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The decoding of selective auditory attention from noninvasive electroencephalogram

(EEG) data is of interest in brain computer interface and auditory perception research.

The current state-of-the-art approaches for decoding the attentional selection of listeners

are based on linear mappings between features of sound streams and EEG responses

(forward model), or vice versa (backward model). It has been shown that when the

envelope of attended speech and EEG responses are used to derive such mapping

functions, the model estimates can be used to discriminate between attended and

unattended talkers. However, the predictive/reconstructive performance of the models

is dependent on how the model parameters are estimated. There exist a number of

model estimation methods that have been published, along with a variety of datasets. It

is currently unclear if any of these methods perform better than others, as they have not

yet been compared side by side on a single standardized dataset in a controlled fashion.

Here, we present a comparative study of the ability of different estimation methods

to classify attended speakers from multi-channel EEG data. The performance of the

model estimation methods is evaluated using different performance metrics on a set

of labeled EEG data from 18 subjects listening to mixtures of two speech streams. We

find that when forward models predict the EEG from the attended audio, regularized

models do not improve regression or classification accuracies. When backward models

decode the attended speech from the EEG, regularization provides higher regression and

classification accuracies.

Keywords: temporal response function, speech decoding, electroencephalography, selective auditory attention,

attention decoding

1. INTRODUCTION

A fundamental goal of auditory neuroscience is to understand the mapping between auditory
stimuli and the cortical responses they elicit. In magneto/electro-encephalography (M/EEG)
studies, this mapping has predominantly been measured by examining the average cortical
evoked response potential (ERP) to a succession of repeated short stimuli. More recently, these
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methods have been extended to continuous stimuli such as
speech by using linear system-response models, broadly termed
“temporal response functions” (TRFs), that are estimated using
system-identification methods. The TRF is a stimulus-response
model that characterizes how a unit impulse in an input
feature corresponds to a change in the M/EEG data. TRFs
can be used to generate continuous predictions about M/EEG
responses as opposed to characterizing the response (ERP)
to repetitions of the same stimuli. Importantly, it has been
demonstrated that the stimulus-responsemodels can be extracted
both from EEG responses to artificial sound stimuli (Lalor et al.,
2006, 2009; Power et al., 2011) but also from EEG responses
to naturalistic speech (Lalor and Foxe, 2010). A number of
studies have considered mappings between the slowly varying
temporal envelope of a speech sound signal (<10 Hz) and
the corresponding filtered M/EEG response (Lalor and Foxe,
2010; Ding and Simon, 2012a,b, 2013, 2014). However, TRFs
are not just limited to the broadband envelope, but can also
be obtained with the speech spectrogram (Ding and Simon,
2012a,b), phonemes (Di Liberto et al., 2015), or semantic features
(Broderick et al., 2018). This has opened new avenues of research
into cortical responses to speech, advancing the field beyond
examining responses to repeated isolated segments of speech.

TRF methods have proven particularly apt for studying how
the cortical processing of speech features are modulated by
selective auditory attention. A number of studies have considered
multi-talker “cocktail party” scenarios, where a listener attends to
one speech source and ignores others. It has been demonstrated
that both attended and unattended acoustic features can be
linearly mapped to the cortical response (Ding and Simon,
2012a,b; Power et al., 2012; Zion Golumbic et al., 2013; Puvvada
and Simon, 2017).

Conversely, the same linear model, which maps speech
features to the cortical response (forward direction), can be
adapted to provide a linear mapping from the cortical response
to the speech features (backward direction) (Bialek et al., 1991;
Mesgarani et al., 2009; Ding and Simon, 2012a,b; Mesgarani
and Chang, 2012; Mirkovic et al., 2015; O’Sullivan et al., 2015;
Fuglsang et al., 2017; Van Eyndhoven et al., 2017). The mapping
from acoustic features to cortical responses is typically referred to
as a forward model (or TRF), whereas the mapping from cortical
responses to acoustic features is referred to as a backward model
(Haufe et al., 2014). The quality of model fit reflects the degree to
which cortical activity is driven by stimulation. In a cocktail party
scenario, the quality of fit between each of the speech streams and
the cortical activity can be used to infer which speech stream is
being attended. Differences in the accuracy of forward/backward
model-derived estimates between the attended and unattended
speech signal can be used to predict or “decode” to whom a
listener is attending based on unaveraged M/EEG data. Single-
trial measures of auditory selective attention in turn suggests BCI
applications, for instance, for cognitively-steered hearing aids
(Das et al., 2016; O’Sullivan et al., 2017; Van Eyndhoven et al.,
2017; Zink et al., 2017).

The ability of forward/backward stimulus-response models
to generalize to new data is generally limited by the need
to estimate a relatively large number of parameters based

on noisy single-trial M/EEG responses. Like many aspects of
machine learning, this necessitates regularization techniques that
constrain the model coefficients to prevent overfitting (Crosse
et al., 2016a; Holdgraf et al., 2017). A number of methods
for regularizing the forward/backward stimulus-response models
have been presented in various studies (Goutte et al., 2000;
Theunissen et al., 2000, 2001; Machens et al., 2004; David et al.,
2007; Thorson et al., 2015). Each of these methods attempt
to address the challenge of having sufficient data to compute
a reliable stimulus-response mapping function. To reduce the
data requirement, regularization can be applied in the form of
a smoothness and/or sparsity constraint.

To date, little work has been done to compare these methods
against each other. A meta-analysis would be difficult as
many variables, such as subjects, stimuli and data processing
are different between each study. The present paper uses a
standardized publicly available dataset1 (Fuglsang et al., 2018),
based on the attended-vs.-unattended talker discrimination
task, as well as preprocessing and evaluation procedures to
compare these algorithms. In addition, the present paper
examines the relationship between different evaluation metrics
to highlight their similarities and differences. The methods for
computing forward/backward stimulus-response models have
been implemented in the publicly available Telluride Decoding
Toolbox2.

2. MATERIALS AND METHODS

Temporal response functions can be used to predict the EEG
response to a multi-talker stimulus from the attended speech
envelope or, alternatively, the equation can be adapted to
reconstruct the attended speech envelope from the EEG response.
The first case is denoted as a “forward model” (as it maps from
speech features to neural data) and the second as a “backward
model” (as it maps from neural data back to speech features)
(Haufe et al., 2014).

2.1. Stimulus-Response Models
The linear stimulus-response models below described belowmap
a matrix X (stimulus features for a forward model, EEG for a
backward model) to a matrix Y (EEG channels for a forward
model, stimulus features for a backward model):

Ŷ = XW, (1)

where X = [xt,(f ,c)] is a multichannel data matrix (channels
indexed by c), augmented to include time-lagged versions of the
data (lags indexed by f ), and Ŷ = [yt] is the model estimate in the
form of a vector indexed by time t. Time lags, limited to a range
such as -500 to + 500 ms, allow the model to handle delays and
convolutional mismatch between X and Y. Dimensions c and f
are combined when performing matrix multiplications.

In the following subsections we introduce different
approaches to estimating the linear model parameters, W.

