. This was deemed
sufficient given that after filtering and decimation each time series

had an effective TR of 2.8 s (Corbin et al., 2018). The contrast of
scenes>objects was computed and used to select brain regions
for the DCM analysis.

DCM Specification
We selected seven brain regions (Figure 3A) from the SPM
analysis which are part of a “core network” that responds more
to viewing images of scenes rather than images of isolated objects
(Zeidman et al., 2015). These regions were: Early Occipital cortex
(OCC), left Lateral Occipital cortex (lLOC), left Parahippocampal
cortex (lPHC), left Retrosplenial cortex (lRSC), right Lateral
Occipital cortex (rLOC), right Parahippocampal cortex (rPHC),
and right Retrosplenial cortex (rRSC).

We extracted timeseries from each of these regions as follows.
The group-level activation peak (collapsed across multiband
factor to prevent bias) was identified from the contrast of
scenes>objects (thresholded at p < 0.05 FWE-corrected) using
a one-way ANOVA as implemented in SPM. Subsequently,
a spherical region of interest (ROI) with 8mm FWHM was
centered on the peaks at the individual level that were closest to
the group-level peaks. This size of the ROI sphere was arbitrary
and provided a suitable trade-off between including a reasonable
number of voxels and not crossing into neighboring anatomical
areas. Voxels within each sphere surviving at least p < 0.001
uncorrected at the single-subject level were summarized by their
first principal eigenvariate, which formed the data feature used
for subsequent DCM analysis.

The neuronal model for each subject’s DCM was specified
as a fully connected network (Figure 3B). Dynamics within the
network were driven by all trials, modeled as boxcar functions,
driving occipital cortex (the circle labeled a in Figure 3B). The
experimental manipulations (scene stimuli, object stimuli, and
stimulus novelty) were modeled as modulating each region’s
self-inhibition (colored arrows in Figure 3B). These parameters
control the sensitivity of each region to inputs from the rest of
the network, in each experimental condition. Neurobiologically,
they serve as simple proxies for context-specific changes in the
excitatory-inhibitory balance of pyramidal cells and inhibitory
interneurons within each region (Bastos et al., 2012). These
parameters, which form the B-matrix in the DCM neuronal
model (Equation 3), are usually the most interesting from the
experimenters’ perspective—and we focused on these parameters
for our analyses.

Simulation
We also conducted simulations to confirm the face validity of the
Bayesian data comparison approach presented here. Specifically,
we wanted to ensure that subject-level differences in the precision
of parameters across datasets were properly reflected in the
group-level PEB parameters and the ensuing outcome measures.
Note that these simulations were not intended to recapitulate
the properties or behavior of multiband fMRI data. Rather,
our intention was to conduct a simple and reasonably generic
assessment of the outcomemeasures under varying levels of SNR.

We generated simulated neuroimaging data for 100 virtual
experiments, each consisting of 100 datasets with differing SNR
levels, and applied the Bayesian data comparison procedure to
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FIGURE 3 | DCM specification. (A) Locations of the seven brain regions included in the DCM projected onto a canonical brain mesh. (B) Structure of the DCM model

estimated for each subject. The circles are brain regions, which were fully connected to one another (gray lines). The self-connection parameters (black arrows), which

control each region’s sensitivity to input from other regions, were modulated by each of the three experimental manipulations (colored arrows). (C) The optimal

group-level (GLM) model after pruning away any parameters that did not contribute to the free energy. The numbered parameters correspond to the bar charts in

Figure 4. Key: a, early visual cortex; b, left lateral occipital cortex; c, right lateral occipital cortex; d, left parahippocampal cortex; e, right parahippocampal cortex; f,

left retrosplenial cortex; g, right retrosplenial cortex.

each. These data were generated and modeled using General
Linear Models (GLMs), which enabled precise control over
the parameters and their covariance, as well as facilitating the
inversion of large numbers of models in reasonable time (minutes
on a desktop PC). For each simulation i = 1 . . . 100, subject
j = 1 . . . 16, and level of observation noise k = 1 . . . 100 we
specified a GLM:

y(ijk) = X · β(ij) + ǫ(ijk) (12)

