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Can Quantitative CT Texture Analysis be used to Differentiate Subtypes of Renal 

Cell Carcinoma? 

Introduction 

Renal cell carcinoma (RCC) is a common malignancy with an increasing mortality 

rate 1,2. It is a heterogeneous disease with different histological subtypes. Clear cell, 

papillary and chromophobe RCC are the most common subtypes2. The histological 

classification of RCC is important as clear cell RCC (ccRCC) generally has a worse 

prognosis compared to other subtypes3,4. As the available targeted agents of metastatic 

RCC (mRCC) mainly relate to ccRCC5-7, the optimal treatment for mRCC with non-

clear cell histology is still under investigation. A tumor biopsy is indicated to provide 

histological information before commencing systemic treatment, but its invasive nature 

and unsatisfactory accuracy have limited its clinical application in certain patients8. It 

would be helpful if there is a safer and much less invasive method to characterize RCC 

subtypes.  

Previous studies have focused on the use of enhancement of lesions at multiphasic 

computed tomography (CT) or magnetic resonance imaging (MRI) to differentiate 
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ccRCC from papillary RCC (pRCC) or chromophobe RCC (chRCC)9-12. But it’s still 

challenging to make the right diagnosis of RCC subtype as the interpretation of imaging 

findings is a subjective process and an accurate prediction of histological RCC subtype 

strongly depends on the experience and expertise of radiologists. Besides, due to lack 

of validation on a larger scale, clinical application of these methods is limited. We need 

a more objective method to help us improve diagnosis of RCC subtype. 

Texture analysis (TA) is a emerging imaging tool to quantify tissue heterogeneity 

that may not be perceived by the naked eye. It involves an objective computer-aided 

measurement of gray-level patterns within the lesions. A few studies have reported that 

TA could accurately differentiate renal fat-poor angiomyolipoma from RCC13-16. 

However, whether TA could discriminate RCC subtypes has been controversial. Raman 

et al16 and Yan L et al13 demonstrated that CT texture analysis (CTTA) could 

differentiate ccRCC from pRCC, but Hodgdon et al14 showed there was no difference 

between ccRCC, pRCC and chRCC on unenhanced CT images. Further studies are 

needed to investigate the potential value of CTTA in characterizing RCC subtypes. As 

stated earlier that non-clear cell RCC (non-ccRCC) is not recommended for targeted 
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therapies, discriminating non-ccRCC from ccRCC is far more clinically relevant, which 

could help patients with non-ccRCC avoid possible side effects and enormous cost of 

targeted agents. To our knowledge, the potential of CTTA has not been explored in this 

context of differentiating non-ccRCC from ccRCC.  

    The primary aim of this study was to retrospectively evaluate the diagnostic 

performance of CTTA to differentiate non-ccRCC from ccRCC and secondary aim was 

to investigate whether CTTA could differentiate non-ccRCC subtypes of pRCC and 

chRCC on multiphasic images. 

Materials and Methods 

Patient Selection 

The institutional review board of our institution approved this retrospective study 

and waived the requirement for informed consent. Between June 2014 to August 2015, 

165 patients with histologically confirmed diagnosis of RCC on entire tumor resection 

were identified. Twenty-nine patients were excluded for absence of preoperative 

multiphasic CT images in our picture archiving and communication system (PACS), 

including 24 patients with ccRCC, 3 patients with pRCC and 2 patients with chRCC. 
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Two radiologists with 10 and 13 years of experience in abdominal imaging reviewed 

all the images and excluded another 10 patients with ccRCC in whom there was almost 

no solid component in the lesions for TA. The final study population comprised 126 

patients and the details are provided in Fig 1.  

