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Abstract—Advanced video classification systems decode video
frames to derive the necessary texture and motion representations
for ingestion and analysis by spatio-temporal deep convolutional
neural networks (CNNs). However, when considering visual
Internet-of-Things applications, surveillance systems and seman-
tic crawlers of large video repositories, the video capture and
the CNN-based semantic analysis parts do not tend to be co-
located. This necessitates the transport of compressed video
over networks and incurs significant overhead in bandwidth
and energy consumption, thereby significantly undermining the
deployment potential of such systems. In this paper, we investigate
the trade-off between the encoding bitrate and the achievable
accuracy of CNN-based video classification models that directly
ingest AVC/H.264 and HEVC encoded videos. Instead of retaining
entire compressed video bitstreams and applying complex optical
flow calculations prior to CNN processing, we only retain motion
vector and select texture information at significantly-reduced
bitrates and apply no additional processing prior to CNN
ingestion. Based on three CNN architectures and two action
recognition datasets, we achieve 11%–94% saving in bitrate
with marginal effect on classification accuracy. A model-based
selection between multiple CNNs increases these savings further,
to the point where, if up to 7% loss of accuracy can be tolerated,
video classification can take place with as little as 3 kbps for the
transport of the required compressed video information to the
system implementing the CNN models.

I. INTRODUCTION

Action or event recognition and video classification for
visual Internet of Things (IoT) systems [1]–[3], video surveil-
lance [4], and fast analysis of large-scale video libraries
[5] have been advancing rapidly due to the advent of deep
convolutional neural networks (CNNs). Given that such CNNs
are very computationally and memory intensive, they are not
commonly deployed at the video sensing nodes of the system
(a.k.a., “edge” nodes). Instead, video is either transported to
certain high-performance aggregator nodes in the network [1]–
[3] that carry out the CNN-based processing, or compact
features are precomputed in order to allow for less complex
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on-board processing at the edge [5], usually at the expense of
some accuracy loss for the classification or recognition task.

Motion vector based optical flow approximations have been
proposed for action recognition by Kantorov and Laptev
[6], albeit without the use of CNNs. In more recent work,
proposals have been put forward for fast video classification
based on CNNs that ingest compressed-domain motion vectors
and selective RGB texture information [7], [8]. Despite their
significant speed and accuracy improvements, none of these
approaches considered the trade-off between rate and clas-
sification accuracy obtained from a CNN. Conversely, while
rate-accuracy trade-offs have been analysed for conventional
image and video spatial feature extraction systems [2], [3],
these studies do not cover deep CNNs and semantic video
classification, where the different nature of the spatio-temporal
classifiers can lead to different rate-accuracy trade-offs.

In this paper, we show that crawling and classification of
remote video data can be achieved with significantly-reduced
bitrates by exploring rate-accuracy trade-offs in CNN-based
classification. Our contributions are summarized as follows:

1) We study the effect of varying encoding parameters on
state-of-the-art CNN-based video classifiers. Unlike con-
ventional rate-distortion curves, we show that, without
any optimization, rate-accuracy is not monotonic for
CNN-based classification.

2) In order to optimize the trade off between bitrate and
classification accuracy, we propose a mechanism to
select amongst 2D/3D temporal CNN and spatial CNN
classifiers that have varied input volume requirements.
We achieve this with minimal modifications to the en-
coded bitstream, which are straightforward to implement
in practice.

3) We study and compare the efficacy of our method on
action recognition based on AVC/H.264 and HEVC
compressed video, which represent two of the most
commonly-used video coding standards.

These contributions extend on our recent conference paper
on this subject [9], which did not cover the last two points
from above. The remainder of the paper is organized as
follows. In Section II, we give an overview of recent work
on compressed video classification. Section III details how
we reduce video bitstreams through selective cropping. In
Section IV, we describe and formulate the optimized classifier
selection process. Section V evaluates the performance of
the proposed classifiers using different coding settings and
illustrates the rate gains made possible through our classifier
selection method. Finally, Section VI concludes the paper.
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II. RELATED WORK