There were three regressors in the design matrix X matching the
empirical multiband fMRI experiment reported in the previous
section (corresponding to the scenes, objects, and novelty
experimental conditions). For each virtual subject, the three

corresponding parameters in vector β(ij) were sampled from a
multivariate normal distribution:

β(ij) ∼ N
(

µβ ,6β

)

µβ = [0.89, 0.89, 0.45]T

6β = I3 · σ
2
B (13)

Where I3 is the identity matrix of dimension three. Vector
µβ were the “ground truth” parameters, chosen based on the
empirical analysis (the first two parameters were set to 0.89, the
mean of scene and object effects on occipital cortex, and the third
parameter was set to half this value, to provide a smaller but still
detectable effect). The between-subject variance σ 2

B was set to
0.18, computed from the empirical PEB analyses and averaged
over multiband datasets. Finally, we added I.I.D observation

noise ǫ(ijk) with a different level of variance in each dataset,
chosen to achieve SNRs ranging between 0.003 (most noisy) and
0.5 (least noisy) in steps of 0.005. Here, SNR was defined as the
ratio of the variance of the modeled signal to the variance of the
noise (residuals); the median SNR from the empirical data was
0.5 across subjects and datasets.

Having generated the simulated data, we then fitted GLMs
using a variational Bayesian scheme (Friston et al., 2007) with
priors on the parameters set to:

p
(

β(ij)
)

= N(0, I3 · σ
2
W)

Where the within-subject prior variance was set to σ 2
W = 1,

to match the DCM parameters of interest in the empirical
analysis above. To compute the information gain over models
(the third outcome measure), we defined a model space with
seven permutations of the parameters switched on or off (i.e.,
we specified a model for every possible permutation of the
parameters, excluding the model with all three parameters
switched off).

RESULTS

We followed the analysis pipeline described above (see Summary
of measures and analysis) to compare data acquired under four
levels of multiband acceleration. The group-level results below
and the associated figures were generated using the Matlab
function spm_dcm_bdc.m.
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MB Leakage/Aliasing Investigation
While not the focus of this paper, we conducted an analysis
to ensure that our DCM results were not influenced by a
potential image acquisition confound. As with any accelerated
imaging technique, the multiband acquisition scheme
is vulnerable to potential aliased signals being unfolded
incorrectly. This is important since activation aliasing between
DCM regions of interest could potentially lead to artificial
correlations between regions (Todd et al., 2016). This analysis,
detailed in the Supplementary Materials, confirmed that
the aliased location of any given region of interest used in
the DCM analysis did not overlap with any other region of
interest.

Identifying the Optimal Group-Level Model
We obtained estimates of each subject’s neuronal responses by
fitting a DCM to their data, separately for each multiband factor
(the structure of this DCM is illustrated in Figure 3B). Then we
estimated a single group-level Bayesian GLM of the neuronal
parameters and pruned any parameters that did not contribute
to the model evidence (by fixing them at their prior expectations
with zero mean and zero variance). This gave the optimal group-
level model, the parameters of which are illustrated in Figure 3C.
The main conditions of interest were scene and object stimuli.
Redundant modulatory effects of object stimuli were pruned
from bilateral PHC, while the effect of scene stimuli was pruned
from right PHC only. Redundant effects of stimulus novelty
were pruned from all regions. This was not surprising, as the
experimental design was not optimized for this contrast—and
the regions of interest were not selected on the basis of tests for
novelty effects.

Modeling Each Dataset
Having identified a single group-level model architecture across
all datasets (Figure 3C), we next updated each subject’s DCMs
to use this reduced architecture (by setting their priors to match
the group level posteriors and obtaining updated estimates of
the DCM parameters). We then estimated a group-level GLM
for each dataset. The parameters of these four group-level GLMs
are illustrated in Figures 4A–D. The numbered parameters,
which correspond to those in Figure 3C, describe the change of
sensitivity of each region to their inputs. More positive values
signify more inhibition due to the task and more negative values
signify dis-inhibition (excitation) due to the task. The results
were largely consistent across multiband factors, with scene
and object stimuli exciting most regions relative to baseline.
Interestingly, modulation of early visual cortex by scenes and
objects (parameters 1 and 7) were the largest effect sizes, so
contributed the most to explaining the network-wide difference
in scene and object stimuli.