1http://doi.org/10.5281/zenodo.1199011
2http://www.ine-web.org/software/decoding
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Each method uses different regularization techniques to optimize
the generalizability of the mapping functions.

2.1.1. Ordinary Least Squares (OLS)
The cost function that is minimized when solving the regression
model is:

L(W) = (Y− XW)T(Y− XW). (2)

The filter coefficients of this model can be estimated via ordinary
least squares:

W =
(

XTX
)−1

XTY, (3)

where XTX is the estimated autocovariance matrix and XTY

is the estimated cross-covariance matrix. The ordinary least-
squares solution was here estimated using the Cholesky
decomposition method, via the mldivide routine in Matlab. One
advantage of the OLS estimator is that it has no additional
hyperparameters that must be optimized. However, in practice
the OLS estimator is often outperformed by the regularized
solutions described in the following subsections. This is often
the case when the regressor, X, is high-dimensional and has a
poorly estimated covariance matrix given limited amounts of
training data, or contains auto-correlations and/or cross-channel
correlations resulting in a low rank matrix. In other words,
the inverse problem is ill-posed. Such is the case when using
non-stochastic data for X, such as speech or EEG data.

If X were white and standardized, the autocovariance matrix
would be a multiple of the identity matrix, and the OLS
and regularized approaches reduce to a straight-forward cross-
correlation, also known as reverse correlation (Ringach and
Shapley, 2004).

2.1.2. Ridge
Ridge regression minimizes the residual sum of squares, but adds
an L2 constraint on the regression coefficients (Machens et al.,
2003; Crosse et al., 2015; Di Liberto et al., 2015; Crosse et al.,
2016b; Holdgraf et al., 2016; O’Sullivan et al., 2017; Broderick
et al., 2018). An L2 constraint smooths the regression weights by
penalizing the square of the weights in W with a regularization
constant λ for the Ridge regression cost function:

L(W)λ = (Y− XW)T(Y− XW)+ λWTW (4)

(Hastie et al., 2001; Machens et al., 2004). Ridge regression
corresponds to imposing a Gaussian prior on the filter
coefficients (Wu et al., 2006). The Ridge solution is:

W =
(

XTX+ λI
)−1

XTY, (5)

where λ is the regularization parameter that controls the amount
of parameter shrinking.

2.1.3. Low-Rank Approximation (LRA)
The LRA-based regression relies on a low-rank approximation
of the covariance matrix, XTX. This is achieved by employing a
singular value decomposition (SVD) of XTX:

XTX = USVT , (6)

where U and V are orthonormal matrices that contain
respectively the left and right singular vectors, and where S is a
diagonal matrix, S = diag(s1, s2, ..sd) with sorted diagonal entries.
Since XTX is a positive semidefinite matrix we have U = V. LRA
uses a rank-K approximation of XTX by only retaining the first
1 ≤ K ≤ d diagonal elements of S. The cost function is:

L(W)K = (Y− XW)T(Y− XW)

−WTVK+1...dSK+1...d,K+1...dV
T
K+1...dW, (7)

where VK+1...d are the K + 1...d columns of V and
SK+1...d,K+1...d is the square matrix formed by taking
the K + 1...d rows and columns of S. By forming

Ŝ
−1

= diag(1/s1, 1/s2, ..., 1/sK , 0..0, 0, 0), the regression
coefficients can be estimated from:

W =
(

UŜ
−1

VT
)

XTY. (8)

The number of diagonal elements, K, to retain are typically
chosen such that a diagonal element is retained if the sum of the
eigenvalues to be kept cover a fraction λ of the overall sum, or

0 <

∑K
i=1 si

∑d
i=1 si

< λ ≤ 1. Note that the regularization parameter,

λ, here is analogous to λ for Ridge Regression, but that the
values are not comparable between the two. LRA is the term
used in systems identification (Marconato et al., 2014), however,
this type of regression has also been referred to as normalized
reverse correlation (NRC) in auditory neuroscience literature
(Theunissen et al., 2000, 2001; David et al., 2004, 2007; Mesgarani
et al., 2009; Mesgarani and Chang, 2012).

2.1.4. Shrinkage
Shrinkage (Friedman, 1989; Blankertz et al., 2011) is a method
used for biasing the covariance matrix by flattening its eigenvalue
spectrum with some tuning parameter, λ. In the context of
regression, the Shrinkage cost function is:

L(W)λ = (Y− XW)T(Y− XW)+ λWT(νI− XTX)W, (9)

where ν is here defined as the average eigenvalue trace of the
covariance matrix

(

XTX
)

. The solution for the cost function is:

W =
(

(1− λ)XTX+ λνI
)−1

XTY. (10)

When λ = 0, it becomes the standard ordinary least squares
solution. When λ = 1, the covariance estimator becomes
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diagonal (i.e., it becomes spherical), reducing the Shrinkage
equation to a cross-correlation (Blankertz et al., 2011).

These regularization schemes are related. Whereas Ridge
Regression and Shrinkage both penalize extreme eigenvalues in
a smooth way, LRA discards eigenvalues. Ridge and Shrinkage in
other words flatten out the eigenvalue trace. Ridge shifts it up, and
Shrinkage shrinks it toward an average value ν (Blankertz et al.,
2011), whereas LRA cuts if off.

2.1.5. Tikhonov
The scheme that we shall refer to as Tikhonov regularization,
is a first-derivative type of Tikhonov regularization (Tikhonov,
1963) that takes advantage of the fact that there is usually
a strong correlation between adjacent columns of X when X

includes time shifts, because of the strong serial correlation
of the stimulus envelope (for the forward model) or the
filtered EEG (for the backward model). In other words,
Tikhonov regularization imposes temporal smoothness on the
model. Tikhonov regularization achieves temporal smoothness
by putting a constraint in the derivative of the filter coefficients
(Goutte et al., 2000; Lalor et al., 2006; Lalor and Foxe, 2010;
Crosse et al., 2015, 2016a). Here we focus on first order
derivatives of the filter coefficients and assume that the first

derivatives can be approximated by
∂wi

∂i
≈ (wi+1 − wi) for any

neighboring filter pairs wi+1 and wi. This type of regularization is
more generally referred to as 1st order Tikhonov regularization as
it attempts to constrain the first derivative of the filter via central
difference approximations. This gives the cost function:

L(W)λ = (Y− XW)T (Y− XW) + λ
∑

i

(wi − wi+1)
2 . (11)

Tikhonov regularized model filters can, under this
approximation, be implemented as:

W =
(

XTX+ λM
)−1

XTY, (12)

where

M =



















1 −1 0 0 · · · 0
−1 2 −1 0 · · · 0
0 −1 2 −1 · · · 0
...

...
...

...
...

0 0 0 −1 2 −1
0 0 0 0 −1 1



















.

Note that cross-channel leakage can occur whenever the
regressor, X, reflects data recorded from multiple channels, as
is the case with the backward model. This means that filter
endpoints can be affected by neighboring channels as a result of
the off-diagonal elements in the M matrix. Due to the potential
for cross-channel leakage, Tikhonov has been primarily used
for the forward modeling case (Crosse et al., 2016a). Despite
the potential problems associated with cross-channel leakage, we

also report results obtained with Tikhonov regularization for the
backward model for completeness.

