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Abstract

Disease surveillance plays a crucial role in detecting or anticipating infectious dis-

ease outbreaks. It tracks health-related data from a population to identify and

monitor early outbreaks of a disease. Traditional disease surveillance requires a

widespread network of sentinel sites to track infections throughout the population.

These networks are time and labour intensive to build and maintain, and this creates

opportunities for utilizing online user-generated content. Compared to traditional

data sources, online user-generated content is fast and cheap to obtain. It covers a

larger population, and provides data on topics with little coverage from traditional

sources. This can complement traditional disease surveillance systems. In this the-

sis, we focus on improving disease surveillance using online user-generated content,

through machine learning and natural language processing techniques.

Our contributions are threefold. First, a feature selection method, which con-

sists of a time series similarity filter and a topic filter, is proposed. The former

filter ensures the selected features are good predictors, while the topic filter suc-

ceeds in eliminating features that may be highly correlated with disease rates, but

are not referring to the target disease. Second, a multi-task learning framework

for disease surveillance is proposed, where several disease surveillance models are

jointly trained. Multi-task elastic net and multi-task Gaussian Processes are used

for regression. The framework improves the generalization of a model by taking

advantage of shared structures in the data. Third, a transfer learning framework is

proposed for delivering accurate disease rate models without the existence of ground

truth information for a target location. The framework consists of three steps: (1)

learn a regularized regression model for a source country, (2) map the source queries
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to target ones using semantic and temporal similarity metrics, and (3) re-adjust the

weights of the target queries.

To support the theoretical derivations, extensive and repeatable experiments are

carried out based on large-scale real-world data. Experimental results have demon-

strated substantial improvement of the proposed solutions over strong baselines. In

addition, we publish a website that reports real-time flu rate estimation in England

(https://fludetector.cs.ucl.ac.uk/).

https://fludetector.cs.ucl.ac.uk/


Impact Statement

In this thesis, we focus on improving disease surveillance using online user-

generated content. Within academia, we made three contributions. First, we pro-

posed a joint feature selection method, which consists of a time series similarity

filter and a semantic filter. The former filter is based on Pearson correlation, and en-

sures the features remained are potentially good predictors. The later semantic filter

is based on word embeddings, and succeeds in eliminating confounding features,

i.e. queries that may be highly correlated with disease rates, but are not referring to

the target disease. Second, we investigated the utility of multi-task learning tech-

niques to disease surveillance from Web search data. Several related disease surveil-

lance models from different geographies are jointly trained using linear (multi-task

elastic net) and nonlinear (multi-task Gaussian Processes) models. The data struc-

tures are shared during joint training, which exploits the relatedness between tasks

and improves the generalization of the model. Third, we proposed a transfer learn-

ing framework for delivering considerably accurate disease rate models without the

existence of ground truth information for a target location. Our framework consists

of three steps: (1) learn a regularized regression model for a source country, (2) map

the source queries to target ones using semantic and temporal similarity metrics, and

(3) re-adjust the weights of the target queries.

Outside of academia, this work improves the entire public health cycle. We

estimate disease rates in real-time, and this complements traditional disease surveil-

lance in monitoring the health of a population, i.e. the assessment in a public health

cycle. In addition, our estimations are 2 to 3 weeks ahead of the official numbers

published by established health agencies. This can provide an early warning before
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epidemics happen and affect the public health policy development. Our work can

also be used to evaluate the effectiveness of the policies.

Web-based disease surveillance systems can be used for both developed coun-

tries where well-established health systems exist and ground truth is sufficient, and

low and middle income countries where such well-established health infrastructure

is missing and ground truth partially and does not exist. For developed countries,

although well-established health systems exist, there is usually several weeks delay

on reporting. Web-based disease surveillance can complement traditional disease

surveillance systems by providing accurate estimates of disease rates in (nearly)

real-time. For low and middle income countries, where ground truth only partially

or does not exist, multi-task and transfer-learning techniques can be used to provide

accurate disease rate estimation.
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Chapter 1

Introduction

Infectious diseases pose significant risks. Historically, the “Black Death” bubonic

plague of the 14th century is estimated to have killed 75 to 100 million people,

which was 30 to 60% of Europe’s total population (Gottfried, 2010; Ziegler, 2013);

the Spanish flu of 1918-1920 is estimated to have killed 50 to 100 million people,

which is 3 to 5% of the world’s population (Johnson and Mueller, 2002). The last

century has witnessed great achievements in medical and pharmaceutical science,

but infectious diseases remain as serious threats. An estimate of 31 to 35 million

people in the world are HIV-affected (World Health Organization, 2006). Infec-

tious diseases can spread rapidly, and threaten people worldwide. For example, the

Ebola virus epidemic in 2014 has 28,502 reported cases resulting in 11,312 deaths

in several months (World Health Organization, 2014). Various types of methods

have been developed to reduce the risk of infectious disease outbreaks, including

the development of new drugs, improvement of therapies, promotion of personal

behavior, introduction of vaccination programs, hospital infection control, and dis-

ease surveillance (Wagner et al., 2011).

Disease surveillance plays a crucial role in detecting or anticipating disease

outbreaks. It is the continuous, systematic collection, analysis, and interpretation of

large volumes of health-related data.1 Broadly speaking, disease surveillance has

five goals: 1) evaluate the effectiveness of control and preventative health measures,

2) monitor changes in infectious agents, e.g. trends in development of antimicrobial

1http://www.who.int/topics/public health surveillance/

http://www.who.int/topics/public_health_surveillance/
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resistance, 3) support health planning and allocation of appropriate resources within

the healthcare system, 4) identify high risk populations or areas to target interven-

tions, and 5) provide a valuable archive of disease activity for future reference.2 A

key part of modern disease surveillance is the practice of disease case reporting.

In order to make disease surveillance effective, the collection of surveillance data

must be standardized on a national basis and be made available at local, regional,

and national level.

Syndromic surveillance is a type of disease surveillance. It refers to the surveil-

lance of a specific syndrome (a set of related symptoms). Syndromic surveillance

uses case definitions that are based entirely on clinical features without any clini-

cal or laboratory diagnosis (for example, collecting the number of cases of diarrhea

rather than cases of cholera, or “rash illness” rather than measles). Without labora-

tory confirmation, syndromic surveillance is inexpensive and faster (Jamison et al.,

2006). However, because of the lack of specificity, syndromic surveillance reports

require more investigation from higher levels. For example, a “rash illness” could be

anything from the relatively minor rubella to devastating hemorrhagic fevers. Also

an increase in one disease causing a syndrome may mask an epidemic of another

(for example, rotavirus diarrhea decreases at the same time cholera increases).

The rest of this chapter is structured as follows. In Section 1.1, we review dif-

ferent sources of data for disease surveillance and discuss their limitations. Then,

we introduce Web-based disease surveillance in Section 1.2, which utilizes online

user-generated content. In Section 1.3, we describe our research problems and con-

tributions. Finally, we present the structure of the thesis in Section 1.4.

1.1 Sources of Data for Disease Surveillance

Traditionally, there are two main sources of data for disease surveillance: surveys

and clinical records.

2http://www.hpsc.ie/abouthpsc/whatisdiseasesurveillance/

http://www.hpsc.ie/abouthpsc/whatisdiseasesurveillance/
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1.1.1 Surveys

Surveys have long been used for health study. There are several, large-scale surveys

run on a regular basis to provide health-related data. Some surveys are based on

telephone interviews. For example, Behavioral Risk Factor Surveillance Systems

(BRFSS) collects data about United States (US) residents regarding their health-

related risk behavior, chronic health conditions, and use of preventive services

through health-related telephone surveys.3 It runs annually and collects detailed

data from more than 400,000 people.

There are also surveys that rely on in-person interviews, such as the annual US

National Survey on Drug Use and Health (NSDUH).4 NSDUH is conducted every

year to provide information on tobacco, alcohol, and drug use, mental health and

other health-related issues in the US. The information is used to support preven-

tion and treatment programs, monitor substance use trends, estimate the need for

treatment, and inform public health policy.

Apart from telephone and in-person surveys, Web-based surveys are becoming

popular due to their low cost (Cook et al., 2000; Eysenbach and Wyatt, 2002). An

example is Flusurvey in the United Kingdom (UK).5 Flusurvey is an online survey

that monitors trends of influenza-like illness (ILI) in the community. Any member

of the UK public can register the platform to report flu like symptoms they may

experience during the winter months.

1.1.2 Clinical Records

The second traditional data source for disease surveillance is clinical records. An

example is Influenza-Like Illness Surveillance Network (ILINet)6 of Centers for

Disease Control and Prevention (CDC)7. ILINet consists of more than 2,800 en-

rolled outpatient healthcare providers in the US reporting more than 39 million

patient visits each year. Each week, approximately 2,000 outpatient healthcare

providers around the country report data to CDC on the total number of patients
3BRFSS, https://www.cdc.gov/brfss/
4NSDUH, https://nsduhweb.rti.org/respweb/
5Flusurvey, https://flusurvey.net/
6ILINet, https://www.health.ny.gov/diseases/communicable/influenza/surveillance/ilinet program/
7CDC, https://www.cdc.gov/

https://www.cdc.gov/brfss/
https://nsduhweb.rti.org/respweb/homepage.cfm
https://flusurvey.net/
https://www.health.ny.gov/diseases/communicable/influenza/surveillance/ilinet_program/
https://www.cdc.gov/
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seen for any reason and the number of those patients with ILI, i.e. ILI rates. Sim-

ilarly, the European Centre for Disease Prevention and Control (ECDC)8 has de-

veloped European Influenza Surveillance Network (EISN) and publish weekly ILI

rates through Flu News Europe.9 These large-scale surveillance networks require

significant coordination as they rely on active reporting from clinics.

1.1.3 Other Data Sources

While surveys and clinical records are the most common data sources, researchers

are actively seeking new data sources for disease surveillance. These include mon-

itoring sales of over-the-counter drug sales and pharmacy records (Heffernan et al.,

2004; Magruder et al., 2004) to track gastrointestinal illness (Edge et al., 2004),

utilizing absenteeism records of public or private schools to monitor influenza ac-

tivity (Mook et al., 2007; Cheng et al., 2013), monitoring call records of emergency

call centers (Yih et al., 2009; Hiller et al., 2013) for detection of ILI, and using

insurance company billing records to track cardiovascular diseases (Lentine et al.,

2009).

1.1.4 Limitations of Traditional Data Sources

Traditional data sources have their advantages. In general, the data is analyzed with

biased corrected. Furthermore, many of these data sources date back many years,

enabling us to make comparisons over time. However, traditional data sources have

their limitations.

The phone surveys become less accurate over time, as more people do not use

landline phones. This introduces the bias against low-income young people in sur-

vey results (Blumberg and Luke, 2007). In-person interviews are hard to conduct,

especially when the survey size is large (Iannacchione, 2011).

Clinical records address some of these issues, but they are expensive to obtain,

as large health monitoring systems need to be established (Wagner et al., 2011; Paul

and Dredze, 2017). In addition, clinical records are in unstructured text, making

them complex to analyze. Furthermore, clinical records can only cover certain top-

8ECDC, https://ecdc.europa.eu/
9Flu News Europe, https://flunewseurope.org/

https://ecdc.europa.eu/
https://flunewseurope.org/
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ics, and many areas of health are hard to study because they lack sufficient data.

For example, mental health disorders are still understudied using traditional data

sources (Ofran et al., 2012; Yom-Tov et al., 2014).

1.2 Web-based Disease Surveillance

The limitations of traditional data sources creates opportunities for Web-based dis-

ease surveillance. Web-based disease surveillance utilizes online user-generated

content as a data source. Online user generated content is electronic data created

by users of an online system or service. They can be any form of content such as

search queries log, blogs, wikis, discussion forums, posts, chats, tweets and other

forms of media (Moens et al., 2014). A survey of Pew Research Centre found that

more than 70% of US Internet users consult the Internet when they require medical

information (Fox and Duggan, 2013). The user-generated content created by people

who seek information on the Web, offers an unprecedented opportunity for building

a new class of syndromic surveillance systems. Compared to other data sources, on-

line user-generated content is fast, cheap, covers a larger population, and provides

data on topics with little coverage from traditional sources. Traditional disease

surveillance systems can be complemented with disease surveillance systems that

utilize user-generated content. For the past decade, online user-generated content

has been used in a variety of ways (Ginsberg et al., 2009; Lampos and Cristianini,

2010; Gomide et al., 2011; Paul et al., 2014; Fung et al., 2014; Eschler et al., 2015;

Zou et al., 2016; McGough et al., 2017).

Wagner et al. (2011) defined three aspects to judge whether a data source is

suitable for disease surveillance systems (1) information value, (2) availability, and

(3) cost. Online user-generated content fulfills these three criteria. First, a num-

ber of works have shown that online user-generated content contains information of

offline behavior (Heaivilin et al., 2011; Cobb et al., 2011; Paul and Dredze, 2013).

Second, user-generated content is online and much of them can be accessed through

an Application Programming Interface (API). Third, obtaining user-generated con-

tent is timely and inexpensive.
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Despite the benefits of utilizing user-generated content for health research,

concerns have been raised about the quality of online health information (Cline

and Haynes, 2001). Firstly, user-generated content can be noisy and ambiguous.

For example, tweet “I had Bieber fever” does not mean a person had a health prob-

lem. In addition, truthfulness of user-generated content has to be examined. Pelleg

et al. (2012) explored personal topics such as body measurements, income and sex-

ual behavior on Yahoo Answers, and found that Web users exhibit a low level of

truthfulness on some topics, especially when the topics are personal and sensitive.

1.3 Research Problems and Contributions
In this thesis, we focus on improving disease surveillance systems using online

user-generated content, through machine learning (ML) and natural language pro-

cessing (NLP) techniques. The aim of disease surveillance is to infer disease rates

as reported by established health agencies (e.g. CDC and ECDC). In this thesis, we

make three contributions to disease surveillance.

1.3.1 Enhancing Feature Selection using Word Embeddings

Disease surveillance systems based on user-generated content often rely on the iden-

tification of textual markers (e.g. queries or a set of terms) that are related to a

target disease. Given the high volume of available data, these systems benefit from

an automatic feature selection process. This is accomplished by applying statisti-

cal learning techniques, which do not consider the semantic relationship between

the selected features and the inference task, or by developing labour-intensive text

classifiers.

In Chapter 3, we take advantage of current developments in statistical NLP

and propose a feature selection method based on neural word embeddings and cor-

relation. Word embeddings is used in an unsupervised manner to determine how

strongly textual features are semantically linked to an underlying health concept.

We then refine conventional feature selection methods by a priori operating on tex-

tual variables that are sufficiently close to a target concept. We evaluate our method

on two large-scale, practical, text regression tasks, specifically the estimation of
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ILI rates and infectious intestinal disease rates from search query frequencies. Our

empirical analysis shows that the proposed feature selection method provides signif-

icant performance gains under both linear and nonlinear regression models. Qual-

itative insights indicate that this is due to the topicality of the maintained textual

features.

1.3.2 Multi-Task Learning for Disease Surveillance

Disease surveillance models using user-generated content are predominantly based

on single-task learning methods (Polgreen et al., 2008; Ginsberg et al., 2009; Cu-

lotta, 2010; Paul et al., 2014; Lampos et al., 2015; Yang et al., 2015). These models

do not consider the relations of data and model across different geographies. They

also do not consider the situation where ground truth (disease rates) is insufficient

for training a model.

In Chapter 4, we focus on these two problems and investigate the utility of

multi-task learning to disease surveillance using Web search data. Our motivation

is twofold. First, we assess whether concurrently training models for various ge-

ographies can improve accuracy. Second, we test the ability of such models to

assist health systems that are producing sporadic disease surveillance reports that

reduce the quantity of available training data. We explore both linear and nonlinear

regression models, namely multi-task elastic net (Lee et al., 2010) and multi-task

Gaussian Processes (Bonilla et al., 2007), comparing them to their respective single

task formulations. A case study on ILI rates estimation show that multi-task learn-

ing can improve regional and national models. Furthermore, in simulated scenarios,

where only limited training data is available, we show that multi-task learning main-

tains a stable performance across all the affected locations.

1.3.3 Transfer Learning for Disease Surveillance

A considerable body of research has demonstrated that online search data can be

used to complement current syndromic surveillance systems. The vast majority of

previous work proposes solutions that are based on supervised learning paradigms,

in which historical disease rates are required for training a model. However, for
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many geographical regions this information is either sparse or not available due to

poor health infrastructure. It is these regions that have the most to benefit from

inferring population health statistics from online user search activity.

In Chapter 5, we address this issue and propose a statistical framework in

which we first learn a supervised model for a region with adequate historical disease

rates, and then transfer it to a target region, where no syndromic surveillance data

exists. This transfer learning solution consists of three steps: (1) learn a regularized

regression model for a source country, (2) map the source queries to target ones

using semantic and temporal similarity metrics, and (3) re-adjust the weights of the

target queries. Our solution is evaluated on the task of estimating ILI rates. We

learn a source model for the US, and subsequently transfer it to three other coun-

tries, namely France, Spain and Australia. We use the existing ILI rates in the target

countries only to evaluate our estimates. Overall, the transferred (unsupervised)

models achieve strong performance in terms of Pearson correlation with the ground

truth, and their mean absolute error does not deviate greatly from a fully supervised

baseline.

1.3.4 Summarized Contributions

The scientific contributions of this thesis are threefold.

First, a feature selection method, which consists of a time series similarity fil-

ter and a semantic similarity filter, is proposed for disease surveillance. The former

filter ensures the selected features are potentially good predictors, while the seman-

tic filter succeeds in eliminating some confounding features, i.e. queries that may

be highly correlated with disease rates, but are not referring to the target disease.

The method is also applicable to more general text regression tasks.

Second, a multi-task learning framework is proposed for disease surveillance,

where a number of disease surveillances models are jointly trained. In particu-

lar, multi-task elastic net and multi-task Gaussian Processes are applied to disease

surveillance. The framework improves the generalization of a model by taking ad-

vantage of shared structures in the data.

Third, a transfer learning framework is proposed for delivering accurate dis-
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ease rate models without the existence of ground truth information for a target loca-

tion. After learning a regularized regression model for a source country, the frame-

work maps the source queries to target ones using semantic and temporal similarity

metrics, and finally re-adjusts the weights of the target queries.

Besides these significant scientific innovations, extensive and repeatable exper-

iments on large-scale real-world data have been performed to verify the effective-

ness of each proposed solution. The proposed solutions are included in an official

report of Public Health England. More importantly, the proposed solutions are gen-

eralized solutions and applicable to other disease surveillance models.

In summary, the scientific and empirical contributions of this research are

significant in terms of building disease surveillance systems using online user-

generated content.

1.4 Thesis Structure
The rest of this thesis is organized as follows. In Chapter 2, we perform a literature

review of related techniques and their connections to our research. In Chapter 3, we

propose a feature selection method that considers not only the time series similar-

ity, but also topicality of features. In Chapter 4, we propose a multi-task learning

framework for disease surveillance. In Chapter 5, we propose a transfer learning

framework for disease surveillance. Finally, we conclude this thesis and discuss

future research work in Chapter 6.





Chapter 2

Related Work

In this thesis, we focus on improving real-time disease surveillance systems using

user-generated content from the Web, through machine learning and natural lan-

guage processing techniques. The aim of disease surveillance is to infer disease

rates as reported by established health surveillance systems. A common framework

to tackle this challenge is presented in Figure 2.1. The framework consists of five

steps: (1) acquire data from the Web, (2) extract features from the Web data, (3)

select features from extracted features, (4) train supervised learning models, and (5)

estimate disease rates and provide early warning before disease outbreak happens.

In the first step, we retrieve user-generated content from the Web. We discuss

different kinds of user-generated content in Section 2.1. In the second step, we iden-

tify a set of textual markers that are related to a target disease, such as search queries

or a contiguous sequence of n items from a given text (known as n-grams), and then

extract frequencies of these textual markers from the user-generated content. Fea-

ture extraction techniques are discussed in Section 2.2. Given the high volume of

available data, the number of extracted features is usually large. Therefore, in the

third step, we perform feature selection to reduce the number of features. Sec-

tion 2.3 review and discuss different feature selection methods. In the fourth step,

we train supervised learning (regression) models using selected features and disease

rates obtained from established health agencies. Linear and nonlinear regression

models are discussed in Section 2.4. Finally, we make the inference of disease rates

in the fifth step. Different evaluation metrics are reviewed in Section 2.5.
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Figure 2.1: Web-based disease surveillance framework.

Step 1: Acquire Web Data

Step 2: Feature Extraction

Step 3: Feature Selection

Selected Features Historical Disease Rates

Step 4: Train Disease Surveillance Model

Step 5: Estimate Disease Rates

2.1 Web Data

In the last decade, there is an increasing trend in utilizing online user-generated

content to study health issues. User-generated content is electronic data created by

users of an online system or service. They can be any form of content such as search

queries log, blogs, wikis, discussion forums, posts, chats, tweets and other forms of

media (Moens et al., 2014). Different kinds of health issues have been studied using

user-generated content, such as influenza surveillance (Polgreen et al., 2008; Gins-

berg et al., 2009; Lampos and Cristianini, 2010; Culotta, 2010; Paul et al., 2014;

Yang et al., 2015; Lampos et al., 2017; Zou et al., 2018), dengue (Gomide et al.,

2011; Gluskin et al., 2014; Li et al., 2017), ebola virus diseases (Fung et al., 2014;

Odlum and Yoon, 2015), Zika virus (Juric et al., 2017; Miller et al., 2017; McGough

et al., 2017), cancer (Ofran et al., 2012; Eschler et al., 2015; Paul et al., 2016), diet

and fitness (Abbar et al., 2015; Garimella et al., 2016; Zou et al., 2016). In gen-
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eral, user-generated content is created by ordinary people, rather than professional

writers or domain experts such as medical doctors.

User-generated content can be collected in two ways: explicitly and implic-

itly (Krumm et al., 2008). In the process of explicit data gathering, users interact

with client controls and understand that they are inputting data (e.g. rating a video,

uploading a picture on Facebook, and tweeting moods), while, in the process of

implicit data gathering, users perform events that are tracked but they may not un-

derstand their actions are being monitored (e.g. using search engines, watching a

video, and clicking a link). User-generated content comes in many forms. Different

online platforms and websites exist for different audiences and different purposes,

and different platforms may be better suited for particular health goals. In this sec-

tion, we review some commonly used user-generated content. We first present the

statistics on commonly used data sources, then we discuss their use for public health

in details separately.

2.1.1 Statistics on Commonly used Web Data

In Table 2.1, we present the statistics of commonly used Web data sources. The

statistics are obtained from surveys conducted by the Pew Research Center. The

survey of search engine use was conducted by Purcell et al. (2012); the survey of

Wikipedia use was conducted by Zickuhr and Rainie (2012); the survey of Twitter,

Facebook, LinkedIn, Instagram, and Pinterest was conducted by (Greenwood et al.,

2016). The statistics include

• Online adults use, which defines the percentage of online adults who use the data

source.

• Gender, which includes men and women.

• Age, which includes 4 age groups, 18−29, 30−49, 50−64, and 65+.

• Education background, which includes 3 categories, high school degrees or less,

college, and college+.
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• Income level, which includes less than $30K/year, $30K-$49,999, $50K-

$74,999, and $75,000+.

• Developed environments, which includes urban, suburban and rural.

• Frequencies of using the data, which includes daily, weekly, and less often.

• Data format, including text or images.

• Accessibility, which includes whether data is public or private, data collection

tools, and constraint on accessing the data.

• Ambiguity, which measures whether there is ambiguity in the data.