CT Examination 

    All the patients underwent a preoperative three-phasic abdominal CT examination 

(Somatom Definition Flash; Siemens Healthcare, Forchheim, Germany). Protocol 

details are provided in Table 1. After the unenhanced scanning, intravenous injection of 

100mL contrast material (Ultravist 370, Bayer ScheringPharma AG, Germany) 

followed by a 100-mL saline chaser were administered at a rate of 4mL/s. A bolus-

tracking algorithm (CareBolus, Siemens Medical Solutions) was used and a region of 

interest (ROI) was placed in the thoracoabdominal aorta junction. The corticomedullary 

phase was initiated 5 seconds after the bolus-triggering threshold of 120 HU was 

reached and the nephrographic phase occurred 50 seconds after the corticomedullary 

imaging acquisition.  
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CTTA  

All the images were de-identified before being accessed by the researchers. Two 

radiologists with 10 and 13 years of experience in abdominal imaging reviewed all the 

images and disagreement was resolved by consensus. Both reviewers were blinded to 

clinical and histological information. For each lesion in each phase, only one axial 

image with the optimal representation of the largest cross-sectional tumor area was 

chosen for TA. One of the two reviewers measured the maximal diameter of each lesion 

on the selected axial images and repeated the measurement several months later to 

assess the intra-observer agreement. Another radiologist also measured the maximal 

diameter of each lesion to assess the inter-observer agreement. All the selected images 

were exported from PACS and uploaded to the TexRAD commercial research software 

(TexRAD Ltd, www.texrad.com, part of Feedback Plc, Cambridge, UK). A single 

trained operator carried out all the TA and repeated the process eight weeks later. The 

average value of two measurements for each texture parameter was calculated and 

recorded. 

For each lesion, a ROI was manually delineated slightly within the lesion border 
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leaving an approximate distance of 1-2mm from the outline in order to minimize 

volume averaging from surrounding perirenal fat or normal renal parenchyma. 

Confounding factors such as air, dense calcification and necrosis without enhancement 

were excluded when drawing the ROIs to minimize their impact on the CTTA (Fig 2A). 

Furthermore, the CTTA-algorithm setting excluded pixels with values less than -50 and 

greater than 200HU from inclusion in the texture analysis to increase the robustness in 

the quantification. Since the outline of lesions could be difficult to define on 

unenhanced images, the corresponding matched enhanced images of each lesion were 

referenced during delineation. ROIs for each axial section for matched unenhanced, 

corticomedullary and nephrographic CT images were then used for TA. 

TA comprised a two-step process that involved selective scale image filtration to 

extract features of different sizes followed by texture quantification by histogram 

analysis. Image filtration utilized a Laplacian of Gaussian spatial band-pass filter to 

produce a series of derived images highlighting features at different spatial scales. The 

size of the image features highlighted by the filter is denoted by the Spatial Scaling 

Factor (SSF), which ranges between object radii of 0, 2, 3, 4, 5 and 6 mm. SSF can be 
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considered as the width at which structures in the image will be highlighted while 

structures less than this width will become blurred. SSF 0 indicates used of no filtration 

(used as control), 2 indicates fine, 3-5 indicates medium and 6 indicates coarse texture 

scales respectively (Fig 2B-D). Six texture parameters were derived from histogram 

analysis: mean gray-level intensity (Mean, brightness), standard deviation (SD, degree 

of variation from the mean), entropy (irregularity of pixel intensity), mean of positive 

pixels (MPP), skewness (symmetry of the histogram distribution), and kurtosis 

(sharpness of the histogram distribution)17. For each lesion in each phase, all the six 

parameters across each SSF were recorded.  

Statistical Analysis 

Intra- and inter-observer agreement were calculated for the measurement of the 

maximum diameter of the lesions by using the intraclass correlation coefficient (ICC) 

test (0.00–0.20, poor agreement; 0.21–0.40, fair agreement; 0.41–0.60, moderate 

agreement; 0.61–0.80, good agreement; 0.81–1.00, excellent agreement). Papillary 

RCC and chRCC were classified together as non-ccRCC. Mann-Whitney U tests were 

used to compare the value of each texture parameter in each phase for the research 
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purposes (SPSS for Mac, version 20, SPSS Inc., Chicago, Ill). Although a two-sided 

P<0.05 indicated a significant difference, to control for type I errors arising from 

multiple comparisons, we adjusted the individual significance level as proposed by 

Cross and Chaffin17: p*=p×[k-x+1]-1, where p* is the adjusted significance level for an 

individual test, p is the nominal significance level for the sequence of tests, k is the total 

number of the tests, and x is the number of significant tests. Receiver operating 

characteristic (ROC) curves and the area under the ROC curves (AUC) were calculated 

for each texture parameter in each phase and Pearson’s correlation coefficient (r) 

between texture features at each SSF in each phase was evaluated so that only one of 

the features that showed a high correlation (r>0.90) was selected to build the classifiers. 