2.1.6. Elastic Net
Whereas the aforementioned regularization techniques often
show improvements over the ordinary least regression in terms
of generalizability, they tend to preserve all regressors in the
models. This can e.g., result in nonzero filter weights assigned
to irrelevant features. Lasso regression attempts to overcome this
issue by putting an L1-constraint on the regression coefficients
(Tibshirani, 1996). This serves to drive unnecessary coefficients
in the model toward zero. Lasso has been found to perform well
in many scenarios, although it was empirically demonstrated that
it is outperformed by Ridge regression in nonsparse scenarios
with highly correlated predictors (Tibshirani, 1996; Zou and
Hastie, 2005). In such scenarios, Elastic Net regression (Zou
and Hastie, 2005) has been found to improve the predictive
power of Lasso by combining Lasso with the grouping effect
of Ridge regression. The Elastic Net has two hyperparameters:
α controlling the balance between L1 (lasso) and L2 (Ridge)
penalties, and λ controlling the overall penalty strength. For
the purpose of this paper, we use a readily available algorithm,
GLMNET (Qian et al., 2013), for efficiently computing the Elastic
Net problem. This is a coordinate descent algorithm for solving
the following problem:

argmin
W

1

2N
‖Y− XW‖2 + λ

[

(1− α) ‖W‖2/2+ α‖W‖
]

. (13)

We used GLMNET for computing the Elastic Net solution for
α = 0.25, α = 0.50, α = 0.75 and α = 1.00. We will
henceforth refer the last case as the Lasso solution. The GLMNET
has previously been used to estimate spectro-temporal receptive
models (e.g., Willmore et al., 2016).

2.2. Evaluating Performance
2.2.1. Characterizing Model Fit
While the objective function of linear models is minimizing
the mean-squared-error, the goodness of fit is typically analyzed
in terms of Pearson’s correlation between estimated and actual
values for interpretability. The term regression accuracy will
henceforth be used to characterize the goodness of fit for
models trained and evaluated on attended audio features
(rattended). For forward models, regression accuracies were
measured by the Pearson’s correlation between the actual EEG
and the EEG predicted by the attended envelope over the
test folds. This was done separately for each EEG channel.
Similarly, for backward models, regression accuracies were
measured by the correlation between the attended envelope
and its EEG-based reconstruction. The regression accuracies
were computed on test folds, using the nested cross-validation
scheme described in section 2.2.3. This procedure ensures that
the test data is not used during any part of the training process,
including hyperparameter tuning. The regression accuracies
were averaged over all test folds. Other metrics for assessing
the predictive/reconstructive performance of the models have
been previously proposed (Schoppe et al., 2016). However, for
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simplicity and to be consistent with previous studies (Ding and
Simon, 2012a,b; O’Sullivan et al., 2015), this paper characterizes
the goodness of the fit using Pearson’s correlation coefficients.

In the forward case, the response at multiple EEG channels
is predicted by the model. Rather than using multiple correlation
coefficients to characterize the regression accuracy in this case, we
chose to take the average of the correlation coefficients between
the predicted channels and the actual EEG data as a validation
score. We used the same metric over the test set to characterize
the fit of the model. In the backward case, characterizing the fit
is straightforward as the model predicts a single audio envelope
that can be correlated with the attended audio envelope.

2.2.2. Decoding Selective Auditory Attention
Performance was also evaluated on a classification task based on
the forward/backward stimulus-response model. The task of the
classifier was to decide, on the basis of the recorded EEG and
the two simultaneous speech streams presented to the listener
(see section 2.4), to which stream the subject was attending. The
classifier had to make this decision on the basis of a segment of
test data, the duration of which was varied as a parameter (1, 3, 5,
7, 10, 15, 20, and 30 s), which will be referred to as the decoding
segment length. This duration includes the kernel length of the
forward/backward model (500 ms). The position of this segment
of data was stepped in 1s increments throughout the evaluated
data.

As described further in section 2.2.3, a nested cross-
validation loop was used to tune the forward/backward stimulus-
response model regularization parameter (where applicable) on
training/validation data and test the trained classifier on unseen
test data.

The classification relied on correlation coefficients between
EEG and the attended speech, and between the EEG and

the unattended speech. These correlation coefficients were
computed over the aforementioned restricted time window.
These coefficients were used to classify whether the subject was
attending to one stream or the other. For a backward model,
classification hinged merely on which correlation coefficient was
largest (stream A or stream B). Performance of this classifier
was evaluated on the test set. For a forward model, the situation
is more complex because there is one model per EEG channel.
For each of the 66 channels a pair of correlation coefficients
was calculated (one each for unattended and attended streams),
and this set of pairs was used to train a support vector machine
(SVM) classifier with a linear kernel and a soft margin constant
of 1. SVM classifiers were trained on the correlation coefficient
features over the validation set that was used for hyperparameter
tuning. The SVM classifier performance was finally evaluated on
data from the held out test fold.

The classifier score was averaged over all test folds. In every
case, the classifier trained over the entire training/validation set
was tested on a short interval of data, the duration of which was
varied as a parameter, as explained above. An illustration of this
classification task is shown in Figure 1.

Classification performance was characterized for different
decoding segment durations using the raw classification score,
receiver operating characteristic (ROC) curve, and information
transfer rate (ITR). The raw classification score measured what
proportion of trials were classified correctly. It should be noted
that in measuring classification performance, the two classes
were balanced. The ROC curve characterizes the true-positive
and false-positive rates for decoding segment trials where the
classifier discrimination function lies above a given threshold,
as the threshold is varied. The classifier decision function is the
distance between the classified point and the decision boundary,
with the sign indicating the class label. In the case of an SVM

FIGURE 1 | Diagram of classification task. For the forward model, 66 EEG channels are predicted from the speech stream A and B envelopes using the same linear

mapping function, W. After correlation with the 66 channel EEG data, this results in 66 correlation coefficients for each speech stream, which are used as features for

the SVM to distinguish the attended talker. For the backward model, a single attended audio envelope channel is estimated from the EEG data using the linear

mapping function, W. After correlation with the speech stream A and B envelopes, a single correlation coefficient for each speech stream is obtained. Classification of

the attended talker is performed by determining the larger coefficient.

Frontiers in Neuroscience | www.frontiersin.org 5 August 2018 | Volume 12 | Article 531

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles


Wong et al. Auditory Attention Decoding Method Comparison

classifier for the forward model, the decision function is a
weighted sum of the input features (correlations), plus a bias
term. In the case of the argmax function for the backward model,
the decision function is the difference of the correlations between
the reconstructed attended audio and the two speech streams.
Thresholding the classifier discrimination function throughout
the range of values it yields in a dataset affects the number of
correctly and incorrectly classified trials (above threshold) out
of the total number of correctly and incorrectly classified trials,
which are the true and false positive rates, respectively.