2.1.2 Search Data

Search queries are queries users enter into Web search engines to seek the infor-

mation they need. A query in a search engine suggests an interest in a topic, and

thus by analyzing what people are searching for, we can infer what people are inter-

ested in. Search data covers 91% of Internet users. Search is most popular among

young adult internet users, those who have been to college, and those with the high-

est household incomes. But it is not biased much in terms of gender, age, education

background or incomes. Search engines are widely used for seeking health informa-

tion online. According to a survey from the Pew Research, 72% adult internet users

in the US say they have searched online for information about a range of health

issues, the most popular being specific diseases and treatments.

Search engines, such as Google1, Bing2, Baidu3, and Yahoo4, log the queries

that are searched by users. Raw logs are private data, but some search engines make

aggregate statistics about query volumes publicly available through services such as

Google Trends. Figure 2.2 plots the weekly interest over time worldwide for query

“Ebola”. We can see that before August 2014, there is little interest in “Ebola” on

Google. From September 2014 to December 2014, the search volume of query

1Google, https://www.google.com/
2Bing, https://www.bing.com/
3Baidu, http://www.baidu.com/
4Yahoo Search, https://www.yahoo.com/

https://www.google.com/
https://www.bing.com/
http://www.baidu.com/
https://www.yahoo.com/
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Figure 2.2: Weekly interest over time for query “Ebola” worldwide on Google from Octo-
ber 2013 to October 2016. The data was obtained from Google Trends on 26 Aug, 2018.

“Ebola” increases dramatically. This corresponds to the real-world event that Ebola

virus diseases spread inside and outside Africa. After January 2015, the interest

decreases to almost zero level, since Ebola virus diseases are under control.

Search data are one of the most popular data sources for disease surveillance.

For example, Polgreen et al. (2008) utilized search data from Yahoo to predict in-

fluenza activity. Ginsberg et al. (2009) provided early detection of influenza out-

breaks by monitoring search data on Google. The latter work became Google Flu

Trends. However, Google Flu Trends has been criticized for poor predictive per-

formance, underestimating or overstating the prevalence of flu (Lazer et al., 2014;

Santillana et al., 2014b). Following Google Flu Trends, a significant amount of

follow-up work has been conducted using search data (Xu et al., 2010; Cook et al.,

2011; Dugas et al., 2012; Copeland et al., 2013; Yuan et al., 2013; Stefansen, 2014;

Preis and Moat, 2014; Wang et al., 2015; Yang et al., 2015; Pollett et al., 2016;

Shin et al., 2016). Apart from influenza surveillance, search data have also been

used to study other diseases, such as chickenbox (Pelat et al., 2009; Valdivia and

Monge-Corella, 2010), dengue (Gomide et al., 2011; Gluskin et al., 2014; Li et al.,

2017), malaria (Ocampo et al., 2013), cancer (Ofran et al., 2012; Paul et al., 2016),

asthma (Ram et al., 2015), urinary tract infection (Rossignol et al., 2013), and sex-

ually transmitted infections (Johnson and Mehta, 2014).

Search data can also be analyzed from domain-specific websites, such as
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PubMed (Mosa et al., 2015).5 However, these data are often accessed through pri-

vate services not publicly obtainable. For example, Santillana et al. (2014a) utilized

the search data of UpToDate, which is a disease database used by clinicians, to

predict influenza prevalence in the US.6

One advantage of search data is that it can cover the situation when users have

serious and stigmatizing health conditions (e.g. HIV and sexually transmitted dis-

eases). However, search data often misses the reason behind the search. With a

query of several words, it is hard to investigate further. In addition, search data pub-

licly available is often aggregated across users and locations. This makes analysis

at the user level difficult.

2.1.3 Wikipedia

Wikipedia is a public source of browsing. Education level is the strongest predictor

of Wikipedia use. The collaborative encyclopedia is most popular among inter-

net users with at least a college degree, 69% of whom use the site. Additionally,

Wikipedia is generally more popular among those with annual household incomes

of at least $50,000, as well as with young adults: 62% of internet users under the

age of 30 using the service, compared with only 33% of internet users aged 65 and

older.

Page view statistics of Wikipedia can be obtained from the Wikipedia dumps

website.7 This data can be used to measure the levels of interest in articles such as

“Influenza” (McIver and Brownstein, 2014). Figure 2.3 shows the number of page

views for the “Influenza” article on Wikipedia, we can see that the high volume

appears between November to February each year. This corresponds to flu activity

in the real world. Generous et al. (2014) and Priedhorsky et al. (2017) also used

Wikipedia to investigate multiple diseases. However, Wikipedia logs do not contain

information about the locations of the readers, which makes location-focus studies

hard to undertake.

5PubMed, https://www.ncbi.nlm.nih.gov/pubmed/
6UpToDate, https://www.uptodate.com/
7Wikipedia dumps, https://dumps.wikimedia.org/

https://www.ncbi.nlm.nih.gov/pubmed/
https://www.uptodate.com/
https://dumps.wikimedia.org/
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Figure 2.3: Daily number of page views for the “Influenza” on Wikipedia from July 2015
to July 2018.

2.1.4 Microblogs

Microblogs, such as Twitter8 and Sina Weibo9, are social media platforms where

users share “status updates”. Twitter enables users to send and read short 140-

character “tweets”. Twitter can provide information of users such as their current

activities, locations, feelings, thoughts, and social surroundings. Microblogs are

designed for broadcasting information to a public audience. Hence, content on

these platforms is often public. For example, Twitter data are publicly accessible

through the Twitter API.10 By aggregating the words used by millions of Twitter

users, we can approximately infer the level of interest for a topic. Note that Twitter

streaming API only allows quite low volume (1%) tweets extraction, but keyword

match is available in Twitter Advanced Search.

According to Table 2.1, younger people are more likely than older to be on

Twitter. Some 36% of online adults ages 18−29 are on Twitter, more than triple the

share among online adults ages 65 and older (just 10% of whom are Twitter users).

Twitter is also more popular among the highly educated: 29% of internet users with

college degrees use Twitter, compared with 20% of those with high school degrees

or less.

Twitter is also a popular data source for disease surveillance. It has been

used to study influenza surveillance (De Quincey and Kostkova, 2009; Chew and

8Twitter, https://twitter.com/
9Weibo, https://www.weibo.com/

10Twitter API, https://developer.twitter.com/

https://twitter.com/
https://www.weibo.com/
https://developer.twitter.com/
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Eysenbach, 2010; Culotta, 2010; Lampos and Cristianini, 2010; Signorini et al.,

2011; Achrekar et al., 2012; Lamb et al., 2013; Velardi et al., 2014; Paul et al.,

2015; Sun et al., 2016), ebola virus diseases (Fung et al., 2014; Odlum and Yoon,

2015), infectious intestinal diseases (Diaz-Aviles and Stewart, 2012; Zou et al.,

2016), Zika virus (Juric et al., 2017; Miller et al., 2017), asthma rates (Zhang et al.,

2016; Dai et al., 2017), diabetes (Liu et al., 2016b), human immunodeficiency virus

(HIV) (Han et al., 2016; Young et al., 2017), cardiac diseases (Bosley et al., 2013),

suicide (Robinson et al., 2016), vaccination (Wagner et al., 2017). Weibo is mainly

used for studying health conditions from Chinese content (Zhang et al., 2014a; Sun

et al., 2014; Feng and Hossain, 2016; Li and Hu, 2016; Sun et al., 2017).

Twitter and Weibo are good sources for identifying common, real-time trends.

Topics like influenza are often discussed in the population at large, so it is well rep-

resented on Twitter. Microblogs also enables the study at user level, where search

data cannot. However, Twitter is unsuitable to study the serious and stigmatizing

health conditions. For instance, people are more likely to search for “I’ve been di-

agnosed with HIV”, than to tweet it. Furthermore, tweets can be ambiguous. For

example, tweet “I had Bieber fever” does not mean a person had a health problem.

In contrast, search queries, which usually consist of several terms, are topical and

less ambiguous.

2.1.5 Other Social Media Data

Social networks, such as Facebook and Linkedin, allow users to connect with each

other. Different from microblogs, where information is usually broadcasted, infor-

mation on social networks is only available to limited audience, such as friends.

Social networks are designed for maintaining relationships, and data are often pri-

vate. For these reasons, they are less commonly used for disease surveillance.

Some media sharing platforms, such as Instagram11 and Pinterest12, are pri-

marily used for sharing images and videos. Some specific behavior can be studied

using this data. For example, De Choudhury et al. (2016) studied dietary choice,

11Instagram, https://www.instagram.com/
12Pinterest, https://www.pinterest.com/

https://www.instagram.com/
https://www.pinterest.com/
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nutrition, and language in food desserts via Instagram. Morgan et al. (2010) studied

alcohol consumption, inebriated behavior, and recreational marijuana use using im-

ages and videos from MySpace13 and YouTube14. Social media sharing platforms

are often private, where data is difficult to access. In addition, information from

images and videos are harder to extract, compared to text data from microblogs and

search data.

User reviews are a specific type of social media, where users write reviews

of services and products. This data can also be used to study diseases. For ex-

ample, Yates and Goharian (2013) detected adverse drug effects from drug review

social media sites (askapatient.com, drugs.com, and drugratingz.com). Harrison

et al. (2014) monitored a restaurant review website, Yelp, to detect food poisoning

outbreaks.15 These kinds of domain-specific social media, are suitable for in-depth

studies of a specific health condition. Given a topic or product, usually in-depth

discussions from different users are available. This is especially good for topics

that are not common in the general population. Furthermore, this data may contain

years of data, making longitudinal study possible.

2.2 Feature Extraction
In disease surveillance, features are frequencies of keywords (e.g. a query or n-

grams) obtained from Web data. The core question is the choice of keywords. In

the following part, we review three methods for identifying these keywords.

In the first method, a keyword dictionary is manually defined, and an exact

match method is used to count the frequencies of these predefined keywords. For

example, Polgreen et al. (2008) extracted search queries that contain the terms “in-

fluenza” or “flu”, but do not contain the terms “bird”, “avian”, or “pandemic”.

Lampos and Cristianini (2010) defined a set of 41 n-grams expressing flu symp-

toms or relevant terminology, e.g. “fever”, “temperature”, “sore throat”, “infec-

tion”, “headache” and so on, then extracted the frequencies of these keywords from

13MySpace, https://myspace.com/
14YouTube, https://www.youtube.com/
15Yelp, https://www.yelp.com

https://myspace.com/
https://www.youtube.com/
https://www.yelp.com
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tweets collected from the streaming API as features. This method has also been

used in (Chew and Eysenbach, 2010; Culotta, 2010, 2013; Broniatowski et al., 2013;

Paul et al., 2014; Jin et al., 2014; Towers et al., 2015; Wong et al., 2017). Keyword

and phrase-based matching is thought to be especially effective for search queries,

which are typically very short and direct, compared to longer text, like social media

messages (Carmel et al., 2014). However, it is limited because it does not distin-

guish between different contexts in which words or phrases appear. For example,

not all tweets that mention “fever” indicate that the user is sick with fever; a tweet

might mean a user is very interested in a star (for example, “Bieber fever”) that is

irrelevant to disease surveillance.

The second method extends the first method using correlation. A dictionary

of keywords that are relevant to a target disease is firstly defined, then queries that

are highly correlated (in terms of frequencies) or co-occur with dictionary terms

are extracted as candidate queries. For example, Yang et al. (2015); Lampos et al.

(2015, 2017); Zou et al. (2018) utilized Google Correlate to identify queries that are

relevant to the flu topic.16 Zou et al. (2016) utilized the co-occurrence method to

identify terms that are correlated with gastrointestinal-related terms on tweets.

In the third method, topic modeling is used to find keywords relevant to a topic.

Topic modeling is a type of unsupervised learning. They are statistical models

that treat text documents as if they are composed of underlying “topics”, where

each topic is defined as a probability distribution over words and each document

is associated with a distribution over topics. Topics models cluster together words

into topics, which then allows documents with similar topics to be clustered. Topic

modeling methods have been used in (Brody and Elhadad, 2010; Paul and Dredze,

2011; Prier et al., 2011; Wang et al., 2014; Paul and Dredze, 2014; Chen et al.,

2016).

16Google Correlate, https://www.google.com/trends/correlate

https://www.google.com/trends/correlate
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2.3 Feature Selection
A prevalent paradigm, evident in disease surveillance, is the formulation of a super-

vised learning task based on a textual representation of user-generated content (Choi

and Varian, 2012; Rao et al., 2010). This often involves a large number of features,

but a moderate number of training samples. In such tasks, it is common to rely

on applying a statistical method to maintain the most relevant features (Lampos

et al., 2013; Park et al., 2015). In this section, we review relevant feature selection

methods.

According to (Liu and Motoda, 2012; Guyon and Elisseeff, 2003; Chan-

drashekar and Sahin, 2014), feature selection methods can be classified into three

categories: filter methods, wrapper methods and embedded methods. Filter meth-

ods select subsets of variables as a pre-processing step, independently of the chosen

features. Wrappers utilize the learning machine of interest as a black box to se-

lect subsets of variables according to their predictive capacity. Embedded methods

perform variable selection in the processing of training and are usually specific to

given learning machines. In disease surveillance, only filter methods and wrapper

methods have been used, so we only discuss these two.

2.3.1 Filter Methods

Filter methods use variable ranking techniques as the principal criteria for variable

selection. Variable ranking makes use of a scoring function computed from the fea-

tures and the ground truth (disease rates). This score function measures the feature’s

usefulness in predicting the target. Usually a high score is indicative of a valuable

variable and that we sort variables in decreasing order. Variable ranking is usually

a pre-processing step for selecting features (Kohavi and John, 1997).

Variance based methods are commonly used as filters. Given a threshold value,

a feature with a variance lower than the threshold will be removed, since it is not

informative. In disease surveillance, Pearson correlation is a widely used method

for feature selection. A feature that has a high correlation with target disease rates

(ground truth) is considered to be a good feature. The correlation method has been

used in many disease surveillance works, such as influenza (Culotta, 2010; Paul
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et al., 2014; Lampos et al., 2015; Yang et al., 2015; Lampos et al., 2017; Zou et al.,

2018), and infectious intestinal diseases (Zou et al., 2016). However, correlation

can only measure linear dependency.

Information theoretic metrics are also popular variable ranking criteria for fea-

ture selection. One such approach relies on empirical estimates of the mutual in-

formation the variable and the target. This criterion is a measure of dependency

between the density of variable features and the density of the target. The probabil-

ity densities can be estimated from frequency counts or an approximating method

such as Parzen windows (Torkkola, 2003). The advantage of information theoretic

criteria is that it can detect not only the linear, but also the nonlinear dependen-

cies between the variable and the target. It has been successfully used to detect the

causality between social media and stock prices in (Souza and Aste, 2016). How-

ever, information theoretic metrics are rarely used in disease surveillance. Because

this method ignores the time dependency of sample points when estimating the

probability density.

2.3.2 Embedded Methods

Embedded methods incorporate feature selection as part of the training process,

usually in a supervised learning setting. Embedded methods are more efficient since

they reach a solution faster by avoiding retraining a feature from scratch for every

variable subset investigated (Guyon and Elisseeff, 2003).

In disease surveillance, Lasso and elastic net are two embedded methods that

incorporate feature selection in the model training process. By including the `1

norm in the optimization function, weights of some features can shrunk to zero

during training, making the model able to select features. In section 2.4, we review

and discuss this method in more detail.

2.4 Inference
Inference models are the core part of the disease surveillance framework (see Fig-

ure 2.1). In this thesis, we focus on regression models, which map interest scores

to ground truth (gold standard) values from existing surveillance systems. In this



44 Chapter 2. Related Work

section, we first introduce the disease rates, which are ground truth, and then review

and discuss different linear and nonlinear regression models.

2.4.1 Mathematical Notations

In disease surveillance, our aim is to infer disease rates as reported by an established

health surveillance system using the frequencies of text markers we extract from

Web data (e.g. search queries and n-grams). We formulate this as a regression task,

where we learn a function

f : X→ y (2.1)

that maps the input space X ∈ Rn×p to the target variable y ∈ Rn; n denotes the

number of samples and p is the size of our feature space, i.e. the number of unique

text markers we consider. X contains normalized frequencies of text markers for

a specified time interval and y has the disease rates for the same time intervals as

reported by the health agency. A normalized frequency is defined as the count of

a text marker divided by the total number of queries or tweets during a fixed time

interval, e.g. one week.

2.4.2 Ground Truth

Disease surveillance models utilize supervised learning techniques, and disease

rates are used as ground truth for training the model. Different health agencies

have different definitions for disease rates. We take influenza as an example, and

review ILI rates defined in different countries.

In the US, ILI rates are published by CDC. These rates represent the average

percentage of all outpatient visits to health care providers normalized by the respec-

tive regional population figures and are records by CDC’s ILI surveillance network,

ILINet. ILI rates are weekly. CDC also publishes ILI rates for 10 regions defined

by Department of Health and Human Services (HHS).

In the UK, ILI rates are reported by the Royal College of General Practition-

ers (RCGP)17 and Public Health England (PHE)18. ILI rates represent the number

17RCGP, http://www.rcgp.org.uk/
18PHE, https://www.gov.uk/government/organisations/public-health-england

http://www.rcgp.org.uk/
https://www.gov.uk/government/organisations/public-health-england
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Figure 2.4: ILI rates of US, France, Spain, and Australia from September 2007 to Septem-
ber 2016.

of doctor consultations reporting ILI symptoms per 100,000 people. The data is

weekly, and PHE also report regional ILI rates for England, Wales, Scotland, and

Northern Ireland.

In France, ILI rates are published by French GPs Sentinelles Network (SN).19

As for the UK, ILI rates in France are weekly, and represent the number of ILI

cases seen in General Practices per 100,000 inhabitants. ILI rates in France are also

available at a regional level for 13 metropolitan regions.

In Spain, ILI rates are published by the Spanish Influenza Sentinel Surveillance

System (SISSS).20 The data is weekly, and represent the number of cases with ILI

symptoms per 100,000 people. Note that SISSS only report ILI rates during flu

seasons (from November to March next year, around 20 weeks). The data is only

available nationally.

In Australia, ILI rates are published by Australian Sentinel Practices Research

Network (ASPREN).21 The data is weekly, and represent the number of ILI cases

per 10,000 consultations. The data is only available nationally.

To better introduce the disease rates, in Figure 2.4 we plot ILI rates of some

countries. All ILI rates in the figure were converted to the same scale. Note that the

use of weekly average reporting are quite sensible in the light of reporting fluctua-

tions, e.g. weekends/holidays/sporting events. Web-based disease surveillance can

complement this.

19SN, https://websenti.u707.jussieu.fr/sentiweb/
20SISSS, http://www.eng.isciii.es/ISCIII/
21ASPREN, https://aspren.dmac.adelaide.edu.au/

https://websenti.u707.jussieu.fr/sentiweb/
http://www.eng.isciii.es/ISCIII/
https://aspren.dmac.adelaide.edu.au/
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2.4.3 Linear Regression

Given the input features X and disease rates y, the aim of linear regression is to find

a weight vector w ∈ Rp, such that

y = Xw+β , (2.2)

where β an intercept term. When the number of feature is 1, X is a vector, and the

model is simple linear regression; when the number of feature is bigger than 1, X is

a matrix, and the model is multiple linear regression.

After w and β are fixed, given a new observation x∗, the estimation can be

made using

y∗ = x∗w+β . (2.3)

In the following part, we review and discuss different methods for learning weight

vector w and intercept term β .

2.4.3.1 Ordinary Least Squares

Ordinary least squares is a type of linear least squares method for estimating the

unknown parameters in linear regression models. It is defined as

argmin
w,β

{
‖Xw+β −y‖2

2

}
, (2.4)

where ‖·‖2 is `2-norm. Given a vector x, `2-norm is defined as

‖x‖2 =

√
p

∑
i=1
|xi|2 . (2.5)

Equation (2.4) minimizes the squares of the difference between the predictions ŷ =

Xw+β and the target values y. We define

e = ŷ−y

= Xw+β −y ,
(2.6)
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where e is called the residual. Ordinary least squares minimizes the vertical distance

between the predicted points and the observed points.

In disease surveillance, ordinary least squares has been used in (Polgreen et al.,

2008) to predict influenza outbreaks. Ginsberg et al. (2009) also employed a linear

regression model. Compared to the work in (Polgreen et al., 2008), a logit func-

tion is used on input and output. Given input features X and disease rates y, their

formulation is

logit(y) = β + logit(X)w , (2.7)

where the logit function is defined as

logit(p) = log
(

p
1− p

)
, (2.8)

where p is a number between 0 and 1. Ordinary least squares are then used for

learning w and β . The logit function ensures the inferred values are always positive

and improves the performance when the range of features is huge. The logit function

can also be seen as applying a nonlinear transformation on the the input and output.

2.4.3.2 Ridge Regression

The analytical solution of the weight vector w to Equation (2.4) is

w = (XTX)−1XTy . (2.9)

When multicollinearity (also known as collinearity) exists in X, i.e. one prediction

variable in X can be linearly predicted from the others with a substantial degree

accuracy, (XTX)−1 may not exist or be close to zero. This causes the solution to

be highly unstable. The problem can be tackled by adding an `2-norm on w during

optimization. This is called ridge, and is given by

argmin
w,β

{
‖Xw+β −y‖2

2 +λ2 ‖w‖2
2

}
, (2.10)
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where ‖·‖2 is `2-norm, and λ2 is a parameter that controls the level of regularization.

Ridge regression can shrink some weights close to zero. Culotta (2010) utilized

ridge regression for predicting influenza epidemics.

2.4.3.3 Lasso

Ridge regression can handle multicollinearity, but it cannot perform feature selec-

tion. Least absolute shrinkage and selection operator (Lasso) added an `1-norm to

the optimization, and performs feature selection when learning w and β . Lasso is

defined as

argmin
w,β

{
‖Xw+β −y‖2

2 +λ1 ‖w‖1

}
, (2.11)

where ‖·‖1 is `1-norm, and λ1 is a parameter that controls the level of regularization.

`1-norm is defined as

‖x‖1 =
p

∑
i=1
|xi| . (2.12)

Different from Ridge regression that uses `2-norm as a regularizer, Lasso reg-

ularizes the coefficients w using `1-norm, which is the sum of coefficient absolute

values. This can shrink some weights to be zero, and consequently perform feature

selection. Lampos and Cristianini (2010) utilized Lasso for inferring ILI rates in

the UK.

2.4.3.4 Elastic Net

Lasso performs feature selection, but it cannot make a consistent selection of the

true model, when collinear predictors are present in the data. A more robust gen-

eralization of Lasso, namely elastic net, can be employed. Given X and y, the aim

of elastic net is to find a weight vector w ∈ Rp, such that y = Xw+β . The weight

vector is obtained by minimizing the following function

argmin
w,β

{
‖y−Xw−β‖2

2 +λ1 ‖w‖1 +λ2 ‖w‖2
2

}
, (2.13)

where ‖·‖1 and ‖·‖2
2 are `1-norm and `2-norm, λ1 and λ2 are parameters that control

the level of regularization. The first term of Equation (2.13) minimizes the residuals
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between our predictions Xw+β and the target values y, while the second and third

terms of Equation (2.13) add penalty on the weight vector w.

Elastic net can be seen as a generalization of the `1-norm regularization, known

as the Lasso (Tibshirani, 1996), because it also applies an `2-norm, or ridge (Hoerl

and Kennard, 1970), regularizer on the inferred weight vector. The combination of

the two regularizers encourages sparse solutions, thereby performing feature selec-

tion, and, at the same time, addresses model consistency problems that arise when

collinear predictors exist in the input space (Zhao and Yu, 2006). Elastic net has

been used in influenza surveillance (Lampos et al., 2015, 2017; Zou et al., 2018)

and infectious intestinal surveillance (Zou et al., 2016).