As an AUC≥0.8 generally indicates a good test, we selected all the texture features 

with AUC≥0.8 as predictors. In cases when all the AUCs<0.8, only three texture 

parameters with the top three AUC values were selected as predictors as to minimize 

the likelihood of overfitting. Combinations of predictors were used to train multiple 

support vector machine (SVM) classifiers, and ROC curves were computed by the 

predicted values of regression of SVM for each SSF in each phase to determine the 
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optimal combination. An SVM with a nonlinear radial basis function kernel was 

implemented in the ‘SVM’ function in R Package ‘e1071’ (Version 1.6-7, R Software), 

using the Library for Support Vector Machines (or LIBSVM) library19. The stability of 

classification was evaluated through 10-fold cross-validation.  

 

Results 

    General characteristics of the 126 patients with 127 RCC lesions (100 ccRCC, 12 

pRCC, 15 chRCC) are summarized in Table 2. The mean time from preoperative CT 

evaluation to nephrectomy was 20 days for all RCC (range, 0-35 days). For the 

measurement of maximum diameter of the lesions, we found excellent intra-observer 

(intraclass correlation coefficient, ICC=0.95) and inter-observer agreement (ICC=0.91). 

The average size of all the RCC was (4.9±2.6) cm. There was no significant difference 

in the average size of lesions among ccRCC (4.5±2.1), pRCC (6.5±3.7) and chRCC 

(6.1±3.2) groups (P>0.05).  

    Differentiating non-ccRCC from ccRCC 

The median and interquartile range (IQR) associated with each texture parameter, 
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the corresponding P and the area under the receiver operating characteristic (ROC) 

curve (AUC) values for assessing the difference between non-ccRCC and ccRCC are 

provided in Supplementary 1. Compared to ccRCC, all the six texture parameters 

quantified from unenhanced images and skewness quantified from enhanced images 

didn’t show any significant differences in non-ccRCC (P>0.001 after Cross and Chaffin 

correction). However, on enhanced images, kurtosis was significantly higher while 

Mean, SD, entropy and MPP were significantly lower at all the texture scales (SSF 0-

6) in non-ccRCC (P<0.001 after Cross and Chaffin correction). As Mean and MPP 

quantified from SSF0 on both unenhanced and enhanced images, SD and entropy 

quantified from SSF2 on enhanced images, SD and MPP quantified from SSF2-5 on 

enhanced images all had a Pearson’s correlation coefficient over 0.90, only one of these 

correlated features at each SSF in each phase was selected to build the classifiers.  

Regression models produced by combining the optimal discriminative texture 

features are summarized in Table 3. To identify non-ccRCC from ccRCC, all the models 

resulted in AUCs greater than 0.7. On unenhanced images, the model incorporating 

MPP, skewness and kurtosis at SSF0 produced the highest AUC of 0.82±0.05 (P<0.001) 
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with 78% sensitivity and 86% specificity (Fig 3A). On corticomedullary images, the 

highest AUC of 0.94±0.03 (P<0.001) was reached at SSF6 by the model incorporating 

SD, entropy, MPP and kurtosis with 89% sensitivity and 92% specificity (Fig 3B). On 

nephrographic images, the model incorporating entropy, MPP and kurtosis at SSF0 

yielded the highest AUC of 0.89±0.04 (P<0.001) with 89% sensitivity and 83% 

specificity (Fig 3C). The 10-fold cross-validation support vector machine (SVM) 

accuracy arranged from 76% to 88% for each combination of texture features (Table 3).  