The ITR metric corresponds to the number of classifications
that can be reliably made by the system in a given amount of time.
The dependency of ITR on decoding segment length is a tradeoff
between two effects. On one hand, longer decoding segments
allow more reliable decisions. On the other, short durations
allow a larger number of independent decisions. There is thus
an optimal decoding segment duration. A number of metrics to
compute the ITR have been proposed. The most common is the
Wolpaw ITR (Wolpaw and Ramoser, 1998), which is calculated
in bits per minute as:

ITRW = V

[

log2 N + P log2 P + (1− P) log2
1− P

N − 1

]

, (14)

where V is the speed in trials per minute, N is the number of
classes, and P is the classifier accuracy.We also report theNykopp
ITR, which assumes that a classification decision does not need
to be made on every trial (Nykopp, 2001). This can be done
by first calculating the confusion matrix p for classifier outputs
where the classifier decision function magnitude exceeds a given
threshold. Typically the larger the classifier decision function
magnitude, the more accurate the classifier prediction. As such,
raising the threshold on the decision function magnitude results
in more accurate classifications at the expense of foregoing a
classification decision on more trials. To obtain the Nykopp
information transfer rate, the threshold on the classifier decision
function magnitude is adjusted to maximize:

ITRN = V

[

max
p(x)

N
∑

i=1

M
∑

j=1

p(wi)p(ŵj|wi) log2 p(ŵj|wi)

−

M
∑

j=1

p(ŵj) log2 p(ŵj)

]

, (15)

where p(wi) is the probability of the actual class being class i,
p(ŵj|wi) is the probability of the predicted class being class j
given the actual class being class i, and p(ŵj) is the probability
of the predicted class being class j. It is p(ŵj|wi) and p(ŵj) that
are affected by decision function magnitude thresholding as this
limits the number of trials on which a classification decision is
made.

2.2.3. Cross-Validation Procedure
The forward/backward stimulus-response models used in
sections 2.2.1 and 2.2.2 were all trained and tested using cross-
validation with a 10-fold testing procedure involving nested

cross-validation loops. This procedure ensures that the test data
used to evaluate the forward/backward model is not used during
any part of the training process. During this cross-validation
procedure the models were characterized under an N-fold testing
framework where the data was divided into 10-folds. In this
outer cross-validation loop, one fold was held out for testing
(i.e., characterizingmodel fit and classifying the attended stream),
while data from the remaining 9-folds were used to compute
the forward/backward models using an inner cross-validation
loop. This inner cross-validation loop was used to tune the
hyperparameters. The stimulus-response models were in all cases
fit to the envelope of the attended sound streams during the
training phase. The regularization parameter was swept through a
range of values to evaluate its effect on the correlation coefficient
between the model prediction/reconstruction and the actual
measured data for each inner cross-validation fold. For Ridge
and Lasso regularization schemes that allowed a regularization
parameter between zero and infinity, a parameter sweep was
performed between 10−6 and 108 in 54 logarithmically-spaced
steps. This was done using the following formula:

λn = λ0 × 1.848n, n ∈ [0, 53], (16)

where λ0 ≡ 10−6. For LRA, Elastic Net, and Shrinkage schemes,
where the regularization parameter range was between 0 and 1, a
parameter sweep was performed between 10−6 and 1 using a log-
sigmoid transfer function that compresses the values between 0
and 1 using the following iterative formula:

λn+1 = logsig(ln(λn)− ln(1− λn)+ 0.475), n ∈ [0, 40]. (17)

The hyperparameter value that yielded the maximum correlation
between the model prediction/reconstruction and actual
measured data, averaged across all inner cross-validation folds,
was used to evaluate the test set. Using this hyperparameter
value, the weights of the models generated for each inner
cross-validation fold were then averaged to generate an overall
cross-validated model that could then be applied to the test set. It
should be noted that for each test fold, the hyperparameter value
was selected independently.

2.3. Implementation
The implementations of the forward/backward stimulus-
response model algorithms used here are distributed as part of
the Telluride Decoding Toolbox2, specifically in the FindTRF.m
function of that toolbox. Data preprocessing, model training,
and evaluation were implemented with the COCOHA Matlab
Toolbox3.

2.4. Stimuli
A previous report gives a detailed description of the stimuli and
data collection procedure (Fuglsang et al., 2017). This dataset
is available online (Fuglsang et al., 2018). In brief, a set of
speech stimuli were recorded by one male and one female

3http://doi.org/10.5281/zenodo.1198430
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professional Danish speakers speaking different fictional stories.
These recordings were performed in an anechoic chamber at
the Technical University of Denmark (DTU). The recording
sampling rate was 48 kHz. Each recording was divided into 50-s
long segments for a total of 65 segments.

2.5. Experimental Procedure
The 50-s long speech segments were used to generate auditory
scenes comprising a male and a female simultaneously speaking
in anechoic or reverberant rooms. The two concurrent speech
streams were normalized to have similar root-mean square
values. The speech stimuli were delivered to the subjects via ER-
2 insert earphones (Etymotic Research). The speech mixtures
were presented binaurally to the listeners, with the two speech
streams lateralized at respectively −60◦ and +60◦ along the
azimuth direction and a source-receiver distance of 2.4 m.
This was achieved using non-individualized head-related impulse
responses that were simulated using the room acoustic modeling
software, Odeon (version 13.02). Each subject undertook sixty
trials in which they were presented the 50 s-long speechmixtures.
Before each trial, the subjects were cued to listen selectively to one
speech stream and ignore the other. After each trial, the subjects
were asked a comprehension question related to the content of
the attended speech stream. The position of the target streams
as well as the gender of the target speaker were randomized
across trials. Moreover, the type of acoustic room condition
(either anechoic, mildly reverberant or highly reverberant) were
pseudo-randomized over trials. In the analysis, data recorded
from all acoustic conditions were pooled together. The reasons
for doing this were twofold. Firstly, it provides sufficient data for
the stimulus-response analysis. This is particularly important as
insufficient data in worst case can lead to poorer model estimates
(Mirkovic et al., 2016). Secondly, by using this approach we get
a better idea of how well the models will generalize to different
experimental conditions. This is an important practical aspect,
as it gives a better estimate of how well a classifier will perform
in different listening conditions (rather than just focusing on
training on anechoic data and evaluating on anechoic data).

2.6. Data Collection
Electroencephalography (EEG) data were recorded from 19
subjects in an electrically shielded room while they were listening
to the stimuli described above. Data from one subject were
excluded from the analysis due to missing data from several
trials. The data were recorded using a Biosemi Active 2 system,
with a sampling rate of 512 Hz. Sixty-four channel EEG data
(10/20-system) were recorded from the scalp. Six additional
electrodes were used for recording the EEG at the mastoids,
and vertical and horizontal electrooculogram (V and H-EOG).
Approximately 1 h of EEG data was recorded per subject. This
study was carried out in accordance with the recommendations
of “Fundamental and applied hearing research in people with
and without hearing difficulties, Videnskabsetiske komitee.” The
protocol was approved by the Science Ethics Committee for the
Capital Region of Denmark. All subjects gave written informed
consent in accordance with the Declaration of Helsinki.