2.4.4 Nonlinear Regression

Linear regression models may ignore the presence of possible nonlinearities in the

data (Lampos et al., 2015). Thus, nonlinear regression models have been explored

for disease surveillance.

2.4.4.1 Kernel Methods

Kernel methods, especially Gaussian Processes (GP), have been used for disease

surveillance. Gaussian Processes is a family of statistical distributions. In a Gaus-

sian Process, each point in the input space is considered to be a random variable

that follows the Gaussian distribution, and the finite collection of these random vari-

ables follow a multivariate Gaussian distribution (Rasmussen and Williams, 2006).

Gaussian Processes can be utilized as a prior probability distribution over functions

in Bayesian inference for prediction. In the regression framework, Gaussian Pro-

cesses observed the coordinates X, and the vector of values y is just one sample

from a multivariate Gaussian distribution. For the inputs x,x′ ∈ Rp (both express-

ing rows of the input features X), our aim is to learn a function f : Rn→ R that is

drawn from a GP prior,

f∼ GP(µ(x), C(x,x′)), (2.14)

which means the random function f is distributed as a GP with mean function µ(x)

and covariance function C(x,x′).
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Gaussian Processes have been used to study influenza surveillance (Lampos

et al., 2015, 2017; Zou et al., 2018), and infectious intestinal diseases surveil-

lance (Zou et al., 2016).

2.4.4.2 Neural Networks

In the last decade, neural networks, in particular deep neural networks, have proved

to perform well in many ares of computer science, such as computer vision, natural

language processing and speech recognition (Goodfellow et al., 2016). Neural net-

works can be used for regression and classification tasks. However, for infectious

disease surveillance, only weekly ground truth are available, making deep neural

networks hard to train, since the number of parameters in deep neural networks is

much larger than the number of samples.

2.4.5 Forecasting Models

The linear and nonlinear regression models discussed above, focus on estimating the

disease rates for current week, i.e. they predict the present; in regression models,

the features are from the Web. Other features can also be included in regression

models. For example, a good feature is the trend itself: the previous weeks’s value

is a good feature for the current week. This is known as forecasting, which is a

process of making predictions of the future based on past and present data and most

commonly by analysis of trends.

Autoregressive models have also been used to forecast disease rates. Differ-

ent from regression models, an autoregressive moving average (ARMA) model

expresses the conditional mean of yt as a function of both past observations,

yt−1, . . . ,yt−a, and past residual terms, εt−1, . . . ,εt−b. The number of past obser-

vations that yt depends on, a, is the autoregressive (AR) degree. The number of past

innovations that yt depends on, b, is the moving average MA degree. The model is

denoted as ARMA(a,b), and is formulated as

yt = c+α1yt−1 + . . .+αayt−a + εt +θ1εt−1 + . . .+θbεt−b

= c+ εt +
a

∑
i=1

αiyt−i +
b

∑
i=1

θiεt−i

(2.15)
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where εt is an uncorrelated white noise error term with mean zero and constant

variance.

The autoregressive moving average model with exogenous inputs (ARMAX)

model (Box et al., 2015) refers to the model with a autoregressive terms, b moving

average terms and d exogenous inputs terms. This model contains the AR(a) and

MA(b) models and a linear combination of the last d terms of a known and external

time series Xt . It is given by:

yt = c+ εt +
a

∑
i=1

αiyt−i +
b

∑
i=1

θiεt−i +
d

∑
i=1

ηiXt−i . (2.16)

ARMA models have been used for influenza prediction from social me-

dia (Achrekar et al., 2012; Paul et al., 2014).

A commonly used extension to the linear autoregressive model is the autore-

gressive integrated moving average (ARIMA) model, which assumes an underly-

ing smooth behavior in the time series. ARIMA models are applied in the cases

where data is non-stationary, where an initial differencing step (corresponding to

the “integrated” part of the model) can be applied one or more times to eliminate

the non-stationarity. ARIMA models have also been used for predicting influenza

prevalence (Dugas et al., 2013; Preis and Moat, 2014; Broniatowski et al., 2015).

2.5 Evaluation Metrics
To evaluate the effectiveness of disease surveillance models, different evaluation

metrics are applied in the literature, including Pearson correlation, coefficient of

determination, mean absolute error, mean squared error, and root mean squared

error. In this section, we review and discuss these evaluation metrics.

2.5.1 Pearson Correlation

The Pearson correlation coefficient r, also known as Pearson product-moment cor-

relation coefficient, is a measure of the linear correlation between two variables.

It has a value between −1 and 1, where 1 is a total positive linear correlation, 0

is no linear correlation, and −1 is total negative linear correlation. It was devel-
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oped by Galton (1886) and Pearson (1895). Denote variable y as the disease rates

obtained from health agencies, and ŷ as the predicted disease rates by inference

models, Pearson correlation is defined as

r =
cov(y, ŷ)

σyσŷ

=
Syŷ√

Syy
√

Sŷŷ

=
∑

n
i=1(yi−µy)(ŷi−µŷ)√

∑
n
i=1(yi−µy)2

√
∑

n
i=1(yi−µŷ)2

,

(2.17)

where cov is the covariance, σy and σŷ are the standard deviations of y and ŷ, µy

and µŷ are the mean of y and ŷ, Syy and Sŷŷ are sum of squares for y and ŷ.

2.5.2 Coefficient of Determination

The coefficient of determination, denoted as R2, is the proportion of the variance in

the dependent variable that is predictable from the independent variables, i.e. the

fraction of the total variance that is explained by the linear relation between the

observed disease rates y and predicted disease rates ŷ. It is defined as

R2 = 1− Syŷ

Syy

= 1− ∑
n
i=1(yi− ŷi)

2

∑
n
i=1(yi−µy)2 ,

(2.18)

where Syŷ is the residual sum of squares between y and ŷ (Weisberg, 2005). We

investigate R2 further and have

R2 =
Syy−Syŷ

Syy

=

Syy−
(

Syy−
S2

yŷ
Sŷŷ

)
Syy

=
S2

yŷ

SyySŷŷ

= r2 ,

(2.19)
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Figure 2.5: Example showing that correlation that is invariant to linear transformation. The
figure plots time series of y1 and y2. Time series of y2 is generated through y2 = y1/10+2.
The correlation between y1 and y2 is 1.0. However, the difference between y1 and y2 is big.

and thus R2 is the same as the square of the correlation between y and ŷ. Coefficient

of determination R2 measures the goodness of linear fit of variables, and has a value

between 0 and 1.

2.5.3 A Discussion on Pearson Correlation and Coefficient of

Determination

Section 2.5.1 and 2.5.2 introduces Pearson correlation r and coefficient of determi-

nation R2. However, they can only detect the linear dependencies between y and ŷ.

Nonlinear preprocessing (e.g. squaring, taking the square, and the log) is needed

when we want to detect nonlinear relations between the variable and the target.

In addition, we should notice that correlation is invariant under separate

changes in location and scale in the two variables, i.e. it is invariant to linear trans-

formation. Sometimes correlation can be misleading. In Figure 2.5, we plot the time

series of y1 and y2, where time series of y2 is generated through y2 = y1/10+ 2.

The correlation between y1 and y2 is 1.0. However, the difference between y1 and

y2 is big, i.e. y2 is not a good estimation for y1. Therefore, when we evaluate the

effectiveness of disease surveillance models, we have to combine correlation r and

error metrics we define below. Correlation metrics are appropriate when the trends

are on different scales.
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2.5.4 Mean Absolute Error

Mean absolute error (MAE) is a measure of difference between two continuous

variables. Given the the disease rates obtained from health agencies y, and predicted

disease rates by inference models ŷ, mean absolute error is defined as

MAE =
1
n

n

∑
i=1
|yi− ŷi| . (2.20)

Mean absolute error is the average vertical distance between each point and the

y = ŷ line, which is also known as the One-to-One line. It has a value from 0 to

infinity. A MAE of 0 means y and ŷ are identical, i.e. we make a perfect prediction.

The bigger the MAE is, the worse the inference model is.

2.5.5 Mean Squared Error and Root Mean Square Error

Mean squared error (MSE) or mean squared deviation is similar to mean absolute

error, but they are different. MSE measures the average of the squares of the errors,

which is the average squared difference between the predicted disease rates ŷ and

the observed disease rates y. MSE is defined as

MSE =
1
n

n

∑
i=1

(yi− ŷi)
2 . (2.21)

Root mean square error (RMSE) or root mean squared deviation, represents the

square root of the differences between the predicted disease rates ŷ and the observed

disease rates y. RMSE is defined as

MSE =

√
1
n

n

∑
i=1

(yi− ŷi)
2 . (2.22)

2.5.6 A Discussion on Mean Absolute Error, Mean Squared Er-

ror, and Root Mean Squared Error

Both MAE and RMSE express average model prediction error in units of the vari-

able of interest, while MSE is in squared units. All three metrics range from 0

to infinity, and they are negatively oriented scores, which means lower values are



2.5. Evaluation Metrics 55

better.

We have to notice that MSE and RMSE have squared the errors, which means

MSE and RMSE give a relatively high weight to large errors. Therefore, MSE and

RMSE have the benefit of penalizing large errors more so can be more appropriate

in some cases. If a system makes small errors on average, but has some very large

errors, then those large errors will affect MSE (or RMSE) more than MAE. This

can be a useful property if we care about having no or few large errors, even if

that makes other errors slightly worse. If we focus on the performance of inference

models during outbreak periods, MSE or RMSE are more appropriate.

2.5.7 AIC and BIC

Another category of metrics measures model fit, i.e. how well the model ex-

plains or matches the data. Closely related to mean squared error is the log-

likelihood of the true values under the regression model. Akaike information cri-

terion (AIC) (Akaike, 1974) is a common metric that is based on log-likelihood,

but adjusts the score to penalize models with large numbers of parameters, since

more complex models models may not generalize well to future data. Another sim-

ilar metric, Bayesian information criterion (BIC) (Schwarz, 1978) can also be used.

They are defined by

AIC = n log
(

∑
n
i=1(yi− ŷi)

2

n

)
+ pC

BIC = n log
(

∑
n
i=1(yi− ŷi)

2

n

)
+ pC logn

(2.23)

where pC is the number of free parameters in the inference model.





Chapter 3

Enhancing Feature Selection using

Word Embeddings

A prevalent paradigm in disease surveillance is the formulation of a supervised

learning task based on a textual representation of user-generated content (Polgreen

et al., 2008; Lampos and Cristianini, 2010; Paul et al., 2014; Yang et al., 2015).

This often involves a large number of features, but a moderate number of training

samples, i.e. we have a p� n problem, where p denotes the number of features,

and n denotes the number of samples. When the problem appears, there are insuf-

ficient degrees of freedom to estimate the full model. To tackle the problem, it is

common to apply statistical methods that are able to project the data to a lower di-

mensional space or maintain the most relevant features (Lampos et al., 2013; Park

et al., 2015). This can be done using the statistical feature selection methods we

discussed in Section 2.3 such as Lasso, and elastic net. A common criticism of such

approaches is that some of the selected features may have little or no semantic link

to the regression task.

In Figure 3.1, we plot the frequencies of query “undergraduate internships”

(red line), “ski racing” (blue line), and “high school basketball teams” (green line)

in the US against the ILI rates obtained from CDC over a period of September

2008 to 2016. All frequencies of queries as well as the ILI rates are z-scored such

that they can be compared using the same scale.1 The three queries are highly

1Z-score is defined as z = x−µx
σx

, where µx and σx are the population mean and standard deviation.
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Figure 3.1: Example queries that are correlated with ILI rates but are irrelevant to the
“flu” topic. The black (dotted) line represent z-scored ILI rates obtained from CDC from
September 2008 to September 2016. The red, blue, and green lines represents z-scored
frequencies of queries that are highly correlated with ILI rates “undergraduate internships”
(r = 0.606, p < 0.01), “ski racing” (r = 0.552, p < 0.01), and “high school basketball
teams” (r = 0.581, p < 0.01) in US for the same period, respectively.

correlated with the time series of ILI rates. Query “undergraduate internships” has

a correlation of 0.606 with ILI rates (p < 0.01), query “ski racing” has a correlation

of 0.552 (p < 0.01), and query “high school basketball teams” has a correlation

of 0.581 (p < 0.01). These three events seasonally peak between December and

January each year, and this highly correlates with the seasonality of flu activity in

winter. However, these three queries are irrelevant to the “flu” topic, and using them

as features can potentially lead to errors.

To alleviate this effect, methods in natural language processing have incorpo-
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rated classification schemes, aiming to encourage a relatedness between the input

information and the target concept (Aramaki et al., 2011; Bollen et al., 2011; Choud-

hury et al., 2013; Paul and Dredze, 2011). However, the classification models often

require considerable human effort, especially in obtaining a sufficient number of

labels, and are limited to a specific task.

In this chapter, we take advantage of current developments in statistical natural

language processing and propose a method that is able to overcome the aforemen-

tioned deficiencies. We form general textual concepts by adopting word embed-

dings (Mikolov et al., 2013c), and then use them in conjunction with conventional

feature selection methods to encourage a level of topicality. This approach can be

regarded as an unsupervised classification layer that favors textual features that be-

long to a theme of interest. We evaluate our method on two large-scale, practical,

text regression tasks. In the first task, we infer the ILI rates from time series of

search query frequencies. Word embeddings are trained using microblogging text

snippets from Twitter. Supervised learning is conducted and evaluated using official

syndromic surveillance rates for ILI. Our empirical analysis shows that the proposed

joint feature selection method provides significant performance gains (from 12% to

28.7% of relative improvement) under both linear and nonlinear regression func-

tions. Qualitative insights indicate that this is due to the topicality of the maintained

textual features. In the second task, we estimate the number of Infectious Intestinal

Disease (IID) cases reported by traditional health surveillance methods from Twit-

ter. As a whole, our experimental results, both in terms of predictive performance

and semantic interpretation, indicate that Twitter data contain a signal that could be

strong enough to complement conventional methods for IID surveillance.

The contributions of this chapter are listed as follows.

• We introduce a new unsupervised approach for selecting textual features that are

relevant to a target concept without solely relying to statistical metrics, such as

correlation or regression analysis.

• The aforementioned approach is bound with conventional ways for feature selec-

tion, which significantly improves model reliability and, consequently, inference
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performance under linear as well as nonlinear regression models.

• We conduct experiments on two large-scale, practical, text regression tasks, i.e.

monitoring the ILI and gastrointestinal rates in a population, to verify the ef-

fectiveness of our proposed method. The significantly improved estimates are

showcased on a live web service, the “Flu Detector.”2

The rest of this chapter is structured as follows. We first review related work

in Section 3.1. Then we give an overview of the linear and non linear models that

we use for performing text regression in Section 3.2. We describe our approach in

utilizing word embeddings to create concepts and refine feature selection in Sec-

tion 3.3. To demonstrate the effectiveness of our proposed method, we conduct

a case study on influenza-like illness surveillance in Section 3.4 and another case

study on IID surveillance in 3.5. We finally conclude in Section 3.6.

3.1 Related Work
Regularization for feature selection has been routinely applied in supervised learn-

ing NLP tasks (Lampos et al., 2013; Owoputi et al., 2013; Yano et al., 2012). Word

embeddings have also facilitated a number of text regression approaches, such as

extending a financial lexicon for modeling risk (Tsai and Wang, 2014), or improv-

ing the inference of movie revenues based on textual reviews (Bitvai and Cohn,

2015). Notably, during initial experimentation we determined that using search

query embeddings directly as features in a regression model introduced a level of

compression that significantly reduced the inference performance.

Gaussian Processes models for text regression have provided solutions in NLP

applications (Bitvai and Cohn, 2015; Lampos et al., 2014; Preoţiuc-Pietro et al.,

2015). For flu surveillance from search queries, more advanced regression models

that accounted for potential internal structure (e.g. sub-clusters of search queries)

or embedded autoregressive components have been proposed (Lampos et al., 2015;

Yang et al., 2015). Here, we use a straightforward GP kernel that is more suitable

for directly assessing the predictive capacity of the selected features.

2Flu Detector, https://fludetector.cs.ucl.ac.uk/

https://fludetector.cs.ucl.ac.uk/
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Finally, many works have focused on disease text disambiguation by training

various forms of classifiers (Collier et al., 2011; Doan et al., 2012; Paul et al., 2014),

or developing laborious, task dependent NLP schemes (Lamb et al., 2013). In con-

trast, we have described an unsupervised, potentially task-independent approach for

achieving this.

3.2 Regression methods
In regression, we learn a function f that maps an input space X ∈ Rn×p (where n

and p respectively denote the number of samples and the dimensionality) to a target

variable y ∈Rn. Our input space X represents the frequency of p search queries (or

Ngrams in tweets) during n (weekly) time intervals. In text regression, we usually

operate with a high-dimensional textual feature space and a considerably smaller

number of samples (p� n). To mitigate the effects of overfitting, a standard ap-

proach is to introduce a degree of regularization during the optimization of f (Hastie

et al., 2009). We use a linear regression model elastic net, and a nonlinear regression

Gaussian Processes. Elastic net was described in Section 2.4.3.4; we only present

the Gaussian Processes approach here.

3.2.1 Nonlinear Regression using Gaussian Processes

Numerous applications have provided empirical proof for the predictive strength of

Gaussian Processes in Machine Translation tasks, text and multi-modal regression

problems (Beck et al., 2015; Cohn et al., 2014; Cohn and Specia, 2013; Lampos

et al., 2015; Preoţiuc-Pietro et al., 2015). One caveat is that Gaussian Processes are

not very efficient when operating in high dimensional spaces (Bull, 2011). Thus,

while we perform modeling with a nonlinear regressor, we rely on a pre-selected

subset of features.

As described in Section 2.4.4.1, Gaussian Processes are a family of statistical

distributions, and are specified through a mean and a covariance (or kernel) func-

tion, i.e.

f (x)∼ GP(µ(x),k(x,x′)) . (3.1)

By setting µ(x) = 0, a common practice in Gaussian Processes modeling, we focus
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only on the kernel function. We use the Matérn covariance function (Matérn, 1986)

to handle abrupt changes in the predictors given that the experiments are based on

a sample of the original Google search (or Twitter) data. It is defined as

k(ν)M (x,x′) =
21−ν

Γ(ν)

(√
2ν

`
r

)ν

Kν

(√
2ν

`
r

)
, (3.2)

where Kν is a modified Bessel function, ν is a positive constant,3 ` is the length-

scale parameter, and r = ‖x−x′‖2. We also use a squared exponential (SE) covari-

ance function to capture more smooth trends in the data, defined by

kSE(x,x′) = σ
2e−

r2

2`2 , (3.3)

where σ2 is the signal variance.

We have chosen to combine these kernels through a summation. Note that the

summation of Gaussian Processes kernels results in a new valid Gaussian Processes

kernel (Rasmussen and Williams, 2006). An additive kernel allows modeling with

a sum of independent functions, where each one can potentially account for a dif-

ferent type of structure in the data (Duvenaud, 2014). We are using two Matérn

functions (ν = 3/2) in an attempt to model long as well as medium (or short) term

irregularities, an SE kernel, and white noise. Thus, the final kernel is given by

k(x,x′) =
2

∑
i=1

(
k(ν=3/2)

M (x,x′;σi, `i)
)
+

+ kSE(x,x′;σ3, `3)+σ
2
4 δ (x,x′) ,

(3.4)

where δ is a Kronecker delta function, and σ2
4 is the noise variance.

The choice of this kernel structure was not arbitrary, but based on some initial

experimentation as the combination that provided a better fit to the training data

according to the negative log-marginal likelihood metric.

Given a new observation x∗, the joint distribution of the new observation and

3When ν → ∞, we obtain the SE covariance function.
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the function points at the test location under the prior is given by y

y∗

∼N
0,

K(X,X) K(X,x∗)

K(x∗,X) K(x∗,x∗)

 , (3.5)

where K represents the covariance matrix, which can be computed using Equa-

tion (3.4) element-wise. Deriving the conditional distribution we arrive at the key

predictive equations for Gaussian Processes regression

ȳ∗|X,y,x∗ ∼N (µ∗,σ2
∗ ) , (3.6)

where the prediction can be calculated through

µ∗ = E[y∗|y,X,x∗] = K(x∗,X)T(K(X,X))−1y , (3.7)

and the predictive uncertainty can be estimated by using the variance

σ
2
∗ = K(x∗,x∗)−K(x∗,X)T(K(X,X))−1K(x∗,X) . (3.8)

Observing Equation (3.4) we have 7 parameters in total. The parameters can

be learnt by minimizing the negative log marginal likelihood

log p(y|X)=−1
2

yT(K(X,X)+σ
2
n I)−1y− 1

2
log |K(X,X)+σ

2
n I|− n

2
log2π . (3.9)

3.3 Concept Formulation and Feature Selection
Word embeddings have been used as an input in various models and tasks in recent

years (Goldberg, 2016). Here we are formulating a method based on word embed-

ding similarities to encourage a more topical selection of features. This approach is

unsupervised, overcoming the burden of obtaining labels for training a topic classi-

fier. In this section, we first introduce word embeddings and the word2vec model we

use to train word embeddings, then we present our method of formulating concepts

and selecting features.
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3.3.1 Word Embeddings and Word2vec

Many natural language processing tasks use bag-of-words models and treat words

as atomic units - there is no notion of similarity between words, as these are repre-

sented as indices in a vocabulary. Such simple techniques have been successfully

applied in many natural language processing tasks (Brants et al., 2007). However,

bag-of-words models ignore the context of words and do not respect the seman-

tics of the word. For example, the words “car” and “automobile” are often used in

the same context. However, the vectors corresponding to these words are orthog-

onal in bag-of-words models. The problem become more serious while modeling

sentences. For examples, “buy used cars” and “purchase old automobiles” are rep-

resented by orthogonal vectors in bag-of-words models. But these two texts refer to

almost the same thing.

Recent studies show that distributed representations of words (or word embed-

dings) in a vector space help learning algorithms to achieve better performance in

natural language processing tasks by grouping similar words. They aim to quantify

semantic similarities between linguistic terms based on their distributional proper-

ties in large samples of language data. Many different types of models were pro-

posed for estimating continuous representations of words, including the well-known

Latent Semantic Analysis (LSA) (Dumais, 2004) and Latent Dirichlet Allocation

(LDA) (Blei et al., 2003). In this thesis, we focus on word embeddings learned by

Recurrent Neural Networks (RNN), as it was previously shown that they perform

significantly better for preserving linear regularities among words (Mikolov et al.,

2013d; Zhila et al., 2013); LDA moreover becomes computationally very expensive

on large data sets. In particular, we use the word2vec model proposed by Mikolov

et al. (2013c,a).

The RNN based language model was proposed to overcome certain limitations

of the feedforward neural network language model, such as the need to specify

the context length, and because theoretically RNN can efficiently represent more

complex patterns than shallow neural networks (Brants et al., 2007; Mikolov et al.,

2010). The RNN model does not have a projection layer; only input, hidden and
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Figure 1: New model architectures. The CBOW architecture predicts the current word based on the
context, and the Skip-gram predicts surrounding words given the current word.

R words from the future of the current word as correct labels. This will require us to do R ⇥ 2
word classifications, with the current word as input, and each of the R + R words as output. In the
following experiments, we use C = 10.

4 Results

To compare the quality of different versions of word vectors, previous papers typically use a table
showing example words and their most similar words, and understand them intuitively. Although
it is easy to show that word France is similar to Italy and perhaps some other countries, it is much
more challenging when subjecting those vectors in a more complex similarity task, as follows. We
follow previous observation that there can be many different types of similarities between words, for
example, word big is similar to bigger in the same sense that small is similar to smaller. Example
of another type of relationship can be word pairs big - biggest and small - smallest [20]. We further
denote two pairs of words with the same relationship as a question, as we can ask: ”What is the
word that is similar to small in the same sense as biggest is similar to big?”

