
Feedback Authoring for Exploratory Activities:
the case of a Logo-based 3D Microworld

Sokratis Karkalas1, Manolis Mavrikis∗1, Marios Xenos2 and Chronis Kynigos2

1UCL Knowledge Lab, UCL Institute of Education, London WC1N 3QS, UK
2Educational Technology Lab, National Kapodistrian University of Athens

Keywords: feedback authoring, exploratory learning environments

Abstract: This paper presents AuthELO an authoring environment that can be used for the configuration of logging and
authoring of automated feedback for exploratory learning objects (ELOs). ELOs are web components (wid-
gets) that can be integrated with learning platforms to synthesise highly interactive learning environments.
AuthELO has been developed in the context of the MCSquared project that is developing a platform for au-
thoring interactive educational e-books. This platform comprises an extendable set of diverse widgets that
can be used to generate instances of exploratory activities that can be employed in various learning scenarios.
AuthELO was designed and developed to provide a simple, common and efficient authoring interface that can
normalise the diversity of these widgets and give the ability to non-experts to easily develop or customise the
feedback that is provided to students using a data-driven approach. In this paper we describe the architec-
ture and design characteristics of AuthELO and a small-scale evaluation with activities in a logo-based 3D
microworld called Malt+. We reflect on both the challenges of the authoring process and the pedagogical
potential of the feedback when these activities are used by students.

1 INTRODUCTION

Authoring educational interactive tasks is a challeng-
ing and time consuming endeavour particularly if they
include some form of adaptive or intelligent sup-
port to the learner. While there is an abundance of
tools that allow non-expert developers, such as ed-
ucational designers or teachers, to author their pre-
ferred activities, these are limited to static content or
to pre-defined question-answer activities. As we re-
view in Section 2, researchers in the field of Intel-
ligent Tutoring Systems are looking into the devel-
opment of tools that ease the authoring process for
ITS but have largely remained in the realm of struc-
tured interaction. We are interested in highly interac-
tive, exploratory activities that take place within open
learning environments including microworlds (Healy
and Kynigos, 2010; Mavrikis et al., 2013b). Al-
though such environments can be effective in support-
ing learners’ development of conceptual knowledge,
they require significant amount of human or com-
puter support (Mavrikis et al., 2013a). Despite the
fact that research in the area has demonstrated that
it is possible to delegate part of this support to intel-
ligent components (e.g. Bunt et al. 2001; Gutierrez-

∗Corresponding author m.mavrikis@ucl.ac.uk

Santos et al. 2012), there have been little attempts to
reduce the entry threshold for both programmers and
end-users (Blessing et al., 2007).

This paper presents AuthELO, a tool for author-
ing exploratory learning objects (ELOs), configuring
the logging and programming the automated feedback
they provide. This tool has been developed in the
context of the Mathematical Creativity Squared (MC-
Squared) EU-funded project (http://mc2-project.eu/)
that is developing a platform for authoring interactive
educational e-books. This platform comprises an ex-
tendable set of diverse widgets that can be used to
generate instances of exploratory learning activities
that can be employed in various learning scenarios.
In this project we designed and developed a tool that
is able to provide a simple, common and efficient au-
thoring interface that can normalise the heterogeneity
of these widgets and reduces the time it takes and the
skills required to program the feedback that can be
provided to students based on their interaction.

Section 3 presents the development methodology
that underpins the design of AuthELO. Sections 4 and
5 present the architecture and the tool in detail. Sec-
tion 6 presents an evaluation of the current prototype
with a logo-based microworld (Malt+) and Section
7 concludes the paper and briefly discusses our next



steps.

2 RELATED WORK

The development of learning material that is inter-
active and provides automated intelligent feedback
to the students falls naturally into the category of
ITS authoring systems. There have been many such
systems developed in the past. Database-related tu-
tors like SQL-Tutor, EER-Tutor and Normit (Mitro-
vic, 2012) are cases that follow the constraint-based
modelling approach. To author web- and constraint-
based tutors Mitrovic et al. (2009) developed AS-
PIRE. The use of simulation-based authoring is pre-
sented in Munro (2003). An approach that is used
for the development of adaptive hypermedia is pre-
sented in Brusilovsky (2003). An attempt to lower
significantly the skill threshold required is the model-
tracing approach (Blessing et al., 2007). Most of these
approaches, although different, they converge in that
they all presuppose the use of low level technical ex-
pertise for the authoring. Systems that require no pro-
gramming include the ASSISTment Builder (Razzaq
et al., 2009) and Redeem (Ainsworth et al., 2003).
The latter is an approach that combines existing ma-
terial with teaching expertise to develop simple intel-
ligent ITSs. A mixed system that supports the devel-
opment of two types of ITSs is CTAT (Aleven et al.,
2009; Koedinger et al., 2004). It supports the develop-
ment of cognitive tutors and example-tracing tutors.
The latter case requires no programming at all.

