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Abstract 

 

Our decisions are accompanied by a subjective sense of confidence about whether the choices 

we have made are correct or erroneous. Here we investigate the information on which these 

confidence judgments are based, and how they relate to the decision itself, by studying how 

fluctuations in perceptual information influence decisions and second-order metacognitive 

evaluations of confidence and accuracy. Human participants judged which of two dynamically 

changing stimuli contained more dots, under instructions emphasizing either speed or accuracy. 

Crucially, stimuli remained visible after the decision, before participants rated their confidence 

in their choice. We found that confidence and error detection depended on the balance of 

stimulus evidence accumulated in the periods both preceding and following the initial decision, 

regardless of speed-accuracy instruction. These findings suggest a shared computational basis 

for error detection and confidence judgments, with implications for current models of 

metacognitive evaluation of decision processes. 

 

Keywords: Metacognition, Error-detection, Confidence, Decision-making, Reverse 

correlation 
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Significance Statement 

 

 We investigated how fluctuations in incoming information impact decisions, changes of 

mind and levels of confidence in human perceptual decisions.  

 We show that confidence and error detection depend on evidence accumulated both before 

and after the decision, regardless of the speed imposed to the decision  

 Our findings suggest a shared computational basis for confidence judgment, error detection 

and changes of mind. 
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1. Introduction 

 

The ability to evaluate and revise decisions is a core function in adaptive behavior. 

There is thus considerable interest in the mechanisms supporting metacognitive evaluations of 

decision processes (Fleming & Frith, 2014; Peters et al., 2017; Resulaj, Kiani, Wolpert, & 

Shadlen, 2009; van den Berg, Zylberberg, Kiani, Shadlen, & Wolpert, 2016), to understand 

how humans and other animals detect their errors and represent and act upon graded judgments 

of confidence in their choices (Kepecs & Mainen, 2012; Kepecs & Mainen, 2014). The present 

study investigates confidence and error detection, and the relationship between them, in terms 

of their sensitivity to dynamics of stimulus evidence during the decision process. 

Although confidence judgments and error detection are conceptually related, research 

on these functions has historically developed separately, reflected in differences in 

methodology and theoretical emphasis in the respective fields (Yeung & Summerfield, 2012, 

2014). Thus, on one hand, the cognitive and neural correlates of error-detection have been 

studied for many years using tasks in which the decision itself is trivial—e.g., judging whether 

a centrally presented arrow stimulus points left or right, or whether a digit is greater or less 

than 5—and errors are induced through pressure to respond quickly (Gehring, Goss, Coles, 

Meyer, & Donchin, 1993; Rabbitt, 1966). Dominant theoretical accounts propose that the 

resulting “fast guess” errors are detected by continued processing of the stimulus after the 

initial response, such that “a more accurate consensus will accumulate and the earlier mistake 

will become apparent” (Rabbitt & Vyas, 1981). Most or all current theories of error detection 

share this core assumption, and differ primarily in terms of precisely how post-decisional 

evidence might be harnessed to support error detection (Yeung & Summerfield, 2012).  

By contrast, studies of metacognitive judgments of confidence have typically used 

stimulus ambiguity rather than time-pressure as a source of errors, e.g., asking participants to 
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identify the longer of two lines of very similar length (Henmon, 1911), or to detect a Gabor 

patch of slightly greater contrast than frequent standard stimuli (Fleming, Weil, Nagy, Dolan, 

& Rees, 2010), before giving a graded rating of confidence in their initial choice. In such 

experiments, participants often remain unsure whether they responded correctly or incorrectly 

even when judgments are unspeeded, and are typically asked to judge their confidence on a 

scale ranging from feeling that they are guessing to feeling certain they are correct (i.e., with 

no option to indicate explicit error detection) (Fleming et al., 2015, 2010; Maniscalco & Lau, 

2012).  

Influential early theories of confidence correspondingly did not allow for changes of 

mind and error detection (which depend on post-decisional processing), instead proposing that 

confidence reflects features of the decision process up to the time of the decision, such as the 

balance of evidence accumulated for competing response options (Vickers & Packer, 1982; 

Vickers, 2001) or the time taken to reach the decision (Audley, 1960). According to these 

decision-locus models (and more recent variants, Kiani, Corthell, & Shadlen, 2014a, Kepecs 

& Mainen, 2014, Zylberberg, Barttfeld, Sigman, & Pereira, 2012), confidence depends 

critically on the strength and consistency of evidence accumulated up to the time of the 

decision.  

However, recent evidence indicates that decision confidence, like error detection, 

depends critically on continued processing of available evidence even after an initial decision 

is made. For example, the resolution of confidence judgments—the degree to which subjective 

confidence predicts objective accuracy—is improved when greater time is allowed between 

initial choice and subsequent confidence judgment (Moran, Teodorescu, & Usher, 2015; 

Pleskac & Busemeyer, 2010; Resulaj et al., 2009; van den Berg, Anandalingam, et al., 2016; 

Yu, Pleskac, & Zeigenfuse, 2015). One recent study proposed that this could be due to 

integration into confidence judgments of late evidence that is processed between internal 
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commitment to a choice and overt expression of the decision (van den Berg, Anandalingam, et 

al., 2016). This study found that confidence varies according to stochastic fluctuations in 

evidence presented immediately preceding the overt response. Extending this idea, another 

recent study (Moran et al., 2015) found that, when possible, people continue to accrue 

perceptual evidence presented after their decision to inform their confidence judgments, 

confirming the crucial role of post-decisional process on confidence. Meanwhile, EEG studies 

suggest that confidence and error judgments are reflected in common neural signatures (in 

particular the Pe component) that unfold in the period after response (Boldt & Yeung, 2015; 

Murphy, Robertson, Harty, & O’Connell, 2015). Formal models of this post-decision 

accumulation process suggest that these post-decisional locus models may provide an 

integrated account of confidence and error judgments (Moran, Teodorescu, & Usher, 2015; 

Pleskac & Busemeyer, 2010; Yu, Pleskac, & Zeigenfuse, 2015). 