Figure 4E shows the precision (inverse variance) of each
parameter from Figures 4A–D. Each group of bars relates to
a neuronal parameter, and each of the four bars relate to
the four datasets (i.e., each of the four multiband factors).
It is immediately apparent that all parameters (with the
exception of parameter 7) achieved the highest precision with
dataset MB4 (i.e., multiband acceleration factor 4). However,

examining each parameter separately in this way is limited,
because we cannot see the covariance between the parameters.
The covariance is important in determining the confidence
with which we can make inferences about parameters or
models. Next, we apply our novel series of measures to these
data, which provide a simple summary of the qualities of
each dataset while taking into account the full parameter
covariance.

Comparing Datasets
In agreement with the analysis above, the dataset with multiband
acceleration factor 4 (MB4) gave neuronal parameter estimates
with the greatest precision or certainty (Figure 5A), followed by
MB1 and MB2, and MB8 had the least precision. The difference
between the best (MB4) and worst (MB8) performing datasets
was 1.64 nats, equivalent to 84% probability of a difference
(calculated by applying the softmax function to the plotted
values). This may be classed as “positive evidence” for MB4 over
MB8 (Kass and Raftery, 1995), however the evidence was not
strong enough to confidently claim that MB4 was better than
MB1 or MB2.

The information gain over parameters (see Outcome
measures) is the extent to which the parameters were informed
by the data. It reflects the number of independent parameters in
the model (its complexity) that the data can accommodate. The
best dataset was MB4 (Figure 5B), followed closely by MB2 and
then MB1 and MB8. The difference between the best (MB4) and
worst (MB8) datasets was 1.82 nats, or a 86.06% probability of a
difference (positive evidence). There was also positive evidence
that MB4 was better than MB1 (1.31 nats = 78.75%), but MB4
could not be distinguished from MB2 (0.33 nats = 58.18%).
Thus, not only were the parameters most precise in dataset MB4
(Figure 5A), but they also gained the most information from
the data, relative to the information available in the priors. This
effect was most pronounced in comparison to MB8, and to a
lesser extent, in comparison to MB1.

Next we computed the information gain over models (see
Outcome measures, part c), which quantified the ability of the
datasets to discriminate between similar models. Whereas, the
previous measures were relative to the worst performing dataset,
this measure was relative to the prior that all models were equally
likely (zero nats). The automated procedure described in the
Methods section identified eight similar candidate models that
differed only in their priors (i.e., which parameters were switched
on or off). Because there were eight models, the maximum
possible information gain over models was ln 8 = 2.08 nats. We
found that MB4 afforded the best discrimination between models
(Figure 5C), with an information gain of 1.34 nats relative to
the prior that all models were equally likely (positive evidence,
79% probability). The other three datasets provided poorer
discriminability: MB8 with 0.67 nats, MB2 with 0.62 nats, and
MB1 with 0.34 nats.

To summarize, all three of the measures favored the
dataset with multiband acceleration 4 (MB4). However, the
magnitudes of these differences were generally not substantial,
with “positive evidence” rather than “strong evidence” under
all measures. MB4 consistently fared better than MB8—with

Frontiers in Neuroscience | www.frontiersin.org 9 January 2019 | Volume 12 | Article 986

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles


Zeidman et al. Optimizing Data With DCM

FIGURE 4 | Parameters of the group-level General Linear Model fitted to each dataset. (A–D) Posterior estimates of each parameter from each dataset. The bars

correspond to the parameters labeled in Figure 3C, and for clarity these are divided into regional effects of scene stimuli (solid red) and of object stimuli (chequered

blue). These parameters scale the prior self-connection of each region, and have no units. Positive values indicate greater inhibition due to the experimental condition

and negative values indicate disinhibition (excitation). Pink error bars indicate 90% confidence intervals. MBx, multiband acceleration factor x. (E) The precision of

each parameter—i.e., the inverse of the variance which was used to form the pink error bars in (A–D). Parameters 1–6 relate to the effects of scene stimuli (S) and

parameters 7–11 relate to the effects of object stimuli (O). Each group of four bars denote the four datasets in the order MB = 1, 2, 4, and 8 from left to right.

positive evidence that it provided more confident parameter
estimates (Figure 5A) and greater information gain (Figure 5B).
There was also positive evidence that MB4 offered greater
information gain than MB1 (Figure 5B). Finally, MB4 supported
greater information gain over models than any other dataset
(Figure 5C). Given these results, if we were to conduct this
same experiment with a larger sample, we would select
multiband acceleration factor MB4 as our preferred acquisition
protocol.