All of these systems are typically domain-specific
solutions that may require low level technical exper-
tise and usually offer fairly limited and not easily
generalisable output. That seriously limits the appli-
cability of these tools to a wider range of learning
scenarios. One of the most recent developments in
the field is the Generalized Intelligent Framework for
Tutoring (GIFT) (Sottilare et al., 2012) that provides
tools to support various elements of the authoring pro-
cess. Although GIFT targets domain experts with lit-
tle or no knowledge of computer programming or in-
structional design, at the moment it mostly enables
rapid development of expert models and other domain
knowledge. This results in a fully-fledged ITS that
depends on the services provided by GIFT. That may
limit the re-usability of the authoring tool with other
learning platforms or may be beyond what is needed
or what is possible with limited resources (e.g. of a
teacher wanting to adapt a simple activity). At a con-
ceptual and architectural level our system resembles
SEPIA (Ginon et al., 2014). SEPIA is designed so
that automated support can be added in the form of an

epiphytic application that is external to the learning
environment. Integration does not require changes in
the target environment and interoperation is not based
on domain specific models and tools.

From an end-user pespective, the most relevant so-
lution to our approach, and the one that seems to re-
quire the least amount of cognitive load for the au-
thor, is the example-tracing approach (Aleven et al.,
2009). The author develops feedback by executing
the activity like a student. This provides the author
with a tree-like view that is representative of the cur-
rent state of the student. The author can then annotate
the diagram and determine the behaviour of the tutor.
The disadvantage of this approach is that it is domain-
specific and not generalisable beyond structured tasks
that have a relatively limited range of possible alter-
native paths. In an exploratory learning environment
these paths are potentially infinite.

In our system we follow the example-tracing ap-
proach but we are not using the visualisation part sim-
ply because it is impossible to represent visually all
the possible states in such diverse domains and open
environments. Our tool must be generic enough so
that it can be used with exploratory learning environ-
ments. Support is expected to be task-dependent but
tasks may not be structured. Authoring must be based
on data that becomes available as the student inter-
acts with the environment. The author generates data
and utilises this information in order to form sensi-
ble rules for the generation of feedback. These rules
are currently expressed through programming but our
intention is to provide a service that can be accessi-
ble through different levels of specificity. That will
make the system usable by authors with different lev-
els of expertise without compromising the ability to
intervene at the lowest level if necessary. A high
level language that is specialised in feedback author-
ing and a visual programming shell will be the high
level constructs that will make it easily accessible to
non-technical users.

3 METHODOLOGY

In this project the main objective is to design and de-
velop an authoring tool for the engineering of auto-
mated (intelligent) support for online learning activi-
ties. As mentioned, we are interested in highly inter-
active ’widgets’ that can either be standalone activi-
ties or live in the context of an e-book. Such widgets
offer learning opportunities through exploration and
discovery of knowledge in an unstructured manner.

The methodology we have followed for the de-
sign and development of AuthELO is based on previ-



ous work presented in (Gutierrez-Santos et al., 2012).
This approach is based on the premise that the com-
plexity of the task can be reduced and made man-
ageable through the compartmentalisation of different
concerns regarding the different aspects of the prob-
lem. In practice this can be done by focusing on the
three most important questions related to support:

• What is the situation now? (evidence)

• Which aspect needs support? (reasoning)

• How should the support be presented for maxi-
mum efficacy? (presentation)

Figure 1: Conceptual data flow of support for exploratory
learning. From Gutierrez-Santos et al. (2012)

Each one of these questions corresponds to different
aspects of the problem and thus may require differ-
ent approaches and expertise. Considering these as-
pects separately reduces the skill threshold required
to deal with the problem in its entirety. Typically, in
this scheme, the development of support moves to-
wards the opposite direction of the data flow. De-
signers would start from the presentation and the pro-
cess would gradually move towards the development
of components that produce evidence. In this project
the presentation is designed based on the assumption
that an exploratory learning system should not inter-
vene in the process in an intrusive manner (Mavrikis
et al., 2013a). Support should not be provided in or-
der to manipulate the students and control their be-
haviour. The system should be discreet and inform the
users for potential issues but not interrupt the learning
process. On the other hand support should always be
available on demand. Students may not be able to ex-
ploit the full potential of such learning environments
if there is not enough support available to direct them
(Mayer, 2004; Klahr and Nigam, 2004). In this tool
support is provided after the student initiates the pro-
cess. We also provide the learning platform the ability
to use the same functionality in order to display in-
formative messages to the users regarding the current
state of the activity.

The focus of this work is on reasoning and the ac-
quisition of evidence that can support it. For the for-
mer we collected a number of use cases of specific

learning activities developed in GeoGebra 2, Malt+ 3

and FractionsLab 4. Expert designers and educators
provided us with complete usage scenarios for each
activity that include potential student misconceptions,
landmarks that can indicate important states of the
constructions and the respective feedback that the sys-
tem is expected to provide to students. This informa-
tion helped us form the initial requirements for the
reasoning part and they have also been transformed
into batteries of tests for the technical evaluation of
the software.