This convergence notwithstanding, several open questions remain, which form the basis 

for the present study. Although it seems uncontroversial that a decision maker should take 

advantage of additional information presented after initial choice to form a more accurate 

confidence judgment and possibly revise that decision, there has been little systematic 

investigation of the distinct influences of pre- and post-decisional information on confidence 

and error detection. In particular, it remains unclear what impact pre-decisional evidence has 

compared to post-decisional evidence on evaluations of decisions. Interestingly, while some 

pre-decisional locus models predict that confidence should reflect the evidence available at the 

time of the response, post-decisional locus models have proposed various ways by which 

evidence continues to be accumulated to inform confidence (Moran, Teodorescu, & Usher, 

2015, Collapsing Confidence Boundary model; Pleskac & Busemeyer, 2010, Two-stage 

Dynamic Signal Detection model; Van Den Berg et al., 2016). Going beyond locus models that 

focus only on the evidence available at a single point in time, our first goal was to investigate 
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the timecourse over which decision evidence influences confidence judgments, error detection, 

and choice, both in the period leading up to the moment of the choice and in the post-decision 

period leading up to the moment of the  confidence judgment.  

Our second goal was to determine how speed-accuracy tradeoffs affect these dynamics 

of evidence accumulation for confidence judgments and error detection. It remains to be 

established whether speeded or self-paced decisions rely to the same extent on pre vs. post 

decisional evidence—a salient question given the differing emphasis on speeded vs. unspeeded 

tasks in studies of error detection and confidence, respectively (Yeung & Summerfield, 2012), 

and evidence that the speed-accuracy trade-off affects confidence and error detection (Baranski 

& Petrusic, 1998; Gehring et al., 1993). Although some earlier studies have investigated this 

question and found indirect evidence that speed/accuracy tradeoff might alter the balance 

between pre- and post-decisional evidence (Moran et al., 2015), no direct analysis has explored 

the time-course of this effect. 

Our final goal was to investigate further the relationship between confidence and 

explicit error detection judgments. Only a few studies to date have investigated explicit error 

detection and confidence in the same experiment (Baranski & Petrusic, 1994; Boldt & Yeung, 

2015; Scheffers & Coles, 2000; Yu et al., 2015). It therefore remains to be tested how these 

two judgments relate and whether they rely on corresponding dynamics of stimulus evidence.  

To answer these questions, we present a systematic investigation of the decision 

dynamics supporting error detection, changes of mind and confidence judgments in a 

perceptual judgment task. Participants judged which of two dynamically changing stimuli 

contained more dots on average over time (Figure 1), responding under instructions 

emphasizing either speed or accuracy, before providing a graded confidence judgment about 

the initial decision. Crucially, we directly retrieved what in the stimulus dynamics led 

participants to commit errors and detect them, using reverse correlation methods (Kiani & 
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Shadlen, 2009; van den Berg, Anandalingam, et al., 2016; Zylberberg et al., 2012) to probe 

how stochastic signal fluctuations in the stimuli influenced participants’ decisions and 

subsequent metacognitive evaluations. Importantly, in our design, stimuli continued to be 

visible after participants made their decision. Therefore, participants could continue sampling 

information before indicating their confidence, enabling us to determine how much they relied 

on post-decision evidence to evaluate the accuracy of their initial decision. Manipulation of 

time pressure induced participants to make errors, some of which remained undetected, 

allowing us to contrast dynamics of stimulus evidence associated with decisions that were or 

were not followed by a change of mind (ChoM), providing further insight into the mechanisms 

of error detection and confidence judgments. 

 

2. Methods 

1.1. Participants 

 

Twenty-three right-handed participants, with normal or corrected-to-normal vision, 

gave informed consent to participate in the experiment (mean age 25.1 years). As our analysis 

focused on subjective confidence reports, five participants were discarded for using the 

confidence scale in a discretized manner in which they used the end-points or the middle of the 

scale in more than 30% of the whole of the trials, which left insufficient number of trials to 

perform key analyses. This left 18 participants (11 female, mean age 25 years) in the final 

sample.  
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1.2. Task and Procedure 

Stimuli were presented on a 20 inch CRT (Trinitron, Dell) monitor with a 60 Hz refresh 

rate using the MATLAB toolbox Psychtoolbox3. Stimuli were 4.7 cm large, resulting in a 

visual angle of 4.48 degrees when viewed from 60 cm, and were placed 3.9 cm (3.6 degrees) 

to the left and right of the fixation cross. 

The trial started with a small increase in the size of the fixation cross (100 ms duration) 

reminding the participant to fixate the centre of the screen. After 100 ms, two empty grey boxes 

then appeared on the screen signalling the beginning of the trial. After 300 ms, dots appeared 

at random positions within the two grey boxes. The display was then updated every 50 ms, 

with the dots in each box changing randomly and independently in position and number.  

The two boxes were 20-by-20 resolution, thus containing at most 400 dots. The number 

of dots presented at each time-sample in each box was drawn from a two Normal distributions 

respectively around either a high (212 dots) or low (188 dots) mean value and variance of 40 

dots for both.  

Participants’ task was to identify the box with the higher mean. Participants responded 

with a left or right mouse-button click corresponding to the box they judged to contain more 

dots. Importantly, the boxes continued to be displayed for 1000 ms after the participant’s 

response, again updated every 50 ms, allowing the participant to continue sampling the 

information after their initial decision.  

Two types of blocks varied in time-pressure. In Speed blocks, participants were 

required to respond in less than 800 ms, whereas in Accuracy blocks the instructions 

emphasised the importance of accurate responding within a correspondingly lenient response 

deadline of 3000 ms. In both block types, the time left to respond was indicated by a bar on the 

top of the screen that gradually filled up at each time sample.  
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At the end of each trial, after the dot stimulus display disappeared (always 1000 ms 

after their perceptual decision), participants were asked to indicate how confident they were in 

their preceding decision by moving a cursor along a 51-point scale ranging from “Sure Error” 

(scored as 0 on the scale) to “Sure Correct” (scored as 50 on the scale). Additionally, the word 

“Guess” was displayed in the middle (scored as 25 on the scale), which also corresponded to 

the initial position of the response cursor (to ensure that it would take the same time to move 

the cursor to each end of the scale, equating the effort and time to signal an error and a correct 

response). No time pressure was imposed for the confidence response. After participants had 

registered their confidence rating, the next trial started after a blank screen interval of 500 ms. 