Simulation Results
To validate the software implementing the outcomemeasures, we
simulated 100 experiments, each of which compared 100 datasets
with varying levels of SNR. As expected, increasing SNR was
accompanied by an increase in the certainty (precision) of the
group-level parameters (Figure 6A). This showed an initial rise
and then plateaued, reaching 5.62 nats (very strong evidence)
for the dataset with the highest SNR (dataset 100) compared to
the dataset with the lowest SNR (Dataset 1). The information
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FIGURE 5 | Proposed measures for comparing datasets applied to empirical data. (A) The negative entropy of the neuronal parameters of each dataset, relative to

the worst dataset (MB8) which is set to zero. (B) The information gain (KL-divergence) of the estimated neuronal parameters and the priors, relative to the worst

dataset (MB8). (C) The information gain (KL-divergence) from the prior belief that all models were equally likely to the posterior probability over models. In each plot,

the bars relate to four datasets which differed in their multiband (MB) acceleration factor: MB1, MB2, MB4, and MB8.

FIGURE 6 | Bayesian data comparison of 100 simulated datasets. The datasets are ordered into increasing levels of SNR at the individual subject level (see Methods).

(A) The negative entropy of the neuronal parameters of each dataset, relative to the worst dataset. (B) The information gain (KL-divergence) of the estimated

parameters and the priors, relative to the worst dataset. (C) The information gain (KL-divergence) between the estimated probability of each model and the prior belief

that all models were equally likely. In each plot, the line and dots indicate the mean across 100 simulations, and the shaded error indicates the 90% confidence interval

across simulations.

gain over parameters, which quantified the KL-divergence from
the priors to the posteriors relative to the first dataset, was
very similar (Figure 6B). Finally, we compared the datasets in
terms of their ability to distinguish seven models, one of which
matched the model that generated the data. This measure could
range from zero nats (the prior that all seven models were
equally likely) to ln (7) = 1.95 nats (a single model having a
posterior probability of 100%). We found that the information
gain increased with increasing SNR, to a ceiling of 1.91 nats
(Figure 6C). Inspecting the results revealed that in the datasets
with the lowest SNR, the probability mass was shared between
model one (the “full” model which generated the data) andmodel
three, in which the parameter quantifying the small novelty effect
was disabled (fixed at zero). As SNR increased, model one was
correctly selected with increasing confidence.

To summarize, these simulations provided a basic check
that the within-subject parameters were conveyed to the group
level and were captured by the outcome measures proposed in

this work. All three outcome measures showed a monotonic
increase with SNR, which consisted of a large initial increase
followed by diminishing returns as SNR further increased.
Accompanying this paper, we provide a Matlab script for
performing these simulations, which can be used for testing
the impact of differing effect sizes or levels of between-
subject variability, under any choice of (Bayesian) forward
model.

DISCUSSION

This paper introduced Bayesian data comparison, a systematic
approach for identifying the optimal data features for inferring
neuronal architectures. We proposed a set of measures based
on established Bayesian models of neuroimaging timeseries, in
order to compare datasets for two types of analyses—inference
about parameters and inference about models. We exemplified
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these measures using data from a published experiment, which
investigated the performance of multiband fMRI in a cohort of 10
healthy volunteers. This principled scheme, which can be applied
by experimenters using a software function implemented in SPM
(spm_dcm_bdc.m), can easily be applied to any experimental
paradigm, any group of subjects (healthy or patient cohorts), and
any acquisition scheme.

Comparing models based on their evidence is the most
efficient procedure for testing hypotheses (Neyman and Pearson,
1933) and is employed in both classical and Bayesian statistics.
The model evidence is the probability of the data y given the
model m i.e., p(y|m). Model comparison involves taking the
ratio of the evidences for competing models. However, this
ratio (known as the Bayes factor) assumes that each model has
been fitted to the same data y. This means that when deciding
which data to use (e.g., arbitrating between different multiband
acceleration factors) it is not possible to fit models to each dataset
and compare them based on their evidence. To address this,
the measures we introduced here can be used in place of the
model evidence to decide which of several datasets provides the
best estimates of model parameters and best distinguishes among
competing models.