The use of codec motion vectors as an approximation
of optical flow has been proposed for action recognition
by Kantorov and Laptev [6]. Their approach preceded the
surge in convolutional neural networks for image classification
and used Fisher vectors, which achieve lower accuracies in
standard action recognition datasets. More recently, Zhang
et al. [8] utilized codec motion vectors as input to a 2D
CNN for action recognition with a framework that requires
optical-flow based training and transfer learning [10]. Their
requirement of highly-upsampled frames during inference
increases the implementation complexity, as large activation
maps need to be calculated at the first layers of their CNN.
Recent work [7], [11] showed that compressed-domain action
recognition can achieve accuracy that competes with optical-
flow based methods, while offering higher ingestion and CNN
processing speed than all previous alternatives. Given that the
spatial stream learns on scene information that tends to be
persistent across frames, compressed-domain methods gain by
sparse frame decoding combined with motion-adaptive super-
positioning of decoded macroblock information to generate
intermediate frames at a finer temporal scale.

However, thus far, there has been no work on exploring rate-
accuracy tradeoffs for CNN-based video classification. This
is now increasingly important due to the advent of visual
IoT and cloud-based platforms, where the visual sensing and
processing are not co-located [1]–[3]. Alas, such tradeoffs
are non trivial, because they depend on the spatio-temporal
information needed by the CNN performing the recognition
task [12], [13]. For instance, one of the issues with most
of the work described above is the short temporal extent of
inputs [7], [14], [15]; each input video segment comprises a
small group of frames that only represent (approximately) one
second of the recorded action or event to be classified. Hence,
this cannot account for cases where temporal dependencies
extend over longer durations [7]. Feichtenhofer et al. [16]
attempted to resolve this issue by using multiple copies of
their two stream network where the copies are spread over a
coarse temporal scale, thus encompassing both coarse and fine
motion information with an optical flow input. The architecture
is spatially and then temporally fused using 3D convolution
and pooling. Despite achieving state-of-the-art results on UCF-
101 and HMDB-51 datasets, this approach requires heavy
processing for both training and testing. Alternatively, other
work [12], [17] argues that increasing the temporal extent is
simply a case of taking the optical flow component over a
larger temporal extent. In order to minimize the complexity of
the network, most such approaches downsize the frames, thus
reducing the spatial dimensions. On the other hand, the work
of Sevilla et al. [18] shows that high-resolution optical flow
can be beneficial since deep learning methods can learn fea-
tures from small details. This observation suggests that high-
resolution optical flow can be leveraged to lower the temporal
extent of inputs. Understanding the trade-offs in compressed-
domain spatio-temporal information and exploring the rate-
accuracy characteristics of CNN-based video classification is
the objective of this paper.

III. CROPPED VIDEO BITSTREAMS

We base our reduced-bitstream encoder on the JM reference
software of AVC/H.264 [19] and the HM reference software
of HEVC [20]. Our modifications to the reference encoders
are designed such that the bitrate of the compressed bitstream
is kept at a minimum while preserving the information needed
to classify videos. Namely, the compressed bitstream should
exclusively hold: (i) key texture components corresponding
to rapidly-changing input content; (ii) inter-frame predicted
macroblocks and their motion compensation parameters; (iii)
control signals and headers needed to comply with its corre-
sponding standard.

A. Summary of Spatio-Temporal Representations in Video
Coding Standards

Before applying inter-frame prediction, AVC/H.264 pictures
are split into 16 × 16 pixel macroblocks (MB) to represent
luminance and chrominance samples, with the chrominance
samples further split into 8× 8 chroma blocks for the widely
used 4:2:0 chroma sampling. Macroblocks are the core of
the coding layer and form the basis for adaptive inter and
intra predictions. Each of the inter-predicted macroblocks is
then encoded using blocks from the set {16× 16, 16× 8, 8×
16, 8 × 8} [20], [21]. The HEVC standard takes on a more
adaptive approach and introduces a Coding Tree Unit (CTU)
which consists of luma and chroma Coding Tree Blocks
(CTB). The size of each luma CTB is drawn from the set
{16 × 16, 32 × 32, 64 × 64} where larger size blocks result
in better compression efficiency. Iterative partitioning is then
applied to divide CTBs into smaller Coding Blocks (CB)
resulting in a tree-like structure [22]. The minimum allowed
CB size is also specified, this serves as a hyper-parameter
to control the granularity of the tree structure produced, this
parameter is commonly referred to as depth [23].