Participants completed 12 blocks of 40 trials. There were 6 blocks with each speed-

accuracy instruction, randomly intermixed. Altogether the experiment lasted approximately 60 

minutes. 

 

1.3.  Analysis of pre- and post-decisional evidence 

 

Our first analysis quantified the evidence participants saw when making correct vs. 

erroneous decisions and when subjectively evaluating these decisions as correct or incorrect. 

For each trial, we extracted the number of dots at each time sample in each box. This allowed 

us to retrieve for each trial the distributions of dot numbers in each box over time, for two time 

periods of interest: from the onset of the stimulus to the response (i.e., the pre-decisional 

interval) and from the response to the disappearance of the stimulus 1000 ms later (i.e., the 

post-decisional interval). To quantify the strength of the evidence for these two time periods 

on each trial, we used a standardized approach to measure the degree of overlap between the 

two distributions, calculating the Receiver Operating Characteristic curve and associated Area 

Under Curve (AUC). These measures allow us to quantify, for each trial, the degree of 
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discriminability of the box with the higher mean number of dots compared to the one with the 

lower mean number in each of these time-periods. The advantage of this approach compared 

to simply calculating the average difference in the number of dots is that it provides a 

standardized measure of discriminability that is also sensitive to stimulus variability, thus 

quantifying the impact of the stimulus fluctuations on task difficulty. AUC varies between 0 

and 1, with 1 indicating that the evidence unambiguously favored the objectively correct 

response, the midpoint (0.5) indicating that the evidence was perfectly ambiguous (i.e., noise 

fluctuations on average perfectly cancelled out the underlying difference in mean dot numbers 

between the two boxes), and values below 0.5 indicating that objective evidence favoured the 

alternative response (i.e., noise fluctuations were sufficiently large to outweigh the underlying 

mean difference). 

The obtained trial-by-trial AUC values were then averaged together for each participant 

according to the conditions corresponding to the factorial combination of block type (Speed 

vs. Accuracy), time interval (pre- vs. post-decisional), objective decision accuracy (correct vs. 

error) and subsequent metacognitive evaluation (no change of mind vs. change of mind). Some 

participants had too few changes of mind to compute AUC values across the full factorial 

design—this was true for 1 participant in Speed blocks and 5 participants in Accuracy blocks. 

To maximize power, we therefore performed a three-way repeated measure ANOVA 

separately for Speed and Accuracy blocks, with factors time interval, decision accuracy, and 

metacognitive evaluation, allowing us to retain 17 participants for the former condition and 13 

in the latter. Effect sizes were computed using p
2  measure for ANOVAs, while pairwise 

Cohen’s d measure (dz, Cohen, 1988) was computed for additional t-tests. 

1.4. Reverse Correlation Analysis 

To assess the dynamics of stimulus evidence predicting error detection and confidence 

judgments, our next analysis used a reverse correlation approach (Resulaj et al., 2009; 
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Zylberberg et al., 2012). This method correlates observed behavior with the momentary, 

stochastic fluctuations in evidence that were built into our dot display stimuli. We separated 

trials according to block type, accuracy and change of mind, and retrieved for each trial the 

variation in the number of dots across time in each of the two boxes, the correct and the 

incorrect one (Figure 3, top row). We then normalized the two obtained time-courses by 

subtracting the mean number of dots in each box, respectively, and divided by the across time-

sample variance (Figure 3, second row). The obtained trial-by-trial time-courses were then 

individually realigned to the onset of the motor response, and averaged separately for the low-

mean and the high-mean box, then averaged across participants. To avoid averaging conditions 

with too few data points, we excluded from averaging data points that contained fewer than 

five trials and time-samples for which fewer than five participants had data. For display 

purposes, participants’ individual time-courses were temporally smoothed by averaging 

together values of the two preceding and two following time-samples. Statistics were however 

computed on unsmoothed data. 

To determine the moment at which the number of dots in the two boxes significantly 

deviated from each other, we computed between-participant statistics on the obtained averaged 

time-series using a cluster-based non-parametric test with Monte Carlo randomization (adapted 

from Maris and Oostenveld, 2007). This method allowed us to identify clusters of time-points 

in which time-series of the two stimuli were significantly different while correcting for multiple 

comparisons (see Supplementary Material).  

1.5. Statistical Power 

The main analysis proposed in the present study investigated the time-course of 

stimulus fluctuations by means of within-participant non-parametric permutation statistics. 

This is a new analysis for which no empirical estimation of effect size is available in the 

literature. As such, the required sample size could not be estimated by means of a classical 
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power analysis. Sample size was therefore chosen to be comparable to the previous studies 

most closely related to the present one (Van Den Berg et al., 2016, n=6; Zylberberg et al., 

2012b, n=19). Nonetheless, we are able to use our secondary analysis of the Area-Under Curve 

(see Methods, below) to estimate the a priori statistical power of the analysis given our sample 

size. With a sample of 15 participants (the smallest number allowing for full factorial analysis 

with ANOVA on the AUC with time interval, accuracy and change of mind as within-

participant factors), the smallest effect size detectable would be p
2 = 0.11 for ANOVA and 

Cohen-d = 0.78 for a two-tailed t-test (both taking alpha = 0.05 and power = 0.8 and assuming 

no correlation between repeated measures and no correction for non-sphericity, using G-Power 

software). The main effect of interest reported in the manuscript (3-way interaction between 

decision accuracy, time interval and presence of a change of mind on the AUC value) exceeded 

this limit, suggesting that our design had appropriate statistical power.   
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3. Results 