Somewhat surprisingly, these questions can be answered by performing simple algebraic operations
with the vector representation of words. To find a word that is similar to small in the same sense as
biggest is similar to big, we can simply compute vector X = vector(”biggest”)�vector(”big”)+
vector(”small”). Then, we search in the vector space for the word closest to X measured by cosine
distance, and use it as the answer to the question (we discard the input question words during this
search). When the word vectors are well trained, it is possible to find the correct answer (word
smallest) using this method.

Finally, we found that when we train high dimensional word vectors on a large amount of data, the
resulting vectors can be used to answer very subtle semantic relationships between words, such as
a city and the country it belongs to, e.g. France is to Paris as Germany is to Berlin. Word vectors
with such semantic relationships could be used to improve many existing NLP applications, such
as machine translation, information retrieval and question answering systems, and may enable other
future applications yet to be invented.

5

Figure 3.2: Architectures of CBOW and Skip-gram. The CBOW architecture predicts the
current word based on the context, and the Skip-gram predicts surrounding words given the
current word.

output layer. What is special for this type of model is the recurrent matrix that

connects hidden layer to itself, using time-delayed connections. This allows the

recurrent model to form some kind of short term memory, as information from

the past can be represented by the hidden layer state that gets updated based on

the current input and the state of the hidden layer in the previous time step. The

most time complexity of RNN is caused by nonlinear hidden layer in the model.

The Continuous Bag of Words (CBOW) and Skip-Gram models are proposed to

improve efficiency (Mikolov et al., 2013a,c).

Figure 3.2 displays two architectures that can be used to efficiently train word

embeddings. CBOW is similar to the feedword neural networks language model,

where the nonlinear hidden layer is removed and the projection layer is shared for

all words; thus all words are projected into the same position. When predicting

the current word, CBOW not only consider previous words, but also future words.

Skip-gram model is similar to CBOW, but instead of predicting the current word

based on the text, it tries to predict surrounding words given the current word.
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Table 3.1: A set of concepts (C) with their defining positive and negative context Ngrams,
as well as the top-10 most similar search queries (using multiplicative cosine similarity on
their embedding representations). Concepts C1 to C5 are based on Twitter content, whereas
C6 is based on Wikipedia articles. Reformulations of a search query with the inclusion of
stop words or a different term ordering are not shown.

ID Concept Positive context Negative
context Most similar search queries

C1 flu infection
#flu, fever, flu,
flu medicine,
gp, hospital

bieber, ebola,
wikipedia

cold flu medicine, flu aches, cold
and flu, cold flu symptoms, colds
and flu, flu jab cold, tylenol cold
and sinus, flu medicine, cold sore
medication, cold sore medicine

C2 flu infection
flu, flu fever, flu
symptoms, flu

treatment
ebola, reflux

flu, flu duration, flu mist, flu
shots, cold and flu, how to treat
the flu, flu near you, 1918 flu,
colds and flu, sainsburys flu jab

C3 flu infection
flu, flu gp, flu
hospital, flu

medicine

ebola,
wikipedia

flu aches, flu, colds and flu, cold
and flu, cold flu medicine, flu
jab cold, flu jabs, flu stomach
cramps, flu medicine, sainsburys
flu jab

C4
infectious

disease

cholera, ebola,
flu, hiv,

norovirus, zika
diabetes

cholera, cholera outbreak,
norovirus outbreak, ebola out-
break, norovirus, virus outbreak,
ebola virus, ebola, swine flu
outbreak, flu outbreak

C5 health
doctors, health,
healthcare, nhs

cinema,
football

vaccinations nhs, nhs dental, nhs
sexual health, nhs nurses, nhs
doctors, nhs appendicitis, nhs
pneumonia, physiotherapy nhs

C6

gastro-
intestinal
disease

diarrhoea, food
poisoning,
hospital,

salmonella,
vomit

ebola, flu

tummy ache, nausea, feeling nau-
sea, nausea and vomiting, bloated
tummy, dull stomach ache, heart-
burn, feeling bloated, aches,
belly ache

C7
flu infection
(Wikipedia)

fever, flu, flu
medicine, gp,

hospital

bieber, ebola,
wikipedia

flu epidemic, flu, dispensary, hos-
pital, sanatorium, fever, flu out-
break, epidemic, flu medicine,
doctors hospital
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3.3.2 Semantic Feature Selection

We consider a search query q to be a set of t textual tokens, {ε1, . . . ,εt}, where

standard English stop words are ignored.4 The embedding of q, eq, is estimated by

averaging across the embeddings of its tokens, that is

eq =
1
t

t

∑
i=1

eεi , (3.10)

where eεi denotes the word embedding of a search query token εi. Using word

embeddings we also form themes of interest, and we refer to them as concepts. A

concept C(P,N ) consists of a set of related or positive Ngrams, {P1, . . . ,Pk}, and

a set of non related or negative ones, {N1, . . . ,Nz}. When the number of grams is

bigger than 1, we retrieve the average embedding across the unigrams.

We then compute a similarity score, S (q,C), between query embeddings and

the formulated concept, using an extended version of the multiplicative cosine sim-

ilarity (3COSMUL) introduced by Levy et al. (2014):

S (q,C) = ∏
k
i=1 cos

(
eq,ePi

)
∏

z
j=1 cos

(
eq,eN j

)
+ γ

. (3.11)

The numerator and denominator of Eq. (3.11) are products of cosine similarities be-

tween the embedding of the search query and each positive or negative concept term

respectively. All cosine similarities (x) are transformed to the interval [0,1] through

(x+1)/2 to avoid negative sub-scores, a γ = 0.001 is added to the denominator to

prevent division with zero, and we always set k > z so that the positive similarity

part is more dominant than the negative. A multiplicative similarity is used as it is

shown to be more balanced than an additive one, resulting in superior performance

in various tasks (Levy et al., 2014, 2015). However, we note that the extension

applied here (using more than 2 positive and 1 negative terms) has not received a

dedicated evaluation in the literature, something that is hard given its unconstrained

nature.

4We use a standard English language stop word list as defined in the NLTK software library
(http://www.nltk.org).

http://www.nltk.org
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Table 3.1 lists the concepts we formed and experimented with in our empirical

analysis. After deriving a concept similarity score (S) for each search query, we

begin filtering out queries that are below the mean score (µS), and refine this further

using standard deviation steps (σS). Essentially, this creates an unsupervised query

topic classifier, where the only driver is a few contextual keywords that may need

to be manually decided, perhaps with the assistance of an expert. Note that due

to this reason, our approach is partially supervised. However, compared to build-

ing a classifier with a large number of manual labels (Paul and Dredze, 2014; Paul

et al., 2014), the only manual effort is to define a few contextual keywords. We still

consider this as an unsupervised learning approach. As described in the following

sections, the optimal performance (in terms of MAE) is obtained when a broad ver-

sion of this similarity based filter is combined with more traditional feature selection

methods.

3.4 Case Study 1: Influenza-Like Illness Surveillance

To evaluate the effectiveness of the word embedding based semantic feature se-

lection method, we apply it in the task of inferring ILI rates in England. We first

assess the predictive capacity of the semantic feature selection method using elastic

net. We then present strong performance baselines obtained by selecting the input

features to elastic net based on their bivariate Pearson correlation with the target

variable. We use correlation based feature selection to refer to this combination of

bivariate linear correlation and elastic net regression. Finally, we propose a feature

selection that combines the above two approaches, showcasing significant perfor-

mance gains. The selected features from the various investigated feature selection

approaches are also tested under the Gaussian Processes regressor described in Sec-

tion 3.2.1.

3.4.1 Data Sets

Two data streams were used in our experiments: Google data and official health

surveillance records obtained from PHE.
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3.4.1.1 Google Data

The core input, user-generated data set for our supervised learning task was formed

by time series of search query frequencies. It is a non standardized version of

the publicly available Google Trends outputs and was retrieved through a Google

Health Trends API, provided for academic research with a health-oriented focus.

The query time series express the probability of a short search session for a specific

geographical region and temporal resolution, drawn from a uniformly distributed

10%-15% sample of all corresponding sessions5. We have used a set of 35,572

non-preprocessed search queries (limited examples of which are presented in Ta-

ble 3.1) and obtained their weekly frequency in England during an extensive period

of 449 weeks, from January 1, 2007 to August 9, 2015.

To create word embeddings that capture more informal or direct ways of writ-

ten expression, we used a Twitter data set. We collected tweets from users lo-

cated in the UK6. The main incentive for this was to accommodate geographically

constrained dialects and conversation themes. The total number of tweets was ap-

prox. 215 million, dated from February 1, 2014 to March 31, 2016. We applied the

word2vec neural embedding algorithm (Mikolov et al., 2013a,c) as implemented in

the gensim library7. We have used a continuous bag-of-words representation, the

entirety of a tweet as our window, negative sampling, and a dimensionality of 512.

After filtering out words with fewer than 500 occurrences, we obtained an embed-

ding corpus of 137,421 unigrams. Note that we have not optimized word2vec’s

settings for our task, but the above parametrization falls within previously reported

configurations (Amir et al., 2015). To capture more formal linguistic properties, we

also used word embeddings trained on a Wikipedia corpus. The latter were based

on the work of Levy and Goldberg (Levy and Goldberg, 2014) and have a dimen-

sionality of 300.
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Figure 3.3: Weekly influenza-like illness (ILI) rates in England (per 100,000 people) from
January 1, 2007 to August 9, 2015 obtained by RCGP and PHE. Training and test periods
are denoted with different colorings.

3.4.1.2 Influenza-like Illness Surveillance Data

The inference target in our regression task consists of influenza-like illness (ILI)

rates as reported by the RCGP and PHE. The estimates represent the number of

doctor consultations reporting ILI symptoms per 100,000 people in England. Their

weekly time series from January 1, 2007 to August 9, 2015 is displayed in Fig-

ure 3.3; different colorings denote training and testing periods.

3.4.2 Experiment Settings and Evaluation Metrics

We evaluate performance based on two metrics: Pearson correlation r, MAE be-

tween the inferred and target variables. We assess predictive performance on the

last three flu seasons (2012/13, 2013/14, 2014/15; test periods A, B, and C respec-

tively), each one being a year-long period (see Fig. 3.3). We train on past data (all

weeks prior to a flu season), emulating a realistic evaluation setup. To train an Elas-

tic Net model, we set a = 0.5, and decide the value of λ automatically by validating

it on a held-out stratified subset (≈ 7%) of the training set.

3.4.3 Semantic Feature Selection using Word Embeddings

The first row of Table 3.1 describes concept C1, which we refer to as “flu infection”,

that was chosen as the main concept for our experimental evaluation. The ratio-

nale behind C1 is straightforward: the search queries that are relevant to our task

should be about the topic of flu, with a certain focus on content that is indicative

of infection. Hence, the positive context is formed by strongly topical keywords,

5Note that the publicly available Google Trends represent a significantly smaller sample.
6The Twitter users are geographically distributed proportionally to regional UK population.
7gensim library, https://radimrehurek.com/gensims

https://radimrehurek.com/gensim/
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Figure 3.4: Histogram presenting the distribution of the search query multiplicative cosine
similarity scores (S) with the flu infection concept C1.

such as “flu”, the Twitter hashtag “#flu” or the 2-gram “flu medicine”, as well as

more general ones, such as a major symptom (“fever”) and the need for medical at-

tention (“gp”8 and “hospital”). Likewise, the negative context tries to disambiguate

from other infectious diseases (“ebola”), spurious contextual meanings (“bieber” as

in “Bieber fever”) and the general tendency of information seeking (“wikipedia”).

The most similar search queries to C1 are indeed about ILI, and relevant symptoms

or medication (e.g. “cold flu medicine”, “flu aches” and so on). Alternative concept

formulations and their potential impact are explored in Section 3.4.5.

Figure 3.4 shows the distribution of the similarity scores (Eq. (3.11)) between

C1 and the embeddings of all search queries in our data set. We use the mean similar-

ity score, µS = 2.165, and products of the standard deviation, σS = 0.191, to define

increasingly similar subsets of search queries. We evaluate the predictive perfor-

mance of each subset using elastic net; the results are presented in Table 3.2. The

last row of the table shows the performance of elastic net when all search queries

are candidate features, i.e. when embedding based feature selection is omitted.

Columns |Q| and |Qen| denote the average number of candidate and selected

(by receiving a nonzero weight) search queries in the three test periods. We use

rtrain to denote the average aggregate9 correlation of the data with the ground truth

8gp is an abbreviation for General Practitioner.
9Represents the mean frequency of all search queries.
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Table 3.2: Linear regression (elastic net) performance estimates for the word embedding
based feature selection. Column S > µS means we maintain queries with a similarity score
that is greater than the mean similarity score. Columns |Q| and |Qen| denote the aver-
age number of candidate and selected search queries in the three test periods, respectively.
Columns rtrain and r denotes the average correlation of the data with the ground truth in the
training and test set, respectively. Column MAE is the mean absolute error between the
inferred and target variables. NA (last row) denotes that no word embedding based feature
selection has been applied.

S > µS |Q| rtrain |Qen| r MAE
+0 14,798 −.036 246 .742 6.791
+σS 5,160 .106 233 .897 3.807
+2σS 1,047 .599 91 .887 3.182
+2.5σS 303 .752 56 .867 3.006
+3σS 69 .735 33 .784 4.043
+3.5σS 7 .672 6 .721 6.271
NA 35,572 .018 174 .800 4.442

in the training set prior to performing regression. This indicator can be used as

an informal metric for the goodness of the unsupervised, word embedding based

feature selection. As the feature selection becomes more narrow, i.e. for higher

similarity scores, we observe strongly positive correlations which illustrates that

the formulated concept succeeds in capturing the target variable.

After applying elastic net, the best performing subset includes queries with

similarity scores greater than 2.5 standard deviations from the mean. The relative

performance improvement as opposed to using all search queries as candidate fea-

tures in elastic net (last row of Table 3.2) is equal to 32.33% (in terms of MAE).

This indicates that selecting features via a semantically informed manner is better

than solely relying on a naı̈ve statistical approach. However, while the obtained

performance is quite strong, the correlation based feature selection outperforms it,

as we report in the next section.

3.4.4 Feature Selection using Statistical Learning and Word

Embeddings

In supervised learning, a common approach for filtering out irrelevant features is

performed by checking their bivariate correlation with the target variable (Guyon

and Elisseeff, 2003). This is often applied prior to training a regression model, as
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Table 3.3: Performance results for linear regression (elastic net) by applying a correlation
based or a joint feature selection. Column corr > means we maintain queries with a similar-
ity score that is greater than the values listed in the column. Columns |Q| and |Qen| denote
the average number of candidate and selected search queries in the three test periods, re-
spectively. The subscript S means semantic filter is used. Column r denotes the average
correlation of the data with the ground truth in the test set.

Correlation only Correlation + word embeddings
corr> |Q| |Qen| r MAE |QS| |QS

en| r MAE
.00 15,942 214 .560 5.864 2,275 168 .899 2.772
.10 3,238 128 .841 4.639 669 121 .918 2.206
.20 719 127 .811 3.861 256 53 .897 2.122
.30 279 121 .891 2.199 168 50 .913 1.880
.40 165 80 .876 2.137 118 43 .906 2.119
.50 104 65 .888 2.245 72 42 .905 2.347
.60 61 38 .850 2.577 40 18 .828 2.962
.70 26 9 .863 3.853 20 10 .863 3.855

a procedure that can reduce overfitting and offer performance gains (which we also

report below). This form of feature selection has been applied in the task of ILI

rate modeling from social media or search queries (Culotta, 2010; Ginsberg et al.,

2009; Lampos et al., 2015). However, a correlation filter is not always successful

in removing spurious features and, conversely, when a strict correlation threshold is

enforced, potentially useful predictors may be lost.

To mitigate this effect, we combine correlation based and word embedding

based feature selection. Features selected based on correlation are passed into the

embedding based feature selector and only features that exceed a similarity thresh-

old with the target concept are retained. After some preliminary experimentation

with the data, a broad similarity threshold was found to provide better results, given

that otherwise the number of features becomes relatively small. Thus, in the experi-

ments below, word embedding feature selection maintains queries with a similarity

score that is greater than one standard deviation from the mean similarity score (i.e.

S > µS +σS).

Table 3.3 presents the performance outcomes under elastic net for correlation

based and joint feature selection. The left part enumerates the results for a number

of correlation thresholds (corr > ρ , ρ ∈ [0,1)), whereas on the right we report the
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corresponding results using a combination of a correlation and similarity thresh-

old (corr > ρ ∩ S > µS +σS, ρ ∈ [0,1)). Correlation based feature selection im-

proves the performance estimates as opposed to using all the features (last row of

Table 3.2), yielding its best performance, in terms of MAE, for corr> .40. This sup-

ports similar findings in the literature (Lampos et al., 2015). It also outperforms the

estimates obtained when the similarity filter is applied alone, something expected

given that a correlation is a statistical determinant based on the actual time series of

the data, and not just on the textual content of a search query. Focusing on the right

side of Table 3.3, where, based on the joint approach, queries that may be suffi-

ciently correlated, but dissimilar to the specified concept are automatically omitted,

we observe that the performance is enhanced significantly, reaching a relative im-

provement of 12.03% (from 2.137 to 1.880 in terms of MAE). As the correlation

filter becomes more strict (corr> .50), the number of features (denoted by |Q| or

|QS|) becomes quite small, and the performance drops, regardless of the feature

selection method.

Figure 3.5 compares the best-performing models, under elastic net, for the

two approaches of performing feature selection (corr > .40 vs. corr > .30 ∩
S > µS +σS). It is evident that the correlation based approach makes some odd

inferences at certain points in time, whereas the joint one seems to accommodate

more stable estimates. For example, a confusing query about a celebrity is respon-

sible for the over-prediction on the third week of the 2012/13 flu season, with an

estimated 47.52% impact on that particular inference. This query is discarded by

the joint feature selection model. As we reduce the correlation threshold, such prob-

lems are amplified and less relevant search queries are embedded into the model,

expressing seasonality and other confounders.

To evaluate the proposed feature selection approach with the nonlinear Gaus-

sian Processes regression model, we focus on the linear regression setups (correla-

tion based or joint feature selection), where the dimensionality is tractable (< 300),

and a reasonable performance has been obtained. We also separately test the fea-

tures that have received a nonzero weight after applying Elastic Net. The results
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Figure 3.5: Comparative plot of the optimal models for the correlation based and joint
feature selection under elastic net for the estimation of ILI rates in England.

Table 3.4: Nonlinear regression (Gaussian Processes) performance estimates. Column
corr > means we maintain queries with a similarity score that is greater than the values
listed in the column. Column S > µS +σS means we maintain queries with a similarity
score that is greater than one standard deviation from the mean similarity score. Check
marks indicate the applied feature selection method(s). Columns r denotes the average cor-
relation of the data with the ground truth in the test set. Their application sequence follows
the left to right direction of the table columns.

corr > S > µS +σS Elastic Net r MAE

.10
- X .568 5.344
X X .912 2.057

.20
- X .814 4.015
X X .920 1.892

.30

- - .857 2.858
- X .891 2.686
X - .942 1.567
X X .928 1.696

.40

- - .864 2.475
- X .895 2.347
X - .913 2.110
X X .934 2.030

.50

- - .887 2.197
- X .921 2.308
X - .908 2.267
X X .926 2.292

.60

- - .819 2.742
- X .851 2.598
X - .865 2.614
X X .831 2.880

are enumerated in Table 3.4 and point again to the conclusion that the joint fea-

ture selection yields the best performance. In terms of MAE, this amounts to an

improvement of 28.7% against the best nonlinear correlation based performance

outcome, and a 16.6% against the best linear model. Interestingly, when word em-
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Figure 3.6: Comparative plot between the optimal nonlinear and linear models (both using
joint feature selection) for the estimation of ILI rates in England.

bedding feature selection is not applied, the nonlinear model can seldom exceed the

performance of the corresponding linear model, providing an indirect indication of

the inappropriateness of the selected features.

Figure 3.6 draws a comparison between the inferences of the best nonlinear and

linear models, both of which happen to use the same feature basis (corr > .30∩S >

µS +σS). The Gaussian Processes model provides more smooth estimates and an

overall better balance between stronger and milder flu seasons.

3.4.5 How are Inferences Affected by the Choice of a Different

Concept

The main human intervention10 in the proposed feature selection process is the

choice of positive and negative n-grams for the formation of a concept. A reason-

able question would be how the choice of these n-grams affects the feature selection

and the inference performance. To provide more insight on this, we experimented

with a number of different concepts (see Table 3.1). C1, C2 and C3 are variations of

the flu infection topic, C4 is on infectious diseases in general, C5 is about health, and

C6 describes a different type of infection (gastrointestinal). Finally, C7 is a replica-

tion of C1 (without the Twitter hashtag “#flu”), but it is based on word embeddings

trained on Wikipedia articles.

Table 3.5 enumerates the best obtained performance (under elastic net) for all

investigated concepts for variants of the joint feature selection method (r > ρ ∩
S > µS +σS, ρ ∈ [0,1)). As we are drifting away from the flu infection topic, the

performance declines, and when the focus is drawn on a different disease (gastroin-

10It could be automated by using a knowledge base.
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Table 3.5: Optimal performance estimates after applying the feature selection method
based on correlation and word embeddings for varying concepts under elastic net. Col-
umn S > µS +σS means we maintain queries with a similarity score that is greater than
one standard deviation from the mean similarity score. Check marks indicate the applied
feature selection method(s). Column ∩ C1 measures the average percentage of common
features with the ones formed by using C1. Column corr > means we maintain queries with
a similarity score that is greater than the values listed in the column. Columns r denotes the
average correlation of the data with the ground truth in the test set.

ID S > µS +σS corr > ∩ C1(%) r MAE
C1 X .30 100% .913 1.880
C2 X .30 98.6% .914 1.864
C3 X .30 98.4% .913 1.788
C4 X .30 87.5% .920 2.084
C5 X .30 43.1% .891 2.237
C6 X .20 8.3% .616 5.217
C7 X .30 94.2% .909 2.116

testinal; C6), the inference error increases significantly, providing further proof-of-

concept for our approach. Yet, while remaining on the flu infection topic, we are

obtaining similar (for C2) or slightly superior performance (for C3). This robustness

could be justified by the average percentage of common features (∼ 98%) with the

ones formed by using C1 (column ‘∩ C1(%)’). Finally, the Wikipedia word embed-

dings produce more formal features (as it was indicated by Table 3.1), which end

up providing inferior performance to the ones trained on Twitter.

3.5 Case Study 2: Infectious Intestinal Diseases

Surveillance
A case study on ILI inference has shown the effectiveness of our proposed semantic

feature selection method based on word embeddings. In this section, we utilize this

method on another task, inferring IID rates in England. To the best of our knowl-

edge, this is the first work that models IIDs from user-generated content. IIDs have

a number of characteristics that are distinct from diseases that have been previously

investigated using user-generated content, such as influenza we studied in the previ-

ous case study (Culotta, 2010; Lampos and Cristianini, 2010; Ginsberg et al., 2009;

Lampos et al., 2015). Specifically:
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• IIDs originating from a single organism (virus, bacterium) are usually of a smaller

prevalence in the population. As a result, their signal in social media is expected

to be weaker and, therefore, harder to detect.

• Most people who are affected by an IID do not seek medical attention (Bernardo

et al., 2013; Tam, 2012; Wheeler, 1999).

• Self-diagnosis in user-generated content (e.g. as in “I am down with the flu”) is

less frequent, resulting in sparser textual feature representations; for example, a

feature as informative as the keyword ‘flu’ does not exist.