The first step in our proposed analysis scheme is to
quantify neuronal responses for each data acquisition. This
necessarily requires the use of a model to partition the
variance into neuronal, hemodynamic, and noise components.
Any form of model and estimation scheme can be used, the
only requirement being that it is probabilistic or Bayesian.
In other words, it should furnish a probability density over
the parameters. Here, we modeled each subject’s neuronal
activity using DCM for fMRI, in which the parameters form
a multivariate normal distribution defined by the expected
value of each parameter and their covariance (i.e., properly
accounting for conditional dependencies among the parameters).
Given that the main application of DCM is for investigating
effective (causal) connectivity, the method offered in this paper
is especially pertinent for asking which acquisition scheme will
offer the most efficient estimates of connectivity parameters.
Alternatively, the same analysis approach could be applied to
the observation parameters rather than the neuronal parameters,
to ask which dataset provides the best estimates of regional
neurovascular coupling and the BOLD response. More broadly,
any probabilistic model could have been used to obtain
parameters relating to brain activity, one alternative being a
Bayesian GLM at the single subject level (Penny et al., 2003).

Hypotheses in cognitive neuroscience are usually about effects
that are conserved at the group level. However, the benefits
of advanced acquisition schemes seen at the single subject
level may not be preserved at the group level due to inter-
subject variability (Kirilina et al., 2016). We were therefore
motivated to develop a protocol to ask which acquisition scheme
offers the best inferences at the group level, while appropriately
modeling inter-subject variability. To facilitate this, the second
step in our analysis procedure is to take the estimated neuronal
parameters from every subject and summarize them using a
group level model. Here we use a Bayesian GLM, estimated using
a hierarchical (PEB) scheme. This provides the average (expected

value) of the connectivity parameters across subjects, as well as
the uncertainty (covariance) of these parameters. It additionally
provides the free energy approximation of the logmodel evidence
of the GLM, which quantifies the relative goodness of the GLM
in terms of accuracy minus complexity. The key advantage of this
Bayesian approach, unlike the summary statistic approach used
with the classical GLM in neuroimaging, is that it takes the full
distribution over the parameters (both the expected values and
covariance) from the single subject level to the group level. This is
important in assessing the quality of datasets, where the subject-
level uncertainty over the parameters is key to assessing their
utility for parameter-level inference. Together, by fitting DCMs
at the single subject level and then a Bayesian GLM at the group
level, one can appropriately quantify neuronal responses at the
group level.

Having obtained parameters and log model evidences of
each dataset’s group-level GLM, the final stage of our analysis
procedure is to apply a set of measures to each dataset. These
measures are derived from information theory and quantify
the ability of the data to support two complementary types of
inference. Firstly, inference about parameters involves testing
hypotheses about the parameters of a model; e.g., assessing
whether a particular neuronal response is positive or negative.
A good dataset will support precise estimates of the parameters
(where precision is the inverse variance) and will support the
parameters being distinguished from one another (i.e., minimize
conditional dependencies). We evaluated these features in each
dataset by using the negative entropy of the parameters and
the information gain. These provide a straightforward summary
of the utility of each dataset for inference over parameters.
A complementary form of inference involves embodying each
hypothesis as a model and comparing these models based on
their log evidence ln p(y|m). This forms the basis of most DCM
studies, where models differ in terms of which connections are
switched on and off, or which connections receive experimental
inputs (specified by setting the priors of eachmodel).We assessed
each dataset in terms of its ability to distinguish similar, plausible
and difficult-to-discriminate models from one another. This
involved an automated procedure for defining a set of similar
models, and the use of an information theoretic quantity—the
information gain—to determine how well the models could be
distinguished from one another in each dataset. This measure can
be interpreted as the amount we have learnt about the models
by performing the model comparison, relative to our prior belief
that all models were equally likely.