 

1.6. Task performance 

 

Participants judged which of two boxes contained on average more dots (Figure 1), 

with varying time-pressure. We first verified that our experimental manipulation of time-

pressure affected participants’ speed-accuracy trade-off as intended. Unsurprisingly, we found 

a significant difference in reaction times between Speed and Accuracy blocks (mean RTs of 

638 ms vs. 1681 ms; Figure 2A, Cohen-d = -2.82, t(17) = -12.0 p < 0.001). Accuracy was 

significantly lower in blocks with Speed vs. Accuracy emphasis (Figure 2B, 68% vs. 80% 

correct, Cohen-d = -2.01, t(17) = -8.54, p < 0.001). Correspondingly, average confidence was 

lower in blocks with Speed vs. Accuracy emphasis (Figure 2C, 63% versus 68%, Cohen-d = -

1.44, t(17) = -6.13, p < 0.001), showing that participants were able to monitor variations in 

their performance across conditions.  

We next split the data according to trial-by-trial accuracy and investigated the use of 

the confidence scale separately for Error and Correct trials (Figure 2D-I). We discretized the 

confidence scale to separate trials that participants judged as correct (right-hand side of the 

confidence scale) from those judged as errors and characterized by a revision of the initial 

decision (i.e.“change of mind”, ChoM, left-hand side of the scale). An ANOVA on these 

proportions revealed that, in line with previous research (Rabbitt, 1966), changes of mind 

occurred more frequently following error than correct responses (F(1,17) = 110.35, p < 0.001, 

p
2 = 0.87). Changes of mind were more frequent in Speed than in Accuracy blocks (F(1,17) = 

41.277, p < 0.001, p
2 = 0.71). Furthermore, an interaction between accuracy and block type 

indicated that error detection rates were higher in Speed blocks than in Accuracy blocks, 
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whereas similar low rates of changes of mind were observed following correct responses across 

block types (F(1,17) = 18.09, p < 0.001, p
2 = 0.51 %).  

As a final observation, apparent in Figure 2 is that a sizeable proportion of confidence 

responses fell exactly at the midpoint of the confidence scale, corresponding to the guess 

response and the initial position of the cursor. The frequency distribution of responses on the 

confidence scale suggests that participants remained on this initial “guess” response for a range 

of low confidence responses that were therefore little used, indicating that a better methodology 

would have been to randomize the starting position of the confidence cursor. The proportion 

of guess responses was higher for errors than for correct trials (F(1,17) = 11.67, p = 0.003, p
2 

= 0.41). No reliable difference between block types was observed (F < 1). As these “guess” 

trials could not be labelled as true changes of mind or perceived correct responses, we excluded 

them from further analysis.   

 

1.7. Analysis of evidence available before and after the decision 

 

The next analysis quantified the evidence that led participants to make correct 

responses, errors and, on occasion, to detect their errors. We used an area-under-the-curve 

(AUC) metric to quantify the degree to which the objectively-presented evidence favored the 

correct or incorrect decision across time-points and trials (with values greater than 0.5 

indicating evidence favoring the correct decision, up to a maximum value of 1.0 where the 

evidence for this choice is perfectly unambiguous), how this evidence led to correct and 

erroneous decisions, and how it influenced the occurrence of changes of mind. The advantage 

of such an approach is that it allows quantification of objective stimulus discriminability using 

a standardized measure. Note, however, that results did not differ qualitatively when 
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performing the same analysis using the raw difference in dot number between the two boxes. 

AUC scores were averaged separately for evidence presented in the pre- vs. post-decisional 

period, and separately for each participant, for correct and error trials that were followed or not 

by a change of mind, before averaging across participants.  

We found a main effect of decision accuracy on AUC in both block types (Speed 

blocks: F(1,87)=17.08 p<0.05, p
2 = 0.63; Accuracy blocks: F(1,71)= 24.0, p<0.05, p

2 = 0.74), 

indicating that participants made correct perceptual decisions when available evidence more 

strongly favored the correct response, and tended to err when the evidence was weaker. We 

also found an interaction between decision accuracy and time interval (Speed blocks: 

F(1,87)=36.89 p< 10-3, p
2 = 0.82; Accuracy blocks: F(1,71)= 24.46, p< 10-3, p

2 =  0.70), 

because this effect was of course restricted to evidence presented pre-decisionally. Notably, 

follow-up t-tests indicated that pre-decision AUC for all conditions was significantly larger 

than 0.5 (Figure 3, all ps < 10-4). Thus, even for error trials, objective evidence available at the 

time of the decision favoured the correct response (Figure 3A-B). 

Crucially, AUC scores also varied reliably as a function of whether participants 

changed their minds to indicate that an initial decision was incorrect, with a reliable main effect 

of changes of mind for Accuracy blocks (F1,71=10.21, p = 0.012, p
2 =  0.56) and, for both 

block types, a reliable interaction between decision accuracy and changes of mind (Speed 

blocks: F1,87= 45.3, p = 0.001, p
2 = 0.82  Accuracy blocks: F1,71=15.04, p =  0.005,  p

2 =  

0.65) that further varied somewhat across time intervals (3-way interaction, Speed blocks: 

F1,87= 2.513, p=0.14, p
2 = 0.20; Accuracy blocks: F1,71=7.892, p = 0.023, p

2 = 0.50). The 

interaction between decision accuracy and changes of mind indicates that objective evidence 

in favour of the correct decision (i.e., increased AUC) had opposite effects on changes of mind 

as a function of initial accuracy: decreasing their likelihood after initially correct responses and 

increasing their likelihood after errors. 
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Importantly, follow-up analyses run separately for each time interval revealed that these 

effects were observed in both the pre- and post-decision AUC scores: Evidence in favour of 

the correct decision was stronger (i.e., AUC was higher) on trials in which participants detected 

their errors than for undetected errors, both in the pre- and post-decision periods for both Speed 

and Accuracy blocks (see Table 1). Meanwhile, evidence in favour of the correct decision was 

stronger when correct decisions were judged as such than when they were misjudged as errors, 

in the pre- decision period only for Speed emphasis blocks, and in the post-decision period for 

both block types (see Table 1). 