The data acquisition part comes after because it
depends on the reasoning part. Having all the infor-
mation about the needs of the reasoning part enables
us to identify the requirements for the evidence part.
The challenges we identified for that part follow:

• need for methods to make the widgets generate
the required data

• need for methods to transfer this data between
tiers

• need for methods to efficiently store that data in
the tool and make it processable so that it can be
used for answering queries to the reasoning part

4 ARCHITECTURE

The tool is a native HTML5 application with no
external dependencies and is physically decoupled
from learning platforms. It does not implement
any platform-specific or proprietary functionality and
therefore its service is not limited to an existing plat-
form. It has been designed in a way so that its func-
tionality can be provided in a service oriented ap-
proach using standardised communication protocols
and data formats. After the tool is virtually integrated
with a learning platform from the users’ perspective
the whole system looks unified and homogeneous. In-
tegration is seamless and requires nothing more that
setting up a url along with the parameters that provide
information on how to instantiate the learning object
to be configured and where to store the configuration
data. This information is stored in the learning plat-
form and is used whenever an author wants to con-
figure logging and automated feedback for a learning
object.

The author initiates this process in the learning
platform and implicitly gets redirected to AuthELO.
From that point on the tool takes over. It creates an

2https://www.geogebra.org/
3http://etl.ppp.uoa.gr/malt2/
4http://fractionslab.lkl.ac.uk/



instance of the widget that lives in its own private
and secure space (sandbox). The two software com-
ponents operate as independent applications in par-
allel (asynchronously) within the same browser in-
stance. The glue between them is another compo-
nent that is called Web Integration & Interoperabil-
ity Layer (WIIL). WIIL as the name suggests, is a
web component that can be used to integrate other
web components with a platform. It can also provide
a simple yet efficient communication mechanism so
that the integrated components can be interoperable.
This is described in (Karkalas et al., 2015b). An ear-
lier version of the WIIL and its potential usage was
presented in (Karkalas et al., 2015a).

Upon instantiation, the widget sends to AuthELO
its widget-specific metadata. That is information
about the types of elements that can exist in the wid-
get environment and the types of events that these el-
ements can generate. This data is maintained in lo-
cal in-memory databases 5 at the AuthELO side of
the browser. AuthELO uses this information to con-
struct dynamically a graphical user interface for the
configuration of logging. Something that needs to
be noted here is the dynamic nature of this process.
There are no presumptions about the information that
is received from the widgets. Different widgets may
provide different metadata and that, in turn, may re-
sult in the formation of different interfaces.

Figure 2: AuthELO’s architecture

This GUI is immediately usable by the author.
The author can set up data logging rules that have
immediate effect on how the instance behaves. The
rules are stored in local databases in AuthELO and
they are also sent to the widget so that the respective
event handlers can be registered. After registration,
the widget is able to generate data according to what
the author prescribed in the configuration interface.

5We used TaffyDB (http://www.taffydb.com/) — an
open source, lightweight and efficient NoSQL database

This data becomes directly available to the author for
inspection through the WIIL (see activity log in fig.
2). The author uses this information to make deci-
sions about what feedback needs to be provided to the
students (fig. 8). This part of the configuration is also
stored in local databases.

The logging and feedback configuration is then
passed by the tool to the learning platform, so that
these settings can become available to the actual wid-
get instances that are going to be used by students.
The learning platform sends these settings as part of
the initialisation parameters during the widget launch
process.

5 THE AUTHELO TOOL

AuthELO is designed to provide a generic interface
between web-based learning objects, learning plat-
forms and authors that want to synthesise exploratory
learning activities with them. The design is based on
the following five main requirements:

• Authors must be able to dynamically configure
what data will be logged by a learning object dur-
ing a session with a user. This can be data gen-
erated from interactions between the user and the
widget and derivative data that gets generated by
the widget itself as a result of some event.

• Authors must be able to specify rules about real-
time feedback that should be provided to the stu-
dents. These rules should be based on log data
that is dynamically generated as the student en-
gages with the activity.

• It should be possible for authors to configure all
the available widgets through a common interface.
This interface should be able to hide the diversity
of potentially heterogeneous learning components
that might be offered in the system.

• The tool must not impose barriers in terms of
skills and technological expertise. Teachers with a
certain degree of IT literacy should be able to use
it for authoring of interactive learning material.

• The tool must be able to offer opportunities for
exploratory authoring of feedback reducing the
cognitive load that is expected for non-structured
tasks of exploratory activities.

The general aim of this project is to provide a tool that
offers the following:

• It is simple to use

• It can be used with diverse learning components



Figure 3: The authoring interface provides a live instance of the activity along with a toolset for testing and debugging.

• It can be used effectively to configure feedback for
non-structured tasks in exploratory learning envi-
ronments

5.1 THE AUTHORING INTERFACE

When the tool gets instantiated it looks like Figure 3.
The authoring interface is provided as a triplet of tabs
named ’widget’, ’logging’ and ’feedback’. The first
page (widget) provides a visual of the activity along
with a basic toolset that can be used for testing and
debugging. In the middle of the page there is a live
instance of the widget that represents the activity that
is going to be presented to the student through the
learning platform. The author can interact with it in
the same way that a student would and experiment
with different configurations until the result satisfies
the learning objectives that have been set. During this
interaction the author can see what data gets gener-
ated and display messages useful for debugging.