To exemplify the approach, we compared four fMRI datasets
that differed in their multiband acceleration factor. The higher
the acceleration factor, the faster the image acquisition. This
affords the potential to better separate physiological noise from
task-related variance—or to increase functional sensitivity by
providing more samples per unit time. However, this comes with
various costs, including reduced SNR and increased temporal
auto-correlations. The datasets used were acquired in the context
of an established fMRI paradigm, which elicited known effects
in pre-defined regions of interest. The conclusion of the original
study (Todd et al., 2017), which examined the datasets under the
same pre-processing procedures used here, was that a multiband
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acceleration factor between 4 (conservative) and 8 (aggressive)
should be used. In the present analysis, the dataset acquired with
multiband acceleration factor 4 (MB4) afforded the most precise
estimates of neuronal parameters, and the largest information
gain in terms of both parameters and models (Figure 5),
although the differences between MB4 and MB2 were small. Our
analysis of residual leakage artifact (Supplementary Material)
showed this result was not confounded by aliasing, a potential
issue with multiband acquisitions (Todd et al., 2016). Given
that these data were decimated so as to have equivalent
numbers of samples, regardless of MB factor, our results suggest
that the improved sampling of physiological effects provided
by multiband acceleration counterbalanced the loss of SNR.
Speculatively, MB4 may have been optimal in terms of benefiting
from physiological filtering (a sufficiently high Nyquist frequency
to resolve breathing effects), despite any reduction in SNR. MB2
may have performed slightly less well because it suffered from
the penalty of reduced SNR, without sufficient benefit from
the filtering of physiological effects. Any advantage of MB8 in
terms of physiological filtering may have been outweighed by the
greater reduction in SNR.

One should exercise caution in generalizing this multiband
result, which may not hold for different paradigms or image
setups (e.g., RF coil types, field strength, resolution, etc.) or
if using variable numbers of data points. Though congruent
with a previous study (Todd et al., 2017), without these
further investigations, the conclusions presented here should
not be generalized. Going forward, the effect of each of these
manipulations could be framed as a hypothesis, and tested
using the procedures described here. One interesting future
direction would be to investigate the contribution of the two pre-
processing steps: filtering and decimation. Our data were filtered
to provide improved sampling of physiological noise and were
subsequently decimated in order to maintain a fixed number
of data points for all multiband factors under investigation.
This ensured a fair comparison of the datasets with equivalent
handling of temporal auto-correlations. The protocol described
here could be used to evaluate different filtering and decimation
options. Onemight anticipate that the increased effective number
of degrees of freedom within the data would be tempered by
increased temporal auto-correlations arising from more rapid
sampling.

A further specific consideration for the application of
multiband fMRI to connectivity analyses is whether differences
in slice timing across different acquisition speeds could influence
estimates of effective connectivity in DCM. An approach for
resolving this is slice timing correction—adjusting the model
to account for acquisition time of each slice. DCM has an
inbuilt slice timing model to facilitate this (Kiebel et al., 2007).
Whether this is helpful for all application domains is uncertain.
Following spatial realignment, coregistration, and normalization,
the precise acquisition time of each slice is lost, so the modeled
acquisition times can deviate from the actual acquisition times.
On the other hand, if the modeled acquisition times are
reasonably accurate, there may be some benefit—particularly
for fast event-related designs. This uncertainty can be resolved
using Bayesian model comparison—DCMs can be specified with

different slice timing options and their evidence compared. In the
example dataset presented here, we had a slow block design which
is unlikely to benefit significantly from slice timing correction,
so for simplicity we used the default setting in DCM—aligning
the onsets to the middle of each volume, thereby minimizing the
error on average.

The procedure introduced here involves evaluating each
dataset in terms of its ability to provide estimates of group-
level experimental effects. An alternative approach would be to
compare datasets at the individual subject level—for instance, by
comparing the variance of each model’s residuals, parameterized
in DCM on a region-by-region basis (hyperparameters λ which
control the log precision of the noise ǫ(1), see Equation 2).
However, this would only characterize the fit of each model
as a whole, and would not evaluate the quality of inferences
about neural parameters specifically, which are typically the
quantities of interest in neuroimaging studies. Furthermore,
neuroimaging studies typically evaluate hypotheses about groups
of subjects rather than individuals, and thus assessing the quality
of inferences is ideally performed using group-level models
or parameters. For the example analysis presented here, we
therefore chose to compare datasets in terms of the specific
parameters of interest for the particular experiment (DCM B-
matrix), summarized by the group level PEB model.