In both standards, blocks are predicted via translational
motion vectors (MVs) that represent the displacement from
matching blocks in previous or subsequent reference frames.
Increasing the number of small-size blocks increases the
granularity of the MV grid at the expense of lower coding
efficiency. These MVs represent the temporal activity and
have been shown to be highly correlated with optical flow
estimates [7]. If the area covered by the MB is static, the MB is
“skipped” and is not encoded. The resulting prediction residual
from temporal prediction of non-skipped MBs is encoded
using transform coding. The transform coefficients are then
quantized based on the quantization parameter (QP). The value
of the QP per frame can be chosen from 52 values in [0, 51],
with lower values indicating high-fidelity encoding.

B. Selective Retention of Motion and Texture Information

In our work, only select subsets of the quantized transform
coefficients will be entropy encoded and then included in the
cropped bitstream. This set of coefficients, along with spatial
texture, is transmitted to the classifier (described in Section
IV) to infer semantic features and classify the content of the
bitstream. By doing so, the bitrate of these “cropped” subsets
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Fig. 1: The proposed Multi-CNN classifier selection: (a) 3D temporal CNN architecture; (b) 2D temporal CNN architecture.
The bottom part represents the spatial CNN (VGG-16). Parameters: N is the spatial dimensions of the input volume; T is the
temporal extent expressed as the number of frames used; F is the filter size, formatted as width × height × time; S is the
convolutional window stride; D is the number of filters (or number of hidden units) for the convolutional and fully-connected
layers; RL and RH are controlling the multi-CNN selection based on the motion vector rate Rmotion.

of coefficients, Rcropped, is significantly reduced in comparison
to the original bitrate, Rorig, needed to encode the full video.
In the remainder, we present our modifications, assuming
that the first frame of every video sequence is encoded as
an Instantaneous Decoding Refresh (IDR) and all subsequent
frames in the video are encoded as P-frames.

In order to reduce the bitrate of the compressed
bitstream, we employ selective retention of texture
information by retaining the texture information of
active regions. To implement selective writing in the
AVC/H.264 JM reference software [19], we modified
functions writeCoeff4x4_CAVLC_normal() and
write_chroma_intra_pred_mode(). In addition,
to allow for a skip symbol for all non-active areas, we
modified the functions read_coeff_4x4_CAVLC()
and read_coeff_4x4_CAVLC_444(). Similarly,
to implement selective writing in the HEVC
HM reference software [23], we modified the
functions TEncSbac::codeCoeffNxN() and
TDecSbac::parseCoeffNxN(). To simplify our
tests, we retain the texture of IDR frames and skip all texture
of P-frames with a single skip symbol. The introduction of
these skip symbols is the only non-normative part of our entire
process. All other syntax elements (including modes and
motion information) are left as specified in their respective
standard. With these minimal changes, standard decoders can
decode our reduced bitstreams to pass to compressed video
classifiers.

Finally, in order to derive a temporal activity map
from P-frame MVs, we apply the following steps: (i)
MVs are extracted from the compressed bitstream using
the read_motion_info_from_NAL_p_slice() func-
tion for JM and TDecEntropy::decodePUWise() for
HM; (ii) the extracted MVs are then mapped to a grid of
8 × 8 non-overlapping blocks within each frame; (iii) MVs
are interpolated from neighboring macroblocks wherever a
macroblock does not provide motion compensation parameters

but two or more of its neighbors do.

IV. PROPOSED FRAMEWORK FOR COMPRESSED-DOMAIN
CLASSIFICATION

A. CNN Architectures

In Fig. 1 we illustrate the two CNNs used for the tem-
poral MV stream, which represent the state-of-the-art in
compressed-domain deep learning for action classification [7]
[8]. We use two architectures to study how different models
behave to cropped bitstream volumes, and to demonstrate
that our rate optimized CNN-based classification method is
applicable with different network architectures that have been
shown to preform well with codec motion vector data. The first
CNN architecture we consider is the 3D CNN proposed by
Chadha et al. [7]. As illustrated in Fig. 1(a), all convolutional
and pooling layers are spatiotemporal in extent; this captures
the motion information between consecutive motion vector
frames. Crucially, the spatiotemporal features are expected to
improve classification performance between similar actions.
We generate a 4D motion vector input by splitting the dx and
dy vector components into separate channels, thus resulting
in a W × H × 2 × T volume. We compensate for the low
resolution of the extracted motion vector frames by setting
a long temporal extent T as T3D = 160, which typically
comprises the entire video duration.