 

Comparison AUC value Block type Time interval t p-value Cohen-d 

Error before ChoM > Error Accuracy Pre-resp 4.35 < 0.001 1.39 

Error before ChoM > Error Speed Post-resp 3.05 0.006 0.92 

Error before ChoM > Error Accuracy Pre-resp 4.06 < 0.001 0.95 

Error before ChoM > Error Speed Post-resp 7.94 < 0.001 1.87 

Correct > Correct before ChoM Accuracy Pre-resp 1.22 0.13 0.44 

Correct > Correct before ChoM Speed Post-resp 2.14 0.03 0.64 

Correct > Correct before ChoM Accuracy Pre-resp 1.83 0.04 0.54 

Correct > Correct before ChoM Speed Post-resp 5.94 < 0.001 1.51 

 

Table 1: Statistical results of the comparison of AUC values for errors followed or not 

by a change of mind (ChoM) and correct trials followed or not by a change of mind. 

Resp=response. 

 

The effects just described relate to analyses including all trials. Control analyses 

confirmed that these effects were preserved in analyses excluding the subset of trials in which, 

due to noise fluctuations in dot numbers, the evidence presented up to the time of the response 

actually favored the incorrect response (i.e., trial-wise AUC < 0.5, see Figure S1). These trials 

occurred more frequently in Speed blocks (15% of trials vs. 3.5% in Accuracy blocks), and 

were associated with faster RTs than for other trials (Speed blocks: 614 vs. 640 ms, t(13) = -

3.56, p < 0.001, Cohen-d = -0.84; Accuracy blocks : 1289 vs. 1678ms, t(15) = -4.94, p < 0.001, 
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Cohen-d = -1.35), indicating that these trials corresponded to fast guesses with shorter 

sampling-time of the stimulus display.  

 

1.8. Reverse Correlation Analysis 

 

Our next set of analyses focused on the dynamics of evidence accumulation influencing 

both initial decision and metacognitive evaluation. To this end, we ran a reverse correlation 

analysis to retrieve, for each time-point, the empirical kernels on which initial decisions and 

subsequent confidence judgments are based, according to across-trial averages of systematic 

biases in noise fluctuations across different trial subsets (Resulaj et al., 2009; Zylberberg et al., 

2012). Figure 4 illustrates the logic of the analysis, showing stimulus-aligned averages of noise 

fluctuations in the low-mean box (i.e., the box the box with fewer dots on average, red lines) 

and high-mean box (i.e., the box with more dots on average, blue lines), for correct trials 

separately in Speed and Accuracy blocks. On correct trials, noise fluctuations in both boxes 

favored the ultimate choice. Thus, the average noise fluctuation was positive in the high-mean 

box (i.e., it contained more dots than its true already high mean) and negative in the low-mean 

box (i.e., it contained even fewer dots than its already low mean). The difference between boxes 

was significant from 50 – 700 ms in Speed blocks, and 50 – 850 ms in Accuracy blocks. In this 

way, the reverse correlation method identifies time periods in which stimulus evidence 

consistently influences participants’ decisions across trials (cf. (Zylberberg et al., 2012). 

However, this stimulus-aligned analysis provides limited information about signal dynamics in 

relation to the time of the decision. 

Our key analyses focused on trial-by-trial time-courses aligned to the onset of the 

response (Figure 5). Considering first the correct trials that were judged by participants as 

correct (i.e., no change of mind), averaged evidence carried in noise fluctuations significantly 
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deviated from the mean in the period from -650 ms to 0 ms before the onset of the response for 

Speed blocks (Figure 5A) and from -950 ms to -300 ms for Accuracy blocks (Figure 5B). These 

findings indicate that consistent fluctuations in evidence strength were only observed just prior 

to initiation of the motor response, whereas evidence presented at the earliest periods of 

stimulus processing did not systematically correlate with the decision reached. This pattern is 

necessarily observed in Speed blocks, in which a tight decision deadline was imposed, but the 

pattern was similarly evident in blocks with Accuracy emphasis where average RT exceeded 

1500 ms.  

Turning next to error trials that were not followed by a change of mind (i.e., errors that 

remained undetected), analysis of signal dynamics revealed the inverse pattern to the one 

observed in correct trials: On these trials, evidence preceding the response strongly favoured 

the incorrect decision, with the averaged noise fluctuation being reliably negative in the high-

mean box (i.e., containing fewer dots than its true underlying mean) and positive in the low-

mean box (i.e., containing more dots than its true underlying mean). These differences peaked 

at -500 ms and -700ms before the response for Speed (Figure 5G) and Accuracy emphasis 

blocks (Figure 5H), respectively. Thus, as with the evidence kernel observed on correct trials, 

deviations in noise fluctuations were observed in both the low- and high-mean boxes, 

suggesting sampling of both parts of the stimulus display. Interestingly, contrary to the pattern 

observed for correct trials without changes of mind, these differences persisted even after the 

decision for both types of blocks, albeit reaching significance only in Accuracy blocks (Figure 

5H, 50 to 350 ms after response time-period). It appears that errors remained undetected only 

if noise fluctuations continued to favor the incorrect response after it was produced. Overall, 

therefore, these results show that errors that remain undetected are characterized by noise 

fluctuations that vote against the correct response and continue to do so after the initial decision.  
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A different pattern was observed for errors followed by changes of mind. These trials 

were marked by evidence favouring the incorrect response in the early time-window before the 

response, an effect that was significant between -700ms and -400 ms relative to the response 

for Speed emphasis blocks (Figure 5E), and from -1200 to -500 ms for Accuracy blocks (Figure 

5F). However, the pattern reversed around -300 ms before the response such that noise 

fluctuations began to favour the correct response. In Speed emphasis blocks, this effect was 

reliable from -200 ms before the response to 850 ms after it; in Accuracy blocks the effect was 

reliable from 100 to 400 ms after the response. The pattern suggests that while evidence 

presented before the response influenced the initial incorrect decision, evidence presented 

immediately before the response and for a sustained period afterwards continues to be 

accumulated that can lead to a change of mind about the decision and therefore detection that 

the initial response was incorrect. Interestingly, a similar pattern was observed in correct trials 

followed by a change of mind (Figure 5C-D), with dynamics of evidence accumulation also 

exhibiting a reversal in the direction of evidence regarding the choice. However, these trials 

occurred rarely (Figure S1) and the analysis was correspondingly underpowered, with the only 

statistically reliable effect being a brief period in Speed emphasis blocks (50 to 350 ms after 

the response) in which noise fluctuations favored the incorrect response.  