    Differentiation between pRCC and chRCC 

The median and IQR associated with each texture parameter, the corresponding P 

and AUC values for differentiating between pRCC and chRCC are summarized in 

Supplementary 2. Only Mean and MPP quantified from SSF0 on corticomedullary 

images were significantly different (P=0.002) between the two subtypes. Mean and 

MPP were both significantly lower in pRCC (Mean: median pRCC, 48.2; IQR, 38.1-

60.0; median chRCC,72.4; IQR, 54.1-101.5; P=0.02) (MPP: median pRCC, 49.6; IQR, 

40.0-61.1; median chRCC, 74.6; IQR,58.3-101.6; P=0.002). The mean AUC ± standard 

error associated with Mean (0.84 ± 0.08) and MPP (0.85 ± 0.07) were greater than 0.8. 
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As Mean and MPP quantified from SSF0 on both unenhanced and enhanced images, 

SD and entropy quantified from SSF3-6 on unenhanced images, SD and MPP 

quantified from SSF2 on enhanced images and SSF3, 4 on corticomedullary images all 

had a Pearson’s correlation coefficient over 0.90, only one of these correlated features 

at each SSF in each phase was selected to build the classifiers. 

The results of different regression models to differentiate between pRCC and 

chRCC are summarized in Table 4. On unenhanced images, all the AUCs were 

significantly greater than 0.7 and the model incorporating entropy, MPP and kurtosis 

quantified from SSF6 produced an AUC of 0.84±0.08 (P=0.077) with 67% sensitivity 

and 100% specificity (Fig 4A). On corticomedullary images at SSF0, SD combined 

with MPP and Skewness yielded an AUC of 0.96±0.04 with 87% sensitivity and 92% 

specificity (Fig 4B). On nephrographic images, the highest AUC of 0.93±0.05 (P<0.001) 

with 93% sensitivity and 83% specificity (Fig 4C) was reached at SSF0 by 

incorporating MPP, skewness and kurtosis. The 10-fold cross-validation SVM accuracy 

arranged from 30% to 78% for each combination of texture features (Table 4).  
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Discussion 

Our study results show that texture parameters of SD, entropy and MPP seem to 

be strong predictors of non-ccRCC while MPP and skewness are helpful texture 

features to further differentiate between pRCC and chRCC. Our results indicate that TA 

may serve as a non-invasive method to identify non-ccRCC and it could potentially 

help those patients avoid unnecessary drug toxicity and financial burden by predicting 

histological RCC subtype. 

Our results showed that non-ccRCC had significantly lower Mean, SD, entropy, 

MPP and higher kurtosis compared to ccRCC on enhanced CT images. Specifically, 

MPP quantified from the coarse texture scale (SSF6) on corticomedullary images seems 

to be a valuable texture feature, and the combination of SD, entropy, MPP and kurtosis 

at SSF6 on corticomedullary images is the strongest classifier for non-ccRCC. 

Generally, our results were comparable to previous studies of renal, brain and lung 

neoplasms20-24. Greater heterogeneity is known to be likely related to higher 

histological grade of malignancy and poorer prognosis5-26. We can infer from this study 

that heterogeneity between RCC subtypes is likely linked to increasing number of 
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objects or features highlighted in the filtration step and their mean brightness difference 

compared to the background of lesions resulting in higher Mean, SD, entropy, MPP and 

lower kurtosis in ccRCC. Skewness tends to be zero with increasing number of objects 

highlighted, which may be a general characteristic of RCC subtypes and hence did not 

demonstrate to be a useful discriminator. Our results were consistent with previous 

studies that higher entropy and lower degree of texture features related to uniformity 

are characteristics of ccRCC13-14. As ccRCC is generally more aggressive than non-

ccRCC, it worth investigating the relationship between these texture characteristics and 

the prognosis of RCC. As for MPP, it has been correlated negatively with angiogenesis 

in non-small cell lung cancer 22. To our knowledge, we were the first to show that lower 