An important consideration—when introducing any novel
modeling approach or procedure—is validation. Here, for our
example analysis using empirical data, we used two extant models
from the neuroimaging community—DCM for fMRI and the
Bayesian GLM implemented in the PEB framework. The face
validity of DCM for fMRI has been tested using simulations
(Friston et al., 2003; Chumbley et al., 2007), its construct validity
has been tested using extant modeling approaches (Penny et al.,
2004; Lee et al., 2006), and its predictive validity has been
tested using intracranial recordings (David et al., 2008a,b Reyt
et al., 2010). The PEB model and the associated Bayesian Model
Reduction scheme is more recent and so far has been validated
in terms of its face validity using simulated data (Friston et al.,
2016), its reproducibility with empirical data (Litvak et al., 2015)
and its predictive validity in the context of individual differences
in electrophysiological responses (Pinotsis et al., 2016).

The next validation consideration regards the novel
contribution of this paper—the application of a set of outcome
measures to the probabilistic models discussed above. These
measures are simply descriptions or summary statistics of the
Bayesian or probabilistic models to which they are applied. The
measures themselves depend on two statistics from information
theory—the negative entropy and the KL-divergence, which do
not require validation in and of themselves, just as the t-statistic
does not need validation when used to compare experimental
conditions using the GLM. Rather, the implementation of the
statistical pipeline needs validation, and we have assessed this
using simulations. These confirmed that the measures behaved
as expected, increasing monotonically with increasing SNR
until they reached a saturation point, when further increases
in SNR offered no additional benefit. It should be emphasized
that although these simulations were based on the effect sizes
from the empirical multiband fMRI data, they were not intended
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to capture the detailed properties of multiband fMRI per se.
For example, the simulated datasets differed in their level of
additive Gaussian white noise, which cannot fully capture the
complex noise properties specific to multiband fMRI. These
simulations are therefore an illustration of any generic aspect
of the imaging protocol that influences SNR. Additionally, we
used general linear models (GLMs) to generate and model the
160,000 simulated datasets (100 repetitions × 100 datasets per
repetition× 16 subjects), which would not have been tractable in
reasonable time using DCMs. The use of GLMs did not recreate
the nonlinearities and parameter covariance present in a more
complex models (e.g., DCM), which may be expected to reduce
parameter identifiablilty. Nevertheless, the use of GLMs was
sufficient for establishing the face validity of the measures, while
emphasizing that the outcome measures are not specific to the
choice of forward model.

A complementary approach to comparing data would be
to assess their predictive validity—i.e., whether effect sizes are
detectable with sufficient confidence to predict left-out data
(Strother et al., 2002). We haven’t pursued this here because our
objective is to select the data that maximizes the confidence of
hypothesis testing (the precision of inferences over parameters
or models). However, in contexts where the objective is to select
the dataset which has the best predictive accuracy—such as
when identifying biomarkers—this could be performed in the
PEB software framework using tools provided for leave-one-out
cross-validation (Friston et al., 2016).

Practically, we envisage that a comparison of datasets using
the methods described here could be performed on small pilot
groups of subjects, the results of which would inform decisions
about which imaging protocol to use in a subsequent full-scale
study. Regions of interest would be selected for inclusion in the
model which are known to show experimental effects for the
selected task—based on an initial analysis (e.g., SPM analysis)
and/or based on previous studies. The pilot analysis would ideally
have the same design—e.g., model structure—as intended for
the full-scale study. This is because the quality measures depend
on the neuronal parameters of the specific model(s) which will
be used by the experimenter to test hypotheses. Following this,
we do not expect there exists a “best” acquisition protocol in

general for any imaging modality. Rather, the best dataset for
a particular experiment will depend on the specific hypotheses
(i.e., models) being tested, and the ideal dataset will maximize
the precision of the parameters and maximize the difference
in evidence between models. We anticipate that the protocol
introduced here, implemented in the software accompanying this
paper, will prove useful for experimenters when choosing their
acquisition protocols.
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APPENDIX

APPENDIX 1: BAYESIAN DATA
COMPARISON

In this appendix we illustrate why the entropy of the posterior
over model parameters obtained from two different datasets,
can be compared as if they were log Bayes factors. We first
consider the comparison of different models of the same data.We
then turn to the complementary application of Bayes theorem
to the comparison of different data under the same model, in
terms of their relative ability to reduce uncertainty about model
parameters.

