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Abstract

Relative magnetic helicity is a gauge-invariant quantity suitable for the study of the magnetic helicity content of
heliospheric plasmas. Relative magnetic helicity can be decomposed uniquely into two gauge-invariant quantities,
the magnetic helicity of the nonpotential component of the field and a complementary volume-threading helicity.
Recent analysis of numerical experiments simulating the generation of solar eruptions have shown that the ratio of
the nonpotential helicity to the total relative helicity is a clear marker of the eruptivity of the magnetic system, and
that the high value of that quantity could be a sufficient condition for the onset of the instability generating the
eruptions. The present study introduces the first analytical examination of the time variations of these nonpotential
and volume-threading helicities. The validity of the analytical formulae derived are confirmed with analysis of 3D
magnetohydrodynamics (MHD) simulations of solar coronal dynamics. Both the analytical investigation and the
numerical application show that, unlike magnetic helicity, the nonpotential and the volume-threading helicities are
not conserved quantities, even in the ideal MHD regime. A term corresponding to the transformation between the
nonpotential and volume-threading helicities frequently dominates their dynamics. This finding has an important
consequence for their estimation in the solar corona: unlike with relative helicity, their volume coronal evolution
cannot be ascertained by the flux of these quantities through the volume’s boundaries. Only techniques
extrapolating the 3D coronal field will enable both the proper study of the nonpotential and volume-threading
helicities and the observational analysis of helicity-based solar-eruptivity proxies.
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1. Introduction

Magnetic helicity was originally introduced by Elsässer (1956)
as a volume integral related to the 3D distribution of the magnetic
field. Moffatt (1969) provided a physical interpretation of this
integral, showing that it was intimately related to the Gauss
linking number and hence that magnetic helicity quantitatively
describes the level of entanglement of magnetic field lines in a
magnetized plasma. Magnetic helicity is of particular interest
within the ideal magnetohydrodynamic (MHD) paradigm, as it is
a strictly conserved quantity (Woltjer 1958); creation or
dissipation of helicity is forbidden, and helicity can only be
transported. From observations of the dynamics of plasmas in
tokamak experiments, Taylor (1974) conjectured that even in
nonideal MHD the dissipation of magnetic helicity should be
relatively weak. Pariat et al. (2015) recently presented numerical
evidence that magnetic helicity is indeed very well conserved,
even when strong nonideal effects such as those associated with
solar eruptions develop. Thanks to this conservation property,
physical quantities based on magnetic helicity are increasingly
studied in natural plasmas where the MHD paradigm applies,
e.g., in solar/stellar interiors and atmosphere, as well as solar/
stellar winds (Miesch et al. 2016; Valori et al. 2016; Brandenburg
et al. 2017).

In the solar context, the conservation of magnetic helicity
provides a natural explanation for the existence of ejecta
transporting away excess magnetic helicity that cannot
indefinitely accumulate in the solar atmosphere; coronal
mass ejections (CMEs) and magnetic clouds and their
underlying twisted magnetic structures (e.g., Burlaga 1995;
Démoulin 2008) appear to be the necessary consequence
of magnetic helicity conservation (Rust 1994; Low 1996).

Magnetic helicity and its conservation are a topic of study
when trying to link solar eruptions, CMEs, and their
interplanetary counterparts (Dasso et al. 2003, 2005; Luoni
et al. 2005; Mandrini et al. 2005; Dasso 2009; Hu et al.
2014; Démoulin et al. 2016; Patsourakos et al. 2016;
Patsourakos & Georgoulis 2017). Magnetic helicity con-
servation is also invoked as an essential element that impacts
the dynamics of magnetic reconnection (e.g., Linton et al.
2001; Linton & Antiochos 2002; Del Sordo et al. 2010),
solar/stellar dynamos (e.g., Brandenburg & Subramanian
2005; Candelaresi 2012), the formation of solar filaments
(e.g., Antiochos 2013; Knizhnik et al. 2015; Zhao et al.
2015), and the generation of solar eruptions (e.g., Kusano
et al. 2004; Longcope & Beveridge 2007; Priest et al. 2016).
Because of this hypothesis, important efforts to estimate the
magnetic helicity in the solar coronal have been carried out
over the past decades (Démoulin 2007; Démoulin & Pariat
2009; Valori et al. 2016).
Because of the physical requirement of gauge transformation

invariance, Elsässer’s magnetic helicity can generally not be
used to study natural plasmas. Berger & Field (1984) and Finn
& Antonsen (1985) introduced a gauge-invariant quantity
related to magnetic helicity than can be practically used with
natural plasmas: the relative magnetic helicity. The direct
estimation of relative helicity requires knowledge of the full
distribution in the 3D volume studied, while state-of-the-art
solar observations only provide measurements on a 2D surface,
the solar photosphere. Estimation of relative helicity by volume
integration is thus model dependent and requires 3D extra-
polation of the magnetic field. A few methods estimating
relative magnetic helicity (Rudenko & Myshyakov 2011;
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Thalmann et al. 2011; Valori et al. 2012; Yang et al. 2013) by
such volume integration have been recently developed and
benchmarked (see review by Valori et al. 2016), enabling their
use to study observed solar active regions (Valori et al. 2013;
Moraitis et al. 2014; Guo et al. 2017; Polito et al. 2017;
Temmer et al. 2017; James et al. 2018).

Because of the inherent observational difficulty of measuring
helicity from volume integration, alternative methods have
been developed (e.g Démoulin et al. 2006; Longcope
et al. 2007; Kazachenko et al. 2009, 2010, 2012; Guo
et al. 2010, 2013, 2017; Georgoulis et al. 2012) that rely on
an implicit model of the solar coronal field. However, the
historically most commonly used method to evaluate magnetic
helicity relies on the calculation of the flux of helicity through
the solar photosphere and the time integration of this flux to
obtain the helicity that accumulates into the corona. This
approach was originally developed by Chae (2001) and has
received further improvements (Pariat et al. 2005; Chae 2007;
Liu & Schuck 2012, 2013; Dalmasse et al. 2014, 2018). This
method does not make any specific assumption about the
coronal magnetic field. It does, however, heavily rely on the
helicity conservation principle since it assumes that the time-
accumulated boundary flux of helicity is a good approximation
of the volume helicity, with the coronal helicity dissipation
being null and its ejection through eruptions negligible, at least
during the formation phase of active regions.

Relative helicity is not the only magnetic-helicity-based quantity
that has been studied. Berger (1985) used a formulation of
magnetic helicity and relative magnetic helicity where the magnetic
field is decomposed into poloidal and toroidal components.
Consistent with this approach, Low (2006) introduced the
primitive helicity in a two-flux description in which the field is
represented by Euler potentials. These examples of the linear
decomposition of a magnetic field into the sum of untwisted fields
respect the requirement of gauge independence and easily allow
the establishment of the helicity transport equation in Lagrangian
variables (Webb et al. 2010, 2011).

Berger (2003) also showed that magnetic helicity can be
decomposed into two gauge-invariant quantities, the current-
carrying magnetic helicity and the volume-threading helicity.
To our knowledge, Moraitis et al. (2014) were the first to
estimate and follow these quantities. In the numerical
simulations of the formation of an active region that they
analyzed, the current-carrying helicity exhibited large fluctua-
tions around the onset of eruptions. Recently, Pariat et al.
(2017) analyzed the properties of these magnetic helicities in
seven parametric simulations of flux emergence (Leake
et al. 2013, 2014), during which solar-like active regions are
formed, both noneruptive and eruptive. Pariat et al. (2017)
observed that the ratio of the current-carrying helicity to the
relative helicity was an excellent marker of the eruptive state of
the system: only the simulations that would eventually erupt
presented high values of that ratio, and only at times before the
eruption. Noneruptive simulations, as well as the eruptive
simulations after the eruption, displayed low values of the ratio.
Zuccarello et al. (2018) further studied this ratio on different
numerical experiments (Zuccarello et al. 2015). In four line-tied
boundary-driven numerical simulations of solar coronal erup-
tions (and a noneruptive control case) for which the eruption/
instability time was precisely estimated they showed that the
eruptions were taking place for the same value of the helicity
ratio, within the helicity measurement precision. Other physical

quantities such as magnetic energies did not present the same
behavior. They concluded that the eruption process could be
related to a threshold in the helicity ratio and that this quantity
not only is related to the eruptivity of the system but may also
be directly associated with the eruption driver.
From these recent promising results stems the need to better

understand the contribution entering into the relative helicity
decomposition. This is the goal of the present study, which
aims to provide an analytical formulation for the time variation
of both the current-carrying helicity and the volume-threading
helicity. Only the study of their time variations allows us to
ascertain whether these quantities are independently conserved
in ideal MHD, in the same way as was done for magnetic
helicity.
Additionally, if relative helicity can be studied and tracked

from its flux through the photosphere, it is mostly thanks to its
conservation property. Can the same be applied to the terms of
the relative helicity decomposition? Can the flux of the current-
carrying helicity be solely used to study its accumulation in the
solar corona? Or are 3D extrapolation and modeling of the solar
corona necessary steps to analyze the decomposition of
magnetic helicity in solar active regions?
In this paper, we first present the time variation of the terms

in the helicity decomposition (see Section 2). Using data from
three different simulations of solar-like phenomena (active
region formation via flux emergence with or without eruption,
and a boundary-driven solar jet), we verify our analytical
derivations and study carefully the dynamics of the current-
carrying and volume-threading helicities in the different phases
of the simulations: magnetic energy buildup and impulsive
energy release (see Section 3). In the conclusion (see
Section 4), we discuss the impact of the nonconservation of
these helicities for their estimations in solar observations.