The second architecture we consider is a 2D CNN, as
illustrated in Fig. 1(b). The model design is based on Clar-
ifaiNet [25] and only comprises 2D spatial filters; we notably
reduce the size of the first filter from 7 × 7 to 3 × 3 and
decrease the stride of the first two convolutional layers to
1 × 1. A similar architecture was also employed in recent
work on fast video classification [8]. The input is generated
by stacking the motion vector dx and dy components into a
single W×H×2T volume, where the temporal depth T is set
as T2D = 60. In general, 2D CNNs are less complex to train
and test with than 3D CNNs, whilst forgoing modelling any
temporal dependencies. Nonetheless, their lower complexity
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means we can afford to use a higher input spatial resolution,
which enables the 2D filters to learn more distinguishing
spatial features of the MV data.

Finally, concerning spatial processing of RGB texture, we
use the well-established VGG-16 [24] CNN architecture to
classify RGB frames and capture motion-invariant spatial
features of video content. Our spatial CNN is pre-trained on
ImageNet [26] and fine-tuned on the training split of UCF-101.
The spatial stream ingests the decoded frames per video and
the predictions made by the spatial CNN are ultimately fused
with the predictions from the temporal stream to produce the
final two-stream classifier decisions.

B. Training and Testing

We train both temporal stream architectures using stochastic
gradient descent with momentum set to 0.9. The initialization
of He et al. [27] is used and weights are initialized from a
normal distribution. Mini-batches of size 64 are generated by
randomly selecting 64 training videos per batch. The learning
rate is initially set to 10−2 and is decreased by a factor of
0.1 every 30k iterations. The training is completed after 90k
iterations. We follow the data augmentation practices utilized
in recent work [7] in order to minimize overfitting for both the
2D and 3D CNN. These include a multi-scale random cropping
of the input and spatial resizing to a fixed size N , followed
by zero centering the motion vector field by subtracting the
mean motion vector from the volume. For the 3D CNN, the
fixed crop size is set to 24, whereas for the 2D CNN this is
doubled to 48. In addition, we use a dropout ratio to 0.5 for the
first two fully connected layers in both models. During testing,
for the temporal stream we generate 10 random volumes of
temporal size F from which to test on. Per volume, we use
the standard 10-crop testing, cropping the four corners and
the center of the image to spatial size N ×N and considering
both horizontally flipped and unflipped versions. As such, we
average the scores over 10 crops and 10 volumes to produce a
single score for the video. For the spatial stream, we use one
IDR frame for each video and oversample inputs to VGG-16
by flipping and extracting crops.

C. Multi-CNN Classifier

In order to optimize the tradeoff between bitrate and
classification accuracy, we leverage the differences in input
requirements of the two temporal classifiers of Fig. 1 and
devise a Multi-CNN (MCNN) selection process. Since the
number of MV frames per crop is larger for our 3D CNN
versus its 2D CNN counterpart (i.e., T3D > T2D), the former
requires higher bitrate per crop than the latter. On the other
hand, as shown in previous studies [18], denser MV frames
will benefit from the spatially-larger input of the proposed 2D
CNN architecture. Since the density of inputs to the temporal
stream is directly proportional to the average bitrate allocated
to MVs by the codec Rmotion, we expect the accuracy of both
the 2D CNN and 3D CNN classifiers to be directly related to
Rmotion, albeit up to a limit (since noise is introduced at high
rates due to the limitations of the MV block model). Moreover,
the two classifiers are expected to be comparable in accuracy

over a range of Rmotion values. These hypotheses have been
tested and we present the related experimentally derived results
in the Appendix. In summary, our investigation showed that:
(i) the long temporal extent 3D CNN classifier is superior
for lower values of Rmotion; (ii) the short temporal extent 2D
CNN classifier performs as well as the long temporal extent
3D CNN classifier for mid-range values of Rmotion ; (iii) both
temporal CNNs offer diminishing performance for high values
of Rmotion. Therefore, we introduce the pair of rate-accuracy
optimization parameters {RL, RH}, with RH > RL, such that:
• the 3D CNN is used for videos with Rmotion < RL
• the 2D CNN is used for videos with RL ≤ Rmotion < RH
• no temporal CNN is used when Rmotion ≥ RH and only

the output of the spatial CNN is considered (see Fig. 1).
The remainder of this section is to establish a model-based
approach for the optimal selection of {RL, RH}. While the
value of Rmotion is derived experimentally during the encoding
of each video, for offline rate-accuracy optimization studies it
can also be derived via rate-distortion models [28].