2.7. Data Preprocessing
2.7.1. EEG Data
50 Hz line noise and harmonics in the EEG data were filtered
out by convolution with a 512

50 sample square window (the
non-integer window size was implemented by interpolation)
(de Cheveigné and Arzounian, 2017). The EEG data was then
downsampled to 64 Hz using a resampling method based on
the Fast Fourier Transform (FFT). To downsample, this method
reduces the size of the FFT of the signal by truncating high
frequency components. An inverse FFT is then used to restore
the signal to the time domain. A 1st order detrend was performed
on the EEG data to minimize filter startup artifacts. EEG data
were highpassed at 0.1 Hz using a 4th order forward-pass
Butterworth filter. The group delay was less than 2 samples above
1 Hz.

The joint decorrelation framework (de Cheveigné and Parra,
2014) was employed to remove eye artifacts in an automated
fashion. Let X = [xtj] be a matrix that contains EEG data from
each electrode, j, for each time sample t. In this implementation, a
conservative eye artifact time-point detection was first performed
by computing a Z-score on 1–30 Hz bandpassed VEOG and
HEOG bipolar channels and marking time samples where the
absolute Z-score on either channel exceeded 4. This is similar
to the eyeblink detection method implemented in the FieldTrip
EEG processing toolbox (Oostenveld et al., 2011). This resulted
in a subset of time samples, A, indexing the temporal locations
of each EOG artifact. An artifact covariance matrix RA = XT

AXA

was then computed from the EEG (and EOG) data,XA = [xaj], at
the artifact time samples a ∈ A. After using principal component
analysis to whiten RA and R, the generalized eigenvalue problem
was then solved for RAv = λRv, where R = XTX is the
covariance matrix for the entire EEG dataset. The resulting
eigenvectors V, sorted by eigenvalue, explain the maximum
difference in variance between the artifact and data covariance
matrices. Components corresponding to eigenvalues > 80% of
the maximum eigenvalue were regressed out of the data. In
practice, this 80% threshold is a conservative one, typically
resulting in the removal of one or two components. Lastly, the
EOG channels were removed from the data, which was then
referenced to a common average over all channels.

For the forward/backward model analysis, the EEG was
bandpassed between 1–9 Hz using a windowed sync type I linear-
phase finite-impulse response (FIR) filter, shifted by its group
delay to produce a zero-phase (Widmann et al., 2015) with a
conservatively chosen order of 128 in order to minimize ringing
effects. This frequency range was selected as it has been shown
that cortical responses time-lock to speech envelopes in this
range (O’Sullivan et al., 2015). As part of the cross-validation
procedure, individual EEG channels were finally centered and
standardized (Z-normalized) across the time dimension using the
individual channel mean and standard deviation of the training
data. A kernel length of 0.5 s (33 samples) was used when
computing the forward/backward models.

2.7.2. Audio Features
The forward/backward stimulus-response model estimation
methods used for attention decoding attempt to characterize a
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relationship between features of attended speech streams and
EEG activity. We calculated temporal envelope representations
from each of the clean speech streams (i.e., without
reverberation). We did not try to derive them from the
reverberant or mixed audio data, as explored elsewhere (Aroudi
and Doclo, 2017; Fuglsang et al., 2017). In trials with reverberant
speech mixtures, we used envelope representations of the
underlying clean signals to estimate the models. To derive the
envelope representations, we passed monaural versions of both
attended and unattended speech streams through a 31-band
gammatone filterbank with a frequency range of 80–8,000
Hz (Patterson et al., 1987). The envelope of each filterbank
output was calculated via the analytic signal obtained with the
Hilbert transform, raised to the power of 0.3. This rectification
and compression step was intended to partially mimic that
which is seen in the human auditory system (Plack et al.,
2008). The audio envelope was then calculated by summing the
rectified and compressed filterbank outputs across channels.
The audio envelope data was subsequently downsampled to
the same sampling frequency as the EEG (64 Hz) using an
FFT-based resampling method. The EEG and envelopes were
then temporally aligned using start-trigger events recorded in
the EEG. The envelopes were subsequently lowpassed at 9 Hz.
As part of the cross-validation procedure, audio envelopes were
finally centered and standardized (Z-normalized) across the
time dimension using the mean and standard deviation of the
attended speech envelope in the training data.

2.8. Statistical Analysis
All statistical analyses were calculated usingMATLAB. Repeated-
measures analysis of variance (ANOVA) tests were used to assess
differences between the regression accuracies (section 2.2.1)
and classification performances section 2.2.2 obtained with
the different forward/backward model estimation methods.
Regression accuracies and classification performances for
individual subjects were averaged across folds prior to statistical
comparison.

Given the non-Gaussian distribution of regression accuracies
(range -1 to 1) and classification performance metrics (range 0
to 1), Fisher Z-transforms and arcsine transforms were applied
to these measures, respectively, prior to statistical tests and
correlations.

3. RESULTS

The forward/backward stimulus-response model estimation
methods introduced in section 2 were used to decode
attended speech envelopes from low-frequency EEG activity. The
following sections analyze results with metrics of (1) regression
accuracy, (2) classification accuracy, (3) receiver operating
characteristic (ROC), and (4) information transfer rate (ITR).
Results are shown for each of the regularization schemes, for both
forward and backward models. For each regularization scheme,
the regularization parameter(s) are tuned to maximize regression
accuracy. These parameter values are then used for all regression
and classification comparisons. Regression accuracy compares
different regularization schemes in predicting/reconstructing test

data using the optimal regularization parameter. Classification
accuracy uses the regression accuracy values to classify
the attended/unattended talker and compares the different
regularization schemes in performing this task. The ROC
curve visualizes the relationship between the true and false-
positive rates for different classifier discrimination function
thresholds. Lastly, the ITR describes the impact of decoding
segment length on the bit-rate, for different points on the ROC
curve.

3.1. Regularization Parameter Tuning
The forward/backward model estimation methods, except for the
OLS method, use regularization techniques to prevent overfitting
and therefore require a selection of the appropriate tuning
parameters. Figure A1 in Supplementary Material shows the
correlation coefficient between estimated (validation set) data
and the actual target data (regression accuracy) over a range of
regularization parameters. In general, there is a broad region
where validation regression accuracy is flat, which peaks before
quickly falling off with increasing λ. It is also apparent that the
regression accuracies obtained with backward models generally
are higher than those obtained with forward models.

Figure A2 in Supplementary Material shows regression
accuracies for forward/backward models with Elastic Net
penalties. Unlike the other linear models investigated in the
present study the Elastic Net has two hyperparameters. The
α parameter adjusts the balance between L1 and L2 penalties.
Similar to the other regularization schemes, for each value of
α, there is a broad range of λ values that give good correlation
performance.

3.2. Regression Accuracy
For each regression method (and each value of α for Elastic Net),
the forward/backward stimulus-response model was estimated
and the optimum lambda estimated on the training/validation
set. This optimal model was then applied to the test set, and the
regression accuracy was compared between regression methods.
This is shown in Figure 2. One might expect that the averaging
of prediction-response correlations across channels for the
forward model may have resulted in lower regression accuracies
compared to the backward model. This was demonstrating using
a t-test between the forward and backward models, over all
regularization schemes and subjects [1 = 0.083, T(107) = 17.8,
p = 1.1 × 10−33]. However, when using maximum correlation
across channels, instead of the average, for the forward model,
there was still a significant difference [1 = 0.045, T(107) = 9.8,
p = 9.4× 10−17].