2. Magnetic Helicity

2.1. Relative Magnetic Helicity

A scalar description of the geometrical properties of
magnetic field lines is provided by magnetic helicity, which
is defined as follows:

ò ò= =  ´· · ( )A B A AH dV dV , 1
V V

m

with A the vector potential of the studied magnetic field, B,
which is prescribed in the fixed volume V bounded by the
surface S. This definition is, however, unpractical for the study
of most natural plasmas. Indeed, under the gauge transforma-
tion, A′→A+∇ψ, with ψ an arbitrary function; Hm is
invariant if and only if V is a magnetically bounded volume,
i.e., if =· ∣B n 0S , n being the outward-pointing unit vector
normal on S. This condition is not satisfied when considering
the solar corona, as important magnetic fluxes are threading
through the solar photosphere. This led to the introduction of
the concept of relative magnetic helicity by Berger & Field
(1984), in which a gauge-invariant magnetic helicity is
computed introducing a reference field. The most commonly
used reference magnetic field is the potential field, Bp, the
unique current-free field having the same distribution of flux B
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through the surface S. It satisfies

 ´ =
- =

⎧⎨⎩ · ( )∣
( )

B

n B B

0

0.
2

p

p S

The potential field can thus be defined by a scalar function f
such as ∇f=Bp. The scalar potential is computed as the
solution of the Laplace equation:

f
f

D =
¶
¶

=

⎧
⎨⎪
⎩⎪ ∣ ( · )∣

( )
n B

n

0

.
3

S S

The definition of relative magnetic helicity that we use
throughout the paper is the one given by Finn & Antonsen
(1985):

ò= + -( ) · ( ) ( )A A B BH dV . 4
V

v p p

This choice enables Hv to be independently invariant to the
gauge transformations of both A and Ap. Relative magnetic
helicity can be divided into two terms (Berger 2003):

= + ( )H H H , 5v j pj

ò= - -( ) · ( ) ( )A A B BH dV , 6
V

j p p

ò= -· ( ) ( )A B BH dV2 . 7
V

pj p p

Considering the nonpotential magnetic field, Bj= B− Bp,
the vector Aj, defined as Aj= A− Ap, is a vector potential of
Bj since it verifies

 ´ =  ´ -  ´
= - = ( )

A A A

B B B . 8
j p

p j

Thus, Hj and Hpj can be expressed as

ò= · ( )A BH dV , 9
V

j j j

ò= · ( )A BH dV2 . 10
V

pj p j

The term Hj thus corresponds to the classical magnetic helicity
(Equation (6)) of the nonpotential magnetic field Bj, for which
S is a flux surface by construction, while Hpj can be associated
with a volume-threading helicity between Bp and Bj. Since the
decomposition of B into Bp and Bj is unique, the decomposi-
tion of Hv in Hj and Hpj is also unique. This decomposition is
further relevant since both Hj and Hpj are gauge invariant.

Studying the time evolution of the relative magnetic helicity,
Pariat et al. (2015) established the following equation:

= +

+ + + + f ( )

dH

dt

dH

dt

dH

dt

F F F F , 11

v v

Diss

v

Bp,var

Vn Bn AAp

with

ò= - ( · ) ( )R B
dH

dt
dV2 , 12

V

v

Diss

ò
f

=
¶
¶

 · ( )A
dH

dt t
dV2 , 13

V

v

Bp,var
p

ò= - ( · ) · ( )B A vF dS2 , 14Vn
S

ò= ( · ) · ( )v A BF dS2 , 15Bn
S

ò= - ´
¶
¶

+( ) ( ) · ( )A A A AF
t

dS, 16AAp
S

p p

ò
f

= -
¶
¶

f · ( )AF
t

dS2 , 17
S

p

where R is the nonideal MHD contribution to the electric field,
such that E=−v×B+R. Equation (11) assumes that the
dynamics follow ideal MHD at the boundary of the domain,
i.e., =∣R 0S . Without that hypothesis, one would have a
nonideal term such as

= +

+ + + + f ( )
‐

dH

dt

dH

dt

dH

dt

F F F F , 18

v v

Non ideal

v

Bp,var

Vn Bn AAp

with

ò= -  ´( ) · ( )
‐

R A
dH

dt
dV2 19

V

v

Non ideal

= + ( )‐
dH

dt
F 20v

Diss
Non ideal

and

ò= - ´( ) · ( )‐ R AF dS2 . 21Non ideal
S

This surface term is usually neglected in observation, but it can
be important in specific simulations, where it must then be
explicitly calculated. We also note that if the nonideal term of
E derives from a scalar potential, i.e., if there is a function Θ

with R=∇Θ, one would have

= ( )
‐

dH

dt
0. 22v

Non ideal

The helicity time variation (Equation (18)) contains both
volume and flux contributions and cannot, in general, be
expressed as a function of boundary values alone. In an active
solar-like case, Pariat et al. (2015) showed that the dissipation
term ∣dH dtv Diss is very small, even though strong nonideal
effects are present. They also stated that imposing the Coulomb
gauge on Ap makes ∣dH dtv Bp,var null, and hence relative
magnetic helicity is a conserved quantity in ideal MHD, i.e., its
variations in a volume are only due to flux transfers through the
boundaries.

2.2. Time Variations of the Nonpotential Magnetic Helicity

Following Pariat et al. (2015), we aim to determine the time
variation of the current-carrying helicity, Hj. Assuming that the
volume V is fixed, we differentiate Hj in time:

ò

ò

=
¶
¶

-

+
¶
¶

-

· ( )

· ( ) ( )

A B B

A B B

dH

dt t
dV

t
dV . 23

V

V

j
j p

j p
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Using the Gauss divergence theorem for the first term and after
a combination with the second integral, we find

ò ò

ò

=
¶
¶

-
¶

¶

+ ´
¶
¶

· ·

· ( )

A
B

A
B

A A

dH

dt t
dV

t
dV

t
dS

2 2

. 24

V V

j
j j

p

S
j j

We choose to keep this form for the flux term and to treat the
volume terms separately. We note that only the sum of these
terms is properly defined physically, i.e., is gauge invariant:
the three terms are not independently gauge invariant. Using
the scalar potential f of Bp and the Gauss divergence theorem,
we can decompose the second term of Equation (24):

ò ò

ò

f

f

-
¶

¶
=-

¶
¶

+
¶
¶



· ·

· ( )

A
B

A

A

t
dV

t
dS

t
dV

2 2

2 . 25

V

V

j
p

S
j

j

We then use the Faraday law: ∂ B/∂t=−∇× E. The first
volume term of Equation (24) can be written as

ò ò
ò
ò

¶
¶

=  ´ ´ -

=  ´ ´

-  ´

· · ( )

( ( )) ·

( ) · ( )

A
B

A v B R

v B A

R A

t
dV dV

dV

dV

2 2

2

2 . 26

V

V

V

j
S

j

j

j

As a last step in the decomposition, we use the Gauss
divergence theorem on the ideal term with

ò ò
ò
ò

 ´ ´ =- ´

-

+

( ( )) · (( ) · )

( · ) ·

( · ) ·

( )

v B A v B B

B A v

v A B

dV dV

dS

dS

2 2

2

2 .