5.2 AUTHORING LOGGING

Configuration options for logging are given in the
homonymous tab-page. This page is dynamically
constructed by the application using information re-
trieved from the live widget instance that represents
the activity.
That means that this part of the tool dynamically
changes for different widgets or widgets that contain
different constructions. The aim is to for the tool to
work with different widget ‘instances’ i.e. different
configurations of the same widget but for different

Figure 4: Logging Configuration

activities. The challenge is that these instances con-
tain different types of elements able to generate dif-
ferent types of events. The tool is able to dynamically
query the instance and obtain all the information that
is necessary to reconstruct itself and adapt to the in-
dividual characteristics and needs of the activity. But
how can that be possible? Widgets may be third party
components that do not provide standard communica-
tion interfaces and data formats. So how do we deal
with diversity? There is no magic behind this wonder-
ful feature. Communication and interoperability be-
tween the tool and widget instances go through WIIL
(Karkalas et al., 2015b). In that layer we can reshape
APIs and semantically enhance the metadata that is
received from instances whenever that is deemed nec-
essary. That takes care of diversity but what happens
if the initial construction that is given for the activ-
ity does not contain all the necessary elements and



events? The assumption is that the tool queries the
live instance and retrieves information about what is
currently present in the construction. For that part
there is no easy answer. You either get the widget
implementers to expose a method that provides infor-
mation about all the possible elements and events for
that particular widget or you get the activity author
to create extra elements that may need to be recorded
in the log files and hide them from the user. In this
particular implementation we followed the second ap-
proach simply because it would be impossible to force
widget vendors to change their implementations and
it would be impractical to visualise endless lists of el-
ement and event types that would not be used in the
activity. Cluttering the authoring interface with un-
necessary information would compromise the usabil-
ity of the tool.

In this page the author can see a list of the el-
ement types that are supported by the widget along
with the types of events that these elements can gener-
ate. These lists are presented as sequences of buttons.
The author can press a button and select an element
or an event type. When that happens the name of the
selected entity appears in the ’logging rules’ section
next to the plus sign.

The rules have immediate effect on how the in-
stance behaves. They are stored in local databases in
AuthELO and they are also sent to the widget so that
the respective event handlers can be registered. WIIL
takes care of the underlying operations for that. After
registration, the widget is able to generate data ac-
cording to what the author prescribed. In Figure 5 we
can see where new rules are formed. A combination
of an element type with an event type gives us a valid
rule. The author can optionally provide a name for a
specific element if needed. If the rule is ready, it can
be inserted by pressing the button ’insert’. The rule in
Figure 5 instructs the system to generate events when
the value of the point element ’A’ changes.

If we want to generate update events for any ele-
ment of a point type then we can omit the name. If
we attempt to insert a more generic rule than one that
already exists then the system will give us a warning
message but it will allow the operation.

The opposite is not true. If we attempt to insert
a more specific rule than one that already exists then
the system will not perform the operation because it
will not have any effect at all.
If the rule is exactly the same as an already existing
one the system will reject it. If a rule needs to be
removed then the author can select it by clicking on
the list in the ’Active Rules’ section. The selected
rule will then appear in the ’Logging Rules’ section
next to the minus sign. The rule can be deleted by

Figure 5: Rule insertion

Figure 6: More general rule

Figure 7: More special rule

pressing the ’remove’ button.

Figure 8: Rule removal

When a rule is inserted it gets immediately acti-



vated. That means that the author can go back to the
’Widget’ tab and start generating data by interacting
with the widget. The data appears at the bottom of the
page.

5.3 AUTHORING FEEDBACK

The configuration or authoring of feedback can be
done through the editor that is provided in the ’Feed-
back’ tab-page (see Figure 9). In this part the author
can utilise the data generated and displayed in the
’Widget’ tab-page and specify rules that state what
needs to be done if certain conditions are satisfied. In
this version of the tool these rules must be expressed
in JavaScript. This is done through a specialised edi-
tor that provides support to the author and basic error
checking 6. This way the author can dynamically in-
ject new functionality into the system.

Feedback is presented either through an area un-
der the widget instance or through an intelligent assis-
tant that looks like an owl and displays the message
in a bubble (see Figure 10). Authors simply have to
change a parameter when they call the function to dis-
play the message in order to select one or the other.

After the implementation of feedback rules, the
author can go back to the ’Widget’ tab and test the
feedback. If the author makes a mistake the system
displays an error notification under the column named
’System Log’ indicating the problem. In this case the
changes are not saved and the new functionality is not
applied.