For forward models, a repeated measures ANOVA with
regularization method as the factor found no significant effect of
regularization method on the average of correlation coefficients,
even when using the average of the correlation coefficients of
the 5 channels with the largest correlation coefficients for each
subject. For the backward models, a similar repeated measures
ANOVA, found a significant effect of regularization method on
regression accuracy [F(5, 85) = 78.0, p < 1.0 × 10−16]. Tikhonov
regularization yielded a regression accuracy that was significantly
greater than each of the other schemes, using a Bonferonni
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FIGURE 2 | Test set regression accuracies (rattend ) for each forward/backward model estimation method plotted against runattend . (Left) Results from the forward

modeling approach. Points for each regularization scheme are close to each other, and thus appear to fall on top of each other. (Right) Results from the backward

modeling approach. For each scheme (represented by a color), each point represents average data from one subject. The black line shows rattend = runattend.

correction to account for the family-wise error rate (p < 0.045).
This is contrary to the expectation that Ridge regression would
outperform Tikhonov for the backward model due to the inter-
channel leakage introduced by the Tikhonov kernel. Moreover,
OLS had a regression accuracy that was significantly smaller than
the other schemes (with Bonferonni correction, p < 1.3×10−10).
This highlights the importance of regularization for the backward
models.

For Elastic Net regularization, α values was characterized
at 0.25, 0.5, 0.75, and 1 (Lasso) to sample different degrees
of sparsity/smoothness. The value α = 0 (Ridge) was not
sampled due to sub-optimal solver performance near this point.
A repeated measures ANOVA analysis with factors of α and
subject, using optimal λ values, showed no significant effect of
α for forward models. This means that adjusting the model
sparsity had no significant effect on the regression accuracy.
However, a significant effect of α was found for backward models
[F(3, 51) = 12.4, p = 3.3 × 10−6]. A post-hoc paired t-test with a
Bonferonni correction revealed that the best regression accuracy
was obtained with α = 0.25 (p = 6.2 × 10−4). It was, however,
noted that the average difference between regression accuracies
for α = 0.25 and α = 1 was only 8× 10−4.

To obtain an estimate of the significance of the regression
accuracies presented in Figure 2, we randomized the phase of
the audio data passed to the forward models, and the phase
of the EEG data passed to the backward models. The goal
was to provide an estimate of the correlation noise floor for
the models. The models were those trained on unaltered data
using each of the regularization schemes. Randomizations were
performed 100 times per subject to yield an estimate of the
noise floor regression accuracies. The regression accuracies were
computed the same way as before. A two-sample Kolmogorov-
Smirnov test conducted pairwise showed that, within subjects,
the distribution of noise floor correlations were not significantly
different between regularization schemes, or channels in the
case of the forward model. The within-subject distributions

were thus combined, and a two-sample Kolmogorov-Smirnov
test was performed pairwise between subjects. No significant
difference in distributions was found between subjects. As
such, all distributions were combined. The 95% confidence
interval of the noise floor correlations was [-0.001, 0.001]
for the forward model and [-0.032, 0.032] for the backward
model.

3.3. Classification Accuracy
We further sought to investigate how the different
forward/backward models perform in terms of discriminating
between attended and unattended speech on a limited segment of
data. The duration of the segment was varied as a parameter (1,
3, 5, 7, 10, 15, 20, and 30 s). This was characterized on held-out
test data for each TRF method, using the λ value that yielded the
maximum regression accuracy in the validation data. The results
from this analysis are shown in Figure 3. A 2-way repeated
measures ANOVA with factors of regularization scheme and
model (forward or backward), based on 30 s decoding segment
lengths, found a main significant difference between backward
and forward models [F(1, 17) = 17.3, p = 6.5 × 10−4], with a
significant interaction with the effect of regularization scheme
[F(5, 85) = 208.9, p < 1.0 × 10−16]. A post-hoc paired t-test
showed that backward model performs better than the forward
model for all regularization schemes excluding the case where
ordinary least squares (OLS) was applied [T(17) = 9.35,
p = 4.2 × 10−8]. For OLS, the forward model outperformed the
backward model [T(17) = 7.32, p = 1.2× 10−6].

The interaction of the effect of regularization scheme on
the classification accuracy of forward and backward models
was investigated. A repeated measures ANOVA with factors
of regularization scheme, applied only to the forward TRF
classification accuracy scores, found no significant effect
of regularization scheme on classification accuracy. This
is consistent with the lack of significant differences being
detected in regression accuracies for different forward model
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FIGURE 3 | Using different forward/backward models to decode selective auditory attention from multi-channel EEG data. Classification performance is shown for

different decoding segment lengths (1, 3, 7, 10, 15, 20, 30 s). (Top, left and right) Show the classification performance for forward and backward models respectively.

Performance is shown for the OLS scheme and an average across regularized schemes. Regularized schemes were averaged to concisely illustrate the higher

classification accuracy obtained by these schemes compared to OLS for the backward model, but not the forward model. (Bottom, left and right) Show the

classification performance for 30 s long decoding segments. The different regularization schemes are shown in different colors (see legend). Notched boxplots show

median, and first and third quartiles. Whiskers show 1.5× IQR. Dots indicate outliers. The dashed line shows the above-chance significance threshold at p = 0.05.

regularization schemes, even when limiting the number of
channels to 5 with the highest regression accuracies. In this case,
the SVM classifier can be viewed as a data-driven approach to
select channels that are most relevant to attention classification.
For the backward models, however, a significant effect of
regularization scheme on classification accuracy was found
[F(5, 85) = 229.4, p < 1.0 × 10−16]. A post-hoc paired t-
test analysis with a Bonferonni correction revealed that the
classification accuracy for the OLS scheme was significantly
worse than each of the others (1̄ = −29.1, p < 7.9 × 10−10).
Lasso performed significantly worse than each of the remaining
schemes (1̄ = −1.2, p < 0.040). In short, regularized backward
schemes outperform OLS by a relatively large margin, as seen in
Figure 3.

For Elastic Net regularization, a repeated measures ANOVA
with factors of α and subject did not find any significant effect of
α on classification accuracy for forward or backward models.

In summary, for the forward model there was no difference
between schemes (regularization and OLS), and for the backward
model there was no difference between Ridge, Tikhonov,
Shrinkage and LRA, but all regression methods were better than
OLS.

3.3.1. Relation to Regression Accuracy
The discrimination between attended and unattended speech
streams from EEG data is done in two stages: the computation
of regression accuracies, followed by classification. We sought to

investigate how the classification accuracies obtained with each
model relate to the test set regression accuracies. A plot of this
relationship is shown in Figure 4.