MPP on enhanced CT images may help to identify non-ccRCC. And MPP may be quite 

a good parameter in addition to kurtosis in vascular tumors as shown previously in 

treatment response studies of metastatic RCC 27. Given that MPP only considers the 

average intensity of pixels greater than zero and non-ccRCC tends to be generally hypo-

vascular, lower MPP in non-ccRCC appears to be consistent with hypo-vascular tumors 

exhibiting fewer bright areas. Furthermore, amongst non-ccRCC, pRCC tends to be 
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even more hypo-vascular, which potentially explains the even lower value of MPP in 

pRCC compared to chRCC. We hypothesize that MPP on contrast-enhanced CT images 

may be positively correlated with the blood supply of RCC and MPP may be a better 

marker of treatment response compared to size, density and perfusion. When we 

compared our results to similar studies evaluating MR images for classifying RCC 

subtypes, Chandarana et al28 found that Kurtosis and skewness were significantly lower 

in ccRCC. We had similar findings about Kurtosis, but we didn’t find any difference of 

skewness among RCC subtypes. This could possibly be attributed to the differences 

between imaging modalities and physical properties being captured. The role of 

skewness on CT in discriminating RCC subtypes may need further investigation.  

In our study, we analyzed both unenhanced and contrast-enhanced CT images. On 

unenhanced CT images, our results were slightly different from the results of previous 

studies. Hodgdon et al14 reported that there was no texture difference between RCC 

subtypes on unenhanced CT images. In our study, individual texture parameter also 

showed no significant difference between RCC subtypes but combinations of different 

texture parameters could be used to help identify non-ccRCC from ccRCC and 
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differentiate between pRCC and chRCC. One possible explanation could be 

combinations of texture parameters may help to enhance the detection of subtle but 

potentially discriminating features that individual parameter may not be able to reflect. 

Although the effects of iodinated contrast material on TA are still unclear, differences 

in texture features between unenhanced and contrast-enhanced CT images were 

observed in previous studies21,29. More texture parameters on enhanced images showed 

significant differences between RCC subtypes and models integrating texture 

parameters quantified from enhanced images demonstrated higher diagnostic 

accuracies. Our findings seem to support that CTTA on enhanced images may provide 

more useful information, specifically corticomedullary images, to identify non-ccRCC 

from ccRCC.  

In our study, before building the classifiers, Pearson’s correlation coefficient 

between each feature was evaluated to make sure that the features selected to train SVM 

were not highly correlated. As an AUC≥0.8 generally indicates a good test, we defined 

the optimal discriminative texture features as those with AUC≥0.8 and they were 

combined to train SVM at each SSF in each phase. But there were some circumstances 
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that none of the texture parameters yielded an AUC≥0.8. In such situations and to 

minimize the likelihood of overfitting, the optimal discriminative texture features were 

selected as texture parameters with the top three AUC values. However, there are also 

other strategies to select and define SVM classifiers14,30. In this study, most cross-

validation accuracies for identifying non-ccRCC from ccRCC were above 80% and 

some model resulted in 96% sensitivity and 92% specificity. However, when 

differentiating between pRCC and chRCC, cross-validation SVM accuracies were low 

(30% to 78%). But yet there was a model incorporating SD, MPP and skewness 

quantified from SSF 0 on corticomedullary images produced an AUC of 0.96±0.04 

(P<0.001) with 87% sensitivity and 92% specificity. We think the low cross-validation 

accuracy is likely related to the small sample size and it’s possible that the increase in 

sample size would improve cross-validation accuracy. Larger cohorts of pRCC and 

chRCC are necessary to validate our results. 

Our study had several limitations. First, the retrospective nature of our study may 

lead to overestimation of the diagnostic accuracy. Second, although the sample size of 

non-ccRCC was comparable to that of previous studies involving differentiation of 
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RCC subtypes by using CTTA, the small sample size may contribute to the low cross-

validation accuracy. More data should be pooled together to confirm our results. Third, 

as we excluded 10 ccRCC which had almost no solid component, it’s possible that 

texture characteristics of ccRCC reported in this study may not be comprehensive 

enough and our results may not be generalized directly to those primarily cystic or 

necrotic lesions. Fourth, as the main purpose of this study was to investigate whether 

CTTA could be used to discriminate RCC subtypes, we haven’t evaluated the 

correlation between texture parameters and the histological grading within each subtype. 

But we think that our study results add to clinical adoption of TA for evaluating RCC 

besides standard morphological assessment, which would give clinicians more 

confidence in making the optimal therapeutic choice for RCC patients. 