 

1.9. Correlation between trial-by-trial balance of evidence and confidence 

before and after the response 

 

Collectively, the reverse correlation results (Figure 5) indicate that error detection is 

influenced by evidence presented before and after the decision. However, these results do not 

indicate whether subtle variations in the level of confidence in correct decisions can likewise 
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be explained in terms of fluctuations in evidence sampling, with particular interest in whether 

the ultimate confidence judgment is influenced by evidence presented after the initial choice. 

To investigate this issue, we computed the cumulative evidence for different levels of 

confidence observed specifically on correct trials without changes of mind (using cumulative 

evidence so that small differences in evidence are more apparent than in the moment-by-

moment reverse correlation plots shown in Figure 5). For this analysis, we divided the correct-

trial confidence distribution into quartile bins, then sorted trials into bins and averaged the 

cumulative evidence over time across trials within each bin, separately for the low- and high-

mean boxes. The resulting curves showed systematic variations as a function of explicitly-

reported confidence (insert Figure 6), with higher confidence observed as a function of higher 

cumulative evidence in the high-mean box and lower cumulative evidence in the low-mean 

box. These differences emerged in the pre-response period, but continued to develop well after 

the response into the post-decisional period, both for Speed and Accuracy emphasis blocks.  

To confirm this result and test its significance, we computed the balance of evidence 

between the two boxes (i.e., the degree to which noise fluctuations on average favoured the 

correct vs. incorrect response) and regressed it against the ultimate confidence level. We 

performed these regressions separately for each participant for cumulative evidence from the 

time interval before the response and after it, to determine whether pre- and post-response 

evidence independently influenced the ultimate confidence judgment. We found significant 

positive correlations between evidence strength and confidence for both time intervals. This 

result was observed for both Speed and Accuracy blocks, indicating that it was not only an 

effect of speed-accuracy trade-off that occurs when a tight response deadline is imposed 

(Figure 6 main box plot, correlation coefficients across participants significantly greater than 

0: Speed Block, Pre-response t(17) = 6.8 p < 10-4; Speed Block, Post-response t(17) = 3.82 p < 
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0.001; Accuracy Block, Pre-response t(17) = 5.5 p < 10-4; Accuracy Block, Post-response t(17) 

= 3.33 p < 0.001).   
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4. Discussion 

The present study provides a systematic investigation of the way in which evidence—

in terms of stochastic fluctuations in dynamically evolving stimuli—predicts the occurrence of 

errors, changes of mind, detection of errors, and graded levels of confidence in an initial 

decision. Our findings extend previous results (Murphy et al., 2015; van den Berg, 

Anandalingam, et al., 2016) in providing only partial support for current models of error 

processing and decision confidence. Thus, with some notable exceptions (e.g., Van Den Berg 

et al., 2016), extant models of decision confidence place emphasis on information available 

exclusively at the time of choice (e.g., Kiani, Corthell, & Shadlen, 2014a, Kepecs & Mainen, 

2014, Zylberberg, Barttfeld, Sigman, & Pereira, 2012) or that is accumulated post-decisionally 

(Moran et al., 2015; Yu et al., 2015), but not both. Meanwhile, models of error processing focus 

almost exclusively on post-decisional processing as the basis for error detection (Yeung & 

Summerfield, 2014). Importantly, we found that confidence judgments and error detection are 

similarly influenced by the strength of the evidence presented both before and after the 

response, and that this dual influence was observed regardless of whether participants 

responded under speed or accuracy emphasis.  

 

These findings shed new light on the mechanisms of error detection and confidence 

judgments. Early models of confidence were based on the intuition that confidence should 

reflect the strength of evidence supporting the initial decision (Audley, 1960; Festinger, 1943; 

Vickers & Packer, 1982). This assumption provides an elegant account of many empirically 

observed features of confidence judgments such as their dependence on task difficulty and 

response time (Kiani et al., 2014; Kiani & Shadlen, 2009; Vickers & Packer, 1982). More 

recently however, these decision locus models have been altered to capture the intuition that 

evaluation of a decision should be sensitive to continuing reflection even after an initial choice, 
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thus allowing for changes of mind (Moran et al., 2015; Pleskac & Busemeyer, 2010; Resulaj 

et al., 2009; Yu et al., 2015) and an account of how we sometimes realise that we have made a 

mistake, even in the absence of external feedback (Charles, King, & Dehaene, 2014; Murphy 

et al., 2015; van den Berg, Anandalingam, et al., 2016; Yeung & Summerfield, 2012; Yeung, 

Botvinick, & Cohen, 2004).  

Our finding that both pre- and post-decisional evidence impacts confidence and error 

detection contradicts models that view confidence as reflecting only the balance of evidence 

up to the point of decision (Kiani et al., 2014; Kiani & Shadlen, 2009; Zylberberg et al., 2012). 

Similarly, this finding seems difficult to reconcile with post-decisional locus models of 

confidence that make the assumption that confidence reflects only continued processing after 

the response. In particular, classic standard drift diffusion models (Link, 1975) that assume that 

a decision is reached when a fixed threshold is crossed, make the prediction that pre-decisional 

evidence is also constant between trials and therefore that confidence should be determined 

solely by evidence accumulated post-decisionally.  