27

V V
j p

S
j

S
j

Finally, the variation of the magnetic helicity of the
nonpotential magnetic field can be decomposed as

= + +

+ + + + f ( )
‐

dH

dt

dH

dt

dH

dt

dH

dt

F F F F , 28

j j

Non ideal

j

Bp,var

j

Transf

Vn,Aj Bn,Aj Aj,Aj ,Aj

with

ò= -  ´ · ( )
‐

R A
dH

dt
dV2 , 29

V

j

Non ideal
j

ò= - ´( ) · ( )v B B
dH

dt
dV2 , 30

V

j

Transf
p

ò
f

=
¶
¶

 · ( )A
dH

dt t
dV2 , 31

V

j

Bp,var
j

ò= - ( · ) · ( )B A vF dS2 , 32Vn,Aj
S

j

ò= ( · ) · ( )v A BF dS2 , 33Bn,Aj
S

j

ò= ´
¶
¶

· ( )A AF
t

dS, 34Aj,Aj
S

j j

ò
f

= -
¶
¶

f · ( )AF
t

dS2 . 35,Aj
S

j

The decomposition obtained possesses similarities to the time
variation of the relative helicity. Apart from ∣dH dtj Transf , all
the terms that appear in the time variation of Hj (Equation (28))
have their equivalent in the decomposition of dH/dt
(Equation (18)). We find a flux FVn,Aj related to the normal
component of the velocity, vn, and FBn,Aj related to the normal
component of the field, Bn. The volume term ∣dH dtj Bp,var

related to the time variation of the magnetic field Bp also
appears. The difference with the terms of the time variation of
the relative helicity is the dependence on Aj instead of A.
Unlike Hv, even in ideal MHD the time variation of Hj

contains both volume and flux contributions. The term
∣dH dtj Transf in Equation (30) is generally not null in ideal

MHD (see Section 2.4 for more discussion about this term).
Theoretically, Hj is not a conserved quantity of ideal MHD,
unlike the classical magnetic helicity Hm and the relative
magnetic helicity Hv written in specific gauge conditions.
The majority of terms depend on the difference Aj between

the two vector potentials A and Ap. Therefore, by imposing
specific relations between these, it is possible to eliminate some
of the contributions to the time variation of Hj (see Section 2.5).
Moreover, since the individual terms are not gauge invariant,

only their sum has true physical relevance. The intensity of the
flux terms depends on the gauge selected.

2.3. Time Variation of the Volume-threading Helicity

Now considering Hpj, following similar steps to those for Hj,
we can derive the general equation of its time variation:

= + +

+ + + + f ( )
‐

dH

dt

dH

dt

dH

dt

dH

dt

F F F F , 36

pj pj

Non ideal

pj

Bp,var

pj

Transf

Vn,Ap Bn,Ap Aj,Ap ,Ap

with

ò= -  ´ · ( )
‐

R A
dH

dt
dV2 , 37

V

pj

Non ideal
p

ò= ´( ) · ( )v B B
dH

dt
dV2 , 38

V

pj

Transf
p

ò
f

=
¶
¶

 -· ( ) ( )A A
dH

dt t
dV2 , 39

V

pj

Bp,var
p j

ò= - ( · ) · ( )B A vF dS2 , 40Vn,Ap
S

p

ò= ( · ) · ( )v A BF dS2 , 41Bn,Ap
S

p

ò= ´
¶
¶

· ( )A AF
t

dS2 , 42Aj,Ap
S

j p

ò
f

= -
¶
¶

-f ( ) · ( )A AF
t

dS2 . 43,Ap
S

p j

As with Hj, the time variation of Hpj cannot be expressed
solely through boundary fluxes, and thus Hpj is not a conserved
quantity even in ideal MHD when R=0, unlike Hv, and this is
due to the transfer term of Equation (38).
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2.4. Helicity Exchange

2.4.1. Helicity Exchange between Hj and Hpj

As expected, by summing the time variations of the
nonpotential and the volume-threading magnetic helicities
(Equations (28) and (36)), we obtain the time variation of the
relative magnetic helicity (Equation (18)):

= + ( )dH

dt

dH

dt

dH

dt
. 44v j pj

Each term in Equation (18) has indeed its counterpart in the
decomposition of Hj and Hpj, e.g., the sum of FVn,Ap and FVn,Aj

gives FVn.
However, the time variations of Hpj and Hj each possess a

volume contribution that is not present in dHv/dt. These terms,
∣dH dtx Transf , with x being either j or pj, allow the transfer of

helicity between Hpj and Hj. They correspond to oppositely
signed quantities, i.e.,

= - ( )
dH

dt

dH

dt
. 45

j

Transf

pj

Transf

The helicity transfer term is a volume quantity that allows the
transformation of one form of helicity into the other. This
transformation occurs within the full domain of study. Our
analysis of several numerical experiments (see Section 3)
shows that this quantity actually reaches high values compared
to the other terms and can dominate the evolution of both Hj

and Hpj.
It is thus essential to have a precise understanding of the

term ∣dH dtj Transf . A study of this term permits us to quantify
the exchange between the helicities Hj and Hpj in the volume,
an exchange that does not affect the relative helicity, Hv. It is
particularly worth noting that ∣dH dtj Transf is a gauge-invariant
quantity. It indeed only depends on v, B, and Bp and does not
have any vector potential contribution.

There are several possible decompositions for ∣dH dtj Transf .
However, despite several different attempts, we could not find a
way to express this term solely as a flux contribution, i.e., as an
integral on the boundary. For example, we can write

ò ò
ò
ò

f

f

f

- ´ =- ´ 

= - ´

+  ´

( ) · (( ) · )

( ) ·

· ( ) ( )

v B B v B

v B

v B

dV dV

dS

dV

2 2

2

2 . 46

V V

V

p

S

A volume integral contribution remains, however. We have
numerically tested this decomposition (in a similar manner to
that performed in Section 3) and concluded that it presents no
advantage over its (v× B)· Bp form.

2.4.2. Helicity Exchange with the Surrounding Environment

In the specific case of the resistive MHD, the nonideal
contribution to the electric field can be explicitly written as
R=η∇×B, with η corresponding to the magnetic resistivity.
Using the Gauss-divergence theorem, the nonideal term in
Equation (28) can be decomposed into a surface term and a

dissipation term:

ò h= -  ´  ´( ) · ( )
‐

B A
dH

dt
dV2 47

V

j

Non ideal
j

= + ( )‐
dH

dt
F , 48

j

Diss
Non ideal,Aj

with

ò h= -  ´( ) · ( )B B
dH

dt
dV2 , 49

V

j

Diss
j

ò h= -  ´ ´( ) · ( )‐ B AF dS2 . 50Non ideal,Aj
S

j

The dissipation term, ∣dH dtj Diss, as well as the transfer term,
∣dH dtj Transf , is gauge invariant. By defining ∣dH dtj Own as

= +

+ + + +f ( )

‐
dH

dt

dH

dt
F

F F F F , 51

j

Own

j

Bp,var
Non ideal,Aj

,Aj Vn,Aj Bn,Aj Aj,Aj

we obtain an equation for the time variation of Hj that is formed
solely of gauge-invariant terms:
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Similarly, we can construct a time variation of Hpj with gauge-
invariant terms only:
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and

ò h= -  ´ ´( ) · ( )‐ B AF dS2 . 56Non ideal,Aj
S

p

The “Own” terms correspond to the proper helicity variation
of either Hj or Hpj. They do not, strictly speaking, correspond to
a flux through the boundary since a volume contribution is also
present for both Hj and Hpj: ∣dH dtx Bp,var. These volume
contributions are, however, gauge dependent. A particular
choice of gauges (the Coulomb gauge for A and Ap) can
nonetheless make them null. Written with this choice of
gauges, ∣dH dtj Own and ∣dH dtpj Own then only appear as pure
boundary flux contributions, which would correspond to a
transfer of helicities between the studied domain and its
surrounding environment. Like ∣dH dtj Transf , both “Own” terms
are independently gauge-invariant quantities. Equations (52)
and (53) thus only involve independently gauge-invariant
terms. Their analysis is thus of particular interest, as will be
shown in our study of the helicity evolution in different
numerical experiments (see Section 3).
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2.5. Specific Gauge Conditions

While the variation of Hj and Hpj can be generally described by
Equations (6) and (7) for any gauge, the choice of some specific
additional constraints on the gauge allows us to simplify the
expression of their time variations and possibly their computation.

A first possible additional constraint is to use the Coulomb
gauge for the vector potential of the potential field, Ap, i.e.,

 =· ( )A 0. 57p

In this gauge, the volume contributions related to the variation
of the potential field become

= - ( )
( ) ( )

dH

dt

dH

dt
58

pj

Bp,var,cond 57

j

Bp,var,cond 57

ò
f

= -
¶
¶

 · ( )A
t

dV2 . 59
V

While condition (57) leads to a cancellation of ∣dH dtv Bp,var

for the relative helicity (e.g., Pariat et al. 2015), this it is not the
case for the evolution of its components Hj and Hpj.

Another possible additional constraint that can be imposed is
to link the vector potentials A and Ap on the boundary, i.e.,

- = =∣ ∣ ∣ ( )A A A 0. 60S p S j S

This condition ensures the nullity of FAAp,Ap and all the fluxes
of the form Fα,Aj (with αä{Vn, Bn, Aj, f, Nonideal}) in
Equation (51). Under such a condition, the time variation of the
nonpotential magnetic helicity can be described only as a
volume variation, consisting of the sum of the transfer
term, ∣dH dtj Transf , and the term ∣dH dtj Bp,var. There is no
contribution of helicity due to any fluxes through the boundary.