D. Problem Formulation and Optimization of MCNN

To make full use of the overlap of performance between
classifiers, a video is passed to a lower-rate classifier only
when it is likely to be classified correctly. We consider the
problem of finding the optimum set {R∗L, R∗H} that maximizes
the classification accuracy, Amcnn, of our proposed MCNN
under a constraint on the available bitrate, Ravailable:

{R∗L, R∗H} = argmax
RL,RH

Amcnnsubject toRsent ≤ Ravailable (1)

where Rsent is the average bitrate of all transmitted bitstreams
under a selection algorithm for {RL, RH}. We first consider the
video source probability density function fs(Rmotion), which
characterizes the probability of occurrence of video examples
with bitrate Rmotion. We have found fs(Rmotion) to be well
approximated by the Gamma distribution, fs(Rmotion;α, β),
where α and β are the shape and rate parameters (see Section
A of the Appendix and Fig. 7). We can then express Amcnn as:

Amcnn = A3D

∫ RL

0

fs(Rmotion)dRmotion

+A2D

∫ RH

RL

fs(Rmotion)dRmotion

+ASP

∫ ∞
RH

fs(Rmotion)dRmotion

(2)

where A3D, A2D and ASP are the classification accuracies of
the 3D, 2D and spatial stream classifiers respectively. In (2),
the accuracy of each of the classifiers is assumed to be constant
for the range of rates it corresponds to, and its estimate is
experimentally derived from V . This assumption holds as long
as V is large enough and the accuracy of each classifier
remains relatively flat for different values of Rmotion within
the respective integration interval of each classifier, which is
found to be the case in our experiments of Section V.

Since the number of bits needed to classify each video
depends on which classifier is used for prediction, we first
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Fig. 2: RGB frames and corresponding AVC/H.264 MV activity maps for two scenes from UCF-101; (a) RGB frames; (b)
Brox optical flow; (c) Approximated flow at QP = 0; (d) Approximated flow at QP = 30; (e) Approximated flow at QP = 40;
(f) Approximated flow at QP = 51. Note that sparsity increases and noise decreases with increased QP.

find the average bitrate required by each classifier. We define
R3D, R2D, and RSP as the average bitrate of inputs to the 3D,
2D, and spatial classifiers, respectively, and estimate each as:

R =


R3D = a3DRmotion + b3D 0 < Rmotion < RL

R2D = a2DRmotion + b2D RL 6 Rmotion < RH

RSP = ISP RH 6 Rmotion <∞
(3)

where a3D, b3D, a2D, and b2D are coefficients to be estimated
by applying regression on the bitrate feature Rmotion obtained
on the training set V . Since the inputs passed to the 3D and
2D classifiers consist only of the motion vectors and some
added headers to comply with the used standard, we expect
the linear relations shown in (3) and confirm this in Section
B of the Appendix. For the spatial classifier, we use ISP, i.e.,
the bitrate of the first IDR frame, to estimate RSP. Note that
Rmotion is not used for RSP, since the spatial classifier only
uses texture information. We can now express Rsent as:

Rsent =

∫ RL

0

R3Dfs(Rmotion)dRmotion

+

∫ RH

RL

R2Dfs(Rmotion)dRmotion

+

∫ ∞
RH

RSPfs(Rmotion)dRmotion

(4)

Based on the expectation value property of the Gamma density
function f(X;α, β) [29]:

Xf(X;α, β) =
α

β
f(X;α+ 1, β) (5)

from (2) and (4) we can rewrite Amcnn and Rsent as:

Amcnn = (A3D −A2D)Fs(RL;α, β)

+ (A2D −ASP)Fs(RH;α, β) +ASP
(6)

Rsent = (b3D − b2D)Fs(RL;α, β)

+(b2D − ISP)Fs(RH;α, β)

+(α/β)(a3D − a2D)Fs(RL;α+ 1, β)

+(α/β)(a2D)Fs(RH;α+ 1, β) + ISP

(7)

where Fs is the cumulative distribution function of fs and
we have explicitly indicated the dependence on the parameters
α and β since they affect the bitrate and accuracy contributions
of the 2D and 3D CNN models. The constrained optimization
problem of (1) can now be solved for {R∗L, R∗H} via (6) and (7).
We first note that (6) is monotonically increasing in function
of RL and RH, since A3D > A2D and A2D > ASP . This
allows for the use numerical methods that gradually explore
the parameter space of {RL, RH} by setting Rsent in (7) as
close as possible to Ravailable and then finding the maximum
values for {RL, RH} that satisfy (7), since such values will
automatically maximize (6).