Although we find that error detection becomes more likely when post-decisional 

evidence more strongly favours the objectively correct response, as all existing theories would 

predict (following Rabbitt, 1966a), we find that detection is also more likely following errors 

that are based on initially weaker evidence. Indeed, our results confirm that the pre-decisional 

balance of evidence has a lasting impact on decision evaluations made hundreds of 

milliseconds later. It remains to be established how such results could be reconciled with 

existing theories that focus solely on post-decisional accumulation of evidence against an initial 

choice as the core mechanism of error detection (Yeung & Summerfield, 2012; 2014). Our 

results seem to be more easily accounted for by modified model of first-order decisions (van 

den Berg, Anandalingam, et al., 2016) which hypothesizes a race between two separate 

accumulators for each possible decision. According to this view, confidence reflects the 
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balance of evidence between the competing accumulators, and error detection and changes of 

mind occur when there is a reversal in the balance of evidence between pre- and post-decisional 

evidence accumulation, as we observe in our results.  

Despite this convergence, it remains to be demonstrated whether this view of 

confidence as a simple “delayed” first-order decision (Resulaj et al., 2009; van den Berg, 

Anandalingam, et al., 2016)—i.e., reflecting an evolving balance of evidence that continues to 

develop even after an initial choice—can entirely account for our findings. Indeed, a recent 

EEG study suggests that although similar neural signatures of evidence accumulation are 

apparent before and after the response, post-decisional process differ qualitatively as they 

accumulate evidence on the likelihood of having made an error rather than votes in favour of 

one choice or another (Murphy et al., 2015). This evidence converges with theoretical models 

of confidence as an explicit representation of uncertainty in choice that is distinct from the 

decision process per se (Pouget, Drugowitsch, & Kepecs, 2016), as well as evidence from 

neuroimaging (Fleming et al., 2010) and neuropsychology (Chua, Pergolizzi, & Weintraub, 

2014; Fleming & Lau, 2014) suggesting distinct neural bases for first- and second-order 

decision processes. The present study does not provide direct evidence for this distinction, but 

our findings are certainly compatible with the view that confidence does not reflect precisely 

the same accumulation process as the first-order decision. A valuable extension of the present 

work would therefore be to investigate how activity in distinct decision- and evaluation-related 

regions varies with dynamic, stochastic fluctuations in evidence of the kind studied here. 

One interesting aspect of our findings is that, perhaps surprisingly, the influence of 

evidence accumulated both pre- and post-decisionally was apparent regardless of whether 

instructions emphasized speed or accuracy in responding. Indeed, influence of post-decisional 

evidence was observed even for correct trials in accuracy blocks, which had the longest 

response-times and for which evidence at the time of the response was already high. Although 
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it may appear obvious that an observer should integrate new information to his confidence 

judgment, an alternative possibility when no time-pressure is applied to the decision could be 

to wait to reach total certainty before providing a response. It is therefore interesting to observe 

that this was not the strategy deployed by participants, who appear instead to make an initial 

choice and to continue to sample the evidence to further evaluate their choice. This result could 

be considered an artefact of the present experimental design in which post-decisional evidence 

was always available. However, it could also suggest that integration of evidence preceding 

and following an initial choice is an essential feature of confidence judgments. As such, this 

finding seems to contradict the view that integration of post-decisional evidence into 

confidence judgment occurs only when high speed pressure is applied, forcing participants to 

produce a response before a decision has truly been reached, as could be suggested by studies 

that emphasize the role of post-decisional evidence in revising initial decisions (Hilgenstock, 

Weiss, & Witte, 2014; Moran et al., 2015; Pleskac & Busemeyer, 2010; Yeung & Summerfield, 

2012; Yu et al., 2015). More research will be needed to explore whether confidence in itself 

guides the continuation of information processing after an initial choice is made (Desender, 

Boldt, & Yeung, 2018) and explore how allowing delayed confidence judgment influences how 

a first-order decision threshold is set.  

At a more detailed level, in both pre- and post-decisional periods, we found an influence 

on confidence of fluctuations in evidence corresponding to both the chosen and unchosen 

options. As such, our results seem to conflict with some reports suggesting that confidence, 

unlike choice, is influenced solely by the strength of evidence favouring the selected option 

(Koriat, Lichtenstein, & Fischhoff, 1980; Nickerson, 1998; Peters et al., 2017; Zylberberg et 

al., 2012). Instead, our findings appear to suggest a symmetrical influence on confidence of 

evidence favouring the two options, consistent with other recent studies (Yu et al., 2015) and 

the hypothesis that confidence reflects the balance of evidence between choice options (van 
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den Berg, Anandalingam, et al., 2016). Note that our results do not completely exclude the 

possibility that participants selectively sampled information to determine their confidence. 

Indeed, the design of our task allows participants to sample only one of the two boxes to 

determine which correspond to the high and low mean value. Averaging across trials could 

then result in an overall effect of symmetry between the selected and the unselected option 

while participants would in fact sample alternatively one of the stimuli. This interpretation is 

however unlikely considering the instructions given to the participants to fixate the centre the 

screen and pay attention to both stimuli. Further research will be needed to explore alternative 

hypotheses explaining discrepancies between our results and those of earlier studies (Peters et 

al., 2017). For example, we used a confidence rating scale ranging from Correct to Error, in 

contrast to a scale from Guess to High confidence in previous studies (Peters et al., 2017; 

Zylberberg et al., 2012). Perhaps the latter scale leads to a tendency towards confirmation bias 

in confidence ratings, by not providing participants with the possibility of revising their 

judgment.    