Another possible constraint is to eliminate the normal
component of Ap on the boundary:

=· ∣ ( )A n 0. 61p S

This choice, combined with the previous one in Equation (60),
leads to the elimination of the term Ff,Ap.

Combining these conditions and assuming that the evolution
follows the ideal MHD evolution, i.e., supposing

=
 =

=
- =
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0

0

62
p

p S

S p S

as is frequently assumed when studying the flux of relative
magnetic helicity (e.g., Démoulin & Pariat 2009), we obtain the
following form of the time variations of Hj and Hpj:
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With these specific conditions Hj does not exchange with the
outside environment (no surface fluxes). The flux of the total
relative helicity, Hv, is uniquely due to the flux of Hpj through
the boundaries. Hpj can additionally undergo variations in the
volume. These volume variations are actually helicity
exchanges with Hj (see Equations (30) and (38)). The time
evolution of Hj is indeed only related to volume conversion
from Hpj.
While condition (62) appears particularly strong, it is de

facto a usual assumption in observational methods analyzing
the flux of helicity through the solar photosphere. Our analysis
highlights the internal exchange in the volume between the two
helicities. It indicates that the traditional helicity flux method
cannot be used to evaluate the current-carrying component, Hj,
in observations. This point will be further highlighted in our
analysis of numerical simulations of the dynamics of the solar
corona (see the following section) and in the conclusion (see
Section 4).

3. Numerical Tests

In order to quantify the transfer of helicity and to
numerically validate the time variations of the two helicities
(see Equations (28) and (36)), we analyze the magnetic field of
three different numerical simulations produced by two different
3D MHD codes.

3.1. Test Cases

3.1.1. Jet Simulation

The first test case is a 3D MHD numerical simulation of the
generation of a solar coronal jet (Pariat et al. 2009). The initial
magnetic field in this numerical experiment is formed by a 3D
null point (see Figure 1). The volume contains two different
magnetic connectivity domains: open and closed. The simula-
tion lasts between t=0 and t=1600 in the system’s
nondimensional units. In the pre-eruptive phase tä[0, 920],
the energy and the helicity are accumulated by line-tied
twisting motions of the central magnetic polarity. These
motions preserve the distribution of the vertical magnetic field
component, Bz, at the bottom boundary. Thanks to topological
constraints, magnetic reconnection is inhibited during that
phase (see discussion in Section 2 of Pariat et al. 2009), and the
dynamics of the system can thus be considered quasi-ideal
MHD before t∼920.
At around t∼920, magnetic reconnection between closed

and open field lines induces the formation of a jet. The period
after t∼920 is designated as the nonideal phase, in opposition
to the pre-jet phase. During this nonideal MHD evolution, with
intense magnetic reconnection, free magnetic energy is
dissipated and released by the jet. The helicity is transferred
outside through the domain boundaries by a nonlinear Alfvénic
wave constituting the jet (see Pariat et al. 2016, for the physics
of the driving mechanism of the jet). The jet lasts between
t∼920 and t∼1200. After t∼1200, the jet plasma has left
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the domain and no high-velocity upflows are present in the
studied domain. The system slowly relaxes toward its initial
potential state, thanks to low-intensity reconnections. A low-
amplitude, large-scale standing wave remains in the domain
(Pariat et al. 2015). At the end of the simulation, very few
twisted field lines remain.

Physical quantities are outputted with a cadence of Δt=50
for tä[0, 700] and Δt=10 for tä[700, 1600], the higher
cadence allowing a better analysis of the nonideal phase. The
output data grid corresponds to a sample of the simulation
computation grid. The volume analyzed in the present study is
a 3D mesh of 1293 points, whose range is xä[−6, 6],
yä[−6, 6], and zä[0, 12], hence corresponding to the central
domain of the simulation of Pariat et al. (2009). The data used
for the present analysis correspond to the full 3D velocity and
magnetic vector fields.

The magnetic field presents a finite level of nonsolenoidality
(D ¹· B 0), unavoidably induced by the discretized data set,
that limits the precision of the helicity computation (see Section
7 of Valori et al. 2016). To quantify the impact of this effect,
following Valori et al. (2016), we determine the nonsolenoidal
energy Ens introduced by Valori et al. (2013). This energy
corresponds to the sum of artifact additional contributions, due

to finite nonsolenoidality of B, to the Thompson decomposition
of energy. As mentioned in Pariat et al. (2015), the ratio Ens/E
of the nonsolenoidal energy to the total magnetic energy is
lower than 0.1%: it highlights the excellent solenoidality of the
magnetic field data. Since the nonsolenoidality is the largest
source of errors in helicity calculation (Valori et al. 2016), such
a small value supports the excellent precision on the helicity
computation.

3.1.2. Flux Emergence Simulations

The next two tests employed in our study are based on the
3D visco-resistive MHD numerical experiments of Leake
et al. (2013, 2014). The two simulations considered here
present the emergence of the same twisted magnetic flux rope
from the upper convection zone into the stratified solar
atmosphere (see Figure 2). In the coronal domain, a constant
value for the resistivity is assumed, η=0.01. These
simulations have also been analyzed by Valori et al. (2016),
Guennou et al. (2017), and Pariat et al. (2017).
For our present analysis, the flux rope emerges at the bottom

boundary, the minimum temperature region emulating the solar
photosphere, and forms a solar-like bipolar active region. The

Figure 1. Snapshots of the magnetic field evolution during the generation of a coronal jet. The red field lines are initially closed. The green and white field lines are
initially open. At t=900 the system is in its pre-eruption stage. At t=1000 the system is erupting. Helicity is ejected upward along newly opened reconnected field
lines. At t=1500 the system is slowly relaxing to its final stage.
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simulations last between t=0 and t=200 in the nondimen-
sional units of the system (see Leake et al. 2013, for more
details). The flux rope pierces through the photospheric
boundary at t=30. Before that time, the flux rope is moving
through the convection zone, a domain not considered in our
study.

The same initial twisted magnetic flux rope emerges into a
potential coronal field presenting an arcade structure of
different intensity and orientation. In Leake et al. (2013) the
magnetic arcade is parallel with the top magnetic field of the
emerging flux rope. In this setup, the emerging flux rope
remains contained within the coronal domain and stabilizes
itself. No impulsive ejection of magnetic structure is observed.
In the present paper, we analyze the particular simulation
obtained with a medium intensity field arcade (MD case in
Leake et al. 2013), and we designate it as “noneruptive
emergence” throughout this paper.4

The second flux emergence simulation that we analyze has
an opposite direction of the arcade field compared to the first
simulation (MD case in Leake et al. 2014). We refer to this
simulation as “eruptive emergence.”5 In this geometry,
magnetic reconnections between the emerging flux rope and
the surrounding arcade field are favored. The emergence of the
flux rope eventually induces an eruption: a secondary flux rope
is formed, following the emergence, that eventually becomes
unstable and is impulsively ejected upward toward the top
boundary. The eruption develops between t∼120 and
t∼150, a period during which the axis of the flux rope
presents a high upward velocity before eventually leaving the
numerical domain. During the post-eruptive phase, the system
relaxes toward a stable configuration.

The original simulations are performed on a 3D irregular
Cartesian mesh. Only the coronal domain of the magnetic and
velocity field data is extracted and is remapped onto a 3D
uniform Cartesian grid using trilinear interpolation. The
analyzed-volume range is xä[−100, 100], yä[−100, 100],

and zä[0.36, 150] in the nondimensional units of Leake et al.
(2013, 2014). While the domain analyzed is the same as in
Valori et al. (2016) and Pariat et al. (2017), the interpolation
is performed on a grid with a higher resolution. The number
of pixels is 1.5 times larger in each direction compared to the
previous helicity analyses. The grid is composed of 311 mesh
points along both the horizontal directions, x and y, and 232
along the vertical direction, z.
As with the jet simulation, the divergence of B is not exactly

null, and the energy decomposition presents a finite value of
Ens. The value of the ratio Ens/E is lower than 1.5% once the
flux rope starts to emerge. Thus, the level of nonsolenoidality
remains low, ensuring a good reliability in our calculation of
the helicity, as follows from the tests performed in Valori
et al. (2016).

3.2. Volume Helicity Estimation

The output of the different simulations are datacubes, on a
uniform cuboid Cartesian grid, of the magnetic field B, the
plasma-velocity field v, and the plasma thermodynamical
quantities (not used here). From the 3D magnetic field, the
different magnetic helicities, Hv, Hj, and Hpj, can be directly
computed at each time step.
In the present study, we adopt the method of Valori et al.