In conclusion, our results show that CTTA could potentially be used to accurately 

differentiate non-ccRCC from ccRCC, and further differentiate between pRCC and 

chRCC. Prospective studies in larger cohorts of patients are required to further validate 

our study results before implementing into clinical practice. 
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Table 1. Scan parameters of CT examination 

Parameter  

Tube potential, kV 120 

Tube current, mAs 
Variable tube current with automatic tube-

current modulation activated 

Pitch 0.9 

Gantry rotation time, second 0.28 

Collimation, mm 128×0.6 

Kernel B30f (medium smooth) 

Acquisition slice thickness, mm 5 

Field of view, mm 300 
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Table 2. Characteristics of patients and renal cell carcinomas.  

Characteristic All ccRCC 
non-ccRCC 

All pRCC chRCC 

Sex*      

   Male 83(66) 66(67) 17(63) 10(83) 7(47) 

   Female 43(34) 33(33) 10(37) 2(17) 8(53) 

Age (y)** 54±12 55±12 51±15 53±18 49±13 

Side      

   Left 66(52) 55(55) 11(41) 5(42) 6(40) 

   Right 61(48) 45(45) 16(59) 7(58) 9(60) 

Data are numbers of lesions and data in parentheses are percentage, unless otherwise 

indicated. *Data are numbers of patients. There was no significant difference in the 

portion of male patients among ccRCC, pRCC and chRCC groups (P>0.05). **Data are 

mean ± standard deviation. There was no significant difference in mean age among 

ccRCC, pRCC and chRCC groups (P>0.05). Note: ccRCC=clear cell RCC, non-

ccRCC=non-clear cell RCC, pRCC=papillary RCC, chRCC=chromophobe RCC.  
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Table 3. ROC Curves for Combinations of Texture Features for differentiating 

non-ccRCC from ccRCC.  

Phase SSF Model AUC* P SVM+ Sen Spe 

UE 

0 MPP+ skewness+ kurtosis** 0.82±0.05 <0.001 79 0.78 0.86 

2 Mean+ skewness+ kurtosis 0.79±0.06 <0.001 79 0.79 0.86 

3 Mean+ MPP+ kurtosis 0.73±0.06 <0.001 80 0.59 0.85 

4 MPP+ skewness+ kurtosis 0.80±0.06 <0.001 80 0.74 0.83 

5 entropy+ MPP+ kurtosis 0.74±0.06 <0.001 76 0.59 0.84 

6 entropy+ MPP+ kurtosis 0.76±0.06 <0.001 76 0.63 0.88 

CM 

0 entropy+ MPP+ kurtosis 0.92±0.04 <0.001 86 0.85 0.88 

2 Mean+ entropy+ MPP 0.92±0.03 <0.001 87 0.89 0.90 

3 entropy+ MPP+ kurtosis 0.93±0.03 <0.001 88 0.96 0.85 

4 entropy+ MPP+ kurtosis 0.92±0.03 <0.001 87 0.89 0.88 

5 entropy+ MPP+ kurtosis 0.92±0.03 <0.001 88 0.93 0.89 

6 SD+ entropy+ MPP+ kurtosis** 0.94±0.03 <0.001 87 0.89 0.92 

N 

0 entropy+ MPP+ kurtosis ** 0.89±0.04 <0.001 85 0.89 0.83 

2 entropy+ MPP+ kurtosis 0.84±0.05 <0.001 81 0.74 0.89 

3 entropy+ MPP+ kurtosis 0.83±0.05 <0.001 83 0.74 0.90 

4 entropy+ MPP+ kurtosis 0.83±0.05 <0.001 87 0.70 0.90 

5 Mean+ entropy+ MPP 0.88±0.04 <0.001 82 0.93 0.78 

6 SD+ entropy+ MPP 0.89±0.03 <0.001 84 0.89 0.81 

*Data are mean AUC ± standard error. +Accuracy of the SVM classifier after 10-fold 

cross-validation. **Model with the highest AUC in each phase. Note: AUC=area under 

the ROC curve, SSF=spatial scaling factor, SVM= support vector machine, 

Sen=sensitivity, Spe=specificity, Mean=mean gray-level intensity, SD=standard 

deviation, MPP=mean of positive pixels, UE=unenhanced, CM=corticomedullary, 

N=nephrographic. 
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Table 4. ROC Curves for Combinations of Texture Features for differentiating 

between pRCC and ccRCC. 