In our experiments, amongst several alternatives, we opted
for the method of Toint et al. [30], which finds the solution
{R∗L, R∗H} that maximizes (6) under the constraint Rsent ≤
Ravailable with the provision of sufficient exploration time.
Given that this optimization process is done offline based on
training data V , this does not impose any overhead at runtime.
Finally, we remark that, in case Rmotion is not measurable at
training or test time, the optimization method proposed in this
section can be generalized to other features that correlate with
Rmotion (e.g. number of MVs per frame).

V. EXPERIMENTAL RESULTS

A. Used Datasets and Rate Saving from Cropped Bitstreams

We train and test our 2D and 3D CNN architectures on eight
distinct motion vector datasets generated by varying the QP
setting of AVC/H.264 and HEVC to encode UCF-101 [31],
while skipping texture information as described in Section III.
For all videos: the first frame is encoded as an IDR (with
remaining frames inter-predicted as P-frames), the frame rate
is set to 25, and we set the motion vector search range to 16
pixels. Since specifying a particular quantization parameter
has a direct effect on the MVs produced by AVC/H.264 and
HEVC, this gives several distinct source distributions for the
classifier to be trained and tested on.
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TABLE I: Average AVC/H.264 bitrate (kbps) of UCF-101;
Rorig is the bitrate of the original bitstream, Rcropped is the
bitrate after cropping and retaining texture and motion infor-
mation, and Rmotion is the MV bitrate.

% of Rmotion to
QP Rorig Rcropped Rmotion Rorig Rcropped

0 4273.0 321.3 155.4 3.6 48.3
30 274.9 112.3 46.9 17.0 41.7
40 80.0 49.9 18.5 23.2 37.1
51 27.7 20.0 4.6 16.7 23.1

TABLE II: Average HEVC bitrate (kbps) of UCF-101; Rorig
is the bitrate of the original bitstream, Rcropped is the bitrate
after cropping and retaining texture and motion information,
and Rmotion is the MV bitrate.

% of Rmotion to
QP Rorig Rcropped Rmotion Rorig Rcropped

0 3065.2 204.9 39.9 1.3 19.1
30 157.7 58.8 12.0 7.6 20.6
40 40.2 26.7 4.9 2.5 12.25
51 10.9 9.8 0.8 7.3 8.1

B. Rate-Accuracy Results

As the quality of predictions made by CNN models is
strongly tied to the properties of the source distribution (e.g.
cross-class variance, noise), we expect that varying the rate
should affect the accuracy of our classifier accordingly. Since
the QP values control the video rate, we first show visual
examples of the effect of QP on the quality of approximated
sparse optical flow in Fig. 2. The best approximations appear
to be for QP values in the region of 30 to 40. To assess
the rate savings and classification accuracy of our proposal
when varying QP values, in Table I and Table II we compare
the original bitrate, Rorig, with the bitrate of the cropped
bitstreams, Rcropped, and the rate of retained motion vectors,
Rmotion. The results show that streaming cropped bitstreams
allows for 28% to 92% reduction in bitrate for AVC/H.264,
and 11% to 94% for HEVC. The related classification accuracy
results are presented in Fig. 3 and Fig. 4. As indicated by the
visual examples of Fig. 2, the utilized CNNs indeed achieve
their best accuracies at QP values of 30 to 40.

Importantly, we observe that rate-accuracy curves are not
monotonic (i.e., accuracy decreases for very low or very high
QP values). We expect sparser motion vectors (e.g., MVs
produced by setting QP = 51 where the rate allocated to
motion vectors is the lowest) to make certain classes with
high motion similarity particulary harder to classify and easier
to confuse with each other. On the other hand, as shown by
Fig. 2, setting QP < 30 also has a detrimental effect on
accuracy, since the derived MVs become significantly more
noisy due to the inadequacy of the simple translational block
model of AVC/H.264 and HEVC to smoothly approximate the
optical flow field since such block models are optimized for
rate control and not optical flow estimation [7], [32].