Bayesian Model Comparison
To clarify model comparison in a conventional setting, consider
two modelsm1 andm2 fitted to the same data y. The Bayes factor
in favor of model 1 is the ratio of the model evidences under each
model:

BF1 =
p
(

y
∣
∣m1

)

p
(

y
∣
∣m2

) (A1)

In place of the model evidence p(y|m) we estimate an
approximation (lower bound)—the negative variational free
energy [this usually calls on variational Bayes, although other
approximations can be used such as harmonic means from
sampling approximations and other (Akaike or Bayesian)
information criteria]:

F ≈ ln p(y|m) (A2)

As we are working with the log of the model evidence, it is more
convenient to also work with the log of the Bayes factor:

lnBF1 = ln p
(

y
∣
∣m1

)

− ln p
(

y
∣
∣m2

)

≈ F1 − F2 (A3)

The log Bayes factor for two models is simply the difference
in their free energies, in units of nats. Kass and Raftery (1995)
assigned labels to describe the strength of evidence for one model
over another. For example, “strong evidence” requires a Bayes
factor of 20 or a log Bayes factor of ln (20) ≈ 3. We can also
transform the log Bayes factor to a posterior probability for
one model relative to the other under uninformative priors over
models: p (m1) = p (m2) = p (m). By using Bayes rule and
re-arranging, we find this probability is a sigmoid (i.e., logistic)
function of the log Bayes factor:

p
(

m1

∣
∣y

)

=
p
(

y
∣
∣m1

)

p(m)

p
(

y
) =

p
(

y
∣
∣m1

)

p
(

y
∣
∣m1

)

+ p
(

y
∣
∣m2

)

=
1

1+ exp(−lnBF1)
(A4)

The final equality shows that the logistic function of the log Bayes
factor in favor of model 1 gives the posterior probability for
model 1, relative to model 2. When dealing with multiple models,
the logistic function becomes a softmax function (i.e., normalized
exponential function).

Accuracy and Complexity
The log evidence or free energy can be decomposed into accuracy
and complexity terms:

F = 〈ln p(y|m)〉q
︸ ︷︷ ︸

accuracy

−KL
[

q(θ) ‖ p(θ)
]

︸ ︷︷ ︸

complexity

(A5)

Where q (θ) ≈ p
(

θ |y
)

is the posterior over parameters, p(θ) are
the priors on the parameters and 〈·〉q denotes the expectation
under q (θ). This says that the accuracy is the expected log
likelihood of the data under a particular model. Conversely,
the complexity scores how far the parameters had to move
from their priors to explain the data, as measured by the KL-
divergence between the posterior and prior distributions. This
divergence is also known as a relative entropy or information
gain. In other words, the complexity scores the reduction
in uncertainty afforded by the data. We can now use this
interpretation of the complexity to compare the ability of
different data sets to reduce uncertainty about the model
parameters.

Comparing Across Datasets
Consider one model fitted to two datasets y1 and y2 with
approximate posteriors over the parameters q1(θ) and
q2(θ) for each data set. The corresponding complexity
difference is:

(

KL
[

q1(θ) ‖ p (θ)
]

− KL
[

q2(θ) ‖ p (θ)
])

=
〈

ln q1(θ)
〉

q
−

〈

ln q2(θ)
〉

q

= H[q2(θ)]−H[q1(θ)]

=

〈

ln
q1(θ)

q2(θ)

〉

q

(A6)

Where H[q(θ)] is the entropy of q (θ) . Therefore, the reduction
in conditional uncertainty (i.e., the difference in the entropies
of the approximate posteriors) corresponds to the difference in
information gain afforded by the two sets of data. Because this
difference is measured in nats, it has the same interpretation as a
difference in log evidence—or a log odds ratio (i.e., Bayes factor).
The last equality above shows that the difference in entropies
(or complexities) corresponds to the expected log odds ratio of
posterior beliefs about the parameters. The entropies are defined
for themultivariate normal distribution in Equation 9 of themain
text.
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