• IIDs generally exhibit a less stronger seasonality than other infectious diseases.

In this study, we directly apply word embedding based semantic feature selec-

tion to choose features that are semantically relevant to the IIDs topic. Similar to

Section 3.4, together with semantic feature selection, we also apply a correlation

based feature selection method. Then, we apply a regularized linear (elastic net), as

well as a nonlinear (Gaussian Processes), regression function for inference.

3.5.1 Datesets

Two data streams are used in our experiments: Twitter data and official health

surveillance records obtained from PHE.

3.5.1.1 Twitter data

Tweets were retrieved using the Twitter API. Approximately 585 million tweets

geolocated in England over a period of 166 weeks from 09/04/2012 to 14/06/2015

were collected. Geolocation was performed either by geocoding the user’s profile

information or by taking advantage of the exact user geo-coordinates, when they

were available. After removing retweets and tweets with links (since these types

of expression are rarely used to phrase a health problem), the final Twitter data set

contained approximately 410 million tweets.

3.5.1.2 IID surveillance data

To train and evaluate our models, we use weekly IID surveillance reports from PHE.

In particular, we focus on laboratory confirmed cases of (1) campylobacter and (2)
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norovirus (the most recurrent organisms related to IIDs according to PHE reports).

We also consider (3) food poisoning notifications reported by registered medical

practitioners across England. The laboratory confirmed data cover a period from

09/04/2012 to 14/06/2015 (166 weeks in total). The food poisoning notifications

are from 09/04/2012 to 09/03/2014 (100 weeks in total).

3.5.1.3 Extracting Features from Tweets

To create vector space representations of the Twitter corpus, we first extract all n-

grams (1 ≤ n ≤ 3) from the Twitter dataset; to form an n-gram, we filter out a list

of common English stop words,11 and then use a look ahead window equal to the

length of each tweet (i.e. many n-grams are formed by tokens that were nearby,

but not next to each other inside a tweet). We filter low-volume information by

keeping n-grams that appear more than 700 times. This yields 47,049 1-grams,

390,593 2-grams, and 152,329 3-grams. After applying the semantic feature selec-

tion method, we form a vocabulary SIID of 597 1-grams that have the highest mul-

tiplicative cosine similarity with the predefined IID topic. The IID topic includes

positive keywords (“vomit”, “indigestion”, “heartburn”, “nausea”, “reflux”, “diar-

rhea”, “hiccups”) and negative words (“flu”, “cold”). We use a tighter – and more

semantically coherent – set of the top 212 1-grams, to perform keyword matching

with 2- and 3-grams.12 This process produces the final set of textual features used in

our experiments, containing 597 1-grams, 928 2-grams, and 122 3-grams. Weekly

term counts are normalized using the total number of tweets published in a week.

3.5.2 Experiment Settings and Evaluation Metrics

We evaluate our model via k-fold cross validation, dividing the data into k con-

secutive time periods (using a week as our main time unit). We set k = 8 for the

campylobacter and norovirus experiments, and k = 2 when modeling food poison-

ing cases, given the smaller time span of the data. When applying elastic net, we use

the same values for the regularization parameters (λ1, λ2) in all folds, and in each

fold’s training set we pre-filter features by applying a Pearson correlation threshold

11The applied list of English stop words was a concatenation of various lists available online.
12 Both cutoff thresholds (597 and 212 top terms) have been decided through manual inspection.
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Figure 3.7: Comparative plot between laboratory confirmed campylobacter cases in Eng-
land (reported by PHE) and the indication inferred from Twitter content based on the Gaus-
sian Processes model. The gaps separate the folds in the 8-fold cross validation process.
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Figure 3.8: Comparative plot between laboratory confirmed norovirus cases in England
(reported by PHE) and the indication inferred from Twitter content based on the Gaussian
Processes model. The gaps separate the folds in the 8-fold cross validation process.

with the corresponding ground truth. The Gaussian Processes model is applied on

the positively weighted features selected by the elastic net (per fold). We use MAE

and Pearson correlation (r) to measure the performance of the models; note that y

has been standardized (zero mean, standard deviation of 1) throughout our experi-

ments, so that the MAEs for the different target variables are comparable with each

other. We also separately compute MAE for the ‘peaking’ periods (peak-MAE),

where the ground truth is bigger than its mean value, to assess the performance of

the models during periods of increased incidence of an IID.

3.5.3 Results

Table 3.6 enumerates the results for the two methods. The Gaussian Processes

method outperforms Elastic Net; the difference in their mean performance (using

MAE) is statistically significant according to a Kolmogorov-Smirnov test (Massey
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Table 3.6: Performance indicators for the IID indicator inference task from Twitter content
in England.

Elastic Net Gaussian Processes
IID target r MAE r MAE
Campylobacter .625 .572 .633 .545
Norovirus .596 .554 .607 .513
Food poisoning .702 .700 .711 .624

and Frank (1951); p < .05).13 For campylobacter, norovirus and food poisoning,

the average MAE between inferences and standardized target values is .545, .513

and .624, whereas their linear correlation is .633, .607 and .711, according to the

better-performing Gaussian Processes model. Figures 3.7, 3.8, and 3.9 present the

Gaussian Processes inferences in all the folds for the three case studies.

13Given the small sample for food poisoning, we could not assess its statistical significance.
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Figure 3.9: Comparative plot between food poisoning cases in England (reported by PHE)
and the indication inferred from Twitter content based on the Gaussian Processes model.
The gaps separate the folds in the 2-fold cross validation process.

Table 3.7: Comparison of the inference performance (average MAE), when the IID activity
is above its mean value.

IID target Elastic Net Gaussian Processes
Campylobacter .623 .562
Norovirus .790 .732
Food poisoning .927 .802
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We also estimate an aggregated correlation by concatenating the inferences of

all folds. This yields correlations that are greater than .7 (up to .77) for all target

variables under the Gaussian Processes model. Looking at the average peak-MAE

performance figures (Table 3.7), we see that the performance gap between elastic

net and Gaussian Processes models increases, emphasizing the value of a nonlinear

approach when the IID signal gains a significant presence.

3.6 Summary
In this chapter, we have presented a feature selection method for text regression

that employs neural word embeddings to improve the topicality of the selected fea-

tures. Our approach can be seen as an unsupervised filter for a target thematic

concept that can be easily applied in conjunction with current feature selection tech-

niques. Following the feature selection, a regularized linear (elastic net) and a non-

linear (Gaussian Processes) regression model are deployed as inference functions.

We conducted two experiments to demonstrate the effectiveness of our proposed

method, inferring ILI and IID rates in England from Web data. We have shown

that the proposed feature selection method can significantly outperform competi-

tive approaches. Future work will focus on further generalizations of the reported

outcomes, including different application domains and more detailed qualitative in-

terpretations.



Chapter 4

Multi-Task Learning for Disease

Surveillance

Existing algorithms for disease surveillance from online user-generated content are

predominantly based on supervised learning paradigms (Ginsberg et al., 2009; Cu-

lotta, 2010; Lampos and Cristianini, 2010; Paul et al., 2014). These frameworks

propose single task learning solutions that do not consider the correlations of data

across different geographies. They are also not considering situations, where sig-

nificantly fewer health reports are available for training a model.

In this chapter, we investigate the utility of multi-task learning for disease

surveillance using Web search data. Multi-task learning can train a number of dis-

ease models jointly. Compared to single task learning, it has the potential to improve

the generalization of a model by exploiting shared structures in the data. Previous

work has shown that this may result in significant performance gains (Caruana,

1997; Baxter, 2000; Bakker and Heskes, 2003; Ben-David and Schuller, 2003; Ev-

geniou and Pontil, 2004; Argyriou et al., 2006). In the context of disease surveil-

lance, we investigate whether multi-task learning can provide an improved estimate

of disease rates when (1) training data is available for multiple geographic loca-

tions, specifically geographic regions of the US, and (2) when ground truth training

data (health reports) is sporadic. In addition, we investigate the utility of multi-task

learning to estimate disease rates in a different country by exploiting a denser health

reporting scheme of a reference country. We explore both linear and nonlinear re-
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gression models, namely multi-task elastic net (Lee et al., 2010) and Multi-task

Gaussian Processes (Bonilla et al., 2007), comparing them to their respective single

task formulations.

We use ILI as a case study and conduct experiments on the US and England.

Our experiments show that multi-task learning models improve regional as well as

national ILI rates estimates from Google search data for the US. The percentage

improvement increases as the historical training data is reduced, up to 14.8%, indi-

cating that multi-task learning can facilitate the derivation of accurate models using

significantly less training data. We also simulate situations, where partial ground

truth data are available, perhaps due to unexpected reasons (natural disasters, a

spreading epidemic, technical problems) or due to limitations of a public health

system. Our experimental results indicate that multi-task learning models can mit-

igate such effects. Finally, we expand this concept to cross-country settings, where

complete data for a country could improve the models of another country with in-

sufficient health reports. In that case, multi-task learning is shown to improve ILI

estimates for England (up to 40% of error decrease) under the assumption that in-

creasingly limited historical data exist, when training models jointly with data from

the US.

This chapter’s main contributions are the following:

• This is the first work to assess the utility of multi-task learning in infectious dis-

ease surveillance from Web search data.

• We show that multi-task learning models improve:

– regional as well as national ILI models for the US,

– regional US models for ILI, under the assumption of increasingly limited

historical health reports (simulated by using three different sampling meth-

ods), and

– country-level ILI models for England, when training is performed jointly

with data from a different, but not culturally distant, country (the US).
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The rest of this chapter is structured as follows. We first review related work

in Section 4.1. Then we provide a description for the disease surveillance task,

under both single and multi-task learning settings in Section 4.2. We present the

linear and nonlinear techniques for performing single and multi-task regression in

Section 4.3 and 4.4, respectively. A case study on influenza-like illness surveillance

is presented in Section 4.5. Finally, we make a summary in Section 4.6.

4.1 Related Work

The fundamentals of multi-task learning have been thoroughly presented in (Caru-

ana, 1997). Compared to single task learning that attempts training on isolated

tasks, multi-task learning performs this jointly using a shared representation. The

tasks can be used as valuable sources of inductive bias for each other, leading to a

more accurate model (Caruana, 1997). This may also allow more difficult problems,

such as target variables with partial observations, to be modeled successfully (Caru-

ana, 1997; Bakker and Heskes, 2003; Ben-David and Schuller, 2003). The major-

ity of multi-task regression models were developed by extending their single-task

formulations. Some examples for linear regression are the multi-task `1-norm regu-

larization (Argyriou et al., 2008) and the `2,1-norm regularization (Liu et al., 2009).

Nonlinear multi-task regression models have also been explored, extending Support

Vector Machines (Evgeniou and Pontil, 2004), Gaussian Processes (Bonilla et al.,

2007), Convolutional or Recurrent Neural Networks (Abdulnabi et al., 2015; Liu

et al., 2016a).

In this work, we study the utility of multi-task learning in disease surveillance

from Web search data. Existing approaches have routinely used single task models

such as regularized regression (Polgreen et al., 2008; Ginsberg et al., 2009; Culotta,

2010; Lampos et al., 2015), Gaussian Processes (Lampos et al., 2015, 2017), and

autoregressive frameworks (Shaman and Karspeck, 2012; Paul et al., 2014; Lam-

pos et al., 2015). Here, we have chosen to apply multi-task elastic net (Lee et al.,

2010) and multi-task Gaussian Processes (Bonilla et al., 2007) for the following

reasons: (a) elastic net and Gaussian Processes have been applied in many text re-
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gression (Lampos et al., 2014; Preoţiuc-Pietro et al., 2015) and disease modeling

approaches (Lampos et al., 2015; Zou et al., 2016; Lampos et al., 2017), and (b)

the sample sizes we are operating on are limited and no performance gain would

have been achieved by deploying neural network structures (Collobert and Weston,

2008; Zhang et al., 2014b, 2015).

Multi-task learning has been applied in the context of user-generated data mod-

eling (Lampos et al., 2013; Lukasik et al., 2015) and computational health (Zhou

et al., 2012; Benton et al., 2017; Bickel et al., 2008; Emrani et al., 2017; Zhao et al.,

2015). Given various tasks and objectives, multi-task learning frameworks can be

different. Zhou et al. (2012) and Emrani et al. (2017) formulated a fused sparse

group lasso and a graph regularization approach, respectively, aiming to model dis-

ease progression. Both models focused on the temporal relation between the var-

ious tasks and utilized image data from patients. However, our work focuses on

textual user-generated content and the spatial relation among tasks. Benton et al.

(2017) used online multimodal user-generated content to train a multi-task feed-

forward neural network for classifying the mental health condition of online users.

This model tries to capture shared structures of user attributes in relation to mental

conditions. Our work, however, focuses on a collective regression task, aiming to

exploit relationships at a higher level, determined by geography, rather than specific

user characteristics. Finally, Zhao et al. (2015) proposed a linear regularized multi-

task regression model to detect civil unrest events in various locations using Twitter

data. In our work, apart from a different thematic focus, we also deploy nonlinear

multi-task learning frameworks.

4.2 Problem Formulation

Our aim is to infer disease rates as reported by an established health surveillance

system using the frequencies of Web search queries. We formulate this as a regres-

sion task, where we learn a function f : X→ y that maps the input space X ∈ Rn×p

to the target variable y ∈ Rn; n denotes the number of samples and p is the size of

our feature space, i.e. the number of unique search queries we consider. X contains
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time series of normalized frequencies of search queries and y represents the disease

rates at the same time points as reported by the health agency. A normalized query

frequency is defined as the count of a query divided by the total number of searches

during a fixed time interval, e.g. one week.

In multi-task disease rate inference, we are modeling disease rates simultane-

ously for a number of different geographical locations (tasks). A tensor Q∈Rn×p×m

is used to represent our input data for the m tasks.1 Q can simply be interpreted as

m versions of X; in the remainder of the script, we denote them using Q j, where

j refers to the jth task or geographical location. An element of Q, Qti j, represents

the normalized frequency of a query i for the location j during the time interval

t. The corresponding target variables, i.e. the disease rates for the m locations are

denoted by Y ∈ Rn×m. Similarly, we use Y j to refer to the disease rates at the loca-

tion j. Based on the aforementioned formulations, our task now becomes to learn a

function f , such that f : Q→ Y.

4.3 Multi-Task Elastic Net (MTEN)

Linear regression models have been successfully applied for conducting disease

surveillance from web search and social media data (Ginsberg et al., 2009; Culotta,

2010; Lampos and Cristianini, 2010; Paul et al., 2014; Zou et al., 2016). We use

multi-task elastic net (Zou and Hastie, 2005) to train several linear regression mod-

els jointly.

Multi-task elastic net is an extension to elastic net described in Sec-

tion 2.4.3.4 (Zhao et al., 2015). It is specified by the following optimization task

argmin
W,β

(
‖Y−QW−β‖2

F +λ1 ‖W‖2,1 +λ2 ‖W‖2
F

)
, (4.1)

where W ∈ Rp×m, β ∈ Rm are the weight matrix and intercept vector for all the m

1Note that the number of samples n may be different for different locations (tasks).
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tasks, and the norms `2,1 and Frobenius (F) are given by

‖W‖2,1 =
p

∑
i=1

√
m

∑
j=1

W 2
i j

‖W‖F =

√√√√ p

∑
i=1

m

∑
j=1

W 2
i j .

(4.2)

The `2,1 norm encourages all tasks to select a common set of features, while the

Frobenius norm enhances the robustness of the model (Zhao et al., 2015).

4.4 Multi-Task Gaussian Processes (MTGP)

We also deploy nonlinear regression models using Gaussian Processes as previous

works have shown that the relationship between query frequencies and disease rates

is significantly better captured by a nonlinear function (Lampos et al., 2017; Wagner

et al., 2017).

Gaussian Processes models were extended to a multi-task version (MTGP)

by Bonilla et al. (2007) and have been used in various tasks, including natural lan-

guage processing applications (Cohn and Specia, 2013; Beck et al., 2014). The

MTGP model incorporates all m tasks into a single GP that is defined by

f (Q)∼ GP
(
µM(x),kM(x,x′)

)
, (4.3)

where x and x′ are inputs from tasks j and j′, respectively. As with the single-task

Gaussian Processes, we assume µM(x)= 0. MTGP’s covariance function, kM(x,x′),

is formed by placing a Gaussian Processes prior over the kernel function in Eq.

(3.4), so that we directly induce correlations between the tasks (Bonilla et al., 2007).

It is given by

kM(x,x′) = kc( j, j′)× kx(x,x′) , (4.4)

where kc is a correlation kernel that explains the relation between tasks j and j′, and

kx is the covariance that explains the relation of inputs x and x′. This approach is

also known as the intrinsic correlation model (Wackernagel, 2014).
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Let KM be the covariance matrix of Q, Kc the task correlation matrix, and Kx

the covariance matrix of inputs. We define KM as

KM = Kc⊗Kx , (4.5)

where ⊗ denotes a Kronecker product. Kc is assumed to be a valid covariance ma-

trix (satisfying Mercer’s theorem). Its diagonal elements describe the correlation of

the tasks with themselves and the non-diagonal elements correspond to the correla-

tion between tasks. It can be constructed using the Cholesky decomposition and is

parameterized by the elements of the lower triangular matrix of

Kc( j, j′) = JJ>, J =


θ c

1 0 . . . 0

θ c
2 θ c

3 . . . 0
...

... . . . ...

θ c
ζ−m+1 θ c

ζ−m+2 . . . θ c
ζ

 , (4.6)

where θ c = {θ c
u}, u ∈ {1,2, . . . ,ζ} is the set of Kc’s hyperparameters, with ζ =

m(m+1)/2.

Inference and hyperparameter learning in MTGPs is conducted similarly to

the single task Gaussian Processes (Bonilla et al., 2007; Durichen et al., 2014).

Given a new data point x∗, for task j, the predictions (y∗) can be made by using the

conditional distribution p(y∗|x∗,Q,Y)∼N (µ j∗,σ2
j∗), where

µ j∗ =
(
kc

j⊗kx
∗
)>K−1

M Y , and (4.7)

σ
2
j∗ = KM +D⊗ I . (4.8)

In the above equations, kc
j is the jth column of Kc, kx

∗ is the vector of covariances

between x∗ and the training points, and D is an m×m matrix in which the ( j, j)th

element is the noise variance (σ2
j ) for the jth task.
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Figure 4.1: The 10 US regions as specified by the Department of Health & Human Services
(HHS).

4.5 Case Study on Influenza-like Illness Surveillance
Our experiments assess a number of different disease modeling scenarios, where

we expect that multi-task learning will have a positive impact. We focus on the

estimation of ILI rates, which is a well-studied task (Ginsberg et al., 2009; Polgreen

et al., 2008; Lampos et al., 2015; Yang et al., 2015). The locations of interest are

the US at the national level, US regions as defined by HHS, and England.

4.5.1 Data Sets and Experiment Settings

4.5.1.1 ILI Rates from Health Agencies

For the US, we use weekly ILI rates from CDC. These rates represent the aver-

age percentage of all outpatient visits to health care providers normalized by the

respective regional population figures and are recorded by ILINet. The 10 HHS

US regions considered by the CDC are shown in Fig. 4.1. Our data spans from

September 1, 2007 to August 31, 2016 (both inclusive), which includes 9 consec-

utive influenza seasons as defined by the CDC. Each (expanded) flu season begins



4.5. Case Study on Influenza-like Illness Surveillance 91

on September 1 and ends on August 31 of the next year. To provide further insight,

we have plotted the ILI rates of US regions 1, 2, and the US as a whole in Fig. 4.2.

As expected, we see that the time series are strongly correlated, but each signal may

be peaking at different moments throughout a flu season. For England, we obtain

weekly ILI rates from PHE through the syndromic surveillance network developed

by the RCGP. We focus on the same time period as for the US.

4.5.1.2 Search Query Frequencies

We iteratively used Google Correlate starting with flu-related query seeds (such as

the word ‘flu’) to obtain a set of 1,641 candidate search queries. However, due to

the existing seasonal confounders, many of the candidate queries we ended up with,

such as ‘college basketball’ or ‘spring break’, were not related to flu. To remove

these unrelated queries in a principled fashion, we applied a topic filter specified

using word embeddings. The filtering process was similar to the one we proposed

in (Lampos et al., 2017), but without the notion of a negative context. Embeddings

were trained using word2vec on Google news (Mikolov et al., 2013c,a).2 We con-

sider a query q to be a set of z textual tokens, {ε1, . . . ,εz}. The embedding of q, eq,

is computed by averaging across the embeddings of its tokens,

eq =
1
z

z

∑
i=1

eεi . (4.9)

We define a topic about flu, T , as a set of two flu-related terms, specifically the

name of the disease and one of its main symptoms, T = {‘flu’, ‘fever’}. For each

of the queries, we calculate a similarity score defined as the product of the cosine

similarities between the embeddings of the terms in T and eq, i.e.

S(q,T ) =
2

∏
i=1

cos(eq,eTi) , (4.10)

2The embeddings were downloaded from code.google.com/archive/p/word2vec. The specific
training settings are detailed in (Mikolov et al., 2013c,a).

https://code.google.com/archive/p/word2vec/
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Figure 4.2: Weekly ILI rates (from CDC) for the US (national level) as well as the US
Regions 1 and 2.

where each cosine similarity component is mapped to [0,1] via (cos(·, ·)+1) / 2.3

Queries with S≤ 0.5 are filtered out and are not considered in our experiments. The

0.5 threshold guarantees that even in the extreme case, where a candidate query has

a perfect cosine similarity (equal to 1) with one of the two concept queries, it also

needs to have a non-negative cosine similarity (prior to the [0,1] mapping) with the

other concept query. The semantic filter succeeds in eliminating some confounding

features, i.e. queries that may be highly correlated with ILI rates, but are referring

to different topics.4

We retain 128 search queries after applying the word embedding filter de-

scribed above.5 The frequencies of these queries are retrieved through a private

Google Health Trends API, provided for academic research with a health-oriented

focus. The query frequency expresses the probability of a short search session6

conducted within a geographic region and during a specified time period. The prob-

ability is estimated based on a 10-15% sample of all Google searches. We obtained

daily frequencies at the state-level (for the US) and the national-level (for the US

and England) from September 1, 2007 to August 31, 2016 (both inclusive). Weekly

frequencies were estimated by averaging the daily frequencies. Similarly, regional

US frequencies were computed by averaging the state-level frequencies.

3This resolves misleading similarity scores based on different sign combinations.
4All candidate queries together with their similarity scores are listed at https://github.com/binzou-

ucl/google-flu-mtl.
5For the experiments on England, two queries referring to medication available in the US are

replaced by England-based equivalent medication.
6A search session can be seen as a time window that may include more than one consecutive

search queries from a user account. Therefore, a target search query is identified as a part of a
potentially larger query set within a search session.

https://github.com/binzou-ucl/google-flu-mtl
https://github.com/binzou-ucl/google-flu-mtl
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4.5.1.3 Baselines, Evaluation and Parameter Learning

To demonstrate the effectiveness of multi-task learning models, we compare MTEN

and MTGP with their single-task formulations, EN and GP, respectively. We use

Pearson correlation (r) and the MAE between inferred and target ILI rates as our

evaluation metrics. For reporting the performance of multi-task learning models,

we use the average MAE and correlation of the different test periods across all tasks

(locations). The statistical significance of a performance improvement is tested via

a paired-sample t-test by using the mean MAEs across all locations for the applied

test periods (for the two methods under comparison). In our results, we use an

asterisk (∗) to indicate that a difference in performance is not statistically significant

at the .05 level (p-value ≥ .05). For learning the regularization parameters of the

linear models, we perform grid search on 20% of the training data; all models are

trained on the remaining 80% subset of the training data. We begin by training

a model on data from the first φ flu seasons, and test the model in the following

season (φ +1). Then, we increase our training data by including one more flu season

(φ +1) and test in the following season (φ +2); we repeat this process until we have

tested on the last flu season in our data set. Before training a model, we only retain

search queries that have a Pearson correlation higher than .3 with the respective

disease rates (per location). This correlation threshold choice was motivated by the

extensive experiments we conducted in (Lampos et al., 2017) (see Table 3 in that

paper). Note that the correlation filter is applied to each training data set separately

and it may result in retaining different features for each task. Whenever this is the

case, we maintain the intersection of features among the tasks. In addition, the GP

and MTGP models are trained on the features that received a nonzero weight by

the respective elastic net model, similarly to the methodology proposed in (Lampos

et al., 2015).