To cross validate with an external benchmark, Fig. 5 shows
the average End Point Error (aEPE) between MV frames and

Fig. 3: Rate-accuracy after cropped AVC/H.264 bitstreams
are passed to the 2D and 3D classifiers. Each point for every
curve corresponds to a different QP setting during encoding,
with “16×16” indicating restriction to 16×16 blocks (no MB
subblocks) and “All” indicating the use of all MB partitions.

Fig. 4: Rate-accuracy after cropped HEVC bitstreams are
passed to the 2D and 3D temporal CNNs. Each point for every
curve corresponds to a different QP setting during encoding,
with encoder parameter CBT Depth = 2.

a dense optical flow ground truth approximated using the
method proposed by Brox et al. [37]. The resulting curves
show that, for both video coders, the minimum aEPE value
against dense optical flow is in the QP range of 30 to 40. We
also note that the best performance occurs at a lower rate for
HEVC compared to AVC/H.264, which is due to the enhanced
coding efficiency and improved inter-frame macroblock search
of the HEVC standard. This is also reflected in Fig. 5, where
the aEPE of HEVC is lower than that of AVC/H.264 over all
QP settings.
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Fig. 5: Average EPE between our approximated optical flow
with different QP settings and an estimated dense optical flow
ground truth using the method of Brox et al. [32].

Framework Rcropped Accuracy (%)
(kbps) UCF HMDB

3D-CNN-F (H.264, QP = 30) 112.3 88.1 53.0
3D-CNN-F (H.264, QP = 40) 49.9 88.1 52.9
3D-CNN-F (H.264, QP = 51) 20.0 84.0 47.7

3D-CNN-F (H.265, QP = 30) 58.8 86.7 50.9
3D-CNN-F (H.265, QP = 40) 26.7 86.6 50.7
3D-CNN-F (H.265, QP = 51) 9.8 81.4 47.1

EMV + RGB-CNN [8] — 86.4 —
MVCNN [7] — 89.8 56.0
CoViAR [11] — 90.4 59.1

ST-ResNet + iDT [16] — 94.6 70.3
ActionVLAD + iDT [16] — 93.6 69.8
TSN (3 modalities) [33] — 94.2 69.4

I3D [34] — 93.4 66.4
TSCNN (SVM fusion) [35] — 88.0 59.4

LTC [17] — 91.7 64.8
C3D (3 nets)+IDT [36] — 90.4 —

TABLE III: Comparison of our 3D-CNN-F classifier (fusion
of VGG-16 spatial CNN and 3D-CNN as shown in Fig. 1)
against state-of-the-art CNNs.

C. Comparison Against External Benchmarks

In Table III, we report the accuracy of our fused spatio-
temporal classifier of Fig. 1, wherein the predictions of the
spatial and temporal classifiers are averaged, and compare
against state-of-the-art methods from the literature. Our results
show that our approach remains competitive to the state-of-
the-art on UCF-101, while retaining the significant bitrate
gains reported in Table I and Table II. In addition, while
our approach is outperformed by methods like ST-ResNet
and TSN, it is important to emphasize that these methods
are orders-of-magnitude more complex than operating with
sparse compressed-domain information [7], [8], [12], since
they require the use of dense optical flow and need to
receive and decode entire video bitstreams. Moreover, ST-
ResNet and TSN use significantly deeper neural network
architectures in comparison to our approach, which makes

their inference significantly more compute intensive than the
CNN architectures of Fig. 1. Finally, in order to improve our
results for the HMDB dataset, our rate-optimization method
can be applied in conjunction with the recent motion vector
accumulation method proposed in CoViAR [11], which uses
compressed-domain information to infer a sparse optical flow
representation. While their optical flow approximation method
is more complex in comparison to ours, by applying our
classifier selection framework to such representations it is
possible to gain even more savings in bitrate.