For forward models, the average correlation between
regression accuracy and classification performance across
decoding segments and over all regularization schemes is 0.69
[T(108) = 9.83, p = 2.2 × 10−16]. For backward models, the
correlation between the regression accuracy and classification
performance is 0.89 [T(108) = 22.4, p < 1.0 × 10−16]. This
suggests that classification performance varies with regression
accuracy. However, as was previously described for the backward
models, while Tikhonov regularization achieved a significantly
higher regression accuracy compared to all other methods, it
did not achieve a significantly higher classification performance
compared to Shrinkage, Ridge Regression or LRA. To explain
this, we examined the classification feature in terms of the
difference between class means (r̄attend − r̄unattend) and the

within-class standard deviation (
√

0.5(σ 2
rattend

+ σ 2
runattend

)). Both

of these terms affect the separability between classes.
For backward models, Tikhonov regularization had a

significantly larger difference between class means compared
to Ridge Regression and Shrinkage [Tikhonov>Ridge:
T(17) = 2.62, p = 0.018], [Tikhonov>Shrinkage: T(17) = 2.59,
p = 0.019]. At the same time, the between-class standard
deviation was also significantly larger for Tikhonov
regularization [Tikhonov>F(100,100) = 2.37, p = 1.2 × 10−5],
[Tikhonov>Shrinkage: F(100,100) = 2.37, 1.4 × 10−5]. This
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FIGURE 4 | Relationship between regression accuracy and classification accuracy, using 30 s decoding segment lengths.

suggests that while Tikhonov regularization yields a better
regression accuracy (correlation coefficient), this is offset by
an increased variance in the regression accuracy computed
over short decoding segments, nullifying any potential gains in
classification performance.

3.4. Receiver Operating Characteristic
The receiver operating characteristic (ROC) curve, shown in
Figure 5, shows the relationship between the true-positive rate
and false-positive rate for decoding segment trials where the
classifier discrimination function lies above a given threshold,
as the threshold is varied. The classification accuracy score that
we report corresponds to the point on the ROC that lies along
the line between (0,100) and (100,0). This is also the point at
which the Wolpaw information transfer rate (ITR) is estimated,
whereas the Nykopp ITR estimation finds a point that lies further
left along the ROC curve. The area under the curve is highly
correlated with classification accuracy (over all regularization
schemes and decoding segment lengths, [r = 0.99, T(862) =

219.9, p < 1.0× 10−16]. The Nykopp ITR, on the other hand lies
further left along the ROC curve, demonstrating that by avoiding
the classification of some trials, it is possible to maximize the
ITR.

3.5. Information Transfer Rate
The Wolpaw ITR represents the transfer rate when all decoding
segments are classified, whereas the Nykopp ITR represents the
maximum achievable transfer rate when some classifications are
withheld based on classification discrimination function output.
Figure 6 shows theWolpaw andNykopp ITR values as a function
of decoding segment duration, based on models computed with
Tikhonov regularization. Both the Wolpaw and Nykopp ITR
show an increase followed by a decrease with increasing decoding
segment duration. The plots suggest that for brain computer
interface applications with fixed decoding segment lengths, it
may be advisable to use decoding segments of 3–5 s to maximize

the ITR. While the Nykopp measure is an upper-bound, its
increase over the Wolpaw ITR value [forward model, 5 s: T(17) =

13.1, p = 1.3 × 10−10], [backward model, 5 s: T(17) = 16.7,
p = 2.7 × 10−12] demonstrates that by adjusting the classifier
decision function cutoff, it could be possible to increase the ITR.

4. DISCUSSION

In this study, we systematically investigated the effects of
forward/backward stimulus-response model estimation methods
on the ability to decode and classify attended speech envelopes
from single-trial EEG responses to speech mixtures. The
performance of stimulus/EEG decoders based on forwardmodels
(mapping from attended speech envelopes to multi-channel
EEG responses) and backward models (mapping from EEG
response back to speech envelopes) were compared. It was
found that the backward models outperformed the forward
models in terms of regression and classification accuracies. While
forward models could be expected to have higher regression
accuracies due to the averaging of correlation coefficients
across channels for forward models, the regression accuracy
for the backward model was still higher when compared
to the maximum correlation coefficient across channels for
the forward model. We hypothesize that the models do a
better job of reconstructing audio (the backward model) than
predicting EEG data (the forward model) because the EEG data
contains a lot of information from other brain functions. It
is impossible to predict these signals from the stimulus, hence
the limited success of a forward model, but it is possible to
filter them out, hence the better performance of a backward
model. There are also other fundamental differences between
the models, such as statistical and structural properties of
the regressor variable, and number of parameters estimated.
For instance, the eigenspectrum of the EEG autocovariance
matrix in Figure A3 in Supplementary Material suggests that
the matrix is ill-conditioned, particularly compared to that of
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FIGURE 5 | Average receiver operating characteristic curve, with standard deviation band, for 30 s decoding segments using Tikhonov regularization. Points at which

Wolpaw and Nykopp information transfer rates were evaluated for each subject are shown. Color along curve indicates percentage of decoding segment trials

evaluated to obtain each point. The gray band indicates the standard deviation boundaries of the curve in both x and y directions.

the speech envelope. Different regularization schemes were not
found to significantly affect the forward model classification
accuracies. However, for the backward models, the decoding
schemes that yielded the best classification accuracy were
Ridge Regression, LRA, Shrinkage and Tikhonov. Lasso had a
lower classification accuracy by a small but significant margin.
Classification accuracy increased monotonically as a function
of duration, reflecting the greater amount of discriminative
information available in longer segments. ITR however peaked at
an intermediate segment duration, reflecting the tradeoff between
the accuracy of individual classification judgments (greater at
long durations) and number of judgments (greater at short
durations). The optimum was around 3–5 s.

For the analysis, we used different linear approaches to decode

selective auditory attention from stimulus and EEG data. These

analyses all relied on the explicit assumption that the human
cortical activity selectively tracks attended and unattended speech
envelopes. To fit the models, we made a number of choices based
on common practices in literature, and with the goal of being

able to compare forward/backward models and regularization
schemes. For example, a 500 ms kernel was used as was done
by others (Fuglsang et al., 2017). While shorter kernels have

been explored as well (O’Sullivan et al., 2015), a longer one tests
the ability of the model estimation method to handle a larger
dimensionality and allows for a more flexible stimulus-response
modeling capturing both early and late attentional modulations
of the neural response. Additionally, we chose to focus on 1–
9 Hz EEG activity as the attentional modulation of EEG data
has been found prominent in this range. It is likely that other
neural frequency bands robustly track attended speech (e.g., high
gamma power Pasley et al., 2012) and that the neural decoders
potentially could benefit from having access to other neural
frequency bands. This is, however, outside the scope of this paper.

4.1. Decoding Selective Auditory Attention
With Forward and Backward Models
The forward models performed significantly worse than the
backward models in terms of classification accuracies. Single-
trial scalp EEG signals are inherently noisy, in part because
activity picked up by each electrode reflects a superposition
of activity from signals that are not related to the selective
speech processing (Blankertz et al., 2011). We refer here to any
aspects of the EEG signals that systematically synchronize with
the attended speech streams as target signals and anything that
does not as noise. To improve the signal-to noise ratio one
can efficiently use spatio-temporal filtering techniques. This in
part relates to the fact that stimulus-irrelevant neural activity
tends to be spatially correlated across electrodes. The spatio-
temporal backward models implicitly exploit these redundancies
to effectively filter out noise and improve signal-to-noise-ratio.
This makes them fairly robust to spatially correlated artifact
activity (e.g., electro-ocular and muscle artifacts) when trained
on data from a large number of electrodes. This is also reflected
in the high classification accuracies that were obtained with
the backward models. However, for the relatively high number
of electrodes used in this study, it was found that the spatio-
temporal reconstruction filters were effective only when properly
regularized.