Something that needs to be noted here is that this
part of the tool is work in progress. We are work-
ing towards an intuitive and simple user interface that
would not require high-level of programming exper-
tise from an author (particularly a teacher). In the
meantime, both in order to test the system but also
to ensure that it can be immediately used in the con-
text of the project, we exposed a part of the actual
JavaScript code that is used to provide the feedback.
This does not affect the usability of the system at
this stage, only requires a level of expertise from
the author that should be able to at least understand
JavaScript syntax.

6We incorporated the ace editor (http://ace.c9.io) which
is a high performance web-based JavaScript tool. The tool
is parameterized to process JavaScript code and display it
accordingly. It is equipped with syntax highlighters, auto-
matic code indentation, and code quality control and syn-
tax checking that is based on the well-known tool JSHint
(http://jshint.com/)

6 PROTOTYPE EVALUATION

AuthELO is currently being used as the standard tool
in the MCSquared platform for the development of
automated feedback. MCSquared is an active project
and that means that AuthELO is continuously being
used and evaluated in practice by a large community
of learning designers. The people involved in this pro-
cess form Communities of Interest (CoIs) and con-
tinuously utilise the MCSquared platform to produce
new learning material and evaluate it in the classroom.
Different CoIs may have a different orientation, spe-
cialise in a certain domain and utilise a certain set of
ELOs for their productions. In this paper we present
the work that has been done by the Greek COI that
specialises in constructionist activities with narrative
and utilises the ELO Malt+ for the development of
learning materials.

6.1 Malt+

Malt+ is an exploratory learning environment that
utilises programming to design 3D dynamic graphic
models. It consists of a programming editor, a 3D
scene and a dynamic variation tool. Learning design-
ers can build domain specific Malt+ widgets (e.g. in
mathematics, informatics etc.) that offer students op-
portunities to explore, redesign and test their own as-
sumptions in order to approach a solution. An avatar
on the 3D scene moves and draws shapes and mod-
els based on programming code that is executed in
the editor. The variation tool can dynamically change
the resulting model by changing the programming pa-
rameters providing a way to explore modifications in
a continual and direct way. As there is a camera avail-
able that can change the perspective, activities may
exploit the 3D space from the beginning or may start
in 2D space and switch to 3D space dynamically. De-
pending on the activity goals, the presented problem
may have more than one solution, it may be solved
with multiple alternative programming strategies and
as a consequence of those multiple different learning
paths may be followed.

A large number of Malt+ widgets have already
been produced and studies have examined the func-
tionalities and prospects this environment provides.
In (Diamantidis et al., 2015), the study identifies the
role of logo programming in meaning generation in
mathematical thinking and points out how reconstruc-
tion of a program and its 3D result could affect gen-
eralization. Another study (Zantzos and Kynigos,
2012) has evidenced that the ability to explore and
symbolically represent movements and shapes with
Logo, engage students in notions of the conceptual



Figure 9: Feedback authoring through a specialised editor and system log

Figure 10: Help messages



field of curvature in space. The role of dynamic ma-
nipulation of a 3D shape the environment offers, has
also been studied when students exploring the dy-
namic aspects of an angle (Latsi and Kynigos, 2011).

6.2 The Activities

A typical scenario with Malt+ is to present a ’half-
baked’ microworld to the students and ask them to
amend and/or augment it in order to derive a complete
construction or fix problems with the existing one. A
’half-baked’ microworld (Kynigos et al., 2007) is in-
complete by design, provoking students to build a new
artifact that has more meaning for them. Through
this process the students engage with the material, the
concepts and the techniques involved in an experien-
tial way and discover knowledge themselves. For this
evaluation the Greek CoI developed two such activity
scenarios named Staircases and Chand Baori.

6.2.1 Staircases

The e-book Staircases puts the student in the po-
sition of an architect who designs different types of
staircases. This activity is offered in an e-book that
provides a series of activities starting from indenti-
fying the characteristics of a stairs and ending with
building complex stair types.

This activity comprises two tasks that are interre-
lated. The beginning of the second part presupposes
the completion of the first part. Both tasks have been
implemented in the same Malt+ instance. The first
part presents a semi-defined (broken) staircase and
asks students to explore the staircase parameters, in-
dentify their role in the shape and amend them to build
a well-defined staircase. The second part asks the stu-
dents to find a way to generalise the previous solu-
tion so that it can be used for the construction of well-
defined staircase with any number of steps. Students
use a predefined program to do their experimentations
and modify it to provide a solution.

6.2.2 Chand Baori

The activity Chand Baori asks students to build a 7-
step double staircase as Chand Baori stairs looks like.
The activity starts with a small program that draws 2
steps on the 3D space. Students have to indentify the
programming code that draws each step, replicate it
to draw more steps and find a solution to change di-
rection and move down after the top of the stairs. In
this activity depending on the students’ programming
skills or the target group, totally different strategies
can be followed. Thus, a solution may contain only

simple repeated commands or loop structures or sub-
routines or combination of them.