4.5.2 Regional and National ILI Surveillance Tasks

First, we investigate whether multi-task learning can improve the accuracy of re-

gional US models for the estimation of ILI rates. We test this hypothesis under a

decreasing number of training samples, where L varies from 5 to 1 year(s) of his-
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Figure 4.3: Comparing GP (red) and MTGP (blue) ILI estimates for the US using L = 5
years and L = 1 year of training data.

torical data. By doing this we can additionally assess whether multi-task learning

models can have a positive impact when the historical training data are limited. The

multi-task learning models are trained on data from the 10 US HSS regions jointly

and their performance is compared to the performance obtained by learning these

models separately.

Table 4.1 enumerates the performance for the aforementioned comparison.7

We observe that, in general, multi-task learning models perform better than their

single-task alternatives both in terms of MAE and correlation. In addition, the non-

linear models tend to outperform the linear ones. However, performance gains from

multi-task learning (in MAE) only become statistically significant when L≤ 2 years

of historical training data are used. The greatest improvement occurs for L = 1; for

this case MTEN reduces EN’s MAE by 7.5%, whereas the MTGP reduces GP’s

MAE by 12.7%.

We next expand our observations by adding data for the US at a national level.

Hence, we are now considering 11 tasks (US plus the 10 US regions). The aim

is to test whether we can obtain a better model at the national level by training it

together with regional data in a multi-task learning fashion. The results enumerated

7Numbers in the table represent the average performance across the 10 US regions and the 4
test periods. For additional clarity, all individual performance estimates (for L = 1 and L = 5) are
enumerated at https://github.com/binzou-ucl/google-flu-mtl.

https://github.com/binzou-ucl/google-flu-mtl
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Table 4.1: Performance of single and multi-task learning models for estimating ILI rates
on US HHS regions. Numbers in the table represent the average performance across the 10
US regions and the 4 test periods. L denotes the length of the training period in years. The
asterisk (∗) indicates that a multi-task learning model does not yield a statistically significant
improvement over its single-task formulation.

EN MTEN GP MTGP
L r MAE r MAE r MAE r MAE

5 .928 .347 .935 .344∗ .936 .335 .944 .330∗

4 .919 .379 .927 .371∗ .926 .355 .938 .346∗

3 .912 .398 .921 .385∗ .916 .382 .929 .369∗

2 .901 .438 .913 .414 .906 .424 .924 .398
1 .845 .531 .858 .491 .844 .535 .867 .467

in Table 4.2 confirm that this is the case. The impact of multi-task learning is greater

and statistically significant (in terms of MAE), when L ≤ 3 years. The greatest

improvement happens for L = 1; for this case MTEN reduces EN’s MAE by 12.6%,

whereas the MTGP reduces GP’s MAE by 14.8%. In Fig. 4.3, we compare the

estimates from the GP and MTGP models for the ILI rates in the US during the test

periods from 2012 to 2016 (4 flu seasons) under two different training data lengths

(5 vs. 1 year of historical data) and against the rates reported by CDC. Even under

the 5-year training period, where the difference in average performance between the

models is small, we see that the GP makes a significant over-prediction of the peak

during the 2012/13 flu season, something that the MTGP does not. The bottom

sub-figure, where L = 1 year, showcases more clearly the level of improvement

Table 4.2: Performance of single and multi-task learning (including regional data) models
for estimating US ILI rates. Numbers in the table represent the performance at the national
level across 4 test periods; notational conventions as in Table 4.1. The asterisk (∗) indicates
that a multi-task learning model does not yield a statistically significant improvement over
its single-task formulation.

EN MTEN GP MTGP
L r MAE r MAE r MAE r MAE

5 .960 .353 .962∗ .351∗ .965 .253 .966∗ .245∗

4 .951 .356 .954∗ .353∗ .947 .265 .949∗ .251∗

3 .939 .398 .945 .374 .942 .286 .947∗ .268
2 .930 .408 .936 .362 .933 .351 .941 .323
1 .854 .531 .868 .464 .854 .513 .875 .437
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obtained by applying a multi-task learning scheme; MTGP delivers a quite accurate

model despite being trained on a few samples. This is an important characteristic

as it suggests that we can develop accurate disease prevalence models with much

less historical data than previously considered (Ginsberg et al., 2009; Lampos and

Cristianini, 2012; Lampos et al., 2015).

4.5.3 Mitigating the Effect of Sporadic ILI Health Reports

In many real-world scenarios, health surveillance reports are or can become tem-

porally and/or geographically sporadic. For instance, syndromic surveillance net-

works, especially in developing countries, may focus on a few regions rather than

an entire country due to infrastructure and economic constraints. Furthermore, es-

tablished health surveillance schemes may be exposed to data loss due to unprece-

dented events, such as technical faults, natural disasters or a spreading epidemic

during which doctor visits are discouraged. In the following experiments, we as-

sess whether multi-task learning can help us establish more accurate disease models

under various scenarios of sporadic health reporting. To assess this, we have per-

formed several forms of down-sampling on the training data of several US HHS

regions. All experiments were conducted by setting L = 1, i.e. based on 1-year long

training periods, and results represent the average performance after 50 sampling

trials.

We have applied the following sampling techniques: (A) random weekly sam-

pling, (B) random monthly sampling, and (C) random burst-error sampling. In

(A), we simply take random samples from our data, thereby simulating scenarios

where reports for a specific week may be missing. In (B), we first partition our

data into non-overlapping monthly periods and then randomly sample over these

periods, thereby simulating situations where health systems may be affected for

longer time periods. Finally, in (C) we randomly discard a block of temporally

contiguous data points, and use the remaining points only. We apply a sampling

rate γ = {0.1,0.2, . . . ,1}, where γ = 1 means that all data are used (no sampling),

and γ = 0.1 that 10% of the weekly data (for A) or monthly periods (for B) are

maintained. In C, γ determines the size of the error block B, B = (1− γ)τ , where
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Table 4.3: Performance of single and multi-task learning models for estimating ILI rates on
US HHS regions belonging toR-odd under three sampling methods (A, B and C). Training
data inR-odd regions is down-sampled using a sampling rate (γ). The asterisk (∗) indicates
that a multi-task learning model does not yield a statistically significant improvement over
its single-task formulation.

EN MTEN GP MTGP
γ r MAE r MAE r MAE r MAE

1.0 .825 .492 .843 .488∗ .828 .502 .856 .460

A

0.9 .823 .504 .840 .494∗ .825 .503 .852 .465
0.8 .806 .512 .839 .498∗ .817 .505 .850 .465
0.7 .805 .523 .834 .499∗ .811 .506 .849 .467
0.6 .800 .528 .824 .501∗ .804 .512 .835 .468
0.5 .798 .541 .823 .502∗ .804 .513 .835 .469
0.4 .789 .550 .822 .508 .801 .534 .829 .469
0.3 .768 .555 .817 .511 .801 .545 .825 .474
0.2 .758 .567 .803 .520 .789 .564 .824 .476
0.1 .698 .694 .793 .554 .700 .686 .824 .482

B

0.9 .813 .516 .835 .495∗ .814 .519 .851 .463
0.8 .806 .531 .827 .505∗ .805 .528 .843 .468
0.7 .793 .549 .823 .511∗ .792 .540 .834 .475
0.6 .775 .555 .821 .516 .776 .565 .825 .476
0.5 .752 .574 .820 .523 .756 .570 .823 .478
0.4 .702 .598 .818 .534 .751 .594 .819 .485
0.3 .621 .751 .815 .544 .650 .748 .817 .491
0.2 .510 .781 .814 .547 .516 .776 .814 .497
0.1 .425 .942 .806 .583 .433 .930 .809 .503

C

0.9 .817 .524 .836 .497∗ .818 .525 .848 .466
0.8 .805 .539 .829 .506∗ .810 .532 .839 .470
0.7 .796 .554 .817 .513 .801 .552 .832 .471
0.6 .784 .576 .814 .528 .788 .569 .825 .473
0.5 .756 .606 .807 .535 .766 .588 .819 .477
0.4 .689 .637 .799 .543 .713 .626 .818 .480
0.3 .621 .739 .794 .557 .632 .711 .804 .492
0.2 .483 .792 .781 .561 .506 .791 .800 .498
0.1 .414 .934 .780 .571 .424 .906 .796 .505

τ is equal to the size of the training data. In all experiments, we are sampling per

location, meaning that the time points in the training data can vary across locations.8

We begin by assessing the added value of multi-task learning in situations,

8We have also conducted experiments where sampling is temporally synchronized across re-
gions, but we did not observe a significant difference in the performance outcomes. Due to space
constraints, we only report the non-synchronized results.
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Figure 4.4: Comparing the performance of EN (dotted), GP (dashed), MTEN (dash dot)
and MTGP (solid) on estimating the ILI rates for US HHS Regions (except Regions 4 and
9) for varying burst error sampling (type C) rates (γ).

where progressively less health reports are obtained for half of the regions of a

country. To simulate this, we partition the 10 US HSS regions into two sub-groups,

R-odd and R-even consisting of the odd and even regions respectively (following

the numbering of Fig. 4.1). For the regions in R-odd, we have increasingly down-

sampled their training data; regions inR-even were not subject to down-sampling.

Table 4.3 enumerates the results of this experiment. The numbers in the table

represent the average MAE of all test periods over the R-odd regions. Generally,

the performance of the multi-task learning models degrades less as down-sampling

increases, i.e. there are less training data. MTGP always offers a statistically signif-

icant improvement over GP, whereas MTEN, in the worst case (for sampling type

A), requires a γ ≤ 0.4 to achieve this. Type A sampling, which can be seen as hav-

ing missing weekly reports in various regions at random time points, affects single

task learning models much more than multi-task learning models. For example, for

the EN model, the MAE increased from .492 for γ = 1 (no down-sampling), to .694

for γ = 0.1, a degradation of 41.1%. In contrast, the MTEN model degrades by

13.5%. The effect is more pronounced for the nonlinear models, with GP degrading

by 36.7% while MTGP degrades by only 4.8%. Note that MTGP’s MAE is equal to

.482 when the fewest data points are used (10% for γ = 0.1), which is smaller than

EN’s or GP’s MAEs, when no sampling is taking place (.492 and .502 respectively).

All models degrade worse for B and C sampling methods, which drop blocks
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Figure 4.5: Comparing GP (red) and MTGP (blue) ILI estimates for US Region 9 for two
burst error sampling (type C) rates (γ).

of data points from the training set. However, the degradation in performance of the

multi-task learning models is much less than for the comparative EN or GP models.

For example, when γ = 0.1, MTGP improves GP’s MAE by 45.9% and 44.3% for B

and C sampling types, respectively. Fig. 4.5 illustrates this performance difference

by comparing the ILI estimates from the GP and MTGP models for US region 9

under burst error sampling, for γ = 0.5 (top) and γ = 0.1 (bottom).9 Clearly, for

low sampling rates (γ = 0.1) the MTGP model is still able to provide acceptable

performance.

In a subsequent experiment, we performed burst-error sampling on all but two

US regions with the highest population figures (Regions 4 and 9). The rationale

behind this setting is that in many occasions health reports are available for central

locations in a country (i.e. two big cities), but are limited anywhere else. Fig. 4.4

compares the performance of all regression models under this scenario. It confirms

that the pattern observed in the previous experiment still holds, i.e. that the multi-

task models are much less affected by down-sampling. We can also see that MAE

in single task learning models increases at an exponential rate as γ decreases.
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Figure 4.6: Comparing GP (red) and MTGP (blue) ILI estimates for England under varying
training data sizes.

4.5.4 ILI Surveillance Tasks across Countries

We expand on the previous results to test whether a stable data stream for a country

could be used to enhance a disease model for a different, but culturally similar,

country. The underlying assumption here is that countries that share a common

language and have cultural similarities may also share common patterns of user

search behavior.

For this purpose, we use data from the US and England and assume that there

are increasingly fewer historical health reports for England only, in a similar fashion

to the experiments described in Section 4.5.2 (L from 5 to 1 year). For the US data,

we always assume that the training window is based on the past L = 5 years. The

search queries used in both countries are the same, with the following exception.

Two of the US search queries about medication were changed to their British equiv-

alent because their search frequencies in England are low; we changed “tussin” to

“robitussin” and “z pak” to “azithromycin”.

Table 4.4 shows a similar pattern of results to the previous experiments. All

multi-task learning models register statistically significant improvements compared

to the single task learning ones. As the length of the training period is reduced,

9Region 9 includes the states of California, Nevada and Arizona and one of the largest in terms
of population (≈ 49.1 million).



4.6. Summary 101

the improvements are greater; MTGP reduces MAE by 20.9% and 40.0% for L = 5

and L = 1 year, respectively. Fig. 4.6 presents the estimates for the GP and MTGP

models for these extreme cases. Whereas both models seem to be inferring the

trends of the time series correctly, the multi-task estimates are closer to the actual

values of the signal’s peaks.

The results confirm our original hypothesis that data from one country could

improve a disease model for another country with similar characteristics. This moti-

vates the development of more advanced transfer learning schemes (Pan and Yang,

2010), capable of operating between countries with different languages by over-

coming language barrier problems, using variants of machine translation.

4.6 Summary
In this chapter, we have investigated the utility of multi-task learning to disease

surveillance from Web search data. Disease surveillance models for various ge-

ographies — inside a country and across different countries – were trained jointly

such that knowledge between different tasks could be shared. We explored both lin-

ear and nonlinear models (MTEN and MTGP) and used ILI surveillance as a case

study. Experiments were conducted on the US and England. Our empirical results

indicate that multi-task learning improves regional as well as national models for the

US. The percentage of improvement increases as we reduce the historical training

data. For a 1-year training period, the MTGP model improved MAE by 14.8% at the

Table 4.4: Performance of single and multi-task learning models for estimating ILI rates in
England; notational conventions as in Table 4.1. The asterisk (∗) indicates that a multi-task
learning model does not yield a statistically significant improvement over its single-task
formulation.

EN MTEN GP MTGP
L r MAE r MAE r MAE r MAE

5 .885 .696 .896 .491 .891 .599 .903 .474
4 .873 .734 .887 .504 .880 .664 .894 .491
3 .860 .788 .876 .530 .868 .742 .883 .517
2 .854 .842 .871 .554 .859 .815 .875 .528
1 .836 .999 .857 .603 .846 .977 .860 .586
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regional level. Furthermore, in simulated scenarios, where health reports (training

data) are limited, we showed that multi-task learning helps to maintain stable in-

ference performance across all the affected locations. Experiments, where data for

England were modeled in conjunction with US data, indicated that more accurate

estimates were obtained for England, maxed at 40% MAE reduction when using 1-

year long training periods. This suggests that multi-task learning can benefit models

across different countries as well.



Chapter 5

Transfer Learning for Disease

Surveillance

Recent research efforts have shown that traditional disease surveillance can be com-

plemented by alternative methods trained on data from online user activity, e.g. so-

cial media or online search behavior (Milinovich et al., 2014; Gomide et al., 2011;

Choudhury et al., 2013; Lampos and Cristianini, 2010; Culotta, 2010; Paul and

Dredze, 2011; Polgreen et al., 2008; Ginsberg et al., 2009; Lampos et al., 2015;

Yang et al., 2015; Biggerstaff et al., 2018; Wagner et al., 2018). The main advan-

tages of these complementary methods are timeliness, and sampling from a larger

(and perhaps different) segment of the population, including people who may not

visit a doctor while being ill. It is also often cited that such approaches may be very

useful in regions where health infrastructure is poor or absent. However, in practice,

this is often impossible as the proposed machine learning solutions rely on training

data which, apart from the user-generated inputs, need to contain confirmed disease

rates at the target location, broadly referred to as “ground truth”. This data is typ-

ically provided by existing syndromic surveillance systems. Hence, for locations

where ground truth is not available, user-data driven approaches are not realistically

applicable.

In this chapter, we propose a statistical framework to circumvent problems

associated with a lack of training data in some geographic regions. Our approach

is based on the broad notion of transfer learning, where we aim to transfer parts
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of the knowledge gained while solving a certain task to better solve a different,

but related one (Pan and Yang, 2010). In particular, our goal is to transfer a well-

performing disease rate inference model from a source location, where supervised

learning is possible, to a target location, where supervision is not possible, given

the lack of ground truth. We focus our experiments on influenza (flu) and utilize

Google search query statistics as our descriptive variable for aggregate, population-

level, online user activity. For example, CDC monitor and report ILI rates on a

weekly basis, providing sufficient ground truth to learn a function that maps online

search query frequencies to these rates. In our experiments we show that we can

adapt this function to derive estimates of ILI rates at different locations (outside

the US). Language may or may not differ between the source and target locations.

Online search statistics can be obtained for these target locations, but we assume

that there is no ground truth data.

The proposed approach is composed of 3 steps. After learning a source regres-

sion model (step 1), we seek ways to map the selected source search queries to sets

of queries in the target location. To derive this mapping we deploy a hybrid metric,

which combines semantic similarity with a time series correlation component (step

2). Semantic similarities are estimated using cross-lingual or monolingual word

embeddings and correlations are computed using query frequencies. Finally, query

weights from the source model are transferred to the identified target queries (step

3). This framework is evaluated on three transfer learning tasks, where the source

model is always based in the US, and the target countries are France, Spain and

Australia. While ground truth is available for all the target countries, we only use

it to evaluate the performance of the transferred models. Transferred models, as-

sessed on four flu seasons (2012 to 2016), can accurately estimate the peak of each

flu season, achieving, on average, Pearson correlations greater than .92 and root

mean squared errors comparable to the ones obtained by the corresponding fully

supervised models (≤ 21.6% increase in errors). Therefore, they can be considered

as practical solutions for locations that lack historical ground truth data.

The chapter’s main contributions are the following:
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• We propose a novel, end-to-end transfer learning framework for mapping a dis-

ease model trained on online search data from a location, where ground truth is

available, to a location, where ground truth is not available.

• We investigate variations of this model, exploring different query mapping func-

tions using semantic or temporal similarities or combinations of the two.

• We empirically show that our approach works in three case studies, two of which

require a transfer to a different language (English to French or Spanish), and one

that maintains the same language (English), but demands a model transfer to a

different hemisphere (US to Australia).

5.1 Problem Formulation
The estimation of disease rates from web search data is commonly formulated as a

regression task (Ginsberg et al., 2009; Lampos et al., 2015). The aim is to learn a

function f : X → y that maps the input space of search query frequencies, X∈Rn×s,

to the target variable, y∈Rn, representing disease rates; n denotes the number of

samples and s is the size of the feature space, i.e. the number of unique search

queries we are considering. More specifically, X contains the time series of search

query frequencies, and y represents the number of disease diagnoses per 100,000

people (as reported by a health agency) at corresponding times. The time interval for

computing the frequency of queries is often set to one week to match the temporal

frequency of syndromic surveillance reports.

Regression approaches require observations of the target variable y (ground

truth) for training a machine learning model. This restricts the application of such

techniques to areas where historical disease rates are available. This chapter at-

tempts to address this limitation by proposing a transfer learning methodology, that

maps an existing disease model from an area, where disease rates are available, to

another location, where disease rates cannot be obtained. In this scenario, we seek

to map an established ILI rate estimation function f : X → y from a source country,

where ground truth exists, to a target country, where ground truth is unavailable.
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We define the source domain as DS = {(xi,yi)}, i∈{1, . . . ,n}, where xi is an s-

dimensional vector holding the frequencies of the s queries for the time interval

i, yi is the corresponding disease rate, and n is the number of observations. The

target domain is denoted by DT = {x′i}, i∈{1, . . . ,m}, where x′i is a t-dimensional

vector of the frequencies of the t queries in the target domain that are associated

with the s queries in the source domain. No ground truth is available for the target

domain, although in practice we have access to ground truth which we later on use

only to evaluate a transferred model. Note that t need not equal s, thus allowing

one-to-many query mappings, which are discussed shortly. In theory, the m time

intervals may precede or overlap the n time intervals in the source region. In our

experiments, results are reported only for the case where the m target intervals are

after the n source intervals.

5.2 Related Work

The fundamental properties of transfer learning have been thoroughly discussed in

relevant literature (Ben-David et al., 2007; Mansour et al., 2009; Pan and Yang,

2010; Torrey and Shavlik, 2009; Ben-David et al., 2010; Weiss et al., 2016). In

contrast to traditional machine learning methods, which assume that the training and

test data belong to the same domain, i.e. they are drawn from the same feature space

and distribution, transfer learning aims to improve the learning function in a target

domain by transferring knowledge from a related, source domain. This concept

has been successfully applied to various tasks, including text classification (Dai

et al., 2007; Pan et al., 2009; Glorot et al., 2011; Chen et al., 2011), part of speech

tagging (Blitzer et al., 2006; Jiang and Zhai, 2007), machine translation (Koehn and

Schroeder, 2007; Foster et al., 2010), and image classification (Kulis et al., 2011;

Zhu et al., 2011; Duan et al., 2012).

In this work, we present a statistical framework for transferring a disease

surveillance model from a source country, where supervised learning is applica-

ble, to a target country, where no ground truth is available. We formulate it as a

cross-lingual transductive regression task (Pan and Yang, 2010), which poses the
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following challenges: (a) ground truth is not available in the target domain, and (b)

features (queries) may not belong in the same feature space due to linguistic or cul-

tural differences. Due to (a), multi-task learning models, such as this solution for

ILI (Zou et al., 2018), cannot be used because they still require partial ground truth

to capture the relationship between the different tasks (Caruana, 1997). To solve

(b), a few studies have attempted to learn a mapping of both source and target lan-

guages to the same space (Wan, 2009; Prettenhofer and Stein, 2010; Huang et al.,

2013; Smith et al., 2016). For example, Prettenhofer and Stein (2010) used unla-

beled documents along with a word translation oracle to automatically induce task-

specific, cross-lingual correspondences for cross-lingual text classification. In this

chapter, we used cross-lingual word embeddings proposed in (Smith et al., 2016) to

align different languages. Methods have also been proposed for reducing the dis-

tance between the source and target features (Pan et al., 2009; Zhou et al., 2014).

For example, Pan et al. (2009) proposed Transfer Component Analysis (TCA) to

learn transfer components across source and target domains in a reproducing kernel

Hilbert space using maximum mean discrepancy. Zhou et al. (2014) constructed a

sparse feature transformation matrix based on compressive sensing theory to map

the weight vector of classifiers learned from the source domain to the target domain.

However, their tasks are very different from the regression task studied in this chap-

ter. These models were not able to capture efficiently the time series structure in our

data.

5.3 Data Sets
Our experiments rely on two sources of data, namely Google search query fre-

quency statistics and ILI rates from established health organizations.