(2012): at each time step of the simulations, from B(t) we
compute its respective potential magnetic field, Bp(t), from its
scalar potential, f(t), which is obtained from a numerical
solution of the Laplace Equation (3).
Then, the respective potential vectors A(t) and Ap(t) can be

computed with a few 1D integrations (see Equation (14) of
Valori et al. 2012). This method assumes that the potential
vectors satisfy the DeVore gauge (DeVore 2000), in which
their vertical component is null at every instant and every point
in the domain, i.e.,

= =( ) ( ) ( )A x y z t A x y z t, , , , , , 0. 65z zp,

This condition does not uniquely define the vector potential.
Following Pariat et al. (2015, 2017) for the jet and the

Figure 2. Snapshots comparing the evolution of the magnetic field in the eruptive (bottom row) and noneruptive (top row) flux emergence simulations. The orange
(cyan) field lines initially belong to the emerging flux rope (arcade). The grayscale 2D surface displays the distribution of the magnetic field at the simulated
photospheric level. Only the coronal domain, above that boundary, is considered in the present study.

4 This simulation was denoted “No Erupt MD” in Pariat et al. (2017).
5 It was denoted “Erupt MD” in Pariat et al. (2017).
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emerging flux simulations, respectively, our numerical compu-
tation of Ap enforces the Coulomb gauge (∇·Ap=0).
Following Pariat et al. (2015), this gauge choice is referred to
as the DeVore–Coulomb gauge. Additionally, the 1D integra-
tion starts at the top boundary of the domain (at height ztop),
where we enforce the relation

= = =^ ^( ) ( ) ( )A x y z z t A x y z z t, , , , , , . 66top p top

Finally, the helicities are obtained from this volume
integration method using Equations (4), (6), and (7). As
mentioned earlier, the resulting helicity shows a residual gauge
dependence due to the finite level of solenoidality of B
unavoidably induced by the discretized data set. In our
simulations, the errors introduced are minimal and do not
affect the helicity estimations, thanks to the low value of Ens

(see Section 3).
In Figure 3, we plot the time evolution of the three helicities

of our study for the different simulations. We note that for the
noneruptive flux emergence simulation, the relative helicity of
the system is dominated by the Hpj component. For the eruptive
flux emergence simulation, the helicity is dominated by Hj

before the onset of the eruption (before t∼120), and then by
Hpj once the system is relaxing after the eruption. This property
has been studied in Pariat et al. (2017) and Zuccarello et al.
(2018), who showed that the ratio Hj/Hv was a very good
marker of the eruptivity of these simulations.

We observe for the jet simulation that while in the very
beginning of the energizing the relative helicity is mostly
constituted by Hpj (for t<400), the system becomes dominated
by Hj between t∼400 and t∼900, up until the onset of the jet.
After the jet formation, Hj decreases substantially and the system
is on average dominated by Hpj. This simulation thus seems to
confirm the results of Pariat et al. (2017) and Zuccarello et al.
(2018); the ratio Hj/Hv appears closely related to the eruptivity
in the system; this ratio is low at the start of the energizing,
where the system is departing from a potential configuration,
becomes high before the onset of the eruptive behavior, and
drops to a low value after the eruption, when the system relaxes
to a stable state.

3.3. Time Variation Estimations

One goal of the present study is to verify numerically our
analytical derivation of the time variations of the nonpotential
and volume-threading helicities (Equations (6) and (7)). From
three successive outputs of the studied MHD system,

corresponding to three instants separated by a time interval
Δt, we directly compute their helicity variation rate for the
instant t:

D
D

=
+ D - - D

D
( ) ( ) ( ) ( )H t

t

H t t H t t

t2
, 67x x x

with x standing for either j or pj.
Along with the estimation of the helicities in the volume and

their time differentiation (ΔHj/Δt and D DH tpj ; see
Section 3.2), we also evaluate their instantaneous time
variation, dHj/dt and dHpj/dt from Equations (28) and (36).
Our analysis is performed within the resistive MHD

paradigm. Besides the resistive term, any other nonideal
contributions are not treated by the numerical solvers in the
simulations. For our numerical computation of the helicity
variations terms, the nonideal effects are thus limited to the
inclusion of the dissipation term in Equations (49), (54), (50),
and (56).
In the particular case of the jet simulation, the ideal MHD

equations are solved, and the resistivity, η, is not specified.
Pariat et al. (2015) demonstrated that the helicity dissipation is
extremely low for that simulation. Consequently, in the
following, for the jet simulation we assume that η=0.
The estimation of the latter quantities requires, in addition to

the 3D magnetic field, B, the knowledge of the velocity field, v,
at the boundary of the domain. Moreover, using the magnetic
field, the potential magnetic field and the vector potentials are
obtained from the volume estimation procedure (see Section 3.2).
The different terms that appear in the instantaneous time
variation (Equations (28) and (36)) are estimated independently,
even though, as already noted in Section 2.4, most of them are
not independently gauge invariant. For the quantities that
correspond to fluxes, the determination of the surface integrals
is calculated systematically as the sum of the contributions from
the six boundaries.
It should be noted that for the emergence simulations, for

tä[25, 30], when the top of the flux rope starts to pierce
through the photospheric-like layer, the bottom boundary of the
data set we analyze, some quantities involve small values,
which introduce numerical errors in our helicity estimations.
For example, this can be observed in Figure 3(c) as a small
peak in the evolution of Hpj at t=27 for the eruptive
emergence. This numerical artifact leads to fluctuations in the
estimation of most terms of the instantaneous time variation,
even though the helicities have very small values. To correct

Figure 3. Time evolution of the different magnetic helicities: the relative magnetic helicity (blue lines; Equation (4)), the volume-threading helicity (red lines;
Equation (7)) and the nonpotential magnetic helicity (green lines; Equation (6)), for the different simulations studied: from left to right, the noneruptive emergence
simulation, the eruptive emergence, and the simulation of the generation of a solar coronal jet. For the eruptive emergence and the jet simulations the yellow vertical
band corresponds to the eruptive phases.
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this problem, we thus set all helicity terms equal to zero
for t<27.

3.4. Numerical Validation

In order to validate the analytical derivation of the time
variation of the terms in the helicity decomposition
(Equations (28) and (36)), we will compare the estimation of
the time derivative of the helicity rates obtained from the
volume integration method (ΔHj/Δt and ΔHpj/Δt;
Equation (67)) with the estimation of the instantaneous time
variation (dHj/dt and dHpj/dt; Equations (28) and (36)), as
discussed in Section 3.3.

Since the numerical evaluation of both the instantaneous
time variation of a quantity and its time differentiation involves
many operations, some numerical errors are always expected
when comparing them. Studying the evolution of relative
magnetic helicity, Pariat et al. (2015) found that for the jet
simulation, during the quasi-ideal phase, before the onset of the
jet, a relative error of about 0.001 exists between the
instantaneous rate and the differentiation of the volume
quantity. Here, although using different routines, we obtain
the same result for Hv as Pariat et al. (2015). This previous test
suggests that both results are numerically correct and that these
routines can be used for the calculation of the terms in our
analytical time variations of Hj and Hpj (Equations (28)
and (36)).

As noted in the previous section, since the simulations are de
facto solving the resistive MHD equation, the additional
nonideal contributions are not considered with this paradigm.
In order to numerically validate our analytical formula and
quantify the correspondence between the left- and right-hand
terms of Equations (28) and (36), we evaluate the differences:

=
D
D

- ( )D
H

t

dH

dt
68n,x

x x

where x corresponds to either j or pj.
Figures 4–6 present the evolution of the time derivative of

the volume helicities, the instantaneous variation rate, and their
difference. In Figure 6 we note that during the quasi-ideal
phase, before the onset of the jet, Dn,x remains extremely small,
similarly to what has been obtained for the relative helicity Hv.