6.3 Challenges

The challenges we were faced with during this pro-
cess were multifaceted. A technical challenge was
to inform AuthELO about the particular set of ele-
ment types and their respective event types that may
be found in a Malt+ environment. Despite the fact that
Malt+ is a very sophisticated ELO it does not natively
support an API through which this information can be
acquired. The solution was to semantically enhance it
in AuthELO through WIIL (Karkalas et al., 2015b).
For this, a formal description of nine element and four
event types was formulated after using Malt+ in vari-
ous scenarios without any logging rules applied.

Another challenge was to address the requirement
of providing feedback for two distinct and interrelated
subtasks implemented in the same Malt+ instance.
The Staircases activity poses such a requirement. The
learner is presented with two questions that have to
be followed in succession. The automated feedback
component must be able to distinguish between the
two and suppress feedback if the first part is not com-
plete. In this case it is expected to direct the learner to
finish the first subtask.

6.4 The Evaluation Study

6.4.1 Methodology and Material

In order to design the essential guidelines and find
any possible weak points of the feedback system, we
conducted two studies in real world conditions: A
pilot study and an evaluation study. In both studies
we exploited four activities that were designed as ex-
ploratory activities with Malt+ widgets. The theme
of those activities was 3D staircase design using logo
programming code. In the first activity students have
to identify the correlation between the different geo-
metrical characteristics of a staircase and modify the
logo code to build a generic staircase program. In the
second activity they have to modify a logo program
to extend a two-step stair to a seven-step staircase.
In the third activity the goal is to design a seven-step
double staircase (Chand Baori). In the final activity
students modify the two-step staircase program in or-
der to draw any double staircase with a given number
of stairs. Both studies took place in after school math
clubs at a Greek secondary school.



Figure 11: The staircases activity in Malt+

Figure 12: The chand baori activity in Malt+

6.4.2 Design and Pilot Phase

In this phase, based on the main learning designer’s
experience and feedback from the CoI, we designed
an initial set of feedback messages with the goal of
getting first an initial understanding of its effective-
ness from a pilot study with students. The imple-
mentation was first done by a relatively experienced
JavaScript developer without previous AuthELO ex-
perience. After a preparatory tutorial of twenty min-
utes he was able to fully develop feedback for the first
phase of the evaluation within a working day. Ob-
serving the developer using AuthELO we confirmed
that, despite the short familiarisation session, he was
able to select the items of interest and check directly
whether the widget generates the data required. Re-
flecting on the usage he mostly commented on the

ease of authoring thanks to fact that data gets dis-
played dynamically as he interacted with the widget.
As there was no need to consult the widget documen-
tation for anything or to switch context and query the
back-end database he confirmed our design rationale
that this reduces the overall time, particularly because
otherwise one needs to spend a significant amount of
time going through the events that generate data —
especially in the context of exploratory learning ob-
jects. This is not something we can expect the aver-
age teacher to have the training or time to do hence
the involvement of a developer at this initial phase.

Having designed the feedback, eight students par-
ticipated in a pilot study, allocated in 4 groups. From
this experiment we collected 547 indicators. All stu-
dents had previous experience with Malt+ environ-
ments but they were presented these particular activ-



ities for the first time. The main goals of the pilot
study was to:

• identify possible problematic or difficult situa-
tions that the intelligent support system should
recognise during the activity

• identify sample solution paths the students follow
in order to acquire evidence and generalise the de-
signed feedback

• study the students’ reactions and the level of ac-
ceptance of such a system

After the first iteration, the data collected was
analysed along with the tutors’ observations and a
revision of the feedback was introduced by both the
teacher and the original designer. This time it took
them approximately two hours to amend the initial
design and align it with the new requirements. The ef-
fort in this phase focused on providing simple, generic
but relevant and helpful feedback. The main advan-
tage of AuthELO as suggested by the teacher tak-
ing part in the study was the transparency introduced
by being able to see the various feedback rules and
feedback messages and discuss them with the origi-
nal developer. This made him confident that in subse-
quent iterations he would be able to make modifica-
tions through the MCSquared platform himself.

Feedback is always available but it provided on
demand. That means that students initiate the process
when they feel they need assistance. Due to space
limitations we are not describing all the details of the
feedback defined but we quote three indicative feed-
back design decisions for the ’baori’ activity:

1. If the time elapsed since the student began inter-
acting with the microworld is less than 30% of the
estimated completion time for the activity and the
camera has not been used yet the system prompts
the student to use it before any other help is given.
If the camera has already been used more than 20
times and the sliders are not used then the system
prompts the user to try the sliders.

2. If the number of loops identified in the function is
more than two then the system gives a hint about
possible unecessary code repetition and suggests
the user to think about reusability of code.

3. If a function is properly defined but is not called
repetitively the system suggests the user to rethink
about the reasoning behind the design of the func-
tion and how it is supposed to be utilised by the
rest of the program. This is obviously related to
the previous suggestion (reusability of code).

6.4.3 Testing the Redesign

During the second phase we examined the automated
feedback generated both from a technical and from
an educational point of view. We also tried to identify
the cause of possible failures to provide the required
level of help.