The forward models, on the other hand, attempt to predict
the neural responses of each electrode in a mass-univariate
approach. These models do not, therefore, explicitly use cross-
channel information to regress out stimulus-irrelevant activity.
The relative contribution of the individual channels to the
classification accuracies were instead found via an SVM trained
on correlation coefficients computed per channel, over short time
segments. In short, backward models remove spatial information
prior to classification when regressing out non-stimulus-related

Frontiers in Neuroscience | www.frontiersin.org 12 August 2018 | Volume 12 | Article 531

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles


Wong et al. Auditory Attention Decoding Method Comparison

FIGURE 6 | Wolpaw and Nykopp information transfer rates (ITR) as a function of decoding segment duration for the forward and backward models, using Tikhonov

regularization. Notched boxplots show median, and first and third quartiles. Whiskers show 1.5× IQR. Dots indicate outliers.

activity, whereas forward models preserve this information, but
do not regress out non-stimulus-related activity. It can therefore
be beneficial to apply dimensionality reduction techniques [e.g.,
independent component analysis (Bell and Sejnowski, 1995) or
joint decorrelation (de Cheveigné and Parra, 2014)] to represent
the EEG data as a linear combination of fewer latent components
prior to fitting the forward models. Alternatively, canonical
component analysis can be used to jointly derive spatio-temporal
filters for both audio and EEG such that the correlation between
the filtered data is maximized (de Cheveigné et al., 2018).

4.1.1. Regularization
Each regularization scheme makes certain assumptions and
simplifications that are therefore adopted by studies employing
them. Because these methods have not been previously evaluated
side by side, it is unknown how valid these assumptions are.

While no regularization (OLS) was found to work well for
forward models in producing classification accuracies roughly
in line with regularized models, this method performs relatively
poorly when applied to backward models. This is likely reflective
of the higher dimensional kernel required for the backward
problem. For comparison, a forward model had 33 parameters
(per channel) that needed to be fit, whereas a backward model
had 2,178 parameters.

We generally found that the reconstruction accuracies (rattend)
plateaued over a large range of λ values for linear models
(Figure A1).

Elastic net regularization permits the adjustment of the
balance between L1 and L2 regularization via the α parameter.
For the backward model, it was shown that a smaller α

value improved the correlation between the reconstructed and
attended audio stream by only a narrow margin.

The α value had no significant impact on classification
accuracy for either forward or backward models. As such, the
higher classification performance of Ridge Regression (α = 0),

compared to Lasso (α = 1) may be a result of differences
between the closed form solution used for Ridge Regression
and the coordinate descent solution used for the Elastic Net, as
well as between the solvers themselves (MATLAB’s mldivide vs.
GLMNET, Qian et al., 2013).

Another coordinate descent method, known as boosting, has
been used in several studies (David et al., 2007; Calabrese et al.,
2011; Thorson et al., 2015). It has been shown that boosting
promotes sparse solutions in the context of spectro-temporal
receptive fields with single-unit recordings (David et al., 2007).
This method was not explored in the present study because
boosting tends to be computationally intractable for backward
models due to the high number of parameters, and because it
involves a large set of hyperparameters. This makes a direct
comparison of the regularization methods difficult. Instead we
used the Elastic Net algorithm to investigate how the stimulus-
response models could benefit from sparsity.

For the forward model, all regularization schemes yielded
regression and classification accuracies that were not significantly
different from each other. For the backward model, Tikhonov
regularization yielded the best regression accuracy, despite the
fact that cross-channel leakage may have lead to a suboptimal
solution. However, it was found that the improved regression
accuracy did not lead to a better classification accuracy compared
to other regression schemes with closed-form solutions (i.e.,
Ridge, Shrinkage, and LRA) due to an associated increased
variance in the correlation coefficient computed over short
decoding segment lengths. It has been reported that, in practice,
the Ridge Regression approach appears to perform better than
LRA (Vajargah, 2013); however, no significant difference was
found in the present study. LRA removes lower variance
components after the eigendecomposition of XTX, essentially
performing a hard-threshold. In contrast, Ridge Regression
is a smooth down-weighting of lower-variance components
(Blankertz et al., 2011).
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4.2. Realtime Performance
The information transfer rate results provide insight into how
classification performance can be optimized. It is worth noting
that the ITR measures represent particular points along the ROC
curve, as is illustrated in Figure 5. For a binary classification
problem, with balanced classes, the Wolpaw ITR corresponds
to the point on the ROC curve along the line connecting the
corners of the plot at coordinates (100,0) and (0,100). The
Nykopp ITR, on the other hand corresponds to the point that
maximizes the ITR, essentially trading the number of classified
samples for increased classification accuracy. In practice, other
considerations besides ITR can influence the choice of the point
on the ROC. For instance, if there is a high penalty on incorrect
classifications, then the classifier threshold may be adjusted to
operate at another point on the ROC curve. In short, the ROC
and ITR are useful tools in identifying a suitable balance between
sensitivity and specificity.

The ITR results in the present study suggest a 3–5 s decoding
segment length to achieve the maximum bit-rate. It should be
noted that this assumes that switches in attention can occur
frequently, on the order of the decoding segment length, such as
in a real-world cognitive control setting where system response
latency is an important constraint. In cases, where switches in
attention are known to be sparse a priori, it may instead be more
desirable to increase decoding segment length and sacrifice bit-
rate to put more emphasis on accuracy, since the loss in bit rate
due to long decoding segments is only evident during attention
switches. Such an approach was taken by O’Sullivan et al. (2017),
where the theoretical performance of a realtime backward model
decoding systemwas characterized for switches in attention every
60 s. In that study, a decoding segment length between 15 and
20 s was reported as optimal to achieve the best speed-accuracy
tradeoff.

4.3. Summary
There are many methods that can be used to compute
forward/backward stimulus-response models. The present study
uses a baseline dataset and procedures for the evaluation of
these methods. In consideration of the multiple applications
in which forward/backward models are used, primarily dealing

with reconstruction accuracies or classification performance,
this paper considered multiple metrics of performance. By

characterizing the regularization and performance of the model
estimation methods, and the relationship between performance
metrics, a more complete understanding of the validity of the
assumptions underlying each method is provided, as well as
the impact of the assumptions on the end result. While these
experiments were done with EEG data, we expect that the results
apply equally to magnetoencephalography (MEG) data. The key
findings from this study were (1) the importance of regularization
for the backward model, (2) the superior performance of
Tikhonov regularization in achieving higher regression accuracy
although this does not necessarily entail superior classification
performance, and (3) optimal ITR can be achieved in the 3–5
s range and by adjusting the classifier discrimination function
threshold.
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