The mean ratio of ∣ ∣Dn,j to ∣ ∣dH dtj is lower than 3%, and less
than 7% for the ratio of ∣ ∣Dn,pj to ∣ ∣dH dtpj during that phase.
Dissipation being null in ideal MHD, this very low value is
coherent with the theory and shows that numerical errors are
also very low. The low values of ∣ ∣Dn,x confirm the validity of
Equations (28) and (36) about the helicity time variations,
which constitute the central result of this study.
During the nonideal phase of the jet simulation, strong

nonideal effects are present with intense magnetic reconnec-
tions. While the Dn differences present larger values than
during the quasi-ideal phase, mostly through the form of
fluctuating peaks, their intensity is very weak in comparison
with the values of dHx/dt. During the eruption phase, the mean
ratio of ∣ ∣Dn,j to ∣ ∣dH dtj is also about 12%, and 6% for that ratio
of ∣ ∣Dn,pj to ∣ ∣dH dtpj . Equations (28) and (36) are thus valid to a
very high degree of accuracy.
As mentioned in Section 3.3, for the flux emergence

simulations, we are able to calculate nonideal effects related
to the resistivity. Thus, Dn,x, presented in Figures 4 and 5 for
the eruptive and the noneruptive simulations, respectively, is
almost entirely associated with numerical errors.
The difference between ΔHx/Δt and dHx/dt remains

relatively low with respect to the values reached by these
quantities. There is an exception, however, during the very
initial phase of the flux emergence, for both the eruptive and
noneruptive cases, during which the curves of ΔHj/Δt appear
distinct from the ones of dHj/dt. For tä[25, 60], we note a
high value of Dn,j for Hj. This effect is more particularly
pronounced for the time variation of Hj. During this period, the
mean ratio of ∣ ∣Dn,j to ∣ ∣dH dtj is 14% for both simulations.
We hypothesize that this value of Dn,x during that period is

due to a temporal undersampling due to relatively low-cadence
data available. This phase indeed corresponds to the moment
when the flux rope emerges into the coronal domain though the
model photosphere, when the bottom boundary in our
calculation thus exhibits relatively fast changes.
Neglecting this initial phase, one observes that the values of

Dn,x remain overall significantly smaller than the values of
dHx/dt. The mean ratios of ∣ ∣Dn,j to ∣ ∣dH dtj and ∣ ∣Dn,pj to
∣ ∣dH dtpj are lower than 9% for the eruptive emergence and
lower than 5% for the noneruptive simulation.

Figure 4. Time evolution of the helicity variation rates, ΔHj/Δt and ΔHpj/Δt (dashed black curves; Equation (67)), the instantaneous time variations, dHj/dt and
dHpj/dt (solid red curves; Equations (28) and (36)), and the differences of these quantities, Dn,j and Dn,pj (solid blue curves; Equation (68)), for the noneruptive flux
emergence. The left and right panels present the evolution of the nonpotential helicity, Hj, and volume-threading helicity, Hpj, respectively.
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From the analysis of these three numerical simulations, we
conclude that our estimation of dHx/dt enables a consistent
evaluation of the helicity and that Equations (28) and (36) for
the time variation of Hj and Hpj are satisfactorily numerically
verified.

3.5. Helicity Fluxes

In Figures 7 and 8, we compare the different terms that
compose the instantaneous time variation of Hj (Equation (28))
and Hpj (Equation (36)), respectively. As described in
Section 2.4, only the transfer term, the dissipation term, and
the sum of the fluxes, ∣dH dtx Own, are gauge invariant. The
fluxes, Fα,Ap and Fα,Aj (with αä{Vn, Bn, Aj, f, Nonideal}),
are gauge dependent. Therefore, computed with different
gauges, the curves in Figures 7 and 8 might be noticeably
different, e.g., as shown in the Appendix. As the individual
terms nonetheless inform on the dynamics of the helicity
variations within the adopted gauge, we briefly present their
evolution here.

In Figures 7 and 8, ∣dH dtx Transf , which is a volume
contribution, is not small compared to the other fluxes. It

confirms that Hpj and Hj are not conserved quantities. In other
words, their time variations cannot be written as only the sum
of surface contributions. We also see in Figure 7 that for the
three simulations the curves of ΔHj/Δt are frequently overlaid
by ∣dH dtj Transf . The transfer term seems to be essential to
understand the evolution of helicities, in particular, for the jet
simulation (see Figure 7, right panel), where the other terms are
negligible compared to ∣dH dtj Transf . This term will thus be
studied in more detail in Section 3.6.
Unlike the jet simulation, the flux emergence simulations do

not possess a quasi-ideal phase, and a finite level of nonideality
is present as soon as the emerging flux rope enters in the
coronal domain. This can be seen with non-null values of

∣dH dtx Diss and FNonideal presented in Figures 7 and 8 during
the whole simulation. As expected, the intensity of these terms
is very low. In other words, nonideal effects seem to have only
a small impact on the temporal evolution of helicities.
A difference between the emergence simulations and the jet

simulation is the mechanism by which magnetic energy and
helicity accumulate in the system. In the jet simulation, helicity
is inputted at the boundary by a purely rotational motion of a

Figure 5. Same as Figure 4, but for the eruptive flux emergence simulation. The yellow bands correspond to the eruptive phase.

Figure 6. Same as Figure 4, but for the coronal jet simulation. The yellow bands correspond to the eruptive phase.
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symmetric field distribution that leaves the potential field
unchanged. Here symmetry and flow geometry account for lots
of cancellation. Because of this, all the surface terms Fα,Aj are
almost null in the right panel of Figure 7. Only Ff,Aj displays a
weak variation during the jet, indicating the sudden load
change of the reference magnetic field Bp caused by the
reconnections.

On the contrary, for the emergence simulations, Aj changes
during the passage of the flux rope through the bottom
boundary. This leads to significant contributions of the
different flux terms during the pre-eruptive phase, as displayed
by the evolution of the terms FVn,Aj and FBn,Aj. During the
eruption, for the eruptive emergence simulation as with the jet
case, the scalar potential f changes abruptly, and therefore so
do ∣dH dtj Bp,var and Ff,Aj. It is a consequence of the boundary
modification conditions for the Laplace equation due to the
transit of eruption through the surface.

The flux Fα,Ap presented in Equation (36) depends not on Aj

but on the vector potential Ap. For the emergence simulations,
Ap changes significantly in emergence phase, yielding the
dominant role of FBn,Ap and FVn,Ap.

3.6. Transfer between Hj and Hpj

Figures 9–11 show the time variation of Hj and Hpj in the
gauge-invariant form of Equations (52) and (53) for the
noneruptive flux emergence, the eruptive flux emergence, and
the jet simulations, respectively. For the emergence simula-
tions, the dissipation ∣dH dtx Diss, which is explicitly calculated,
is completely negligible compared to the two other terms. As
mentioned in Section 3.5, nonideal terms are not null, but their
intensity is very low. In the case of the relative magnetic
helicity, a weak dissipation was sufficient to conclude that Hv is
very well conserved (Pariat et al. 2015). This is not the case
for Hj and Hpj because of the transfer term. Overall, in
Figures 9–11 we observe that the volume transfer terms,

∣dH dtx Transf , tend to have important values and frequently
dominate the helicity variations. This is the key result of the
analysis of these numerical simulations. As discussed earlier
(see Section 2.4), these terms are pure volume terms. The
presence of the transfer thus confirms that Hj and Hpj are not
conserved quantities, unlike relative magnetic helicity, which is
very well conserved for these simulations. Additionally, we
observe that the dynamics of the helicity decomposition is often

Figure 7. Time evolution of the nonpotential helicity variation rate (dashed black line; dHj/dt; Equation (28)) and the different terms constituting the instantaneous
time variation of Hj (Equation (28)): FAj,Aj (yellow line; Equation (34)), FBn,Aj (brown line; Equation (33)) FVn,Aj (blue line; Equation (32)), ∣dH dtj Transf (red line;
Equation (30)), Ff,Aj (orange line; Equation (35)), ∣dH dtj Bp,var (magenta line; Equation (31)), FNonideal,Aj (purple line; Equation (56)), and ∣dH dtj Diss (green line;
Equation (49)). From left to right: the noneruptive emergence simulation, the eruptive emergence simulation, and the simulation of the generation of a solar coronal jet.
The yellow bands are the same as in Figure 3.

Figure 8. Time evolution of the volume-threading helicity variation rate (dashed black line; dHpj/dt; Equation (36)) and the different terms constituting the
instantaneous time variation of Hpj (Equation (36)): FAj,Ap (yellow line; Equation (42)), FBn,Ap (brown line; Equation (41)) FVn,Ap (blue line; Equation (40)),

∣dH dtpj Transf (red line; Equation (38)), Ff,Ap (orange line; Equation (43)), ∣dH dtpj Bp,var (magenta line; Equation (39)), FNonideal,Ap (purple line; Equation (56)), and
∣dH dtpj Diss (green line; Equation (54)). From left to right: the noneruptive emergence simulation, the eruptive emergence simulation, and the simulation of the

generation of a solar coronal jet. The yellow bands are the same as in Figure 3.
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dominated by the exchange between Hj and Hpj, rather than
their own fluxes through the volume boundaries. This is
particularly true for Hj, for which the ∣dH dtj Own term is usually
unimportant in two out of three cases. These results have
important consequences for the estimation of Hj in the solar
context, as will be discussed in Section 4.