5.3.1 Google Search Query Frequency Statistics

Time series of weekly search query frequencies were retrieved through Google Cor-

relate. A frequency represents the weekly search activity of a query (number of

times issued) within a geographical region. It is normalized by dividing by the total

number of search queries issued during that week. This normalization controls for
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Figure 5.1: ILI rates for the United States (US), France (FR), Spain (ES) and Australia
(AU).
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variations in the number of searches issued each week. Variations in the weekly

number of searches can be due to a variety of causes, including (1) summer va-

cations, (2) responses to news events, and (3) the general trend of increased Web

usage (Mohebbi et al., 2011). Normalized query frequencies are subsequently stan-

dardized, such that their time series have a zero mean and a standard deviation of

one. This results in expressing query frequencies under the same units, indicat-

ing how many standard deviations a query frequency value is away from its mean

value, for different geographical regions with potentially varying population size

and search usage patterns.

Overall, we obtained weekly frequencies of search queries from September 1,

2007 to August 31, 2016 inclusive (470 weeks) for US, France, Spain, and Aus-

tralia. Given that an exhaustive list of user search queries was not available to us,

we extracted search queries by using a set of 12 flu-related queries per country

as a seed to Google Correlate and iterating through this process (using correlated

queries as new seeds). This process extracted 34,121, 29,996, 15,673 and 8,764

queries for US, France, Spain and Australia, respectively. Queries were not lim-

ited to the topic of flu, given that various other spurious queries may also correlate

(different illnesses, activities or products based on seasonality).

5.3.2 Influenza-Like Illness Rates

We obtained weekly ILI rates for US, France, Spain and Australia from their es-

tablished syndromic surveillance systems, namely CDC, SN, SISSS, and ASPREN,

respectively. ILI rates represent the fraction of the population that has been di-
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agnosed with influenza-like symptoms. The data spans from September 1, 2007

to August 31, 2016 inclusive, which covers approximately 9 consecutive influenza

seasons. Note that for Spain, we only have ILI rates from Week 40 in a year to

Week 20 in the following year. The prevalence of influenza outside this period is

typically very low. We denote ILI rates from each syndromic surveillance system

using the corresponding country code (US, FR, ES, and AU). All ILI rates in this

chapter represent the number of ILI cases per 100,000 people in a population.

In our experiments, described in the following sections, we are transferring a

flu model trained on US data (search query frequencies, ILI rates) to one of the

other three countries. To provide some insight about the difficulty of the task, we

have plotted the historical ILI rates for all countries in Fig. 5.1. ILI rates may cor-

relate between countries, e.g. the Pearson correlation between the US and FR rates

is equal to .6 (p < 0.01), but peaks and troughs are occurring at different times

and with very different intensities. The US and AU ILI rates are negatively cor-

related (−.4, p < 0.01), as expected, since these countries are situated in different

hemispheres and influenza is strongly seasonal.

5.4 Transfer Learning Framework
In this section, we first describe our fundamental assumption in Section 5.4.1.

Then we provide an overview of the transfer learning framework in Section 5.4.2.

Each step of the transfer learning framework is presented in Section 5.4.3, 5.4.4,

and 5.4.5.

5.4.1 A Fundamental Assumption about Online Search Behav-

ior in Different Countries

As the transfer learning function is explained in more detail in the following para-

graphs, it will become apparent that the proposed statistical framework is grounded

on a fundamental assumption, which is that online search behavior will be similar

in the source and the target countries. Narrowing this assumption down for our spe-

cific task, this implies that the conditional probability of issuing a query q under

a certain health status h (with or without experiencing influenza-like symptoms),
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Table 5.1: Mean ratio of query frequency over ILI rate in United States, France, Spain, and
Australia.

Search queries US FR ES AU
flu (US/AU), grippe (FR), gripe (ES) .036 .033 .032 .031

symptoms of flu (US/AU), symptômes de la grippe (FR), sı́ntomas de gripe (ES) .030 .031 .029 .027
flu in children (US/AU), grippe chez le bébé (FR), gripe en el bebé (ES) .017 .020 .019 .022

P(q|h), will be similar for the populations of the source and the target countries.

Relevant literature offers some evidence of this with regards to user search behav-

ior for various health-related themes (Andreassen et al., 2007; Ybarra and Suman,

2008; Barry et al., 2011; Alicino et al., 2015). In addition, we also offer some em-

pirical evidence using our data. Table 5.1 shows the average query frequency over

the corresponding ILI rate ratio for three basic queries in the US and AU. It also

shows these ratios for translations of these queries in FR and ES (e.g. flu→ grippe

(FR) → gripe (ES)). The main observation is that these ratios do not vary much

over the time span of our data, which is almost a decade. Although, this is a limit-

ing observation, in that it does not involve many different search queries, it serves

as a strong indication that user search behavior, at least for this specific area of in-

terest, has similarities among different countries. The transfer learning framework,

described in the following paragraphs, tries to exploit these similarities.

5.4.2 Overview of the Transfer Learning Framework

Here we provide an overview of the proposed transfer learning framework. It con-

sists of three basic steps:

• Step 1 learns a regression function based on data from the source domain. That

is, given the frequencies of source queries together with estimates of the disease

rate, we learn a linear regression function comprised of a set of s non-negative

weights (one weight per query).

• Step 2 maps the s source queries to the t target queries. As previously mentioned,

this need not be a unique mapping, i.e. a source query, qs may map to 0, 1 or

more queries in the target domain, and two or more queries in the source domain

may share queries in the target domain.
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• Step 3 transfers the regression weight associated with each source query to the

corresponding queries in the target domain.

5.4.3 Step 1 — Learning a Regression Function in the Source

Domain

Regularized regression has been successfully applied to various text regression

tasks, including the estimation of disease rates from social media or online search

data (Lampos et al., 2015; Zou et al., 2016). In this chapter, we use elastic net (Zou

and Hastie, 2005) as our regression function (see Section 2.4 for detail). Given

X∈Rn×s and y∈Rn from the source domain DS, we apply a constrained version of

elastic net which solves the following optimization problem:

argmin
w

(
‖y−Xw−β‖2

2 +λ1 ‖w‖2
2 +λ2 ‖w‖1

)
,

subject to w≥ 0 ,
(5.1)

where λ1 > 0, λ2 > 0 are, respectively, the `1-norm and `2-norm regularization

parameters, and β denotes the intercept term. The non-negativity constraint for w

may result in a worse performing model for the source country, but, at the same time,

makes the weight transfer from a source to a target country more comprehensive

(positive weights are easier to interpret) and eventually more accurate in terms of

performance (see Section 5.5.4).

Due to the seasonal nature of influenza, our dataset of candidate queries con-

tains a significant number of confounders, i.e. queries that are correlated with flu,

but have no link to flu, such as “college basketball” and “spring break”. To remove

these unrelated queries we applied a semantic filter based on word embedding rep-

resentations, similar to the one proposed in (Lampos et al., 2017; Zou et al., 2018).

English word embeddings were trained on the English Wikipedia corpus using the

fastText method (Bojanowski et al., 2017). A topic about flu, T , was defined

as a simple set of two flu-related terms, T = {‘flu’, ‘fever’}. For each of the source

queries, we calculate a similarity score defined as the product of the cosine similar-
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ities between the embeddings of the terms in T and eq, i.e.

g(q,T ) =
2

∏
i=1

cos(eq,eTi) , (5.2)

where each cosine similarity component is mapped to [0,1] via (cos(·, ·)+1)/2.1

Queries with g ≤ .5 are filtered out and are not considered in our experiments.

5.4.4 Step 2 — Mapping Source to Target Queries

The identified and weighted set of search queries in the source domain (QS) should

be mapped to a set of queries in the target domain from a potential pool of tar-

get query candidates (PT). Queries about the same topic may vary in their textual

formulation, especially when they are issued by users located in different countries.

Even in cases, where countries share the same language, cultural and socioeconomic

differences may result in different querying preferences. Thus, simple approaches

where search queries from the source country are translated or directly mapped to

queries in the target country are not efficient. In our approach, we utilize word em-

beddings (mono- or cross-lingual) to map source to target queries based on their

broad semantic relationship. We consider both one-to-one and one-to-many query

mappings from the source to the target domain.

In addition, the weights associated with each source query reflect on how cor-

related the query is with the modeled disease rate. Therefore, a desired property is

to map source queries to target ones based on their pairwise temporal correlation as

this may enhance the statistical relevance of the mapping. Consequently, there is a

tension between mapping based on semantic similarity and mapping based on the

similarity in temporal correlation. To capture both, we define a combined similarity

metric, Θ, that is the weighted sum of a semantic similarity Θs and a correlation

similarity, Θc, i.e.

Θ = γΘs +(1− γ)Θc , (5.3)

where γ ∈ [0,1] controls the relative weighting of each. When γ = 1 the mapping

1This resolves misleading similarity scores based on different sign combinations.
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is based only on semantic similarity. Conversely, when γ = 0 the mapping is based

only on the correlation similarity.

5.4.4.1 Semantic similarity (Θs)

If the source and target domains have different languages, a translation module is re-

quired. For this purpose, we deploy cross-lingual word embeddings. Cross-lingual

embeddings are trained using corpora from multiple languages, and can be used

to compute word similarities in different languages (Vulić and Moens, 2015a,b;

Smith et al., 2016). Empirical evidence indicates that they can also facilitate bet-

ter knowledge transfer between languages (Mogadala and Rettinger, 2016; Ammar

et al., 2016; Mrkšić et al., 2017). The majority of cross-lingual word embedding

models are trained by exploiting sources of monolingual text alongside a smaller

cross-lingual corpus of aligned text (Ruder, 2017). The alignment can be made at

word (Mikolov et al., 2013b; Dinu et al., 2014; Vulić and Moens, 2015a; Ammar

et al., 2016; Smith et al., 2016; Artetxe et al., 2018), sentence (Zou et al., 2013; Levy

et al., 2017), and document level (Vulić and Moens, 2016; Mogadala and Rettinger,

2016). In this chapter, we utilize a method for learning bilingual word embeddings

proposed by Smith et al. (2016).

First, for each of the source and target languages, we respectively learn a word

embedding space based on monolingual text. For all languages considered in our

experiments (English, French and Spanish) we obtained word embeddings by ap-

plying fastText on corresponding Wikipedia corpora (Bojanowski et al., 2017).2

The dimensionality of the word embeddings was set to d = 300. Then, we used a

core selection of exact translation pairs (σ→ τ) from the source to the target do-

main language to generate bilingual embeddings. Given the embedding matrices of

this alignment dictionary, Eσ and Eτ both ∈ Rm×d , where m, d denote the number

of translation pairs and the dimensionality of the word embedding respectively, we

learn a transformation matrix W ∈ Rd×d such that Eτ ≈ Eσ W. W is an orthogonal

matrix learned by minimizing the squared Euclidean distance between Eσ and Eτ ,

i.e.

2The embeddings were obtained from https://github.com/facebookresearch/fastText

https://github.com/facebookresearch/fastText/blob/master/pretrained-vectors.md
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argmin
W
‖Eσ W−Eτ‖2

2 ,

subject to W>W = I .
(5.4)

The orthogonality constraint ensures that the transformation works both ways,

that is Eτ ≈ Eσ W, Eσ ≈ EτW>, and Eτ ≈ EτW>W (Smith et al., 2016). In

addition, Artetxe et al. (2016) have empirically shown that it also improves the

performance of machine translation. The exact solution of Eq. 5.4 is given by W =

VU>, where E>τ Eσ = UΣV> is the singular value decomposition of E>τ Eσ (Golub

and Reinsch, 1970).3

A query’s embedding is defined as the average of the embeddings of its tokens,

an effective practice for short texts (Mikolov et al., 2013c; Xu et al., 2015; Benton

et al., 2016; Zou et al., 2018). We denote with vSi , vT j both ∈R1×d , the embeddings

of a source query (from QS) and of a target query from PT, respectively. Then, an

element ωi j from the cosine similarity matrix Ω∈Rs×|PT| between the embeddings

of source and valid target queries is given by

ωi j =
vSiWv>T j

‖vSiW‖2

∥∥vT j

∥∥
2

. (5.5)

Note that the cosine similarities are computed after projecting the embeddings of

the source domain to the target domain using the transformation matrix W.

In theory, we can directly use Eq. 5.5 to determine the k most similar target

queries to the source query, thus providing a one-to-many mapping. However, in

practice when conducting translations based on cross-lingual word embeddings, this

may result in the presence of “hubs”, i.e. target words or queries that are similar

to unrealistically many different source words, a development that reduces the per-

formance of translation (Dinu et al., 2014; Smith et al., 2016). Smith et al. (2016)

mitigate this effect by using an inverted softmax ranking, described next.

Given qi in the source language, its translation is determined by finding candi-

3The proof of the solution can be found in (Artetxe et al., 2016).
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date target queries q′j that maximize the probability defined by

Pj→i =
exp
(
η ωi j

)
α j

s

∑
z=1

exp(η ωiz)

, (5.6)

where α j is a normalization factor that ensures Pj→i is a probability, and s is the

number of source queries in the vocabulary. The inverted softmax estimates the

probability Pj→i that a candidate target query translates back to the source query,

rather than the other way around, Pi→ j (Dinu et al., 2014; Smith et al., 2016). If a

target query is a hub, then the denominator in Eq. 5.6 will be large, preventing this

target query from being selected. The parameter η is learned by maximizing the

log probability over the alignment dictionary (σ→τ), i.e.,

argmax
η

∑
pairs i j

ln
(
Pj→i

)
. (5.7)

The top-k queries from PT with the highest pairing probability (Pj→i) are then

selected as possible translations of the source query qi. Then, we compute the

semantic (cosine) similarity score Θs between the source query qi and the target

query q j using

Θs(qi,q j) =
eqiWe>q j∥∥eqiW
∥∥

2

∥∥eq j

∥∥
2

, (5.8)

where eqi , eq j are the embeddings of qi, q j, respectively. Our experiments report

results for a variety of values of k.

If the language in the source and the target domain is the same, the previously

described approach is not applicable. Given potential differences in querying pref-

erences, some of the source queries,QS, may not be present in the pool of candidate

target queries, PT. Therefore, we use cosine similarity to map each source query

to the k most similar target ones based on Eq. 5.8 and using the common word

embedding space for the shared language.
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5.4.4.2 Temporal Correlation Similarity (Θc)

We compute the Pearson correlation between the frequency time series of the source

and target queries over a fixed period (set to 5 years in our experiments). Since the

flu season may be offset in the target domain with respect to the source domain,

we computed the maximum correlation between these two frequency time series

using a shifting window of ±ξ weeks. The range of possible values for ξ is de-

termined based on the seasonal offset between the source and target countries (see

Section ??).

Given a source query, qi, and a target query, q j which is a member of a map-

ping set Ti (consisting of k ≥ 1 queries from PT), and their associated daily search

frequencies, xi(t) and x j(t), respectively, the temporal correlation similarity, Θc, is

given by

Θc(qi,q j) = ρ
(
xi(t),x j(t + li j)

)
, (5.9)

where ρ(xi(t),x j(t + li j)) denotes the optimal Pearson correlation coefficient be-

tween xi, x j within the shifting window. Note that the optimal window is indepen-

dently computed for each target query in Ti, and thus optimal shifts may vary.

5.4.5 Step 3 — Weighting target queries

In the previous steps, we have established that a source query qi, which has received

a regression weight wi, is mapped to a set, Ti, of k ≥ 1 queries in the target domain.

If k = 1, then we can directly assign wi to the single target query. If k > 1, then

the source query’s weight, wi, should be distributed across these k mapping target

queries. To perform this, we have considered three alternatives:

1. Uniform. We divide the source query weight, wi, by the number of queries q′j in

Ti, and assign each query in Ti a weight equal to

w′j = wi/k . (5.10)

2. Non-uniform. The k target query weights are determined based on each target

query’s similarity score Θi j, j ∈ {2,k} (see Eq. 5.3) with the source query. More
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specifically, a target weight w′j is defined as

w′j = wiΘi j′/ ∑
q′j∈Ti

Θi j′ . (5.11)

To obtain a baseline performance estimate, we randomly shuffle the established

query mappings in Step 2, and then transfer the source weights to the k target queries

using the uniform approach. We repeat this process multiple times and report the

mean performance of these randomized transfer learning models.

5.5 Experiments
We deploy the proposed transfer learning framework to estimate ILI rates in 3 target

countries without using any ground truth from these countries to supervise model-

ing. The US is always the source country, while the target countries are FR, ES

and AU. We assess the performance of the proposed model, comparing it to vari-

ous baselines, and also provide a qualitative analysis, aiming to interpret the inner

workings of our approach.

5.5.1 Experiment Settings

After applying the semantic filter (Eq. 5.2) to the pool of 34,121 US queries, 1,403

queries were retained. The evaluation protocol was as follows. We trained a source

model (US) using the first 5 flu seasons (2007-2012). A flu season is conventionally

defined as the 1-year long period from the first week in September to the last week

of August in the next year.4 Prior to applying elastic net, we maintained search

queries that had a Pearson correlation ≥ .3 with the US ILI rates (these queries

may vary per training fold). We then transfer the model to FR, ES, and AU and

subsequently test the model in the following season (2012-2013). Then, we move

our training data window to include the 2012-13 flu season, removing the first flu

season (2007-2008) and test in the following season (2013-2014), so that we still

have 5 flu seasons to train. We repeat this process until we have tested on the last

4Note that for AU this may result in including the end of a flu season and the beginning of the
next in training and test folds.
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flu season in our data set (2015-2016), testing 4 times in total. The window size

(ξ ) used for identifying optimal correlations between the frequency time series of

the source and target queries (see Section 5.4.4.2) is set to ±6 weeks for FR and

ES. The window is the same for AU, although prior to applying it, the time series

are shifted by 6 months to account for the seasonal difference in the northern and

southern hemispheres. For a 1-to-k mapping from a source to a set of target queries,

we explore sizes up to k = 5 (values > 5 did not yield any different insights or

performance improvements). We evaluate the performance of transferred models by

comparing our estimates with their national public health estimates, using Pearson

correlation (r), MAE, and RMSE, with the two last (MAE, RMSE) being the most

reliable metrics.

5.5.2 Baseline Models

To demonstrate the effectiveness of our transferring learning framework, we com-

pare it with four baseline models:

• Random. After determining the one-to-k mapping between source and target

queries, the mappings are randomly permuted. The source query weight is uni-

formly distributed across the k target queries. We repeat this process 2,000 times

and report the average inference performance. This random assignment of query

weights provides a possibly worst case baseline.

• Transfer component analysis (TCA). TCA is a transfer learning approach that

aims to learn transfer components across source and target domains in a repro-

ducing kernel Hilbert space using maximum mean discrepancy (Pan et al., 2009).

After we map source to target queries, TCA is applied to source and target query

frequencies.

• Unsupervised. We apply a semantic filter (described in Eq. 5.2) to filter queries

that are irrelevant to the flu topic. The term pairs {‘grippe’, ‘fièvre’}, {‘gripe’,

‘fiebre’} and {‘flu’, ‘fever’} are used to define this semantic filter in FR, ES and

AU, respectively. Queries with g ≤ .5 are filtered out and are not considered in

our experiments. The mean frequency of the retained queries is regarded as a
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proxy of the estimated ILI rates. These estimates are in different scale with true

ILI rates, thus we only report correlation (r).

• Supervised. We first apply a semantic filter (see point above) to the queries of

each target country. We then train an elastic net, using an additional correlation

filter in each fold (r ≥ .3 with the target values in the training data). This is inline

with previously proposed, state-of-the-art supervised models for the task (Lampos

et al., 2017) and is considered to be the top performance we could obtain, if we

had access to ground truth in the target countries.

5.5.3 Quantitative Analysis

Performance estimates are enumerated in Tables 5.2, 5.3, and 5.4 for each transfer

learning task (US→FR, US→ES, US→AU). We first explored the extreme cases of

γ = 0 and γ = 1 (Eq. 5.3) that result in using only temporal correlation or semantic

similarity, respectively.

For γ = 0, spurious queries are very likely to be included in the target domain’s

mappings. This is a result of the way the pool of target queries, PT, was originally

formed (see Section 5.3.1). Seasonal search queries, correlating with the occur-

rence of flu incidents in a population, are very likely to be selected as mappings,

e.g. “symptoms flu” was mapped to “ski serre chevalier” in the US→FR task. Sea-

sonal activities or expressions may change in time, and thus such queries are very

unstable predictors. In fact, the best average performance we can obtain for γ = 0 is

considerably worse (MAEs of 61.532, 25.977 and 42.348 for FR, ES, and AU) than

for alternative values. In general, the uniform weight allocation for k = 1 seems

to be a good choice, although performance does not seem to be affected much by

different choices of weighting (uniform vs. non-uniform) or different numbers of

queries in a mapping (k).

For γ = 1, we obtain on average more accurate estimates than for γ = 0. As

a precursor to the joint similarity, we also introduce a correlation-based weighting

scheme (denoted by “C”), which uses the optimal correlation between source and

target queries (after deploying a shifting window) to determine the proportion of
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Table 5.2: Performance estimates for the US→FR transfer learning task. Different values
of γ determine how queries are mapped from the source to the target domain (γ=1: semantic
similarity only, γ=0: temporal correlation only, γ∈(0,1): joint similarity score). The best
performance among all transfer learning models is denoted in bold. The best performance
among models under a different γ is underlined. Only the best random mapping perfor-
mance (R) is enumerated per choice of γ . The last two rows show the performance of the
baseline models.