D. MCNN Performance

To study the performance of our proposed MCNN under
varying rate constraints, we solve (1) for multiple values
of Ravailable within the interval [0, 50] kbps as described in
Section IV-D. We then assess the MCNN accuracy on the
UCF-101 test set for each set of parameters {R∗L, R∗H} and
show the results in Fig. 6. When using the optimization
framework of Section IV-D, approximately 25 kbps (50%)
reduction in bitrate can be obtained against the 3D-CNN-F
classifier (25 kbps vs. 50 kbps) at less than 2% reduction in
classification accuracy. Importantly, further bitrate reductions
are made possible with graceful (and monotonic) degradation
in classification accuracy, to the point of making it viable
to get an accuracy within 7% from the top performance at
an average bitrate as low as Rsent = 3 kbps. This shows the
potential for further exploration of rate-accuracy optimization
in CNN-based video classification and the utility of features
such as Rmotion in inferring the temporal information needed
for classification.

VI. CONCLUSION

We present the first exploration of rate-accuracy trade-offs
in advanced video classification with CNNs. Given that our
proposed method can be applied based on standardized codecs
with minimal bitstream modifications, it is well suited for vi-
sual IoT or semantic video crawling applications. The obtained
results show that, when reducing bitstreams to the necessary
elements for 2D or 3D CNN classification, 28%-92% and
11%-94% reduction in bitrate can be achieved for AVC/H.264
and HEVC respectively. We have observed that non-monotonic
rate-accuracy curves are obtained by state-of-the-art CNNs
classifying approximated flow from compressed bitstreams
(following the AVC/H.264 and HEVC standards). On the
other hand, a rate-based selection method between multiple
CNN classifiers with varied input requirements is shown to
achieve monotonic rate-accuracy characteristics and allow for
even further rate gains, with minimal impact on classification
accuracy. Our implementation and all tools needed to repro-
duce our results are available online at: https://github.com/rate-
accuracy-mvcnn/main.

APPENDIX

We validate our modelling choices described in Section
IV-D. For brevity of exposition, all figures and results here are
reported for the indicative case of AVC/H.264 with QP = 40.

https://github.com/rate-accuracy-mvcnn/main
https://github.com/rate-accuracy-mvcnn/main
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Fig. 6: Rate-accuracy results on the UCF-101 dataset. For
the 3D-CNN-F and 2D-CNN-F classifiers (fusion of spatial
CNN with 3D/2D motion CNNs as shown in Fig. 1), different
rates are obtained by using different QP settings. When using
Multi-CNN, rate is controlled by setting QP = 40 and varying
Ravailable to solve for R∗L and R∗H. Note that the leftmost point
shows the performance when the temporal stream is not used
and the MCNN selector only considers the outputs of the
spatial stream model.

A. Distribution of Rmotion and Performance Overlap

In this section we compare the distribution of Rmotion against
the fitted model and verify the overlap of performance between
the proposed architectures in Section IV. All of the UCF-101
dataset is used to produce the results shown in Fig. 7 and Fig.
8. For Fig. 7, the Kullback-Leibler divergence (describing the
distance between the empirical and fitted Gamma distribution)
was found to be 0.034. This proximity justifies our use of this
distribution for characterizing the probability of occurrence of
different values of Rmotion. Concerning Fig. 8, the experiments
show that the 3D and 2D CNN architectures perform similarly
for middle-range values of Rmotion, with the 3D-CNN outper-
forming the 2D-CNN for most of the lower MV bitrates. The
performance of both CNNs decays for high values of Rmotion.
Hence, for the high-end range of Rmotion, only the spatial CNN
should be used (VGG-16 of Fig. 1).

B. Linear Model Verification for (3)

We selected 5% of the UCF-101 videos randomly and
present the plots of Rmotion vs. R3D and R2D in Fig 9 and
Fig. 10 . Using the same set, we calculated the coefficient of
determination R2 to relate the experimental variance to the
residual variance of the linear model and found it to be 93%
for R3D and 88% for R2D. Similar results have been obtained
for the HMDB dataset. These results validate that the linear
assumption of (3) is a good approximation.

Fig. 7: Empirically measured distribution of Rmotion and fitted
Gamma distribution with shape and scale parameters: α =
2.43, β = 0.13.

Fig. 8: Number of videos classified correctly by each temporal
CNN classifier for different values of Rmotion.

Fig. 9: Bitrate of inputs sent to 3D architecture R3D plotted
against Rmotion and fitted model of R3D with linear coefficients
a3D = 2.21 and b3D = 9.04.
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Fig. 10: Bitrate of inputs sent to 2D architecture R2D plotted
against Rmotion and fitted model of R2D with linear coefficients
a2D = 0.83 and b2D = 4.27.
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