From a technical point of view there were no
problems experienced during the process. AuthELO
was able to express all the different types of feed-
back required regardless of complexity and the activ-
ity player was able to generate the correct feedback at
all times.
From an educational point of view the preliminary
analysis shows the following:
• Students tend to avoid getting help even if they are

encouraged to do so. It is very important therefore
to carefully introduce any feedback affordances to
students and to discuss with them their purpose.

• Due to the exploratory nature of the activities, stu-
dents may miss opportunities, get lost and ulti-
mately abandon the activities. Designers, there-
fore, may need to consider when to design feed-
back that intervenes in appropriate times as sug-
gested in (Mavrikis et al., 2013a).

• A feedback message that does not meet the ’ex-
pectations’ of the students could act as an in-
hibitor of asking further help from the system. It
is important, therefore, to design feedback mes-
sages carefully and to allow designers and teach-
ers to modify them easily and frequently based on
their expertise.

A possible interpretation of the above follows:
• Computer users and especially students are not fa-

miliar with the process of asking the system for
help. In fact, there is an almost common be-
lief that the system can provide only general help
and users have to read a lot of help text to find
a useful hint. In our study another factor that
may affect the student behavior is that the study
sample was part of a special student club where
members ’play’ with technologies and mathemat-
ics and therefore they prefer to explore and try
rather than ask the system for ready-made help.

• Students seem to get disappointed very quickly
from a given help message that does not seem to
be helpful enough. They get a negative ’sense of
help’ and avoid asking for more.

• It is very hard for the author to identify all possi-
ble situations in an exploratory environment so in
some cases the feedback may have general guide-
lines and not specific hints at least initially. Feed-
back authoring in this case should always be an



iterative process that stops when the level of sup-
port in relation to the level of expected support is
deemed adequate.

• There are cases, especially during the beginning
of the activity, where the author might deliber-
ately not provide very ’targeted’ help. Students in
this case may perceive this behaviour as a weak-
ness of the system and loose their confidence in it.
A possible consequence of that might be that the
students ignore further help messages provided by
the system because they see it as unworthy of their
attention.

We can see how designing automated feedback
for an ELO is a difficult and time-consuming process
with potentially uncertain results and how an tool like
AuthELO facilitates not only the authoring process
but also the possibility of easily modifying feedback
design and investigating its efficacy.

7 CONCLUSIONS

In this paper we presented a tool that can be used to
author automated feedback on ELOs. The tool pro-
vides a very simple yet effective interface through
which learning designers can configure data logging
and authoring rules for feedback. The system is de-
veloped as a web-based stand-alone application that
is available as a service and can be integrated seam-
lessly with any learning platform with minimal de-
velopment or administrative overhead. AuthELO has
been thoroughly tested for usability and robustness
and its final version is being used as the standard
feedback authoring tool for key web-based interac-
tive widgets of the MCSquared project. In this paper
we presented an evaluation study that was performed
on an e-book that combines multiple instances of the
3D Logo microworld MALT+. The findings of this
study suggest that AuthELO satisfies its original de-
sign goals as it enables easy development of feedback
for complex exploratory learning activities whereas
at the same time it is expressive enough to formulate
rules for any type of feedback required. According to
the study participants, it significantly reduces the cog-
nitive load for both developers and teachers and there-
fore it seems to lower the entry threshold for poten-
tial interested designers who want to create or modify
feedback on exploratory activities. The tool can also
be used by low skilled teachers with limited or no pro-
gramming expertise to configure or tweak pre-defined
feedback. The findings also suggest that the tool has
the potential to enhance author performance and pro-
ductivity.

In the next version we envisage to provide the
same service through a more sophisticated environ-
ment that will be a combination of visual program-
ming and a high level language especially designed
for expressing feedback. We expect these changes to
lower the entry threshold for potential users even fur-
ther.

ACKNOWLEDGEMENTS

The research leading to these results has re-
ceived funding from the European Union Seventh
Framework Programme (FP7/2007-2013) under grant
agreement N◦610467 - project ‘M C Squared’. This
publication reflects only the authors’ views and the
European Union is not liable for any use that may be
made of the information contained therein.

REFERENCES

Ainsworth, S., Major, N., Grimshaw, S., Hayes, M.,
Underwood, J., Williams, B., and Wood, D. (2003).
Redeem: Simple intelligent tutoring systems from
usable tools. In Authoring Tools for Advanced
Technology Learning Environments, pages 205–
232. Springer.

Aleven, V., Mclaren, B. M., Sewall, J., and Koedinger,
K. R. (2009). A new paradigm for intelligent tu-
toring systems: Example-tracing tutors. Interna-
tional Journal of Artificial Intelligence in Educa-
tion, 19(2):105–154.

Blessing, S., Gilbert, S., Ourada, S., and Ritter, S.
(2007). Lowering the bar for creating model-
tracing intelligent tutoring systems. FRONTIERS
IN ARTIFICIAL INTELLIGENCE AND APPLICA-
TIONS, 158:443.