Phase SSF Model AUC* P SVM+ Sen Spe 

UE 

0 entropy+ MPP+ skewness 0.76±0.10 0.025 41 0.53 0.92 

2 SD+ entropy+ skewness 0.83±0.08 0.003 59 0.93 0.58 

3 entropy+ MPP+ kurtosis 0.81±0.08 0.006 41 1.00 0.50 

4 entropy+ MPP+ kurtosis 0.79±0.09 0.010 48 0.53 1.00 

5 entropy+ MPP+ kurtosis 0.78±0.09 0.013 52 0.60 0.92 

6 entropy+ MPP+ kurtosis ** 0.84±0.08 0.077 52 0.67 1.00 

CM 

0 SD+ MPP+ skewness** 0.96±0.04 0.000 78 0.87 0.92 

2 entropy+ MPP+ kurtosis 0.77±0.10 0.017 59 0.93 0.67 

3 entropy+ MPP+ kurtosis 0.76±0.10 0.025 44 0.87 0.58 

4 entropy+ MPP+ kurtosis 0.80±0.09 0.008 41 0.73 0.83 

5 SD+ entropy+ MPP 0.64±0.11 0.223 30 0.73 0.67 

6 SD+ entropy+ MPP 0.68±0.11 0.118 37 0.53 0.92 

N 

0 MPP+ skewness+ kurtosis** 0.93±0.05 0.000 70 0.93 0.83 

2 entropy+ MPP+ skewness 0.74±0.10 0.032 37 0.93 0.50 

3 entropy+ MPP+ skewness 0.78±0.09 0.013 44 0.60 1.00 

4 MPP+ skewness+ kurtosis 0.84±0.08 0.002 41 0.67 1.00 

5 Mean+ SD+ kurtosis 0.88±0.07 0.001 41 0.67 1.00 

6 SD+ entropy+ kurtosis 0.91±0.06 <0.001 63 0.87 0.92 

 *Data are mean AUC ± standard error. +Accuracy of the SVM classifier after 10-fold 

cross-validation. **Model with the highest AUC in each phase. Note: AUC=area under 

the ROC curve, SSF=spatial scaling factor, SVM= support vector machine, 

Sen=sensitivity, Spe=specificity ， Mean=mean gray-level intensity, SD=standard 

deviation, MPP=mean of positive pixels, UE=unenhanced, CM=corticomedullary, 

N=nephrographic. 
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Fig 1. Flowchart of patient population and exclusion criteria.   

Note: ccRCC=clear cell RCC, non-ccRCC=non-clear cell RCC, pRCC=papillary RCC, 

chRCC=chromophobe RCC.  

Fig 2. Demonstration of ROI delineation within the lesion and corresponding 

texture images of different texture scales. 

Corticomedullary CT image in a patient with right renal lesion shows region of interest 

(blue contour) drawn within lesion border (A). Corresponding texture analysis images 

display fine (B), medium (C) and coarse (D) textures obtained by using SSF 2,4,6 

respectively. 

Fig 3. ROC curves for SVM performances with the highest AUC value on (A) 

unenhanced, (B) corticomedullary and (C) nephrographic phase images to 

identify non-ccRCC from ccRCC.  

Fig 4. ROC curves for SVM performances with the highest AUC value for 

differentiating between pRCC and chRCC on (A) unenhanced, (B) 

corticomedullary and (C) nephrographic phase images. 
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Supporting Information 

Supplementary 1. The median, inter-quartile range, P value and AUC value for 

each texture parameter for discriminating non-ccRCC from ccRCC on 

multiphasic CT images.  

Supplementary 2. The median, inter-quartile range, P value and AUC value for 

each texture parameter for differentiating between pRCC and chRCC on 

multiphasic CT images.  

Note: SSF=spatial scaling factor, Mean=mean gray-level intensity, SD= standard 

deviation, MPP=mean of positive pixels, UE=unenhanced, CM=corticomedullary, 

N=nephrographic, pRCC=papillary renal cell carcinoma, non-chRCC= chromophobe 

renal cell carcinoma, AUC= area under the ROC curve. 