Finally, our results extend previous studies that, like ours, attempt to link error detection 

and confidence judgments by treating them as part of a single continuum of decision 

evaluations (Baranski & Petrusic, 1994; Boldt & Yeung, 2015; Scheffers & Coles, 2000). We 

interpret our findings—of a shared dependence of confidence and error judgments on both pre- 

and post-decisional evidence—as evidence that they reflect a common underlying 

metacognitive evaluation process. We favor this interpretation over a possible alternative view, 

that the shared dependence we observe is an artefact of forcing participants to rate errors and 

confidence on a single scale, for several reasons. First, by their very definitions, confidence 

and error judgements fall on a meaningful continuum—a subjective estimate of p(correct) that 

varies from 0 to 1—rather than being artificially and arbitrarily forced together (cf. dumping 

effects in perceptual ratings, e.g., Frank, van der Klaauw, & Schifferstein, 1993). Second, our 
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analyses were not biased to find correlations between pre- and post-decisional evidence and 

both judgment types—indeed, we did not predict a priori that we would see an influence of 

pre-decisional evidence on error detection, yet our analyses revealed this effect. Finally, 

previous studies have shown that variations towards both ends of the error-confidence 

continuum are associated with common neural signatures—graded amplitude changes in well-

characterized post-decisional event-related brain potential components (Boldt & Yeung, 2015; 

Steinhauser & Yeung, 2010).  

At a more methodological level, our design shows the distinction between detected and 

undetected errors in the dynamics of evidence accumulation process: Even in blocks 

emphasising accuracy, a significant proportion of errors remained undetected while others 

correctly identified as mistakes, and these trials were associated with differing evidence 

dynamics as revealed by reverse correlation analysis. This result highlights the importance of 

allowing confidence judgment to extend beyond “unsure” rating and to allow explicit error 

detection. Indeed, our pattern of results suggests that classical confidence study which 

distinguish only “high” and “low” confidence (Fleming & Lau, 2014; Moran et al., 2015; 

Rounis, Maniscalco, Rothwell, Passingham, & Lau, 2010) might miss some important findings 

by neglecting differences in information processing within the “low confidence” category. 

In conclusion, the present study sheds new light on the dynamics of evidence 

accumulation relating to error-detection and changes of mind, showing that confidence and 

error judgments integrate information both before and after a decision is produced. These 

results force us to revise our view on classical models of meta-decision, providing evidence 

that a common process evaluating the overall signal strength over time can explain error 

detection, changes of mind and graded confidence judgments.   
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 Figures 

 

Figure 1: Experimental procedure. Stimuli consisted of a stream of images updated every 50 

ms displaying two boxes containing dots at random positions in a 20 x 20 array. The 

participants’ task was to determine which of the two boxes contained more dots on average. 

The number of dots in each box was drawn from two Normal distributions centred on a high 

(212 dots) and a low value (188 dots). The time the participant had left to respond was 

indicated by a bar on the top of the screen that gradually filled up. Participants were instructed 

whether the bar would fill slowly (“Accuracy Block”) or quickly (“Speed Block”) at the 

beginning of each block. Importantly, the stimulus stream continued to be displayed for 1000 

ms after each response. Participants were then asked to rate the confidence they had in their 

response on a scale going from “Sure I made an Error” to “Sure I responded correctly”.  
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Figure 2: Response Time, accuracy and confidence for both types of blocks. A-C: Mean 

response-time, accuracy and confidence for Speed and Accuracy Blocks. D-G: Average 

distribution over participants of the use of the confidence scale for Correct (D-E) and Error 

trials (F-G) separately for Speed (D-F) and Accuracy blocks (E-G), with proportion of certain 

correct (confidence = 100%), perceived correct (50% < confidence < 100%), guess 

(confidence = 50%), changes of minds (ChoM: 0% < confidence < 50%), and certain error 

(confidence = 0%) trials separately for Correct and Error trials.  
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Figure 3: Quantifying objective levels of evidence in pre- and post-response time-intervals. 

For each trial, AUC values computed from the ROC curve associated with the distribution of 

dot numbesr in the low-mean and high-mean boxes were computed for the pre-response (A-B) 

and the post-response (C-D) time interval, separately for Speed (A,C) and Accuracy (B,D) 

blocks. The obtained values were averaged according to accuracy and metacognitive 

accuracy: Correct trials perceived as correct (dark blue), Correct with later change of mind 

(ChoM, light blue), Errors followed by a change of mind (light red) and Errors that remained 

undetected (dark red).  
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Figure 4: Reverse correlation method. (A) An example of the stimuli on one sample and the 

distribution across time-samples on a trial n of the number of dots in each type of stimulus 

(increased for display purposes). Bottom panel shows an example time-course of the number 

of dots in the low-mean and high-mean boxes, before and after normalization. (B) Reverse 

correlation results are then obtained by averaging together across trials the time-courses, 

according to which stimulus was chosen by the participant on each trial. (C) Example of 

average reverse correlation results obtained for Correct trials detected as correct, for Speed 

and Accuracy blocks. 

  



Page 39 of 40 

 

 

Figure 5: Influence of sensory evidence on response and error-detection. Each panel depicts 

evidence fluctuations time-locked to the response (vertical dotted line at 0 ms), showing the 

normalized number of dots in the low-mean box (red line) and high-mean box (blue line), in 

Speed (A,C,E,G) and Accuracy blocks (B,D,F,H) for Correct trials correctly classified as 

Correct (A-B), Correct responses followed by change of mind (ChoM, C-D), Errors followed 

by change of mind (E-F) and Error without a change of mind (G-H). Significance across 

participants of the difference between the two curves is indicated by colored lines at the bottom 

of the graph, with blue lines indicating a positive difference between the correct and the 

incorrect stimulus and with red lines indicating a negative difference. 
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Figure 6: Correlation between level of evidence and confidence in correct trials. The figure 

depicts the boxplot (central line: median, bottom and top lines: 25th and 75th quantiles, 

whiskers: most extreme data points not considered as outliers) of the betas of individual 

regression across trials between the average balance of evidence between the two stimuli in 

the pre- and post-decisional time interval for Speed and Accuracy blocks. Insert depicts the 

cumulative sum of the evidence in the low-mean (red) and the high-mean (blue) box 

according to confidence bin (darker color = higher confidence). Stars indicate significant 

difference from zero with p <0.05:*, p <0.001:**, p <0.0001:***. 

 