Brusilovsky, P. (2003). Developing adaptive edu-
cational hypermedia systems: From design mod-
els to authoring tools. In Authoring tools for ad-
vanced technology Learning Environments, pages
377–409. Springer.

Bunt, A., Conati, C., Huggett, M., and Muldner, K.
(2001). On improving the effectiveness of open
learning environments through tailored support for
exploration. In 10th World Conference of Artificial
Intelligence and Education, AIED 2001.

Diamantidis, D., Economakou, K., Kaitsoti, A., Kyni-
gos, C., and Moustaki, F. (2015). Social creativity



and meaning generation in a constructionist envi-
ronment. In CERME 9-Ninth Congress of the Eu-
ropean Society for Research in Mathematics Edu-
cation, pages 2340–2346.

Ginon, B., Jean-Daubias, S., Lefevre, M., Champin,
P.-A., et al. (2014). Adding epiphytic assistance
systems in learning applications using the sepia
system. In Open Learning and Teaching in Edu-
cational Communities, pages 138–151. Springer.

Gutierrez-Santos, S., Mavrikis, M., Magoulas, G. D.,
et al. (2012). A separation of concerns for engi-
neering intelligent support for exploratory learning
environments. Journal of Research and Practice in
Information Technology, 44(3):347.

Healy, L. and Kynigos, C. (2010). Charting the mi-
croworld territory over time: design and construc-
tion in mathematics education. ZDM, 42(1):63–76.

Karkalas, S., Bokhove, C., Charlton, P., and Mavrikis,
M. (2015a). Towards configurable learning analyt-
ics for constructionist mathematical e-books. In-
telligent Support in Exploratory and Open-ended
Learning Environments Learning Analytics for
Project Based and Experiential Learning Scenar-
ios, page 17.

Karkalas, S., Mavrikis, M., and Charlton, P. (2015b).
The web integration & interoperability layer (wiil).
turning web content into learning content using a
lightweight integration and interoperability tech-
nique. In Knowledge Engineering and Ontology
Development (KEOD), 7th International Confer-
ence on.

Klahr, D. and Nigam, M. (2004). The equivalence of
learning paths in early science instruction effects of
direct instruction and discovery learning. Psycho-
logical Science, 15(10):661–667.

Koedinger, K. R., Aleven, V., Heffernan, N.,
McLaren, B., and Hockenberry, M. (2004). Open-
ing the door to non-programmers: Authoring intel-
ligent tutor behavior by demonstration. In Intelli-
gent Tutoring Systems, pages 162–174. Springer.

Kynigos, C. et al. (2007). Half-baked logo mi-
croworlds as boundary objects in integrated design.
Informatics in Education-An International Journal,
(Vol 6_2):335–359.

Latsi, M. and Kynigos, C. (2011). Meanings about
dynamic aspects of angle while changing perspec-
tives in a simulated 3d space. In Proceedings of the
35th Conference of the International Group for the

Psychology of Mathematics Education., Ankara,
Turkey.

Mavrikis, M., Gutierrez-Santos, S., Geraniou, E., and
Noss, R. (2013a). Design requirements, student
perception indicators and validation metrics for in-
telligent exploratory learning environments. Per-
sonal and Ubiquitous Computing, 17(8).

Mavrikis, M., Noss, R., Hoyles, C., and Geraniou, E.
(2013b). Sowing the seeds of algebraic generaliza-
tion: designing epistemic affordances for an intel-
ligent microworld. Journal of Computer Assisted
Learning, 29(1):68–84.

Mayer, R. E. (2004). Should there be a three-strikes
rule against pure discovery learning? American
Psychologist, 59(1):14.

Mitrovic, A. (2012). Fifteen years of constraint-based
tutors: what we have achieved and where we are
going. User Modeling and User-Adapted Interac-
tion, 22(1-2):39–72.

Mitrovic, A., Martin, B., Suraweera, P., Zakharov, K.,
Milik, N., Holland, J., and McGuigan, N. (2009).
Aspire: an authoring system and deployment envi-
ronment for constraint-based tutors.

Munro, A. (2003). Authoring simulation-centered
learning environments with rides and vivids. In Au-
thoring Tools for Advanced Technology Learning
Environments, pages 61–91. Springer.

Razzaq, L., Patvarczki, J., Almeida, S. F., Vartak, M.,
Feng, M., Heffernan, N. T., and Koedinger, K. R.
(2009). The assistment builder: Supporting the life
cycle of tutoring system content creation. Learn-
ing Technologies, IEEE Transactions on, 2(2):157–
166.

Sottilare, R. A., Goldberg, B. S., Brawner, K. W.,
and Holden, H. K. (2012). A modular framework
to support the authoring and assessment of adap-
tive computer-based tutoring systems (cbts). In
Proceedings of the Interservice/Industry Training,
Simulation, and Education Conference.

Zantzos, I. and Kynigos, C. (2012). Differential ap-
proximation of a cylindrical helix by secondary
school students. In Proceedings of the Construc-
tionism 2012 Conference - Theory, Practice and
Impact., Athens, Greece: National and Kapodis-
trian University of Athens.