Figures 9–11, along with Figure 3, allow us to follow the
dynamics of the exchange between Hj and Hpj in the volume, as
well as their exchange with the environment, in the different
simulations. The noneruptive emergence case is the most
straightforward to analyze. In the left panel of Figure 3, we
distinguish two main behaviors: before t∼80, Hv is increasing
along with Hpj, and after t∼80, Hj starts to grow. The
intensity of Hpj is still increasing but is tending to a constant
value. For tä[25, 80], corresponding to the emergence of the
flux rope, we note in Figure 9 that ∣dH dtpj Own is the
predominant flux (in particular owing to FVn,Ap and FBn,Ap in
this gauge; Figure 8). During this period, Hj fluctuates weakly
because of the exchange with Hpj (see left panel of Figure 3).
Figure 9 (left panel) allows an additional understanding of

Figure 3: after t∼80, Hj is increasing not because of its flux
through the surface but only as a result of the transfer term,

∣dH dtj Transf . While ∣dH dtpj Own (see Figure 9, right panel) is
still dominating the variation of Hpj, a large portion of it is
directly transferred to Hj, thanks to the significant negative
values of ∣dH dtpj Transf . These oppositely signed terms partly
balance each other and explain why the rise of Hpj is slower
than before t∼80 (see Figure 3, left panel). We also note that

∣dH dtj Own is negligible during most of the simulation (left
panel of Figure 9): the low fluctuations of this term may be
related to the helicity measurement error Dn,j (see Figure 4),
which is relatively important before t∼80 (see Section 3.4).
The situation is more complicated for the eruptive

emergence simulation. Indeed, ∣dH dtj Own presents a signifi-
cant intensity during the whole simulation (see Figure 10). The
“Own” terms could be due not only to emergence flows but
also to the pervasive reconnection between the emerging flux
and the coronal arcade fields. This reconnection starts as soon
as the flux emerges through the photosphere. Thus, ∣dH dtx Own
is more important than in the noneruptive simulation, where

Figure 9. Time evolution of the helicity variation rates, dHj/dt and dHpj/dt (dashed black curves; Equations (28) and (36)), of the helicity transfer rates, ∣dH dtj Transf

and ∣dH dtpj Transf (solid red curves; Equations (30) and (38)), of the “Own” rates, ∣dH dtj Own and ∣dH dtpj Own (solid blue curves; Equation (51) and (55)), and of the
dissipation rates, ∣dH dtj Diss and ∣dH dtpj Diss (solid green curves; Equations (49) and (54)) for the noneruptive emergence simulation. The left and right panels present
the evolution of the nonpotential helicity, Hj, and volume-threading helicity, Hpj, respectively.

Figure 10. Same as Figure 9, but for the eruptive flux emergence simulation. The yellow bands correspond to the eruptive phase.
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there is less reconnection early on and where the “Own” terms
are likely due to the surface flows.

In Figure 10, after t∼75, the ∣dH dtx Own terms are higher
than the transfer term, ∣dH dtj Transf . The transfer term is weaker
and hovers around zero during most of the pre-eruptive phase.
Suddenly, after t∼150, ∣dH dtj Transf becomes negative and
dominant. While Hj decreases (see Figure 3, middle panel), Hpj

increases quickly because of the conversion of Hj. Conse-
quently, Hv still increases. However, after t∼150, Hpj

decreases because of the ejection of the magnetic structure
through the top boundary (and consequently a decrease of Hv is
observed). We observe in Figure 10, as indicated by the
dominant values of ∣dH dtj Transf during the eruption phase, that
the nonpotential helicity Hj is not directly expelled through the
system boundaries: during the eruption phase, it is first
transformed into Hpj. This quantity is then ejected outside,
around t∼150, as seen by a negative peak of ∣dH dtpj Own.
Overall, Figure 10 explains why the decrease of Hpj and Hv

shows a delay with the decrease of Hj during the eruption (as
seen in Figure 3, middle panel).

In the jet simulation, the energy and helicity do not increase
in the volume by the emergence of a magnetic structure, but by
the boundary shearing motions. During the whole ideal phase,
before t∼920, ∣dH dtj Own is negligible. The injection of
helicity from the external domain is primarily provided by the
flux of Hpj (thanks to FBn,Ap in the gauge used in this paper; see

Figure 8): only Hv and Hpj increase before t∼350 (see
Figure 3, right panel). While initially ∣dH dtpj Own dominates

∣dH dtj Transf , very rapidly the situation changes: ∣dH dtj Transf

becomes the dominant term and dHpj/dt becomes negative
after t∼500 (see Figure 11, right panel), Hpj decreases to the
benefit of Hj. In Figure 3, we see that Hv is increasing along
with Hj, and that Hpj decreases. Without the analysis of
Figure 11, one could imagine, when observing the right panel
of Figure 3, that Hv is increasing directly owing to the injection
of Hj. However, the situation is more complex. Because of the
injection of currents, the increase of Hv is still due to an
injection of Hpj through the boundary; however, a conversion
from Hpj to Hj is occurring simultaneously at an even higher
rate, as shown by the dominant values of ∣dH dtj Transf (see
Figure 11). Hence, in Figure 3 (right panel), Hpj decreases and
both Hj and Hv increase. At the moment of the jet, after
t∼920, we find again the same behavior as during the eruptive
emergence simulation: a fast transfer of Hj to Hpj directly
followed by ejection of Hpj through the boundaries, as
indicated by the succession of a positive peak of ∣dH dtpj Transf

followed by a negative peak of ∣dH dtpj Own (see Figure 11,
right panel). This conversion seems to be a marker of the
beginning of eruptive activity.
Overall, the analysis of the evolution of the terms of the

helicity decomposition in the three simulations shows that the
flux Hj from outside of the system, ∣dH dtj Own, is either

Figure 11. Same as Figure 9, but without the dissipation rates, ∣dH dtj Diss (Equation (49)) and ∣dH dtpj Diss (Equation (54)). For this simulation, these terms are
assumed to be null. The yellow bands correspond to the jet eruption phase.

Figure 12. Time evolution of the nonpotential helicity Hj (dashed line; Equation (6)) and the time integral of the transfer rate Tj,Transf (red lines; Equation (69)) for the
noneruptive emergence simulation (left panel), the eruptive emergence simulation (middle panel), and the simulation of the generation of a solar coronal jet (right
panel). The yellow vertical bands are the same as in Figure 3.
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positive or negligible compared to the transfer term. In that
respect, while the increase of the nonpotential helicity can be
due to its own flux, the decrease of Hj seems to be mainly
related to its conversion to Hpj. Moreover, this transfer
(probably related to the ongoing magnetic reconnections)
appears as the first phase of an eruption.

As discussed before, ∣dH dtj Transf frequently dominates the
variation of Hj, during either the non-/pre-eruptive or eruptive
phases. To highlight its impact on the evolution of Hj, Figure 12
presents the time integral, Tj,Transf, of the transfer term:
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As can be seen in the right panel of Figure 12, for the jet
simulation, the behaviors of Tj,Transf and Hj are very similar: the
curves overlap with only a small deviation toward the end of
the simulation. The same is also true for the noneruptive
emergence simulation (see Figure 12, left panel). This result is
the direct consequence of the relatively low value of ∣dH dtj Own
for these two simulations (see Figures 9 and 11, left and right
panels). The evolution of Hj in these two cases is directly
related to its conversion from Hpj. In the eruptive emergence
simulation in Figure 10, the term ∣dH dtj Own is not negligible
compared to the transfer term. Consequently, in the middle
panel of Figure 12, Tj,Transf does not overlap with Hj. In other
words, Hj cannot be computed by only considering the integral
of the transfer term, which is what was expected if one only
looks at the jet and noneruptive simulations. However, Tj,Transf
also allows us to locate the eruption, as can be done with Hj.
The instant t∼125, where Hj decreases, exactly coincides
with the main drop of the transfer term. This confirms that Hj

losses are linked to a conversion toward Hpj.

4. Conclusion

The present work focused on the analytical and numerical
study of time variations of the terms in the decomposition of
relative magnetic helicity, Hv, into the sum of the current-
carrying helicity, Hj, and the volume-threading helicity, Hpj.
After having introduced the different quantities, we analytically
derived their time derivatives (see Section 2). We obtained the
generalized equations for the time variation of Hj (see
Equation (28)) and Hpj (see Equation (36)). We considered
special cases and gauge choices that can simplify the
calculation of these formulae (see Section 2.5).

The key outcome of our analytical derivation was to reveal a
gauge-invariant quantity that controls the transfer of helicity
between Hj and Hpj, themselves gauge invariant ( ∣dH dtj Transf ;
see Equation (30)). Since this quantity is expressed with a
volume term, we deduce that neither Hj nor Hpj is a conserved
quantity in resistive or ideal MHD. While relative magnetic
helicity can be built as an invariant quantity in ideal MHD,
helicity can nonetheless be exchanged between Hj and Hpj, and
the latter quantities evolve even by ideal MHD motions.

The time evolution of Hv, Hj, and Hpj and the terms
entering in their time derivatives were then studied in three
3D MHD numerical simulations of solar coronal events (see
Section 3.1): the generation of a coronal jet (Pariat et al.
2009), the formation of a stable active region by flux
emergence (Leake et al. 2013), and the formation of an

eruptive active region (Leake et al. 2014). These simulations
present a sample of boundary forcing (line-tied vs. flux
emergence), as well as dynamics, e.g., ideal evolution,
magnetic reconnection, and eruptions.
The analysis of these numerical experiments allowed us first

to confirm numerically the time variation equations of Hj and
Hpj that were derived analytically (see Section 3.2). This
confirms, evidently in some cases, that Hj and Hpj are not
individually invariants of ideal MHD.
In particular, we observed that in many cases the transfer

term ∣dH dtj Transf was dominating the dynamics of Hj (see
Section 3.6). We observed that the evolution of Hj is frequently
uniquely controlled by the term ∣dH dtj Transf , which means that
this quantity does not evolve as a result of boundary fluxes but
builds up through the transformation of Hpj. This dynamics was
observed both during the energy buildup phases of the
evolution of the system and during the eruption/ejection
phases. During the energy injection phases, for both the jet and
the stable emergence simulations, boundary fluxes first increase
Hpj, and part of it is then transformed into Hj. During the
eruption phases (in the jet and eruptive emergence simulations),
Hj is first transformed into Hpj, and it is the latter that is
expelled from the domain by boundary fluxes.
This finding has an important impact on our ability to estimate

Hj and Hpj in observed solar active regions. As discussed in
Section 1, the most common way to estimate relative magnetic
helicity is by time integration of its flux through the solar
photosphere. Since relative magnetic helicity is largely conserved,
its photospheric flux dominates the evolution of the relative helicity
in the coronal domain. From numerical simulations, it was shown
that indeed the time-integrated boundary fluxes closely match the
amount of helicity in the system (Yang et al. 2013; Pariat
et al. 2015, 2017). Lim et al. (2007) also confirmed from
observational data that the helicity flux accumulation indeed gives
a proper estimation of the coronal helicity with a ∼15% relative
error. However, such a flux-integration approach is doomed to fail
when applied to Hj and Hpj. Indeed, the volume transfer term,
which drives the evolution of Hj and Hpj, is independent of the
boundary fluxes. In the jet simulation, for example, the time
integration of the term ∣dH dtj Own is an order of magnitude
smaller than the amount ofHj in the system. The analysis ofHj and
Hpj in observations thus has to rely on the volume integration
approach (Valori et al. 2016). In this method, the 3D coronal
magnetic field must be reconstructed from the 2D photospheric
measurements, thanks to extrapolation techniques (Wiegelmann &
Sakurai 2012; Wiegelmann et al. 2014). Because of the inherent
nature of Hj, which describes nonpotential fields, potential
magnetic field reconstruction cannot estimate this quantity.
Similarly, we believe that linear force-free extrapolation will only
provide too crude an approximation of Hj. The linear force-free
approximation can be used to estimate relative helicity solely
thanks to the boundary distribution of the normal component of the
magnetic field (Berger 1985; Lim et al. 2007). The impact of this
approximation on the estimation of Hj and Hpj remains to be
studied, but it can be conjectured that, since the linear
approximation effectively distributes current in the entire volume,
it is inaccurate for systems, like the corona, where currents are
spatially localized. These quantities being highly nonlinear, non-
force-free extrapolations will probably be a unique way to properly
approach an estimation of Hj and Hpj, similarly to the study of
James et al. (2018), who provided the first estimation of Hj/Hv in
observed data.
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Pariat et al. (2017) and Zuccarello et al. (2018) have shown that
the helicity ratio Hj/Hv seems to be tightly related to the eruption
process. This paper presents an additional evidence through the
analysis of the coronal jet simulation of Pariat et al. (2009). We
show here that the jet is indeed triggered when the helicity ratio
Hj/Hv attains a very high value. The value of this ratio drops
significantly after the generation of the jet. If, as hinted by these
studies, Hj is a key element for the eruptivity of solar active
regions, the present study demonstrates the need for the
development of quality 3D magnetic reconstructions of the solar
magnetic field in order to measure Hj and Hpj in observed solar
active regions. The Solar Orbiter mission and its PHI instrument,
which will provide the first remote magnetic field observations
complementing those from the Earth environment, may provide a
unique opportunity to improve vector magnetic field measure-
ments. Finally, the present work has highlighted yet another
interesting behavior of magnetic helicity. The nonpotential helicity
Hj evolution seems to be mostly driven by the volume
transformation from Hpj rather than from its own flux. Further
investigations on different magnetic field simulations are required
to capture the dynamics of this quantity. More generally, magnetic
helicity needs to be further understood through fundamental
studies on its mathematical properties (Oberti & Ricca 2018), on
its physical interpretation (Yeates & Hornig 2013, 2014; Russell
et al. 2015; Aly 2018), and on its proper measurement in the solar
corona (Dalmasse et al. 2013, 2014, 2018; Valori et al. 2016; Guo
et al. 2017; Moraitis et al. 2018).
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Appendix
Helicity Variation Decomposition with a Different

Gauge Choice

In the core part of this study, in our application of the helicity
estimation to numerical experiments (see Section 3), we used
the practical DeVore–Coulomb gauge for A and Ap, with the
additional constraint that they have the same distribution at the top
boundary (see condition (66)). This choice induces that all the
fluxes Fα,Aj (with αä{Vn, Bn, Aj, f}) in Equation (28) are null
at the top boundary. To determine the impact of this choice, we
perform the helicity calculations with a different condition:

= = =^ ^( ) ( ) ( )A Ax y z z t x y z z t, , , , , , , 70bot p bot

i.e., with A and Ap having the same distribution at the bottom
boundary, at z=zbot, instead of the top boundary.
All the helicity evaluations performed in Section 3 are

recomputed with this new gauge choice. We only present here
the results in which the gauge choice has a significant impact. As
expected, all the gauge-independent quantities are not affected by
the switch between conditions (66) and (70). Only the figures

Figure 13. Same as Figure 7, but using condition (70) instead of condition (66).

Figure 14. Same as Figure 8, but using condition (70) instead of condition (66).
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presenting gauge-dependent quantities are significantly affected,
those representing the different terms in the helicity time variations
of Equations (28) and (36). These terms, computed with condition
(70), are presented in Figures 13 and 14. These figures should be
compared with Figures 7 and 8 (see Section 3.5).

As expected, the curves in Figure 13 (Figure 14) are
markedly different from the curves in Figure 7 (Figure 8).
Indeed, the fluxes in Equations (28) and (36) are gauge
dependent (see Section 2.4.2). Only the term ∣dH dtx Transf is
gauge invariant and is strictly identical. We also note that
ΔHj/Δt and ΔHpj/Δt are almost identical, the marginal
difference (<4%) being due to the intrinsic precision on the
estimation of the helicities due to the finite nonsolenoidality of
the data sets (see Sections 3.1).

For the jet simulation (right panel of Figure 13), the
differences appear mainly during the nonideal phase (after
t∼900). During that phase, a jet and a nonlinear magnetic
wave are passing through the top boundary. Hence, the
magnetic and the velocity fields vary significantly at the top
boundary. Since with condition (66) FBn,Aj and FVn,Aj are
constantly null at the top boundary, these quantities presented
very weak values in Figure 7 (right panel) during the passage of
the jet. The top constraint being lifted with condition (70),
FBn,Aj and FVn,Aj show significantly large values in Figure 13
around t∼1000. The different boundary fluxes nonetheless
cancel each other, and the gauge-independent quantity

∣dH dtj Own remains very low (as in Figure 11), significantly
smaller than ∣dH dtj Transf .

For the noneruptive and eruptive emergence simulations,
before t∼120, with condition (70) the contributions of FVn,Aj

and FBn,Aj have completely disappeared (see Figure 13). These
quantities depend mostly on the change of the velocity and
magnetic fields at the bottom boundary while the flux tube was
emerging. With the vector potential Aj being forced to be null
at this boundary, the fluxes are null as well. The quantity
dHj/dt evolves almost only thanks to the volume terms: the
transfer term and ∣dH dtj Bp,var. With this particular gauge
choice Hj does not exchange with the outside during the pre-
eruptive phase, for both the eruptive and the noneruptive
simulations.

During the eruptive phase of the eruptive emergence
simulation (middle panels of Figures 13 and 14), we see that
FVn,Ax, with x being either j or pj, is the main contribution of the
helicity fluxes. The computations of Dn,x (Equation (68)) and

∣dH dtx Own (not shown here) inform us that this peak of FVn,Aj

is likely due to numerical errors: the time step is not sufficiently
small to capture the sudden change of the velocity field at the
top boundary. At that particular time the computation method
and the specific choice of gauge can markedly influence the
precision of the helicity flux estimation. These results had
already been noted by Pariat et al. (2015, 2017).
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