Mapping k w 09/2012 – 09/2013 09/2013 – 09/2014 09/2014 – 09/2015 09/2015 – 09/2016 Average
r MAE RMSE r MAE RMSE r MAE RMSE r MAE RMSE r MAE RMSE

γ = 0

1 — .797 78.905 136.098 .789 59.584 93.752 .900 56.107 92.324 .855 51.533 78.073 .835 61.532 100.062
2 U .803 80.044 137.247 .794 59.961 94.853 .890 58.372 96.282 .843 55.532 84.438 .833 63.477 103.205
3 U .802 79.010 135.905 .796 59.750 95.350 .896 57.241 94.451 .844 57.306 86.588 .834 63.327 103.073
4 U .798 79.077 135.892 .795 59.529 95.295 .895 58.380 95.852 .834 59.729 90.180 .830 64.179 104.305
5 U .799 78.881 135.743 .794 58.508 95.036 .893 58.439 96.988 .829 60.075 91.182 .829 63.976 104.737
2 NU .803 80.012 137.180 .794 59.971 94.869 .891 58.360 96.268 .843 55.502 84.399 .833 63.461 103.179
3 NU .802 78.999 135.881 .796 59.763 95.360 .896 57.244 94.453 .844 57.271 86.538 .834 63.319 103.058
4 NU .799 79.068 135.875 .795 59.519 95.278 .895 58.367 95.834 .834 59.676 90.106 .830 64.157 104.273
5 NU .799 78.868 135.725 .794 58.499 95.015 .893 58.434 96.972 .829 60.029 91.110 .829 63.957 104.706
1 R .771 125.422 152.275 .731 93.122 105.769 .807 138.579 158.000 .825 102.972 113.607 .783 115.024 132.413

γ = 1

1 — .964 51.885 77.728 .928 24.373 35.801 .974 51.623 69.254 .917 75.416 92.946 .946 50.824 68.932
2 U .967 41.298 68.164 .939 22.993 33.287 .973 62.869 81.119 .924 84.469 102.422 .951 52.907 71.248
3 U .967 39.789 67.336 .947 21.219 30.446 .972 58.654 79.471 .933 76.235 93.338 .955 48.974 67.648
4 U .965 40.120 65.882 .947 24.037 33.095 .970 63.290 85.390 .939 77.601 93.301 .955 51.262 69.417
5 U .965 37.632 61.217 .952 26.136 35.651 .972 66.825 90.248 .943 78.479 93.855 .958 52.268 70.243
2 NU .968 41.272 68.016 .939 22.925 33.213 .973 61.971 80.280 .924 83.058 101.160 .951 52.306 70.667
3 NU .967 39.665 66.933 .948 21.189 30.378 .973 58.568 79.476 .933 75.661 92.917 .955 48.770 67.426
4 NU .966 39.754 65.480 .948 23.794 32.767 .971 62.957 85.275 .939 76.868 92.866 .956 50.843 69.097
5 NU .966 37.295 60.749 .952 25.925 35.383 .972 66.890 90.583 .943 77.969 93.647 .958 52.020 70.091
3 R .891 83.535 113.537 .890 79.396 86.904 .949 116.532 124.478 .922 109.746 119.219 .913 97.302 111.034
2 C .968 39.972 65.695 .941 21.639 31.190 .974 59.103 77.964 .926 78.798 97.444 .952 49.878 68.073
3 C .967 38.062 64.349 .949 20.408 29.002 .973 56.188 77.822 .933 72.492 90.289 .956 46.788 65.365
4 C .965 38.225 63.063 .949 22.869 31.161 .971 60.623 83.764 .938 73.644 90.367 .956 48.840 67.089
5 C .966 35.827 58.820 .953 24.940 33.619 .973 63.562 87.764 .942 74.547 90.793 .958 49.719 67.749

γopt = .5

1 — .968 33.475 53.775 .951 22.615 34.416 .973 34.793 58.007 .944 45.324 62.417 .959 34.052 52.153
2 U .959 37.461 60.529 .939 24.885 38.056 .967 43.197 69.883 .930 54.504 74.766 .949 40.012 60.809
3 U .954 38.786 63.909 .939 26.390 39.771 .968 44.241 71.312 .931 61.182 81.592 .948 42.650 64.146
4 U .948 41.150 69.125 .934 29.553 43.996 .966 47.021 74.662 .932 62.330 82.811 .945 45.014 67.649
5 U .945 41.936 71.322 .925 30.387 46.164 .963 46.108 75.703 .931 61.750 82.670 .941 45.045 68.965
2 NU .959 37.414 60.456 .939 24.881 38.036 .967 43.118 69.763 .930 54.329 74.599 .949 39.936 60.714
3 NU .954 38.675 63.792 .940 26.423 39.789 .968 44.452 71.495 .931 61.147 81.601 .948 42.674 64.169
4 NU .948 40.867 68.727 .935 29.381 43.748 .966 47.093 74.691 .932 62.323 82.804 .945 44.916 67.492
5 NU .946 41.610 70.892 .926 30.201 45.863 .963 46.192 75.685 .931 61.788 82.685 .942 44.948 68.781
1 R .913 86.752 110.096 .846 72.130 83.158 .943 94.681 109.176 .942 97.352 104.952 .911 87.729 101.845

Unsupervised — — .936 — — .870 — — .947 — — .910 — — .916 — —
Supervised — — .977 27.331 50.643 .979 23.665 33.994 .992 34.345 62.803 .987 15.011 21.956 .984 25.088 42.349

k: number of target queries (1-to-k mapping), w: weighting approach, U: uniform, NU: non-uniform, C: correlation, R: random

the source weight that will be allocated to the k mapped queries. In countries that

deploy a translation module based on bilingual word embeddings, the “C” scheme

outperforms the other two (uniform, non-uniform). For the US→AU task, where

high semantic similarity often means that very similar queries are being mapped to

each other (given the common language), the optimal model is obtained for k = 1,

and thus, no further distribution of the weights is required. With or without the

“C” weighting scheme, better performance is achieved compared to setting γ = 0

(MAEs of 46.788/48.77, 33.224/34.834 and 34.509/30.275 for FR, ES, and AU).

The joint similarity scheme attempts to combine the positive attributes of se-
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Table 5.3: Performance estimates for US→ES transfer learning task. Different values of
γ determine how queries are mapped from the source to the target domain (γ=1: semantic
similarity only, γ=0: temporal correlation only, γ∈(0,1): joint similarity score). The best
performance among all transfer learning models is denoted in bold. The best performance
among models under a different γ is underlined. Only the best random mapping perfor-
mance (R) is enumerated per choice of γ . The last two rows show the performance of the
baseline models.

Mapping k w 09/2012 – 09/2013 09/2013 – 09/2014 09/2014 – 09/2015 09/2015 – 09/2016 Average
r MAE RMSE r MAE RMSE r MAE RMSE r MAE RMSE r MAE RMSE

γ = 0

1 — .808 25.068 41.104 .807 25.789 42.137 .843 29.221 47.360 .791 25.134 38.497 .812 26.303 42.275
2 U .799 25.589 42.631 .843 23.850 39.092 .844 30.069 48.120 .821 24.470 36.902 .827 25.994 41.686
3 U .795 25.756 42.883 .840 23.669 38.934 .843 29.509 48.189 .813 24.989 37.713 .823 25.981 41.930
4 U .783 26.504 43.662 .835 23.671 39.207 .844 29.850 48.335 .809 25.715 38.745 .818 26.435 42.487
5 U .783 26.579 43.391 .840 23.605 38.861 .842 30.336 48.800 .806 26.586 39.843 .818 26.776 42.724
2 NU .799 25.579 42.610 .843 23.852 39.095 .844 30.060 48.111 .821 24.472 36.907 .827 25.991 41.681
3 NU .795 25.748 42.867 .840 23.670 38.936 .843 29.503 48.176 .813 24.989 37.712 .823 25.977 41.922
4 NU .784 26.491 43.643 .835 23.671 39.209 .844 29.842 48.325 .809 25.708 38.734 .818 26.428 42.478
5 NU .783 26.567 43.380 .840 23.605 38.866 .842 30.324 48.785 .806 26.575 39.826 .818 26.768 42.714
3 R .830 40.548 46.584 .903 36.241 40.718 .846 53.929 61.098 .813 45.762 49.637 .848 44.120 49.509

γ = 1

1 — .954 28.614 34.944 .976 27.777 30.129 .919 44.638 50.082 .899 43.761 46.590 .937 36.197 40.436
2 U .955 27.342 33.979 .976 27.118 29.294 .923 44.723 50.213 .925 44.518 49.547 .945 35.926 40.758
3 U .958 25.523 31.885 .971 28.293 32.055 .916 47.603 53.909 .917 48.513 54.053 .941 37.483 42.975
4 U .960 25.316 31.623 .973 27.998 31.797 .918 46.862 53.458 .918 47.443 52.823 .942 36.905 42.425
5 U .957 24.445 30.821 .975 27.169 30.959 .917 45.775 52.620 .914 45.854 51.505 .941 35.811 41.476
2 NU .955 26.336 32.978 .977 26.069 28.232 .923 43.543 49.056 .925 43.389 48.409 .945 34.834 39.669
3 NU .958 25.532 31.879 .971 28.327 32.076 .917 47.471 53.737 .917 48.356 53.908 .941 37.422 42.900
4 NU .960 25.324 31.587 .973 28.020 31.814 .919 46.770 53.334 .917 47.391 52.769 .942 36.876 42.376
5 NU .958 24.432 30.759 .975 27.197 30.990 .917 45.778 52.576 .915 45.951 51.574 .941 35.839 41.475
2 R .731 47.277 53.345 .804 44.924 52.394 .795 60.370 70.934 .719 48.986 56.506 .762 50.389 58.295
2 C .954 25.520 33.516 .976 24.408 26.693 .923 41.827 47.782 .924 41.142 46.278 .944 33.224 38.567
3 C .957 23.642 31.398 .970 25.353 29.090 .916 44.358 50.846 .916 45.405 51.174 .940 34.690 40.627
4 C .960 23.339 30.912 .973 24.900 28.709 .919 43.431 50.236 .918 44.297 49.873 .942 33.992 39.933
5 C .957 24.137 30.513 .974 26.555 30.466 .917 44.598 51.464 .915 45.662 51.359 .941 35.238 40.950

γopt = .2

1 — .931 21.419 30.004 .948 15.403 23.900 .907 27.050 39.864 .888 26.762 35.420 .918 22.658 32.297
2 U .926 21.433 29.944 .941 17.334 25.525 .899 30.166 43.243 .877 30.662 40.272 .911 24.899 34.746
3 U .936 21.249 28.841 .961 18.189 24.028 .908 31.608 42.568 .900 35.661 43.995 .926 26.677 34.858
4 U .945 21.016 28.161 .965 18.720 23.647 .917 32.235 41.483 .910 37.141 44.448 .934 27.278 34.435
5 U .946 20.977 28.041 .967 18.727 23.321 .910 33.330 43.018 .903 36.846 44.547 .932 27.470 34.732
2 NU .926 21.427 29.932 .941 17.321 25.510 .899 30.135 43.214 .877 30.626 40.233 .911 24.877 34.723
3 NU .936 21.254 28.845 .961 18.186 24.037 .908 31.583 42.554 .900 35.629 43.969 .926 26.663 34.851
4 NU .945 21.023 28.158 .965 18.739 23.682 .917 32.241 41.509 .910 37.128 44.438 .934 27.283 34.447
5 NU .946 20.983 28.033 .967 18.747 23.364 .910 33.337 43.028 .903 36.872 44.568 .932 27.485 34.748
1 R .865 32.859 40.942 .931 33.323 38.687 .878 49.262 57.762 .814 45.799 51.424 .872 40.311 47.204

γ = .5 1 — .945 20.016 28.161 .965 17.720 23.647 .917 31.235 41.483 .910 36.141 44.448 .934 26.278 34.435
Unsupervised — — .936 — — .976 — — .910 — — .878 — — .925 — —
Supervised — — .968 19.788 24.487 .993 30.642 41.059 .972 24.779 35.861 .954 13.271 20.992 .971 22.120 30.600

k: number of target queries (1-to-k mapping), w: weighting approach, U: uniform, NU: non-uniform, C: correlation, R: random

mantic and correlation based similarities. To assess its potential contribution, we

performed a grid search using 9 values of γ (from .1 to .9), and presented the results

for the best performing one (γopt). For completeness, we also show results for the

default choices of γ = .5 and k = 1. Firstly, mappings and weightings based the

joint similarity provide significant performance improvements in all tasks (MAEs

of 34.052, 22.658 and 22.043 for FR, ES, and AU). Secondly, the best perform-

ing model consistently occurs for k = 1, i.e. for 1-to-1 query mappings, where no

weight redistribution is required. Finally, although results do not deviate much from
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Table 5.4: Performance estimates for the US→AU transfer learning task. Different values
of γ determine how queries are mapped from the source to the target domain (γ=1: semantic
similarity only, γ=0: temporal correlation only, γ∈(0,1): joint similarity score). The best
performance among all transfer learning models is denoted in bold. The best performance
among models under a different γ is underlined. Only the best random mapping perfor-
mance (R) is enumerated per choice of γ . The last two rows show the performance of the
baseline models.

Mapping k w 09/2012 – 09/2013 09/2013 – 09/2014 09/2014 – 09/2015 09/2015 – 09/2016 Average
r MAE RMSE r MAE RMSE r MAE RMSE r MAE RMSE r MAE RMSE

γ = 0

1 — .704 38.804 50.140 .677 39.151 48.508 .630 51.412 65.215 .787 40.025 57.421 .700 42.348 55.321
2 U .622 41.824 55.943 .663 41.708 50.752 .633 52.017 66.448 .763 40.557 59.312 .670 44.027 58.114
3 U .621 42.263 56.819 .669 42.900 51.487 .631 53.041 67.754 .769 41.330 59.468 .672 44.883 58.882
4 U .607 42.040 56.755 .669 42.501 51.008 .634 51.868 66.404 .759 40.287 58.660 .667 44.174 58.207
5 U .600 41.900 56.618 .671 41.950 49.692 .647 50.958 64.744 .761 40.899 58.979 .670 43.927 57.508
2 NU .623 41.886 55.947 .663 41.642 50.818 .633 52.068 66.590 .763 40.617 59.384 .670 44.053 58.185
3 NU .620 42.263 56.812 .668 42.857 51.533 .631 53.062 67.852 .769 41.373 59.540 .672 44.889 58.934
4 NU .607 42.031 56.745 .669 42.466 51.039 .634 51.909 66.504 .759 40.343 58.732 .667 44.187 58.255
5 NU .600 41.885 56.601 .671 41.928 49.723 .647 51.011 64.844 .761 40.935 59.032 .670 43.940 57.550
1 R .653 60.835 71.392 .710 52.090 62.045 .628 67.895 78.856 .738 69.695 75.320 .683 62.629 71.903

γ = 1

1 — .916 23.447 26.436 .871 13.994 18.129 .902 35.315 42.126 .971 48.344 50.617 .915 30.275 34.327
2 U .900 28.828 33.029 .880 18.583 22.656 .925 39.274 45.149 .989 59.174 60.026 .923 36.465 40.215
3 U .896 30.804 35.148 .881 19.492 23.743 .938 36.748 42.294 .990 57.829 58.516 .926 36.218 39.925
4 U .889 30.876 35.549 .872 21.475 26.089 .935 37.484 42.966 .994 57.871 58.397 .922 36.926 40.750
5 U .882 31.248 35.738 .868 21.320 25.883 .936 37.615 43.059 .992 58.773 59.318 .919 37.239 41.000
2 NU .902 28.789 32.947 .880 18.497 22.565 .925 39.278 45.150 .989 59.007 59.861 .924 36.393 40.131
3 NU .897 30.805 35.137 .882 19.510 23.775 .938 36.973 42.482 .990 57.779 58.462 .927 36.267 39.964
4 NU .890 30.839 35.484 .873 21.367 25.986 .936 37.554 42.999 .994 57.825 58.354 .923 36.896 40.706
5 NU .884 31.217 35.678 .870 21.261 25.830 .936 37.609 43.019 .992 58.770 59.309 .920 37.214 40.959
1 R .825 58.539 60.310 .793 42.200 46.818 .890 55.940 61.462 .963 65.023 66.924 .868 55.426 58.878
2 C .905 27.444 31.356 .881 17.547 21.520 .925 37.373 43.387 .989 58.318 59.229 .925 35.171 38.873
3 C .900 28.802 32.701 .882 18.039 22.091 .939 34.534 40.310 .990 56.660 57.516 .928 34.509 38.154
4 C .894 28.643 32.867 .874 19.505 23.747 .938 34.613 40.360 .994 56.309 57.011 .925 34.768 38.496
5 C .888 29.149 33.118 .870 19.259 23.507 .939 34.622 40.252 .992 57.220 57.962 .922 35.063 38.710

γopt = .9

1 — .922 11.997 14.986 .879 15.084 18.011 .898 24.898 31.110 .985 36.191 38.271 .921 22.043 25.594
2 U .892 16.642 19.922 .881 15.719 19.009 .923 23.858 30.280 .988 39.919 41.175 .921 24.034 27.596
3 U .890 18.641 22.543 .876 18.391 21.453 .930 23.965 29.934 .989 41.232 42.249 .921 25.557 29.045
4 U .883 19.078 23.494 .866 19.766 22.757 .928 23.691 29.686 .991 40.159 41.138 .917 25.673 29.269
5 U .875 20.091 24.960 .862 18.791 21.614 .933 23.474 29.474 .991 41.433 42.483 .915 25.947 29.633
2 NU .894 16.565 19.826 .882 15.679 18.961 .923 23.830 30.226 .988 39.809 41.071 .922 23.971 27.521
3 NU .892 18.588 22.457 .877 18.312 21.353 .930 23.995 29.967 .989 41.230 42.245 .922 25.531 29.005
4 NU .885 19.043 23.410 .867 19.639 22.621 .929 23.690 29.673 .991 40.229 41.204 .918 25.650 29.227
5 NU .877 19.983 24.795 .864 18.716 21.530 .933 23.414 29.390 .991 41.416 42.462 .916 25.882 29.544
1 R .844 47.859 50.120 .817 37.727 40.926 .900 54.008 59.263 .940 55.980 59.071 .875 48.893 52.345

γ = .5 1 — .871 18.642 23.367 .848 17.735 20.735 .873 27.140 32.733 .930 39.651 43.484 .880 25.792 30.080
Unsupervised — — .815 — — .810 — — .881 — — .942 — — .862 — —
Supervised — — .891 19.353 25.297 .865 22.048 25.200 .939 18.658 22.473 .971 11.255 14.159 .916 17.829 21.782

k: number of target queries (1-to-k mapping), w: weighting approach, U: uniform, NU: non-uniform, C: correlation, R: random

the default settings of γ = .5 and k = 1, there are discrepancies between the optimal

γ value for each task (γ = .5, .2 and .9 for FR, ES, and AU). We believe that this

is an artifact of the intrinsic characteristics (size, semantic/temporal similarities) of

the pool of candidate target queries used for each each task (see Section 5.5.4).

Better performance is always obtained (in terms of MAE and RMSE) com-

pared to the random mapping allocation baseline (“R”), the best performance esti-

mates of which per γ value are provided. The same holds for TCA, which performs



5.5. Experiments 123

Figure 5.2: Comparison of transfer learning models for estimating ILI rates in France (A),
Spain (B) and Australia (C) with the corresponding actual ILI rates obtained by health
agencies in these countries.
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even worse than random (results are omitted). One explanation for this is that TCA

fails to capture the time series structure of this particular data set, an essential prop-

erty for producing a meaningful solution. Furthermore, the optimal models (joint

similarity) outperform the unsupervised baseline in terms of correlation, the only

metric which is relevant in this case. Finally, compared to the fully supervised

elastic net, the transfer learning unsupervised approach reaches to a comparable

performance, which is worse by 23.15%, 5.55%, and 17.5% (in terms of RMSE),

for FR, ES, and AU, respectively.

Fig. 5.2 plots the time series of a selection of these estimates, including the

ones of the best performing models (blue solid line), in comparison to the ground

truth (black dashed line), for each target country. We can see how estimates become
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Figure 5.3: MAE under different γ values for the transfer learning models for FR, ES, and
AU (k = 1).

significantly better when the joint similarity is used vs. its extremes. The trans-

ferred models can very often estimate the peak of the flu season accurately. This

includes the time of occurrence as well as its intensity. Notably, ILI rates in these

countries differ in terms of scale, but the proposed models are capable of capturing

this effortlessly, providing further evidence about the search behavior similarities

in different countries (Section 5.4.1). At the same time, most models show some

inaccuracies, especially during the time periods without a significant amount of flu

circulation (e.g. summer).

5.5.4 Qualitative Analysis

One fair criticism for the proposed framework is that in a practical scenario the opti-

mal values for γ and k cannot be validated. However, we have already demonstrated

that the default settings of γ = .5 and k = 1 provide very satisfactory performance

in all our case studies. Fig. 5.3 looks further into this, depicting performance esti-

mates (MAE) for different values of γ . As discussed previously, optimal γs differ

per target country. Interestingly, all error trends are monotonically decreasing (as

γ increases) until they reach a minimum, and then start to monotonically increase.

We argue that the optimal γ reflects the actual pool of candidate target queries (PT),

although we have too small a sample size to be able to empirically prove this. In
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our data, the average correlation over the average semantic similarity ratio between

all source-target query pairs is equal to 1.143, .982 and 2.261, for the FR, ES, and

AU tasks respectively. These ratios depend on characteristics of the target queries

which we are not controlling for in our approach. They do correlate with the re-

spective optimal γ values (.5, .2, and .9), an insight that can be used to make a more

informed choice of γ in future applications of the proposed framework.

Table 5.5 lists the top-5 query mappings that were the most impactful in the

ILI estimates on average during the 10 weeks with the lowest and greatest MAEs

(for the optimal transfer models). Impact is determined by the percentage of an

ILI rate that is contributed by a query (frequency × weight / ILI rate). The identi-

fied pairs during the weeks with the lowest errors are topically coherent (about flu)

and on many occasions, are accurate translations from the source to the target lan-

guage. On the other hand, pairs responsible for the largest errors include inaccurate

translations that sometimes lead to an off-topic target query selection. For example,

“24 hour flu” is mapped to “grippe intestinale” (impact: 13.2%),5 “child fever” to

“sinusitis” (7.7%), and “child temperature” to “warmer” (9.8%). Nevertheless, it

is encouraging that some of these mappings may have been avoided by carefully

preprocessing the target query candidates to avoid spurious queries.

The optimal joint similarity transfer models do not improve by increasing the

number of target queries (k > 1). An interpretation for that might be drawn by the

fact that for k = 1 at most 77.9% of the selected target queries are unique (at least

22.1% are repetitive). As k increases, these mappings do not seem to improve and

the error increases monotonically. This might be due to the existence of various

spurious queries in the feature space as well as the indication that the mapping has

already converged to a subset of the target queries.

Finally, the choice of adding a non-negativity constraint to the regularized re-

gression function for the source domain (Eq. 5.1), was also empirically justified

as MAE increases on average by 20.6%, 21.6%, and 20.5% for FR, ES, and AU

respectively.

5Grippe intestinale translates to stomach flu (viral gastroenteritis).
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Table 5.5: Top-5 target queries (with source mappings) in terms of mean ILI estimate
impact (%) in the 10 weeks with the lowest and greatest MAE (all test periods), for all
target countries (TC), based on their respective optimal transfer learning models.

TC Mappings during accurate estimates Impact (%) Mappings during inaccurate estimates Impact (%)

FR

flu incubation period→ grippe durée 10.90 24 hour flu→ grippe intestinale 13.24
cough fever→ la toux 6.30 influenza a treatment→ grippe traitement 8.07

how to treat flu→ comment soigner une grippe 6.00 remedies for colds→ rhume de cerveau 6.75
fever flu→ fièvre de la grippe 5.47 child temperature→ température du corps 6.37

flu treatment→ traitement de la grippe 4.95 child fever→ fièvre adulte 6.04

ES

symptoms of flu→ symptômes grippe 9.04 mucinez for kids→ tratmiento de la grippe 20.76
fever flu→ con gripe 7.49 child fever→ sinusitis 7.76
cough fever→ la tos 6.34 influenza a treatment→ con gripe 7.02

flu incubation period→ cuanto dura una gripe 5.19 symptoms pneumonia→ bronquitis 6.04
how to treat a fever→ para bajar la fiebre 5.03 child temperature→ temperatura corporal 5.62

AU

treatment for the flu→ flu treatment 9.85 24 hour flu→ flu duration 11.51
cough fever→ cough and fever 8.05 child temperature→ warmer 9.77

flu type→ influenza type 5.37 how to treat a fever→ have a fever 6.94
symptoms of flu→ symptoms of flu 5.11 tamiflu and breastfeeding→ flu while pregnant 6.81

flu incubation period→ flu incubation period 5.03 robitussin cf→ colds 5.18

5.6 Summary
Prior work on estimating disease rates from online user-generated content relies

heavily on supervised learning models. Such models require ground truth data

which is usually provided by public health organizations. Ground truth, however,

is either sparse or absent from locations with a poor healthcare infrastructure. This

is somewhat ironic as it is often stated that web-based approaches hold consider-

able promise for regions that lack syndromic surveillance systems. This chapter

proposes a transfer learning framework as a potential solution to this problem. We

leverage semantic and temporal relationships to map a supervised model from a

source to a target location. We show that we can obtain satisfactory performance

(r > .92 on average) that does not deviate much from a fully supervised model

(≤ 21.6% increase in RMSE), without using any ground truth from the target do-

main.

There are a number of avenues for future work. It is highly desirable to perform

a study where the target country is from a low or middle income region. However,

such a study is complicated, since the lack of ground truth data does not allow the

performance to be quantified. Nevertheless, a qualitative study that demonstrated

ILI estimates that followed an expected seasonal pattern would be of value. Our

experiments on regions with ground truth data allowed us to investigate parameters

k and γ , i.e. the choice for the one-to-k mapping and the relative weight assigned
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to the semantic and temporal similarities. Our experiments indicated that a one-to-

one (k = 1) mapping performed best on average, and that the optimal γ differed per

target country. In our analysis, we attempted to justify both outcomes, but further

experiments on other regions are needed to understand the effect of these parameters

better.





Chapter 6

Conclusions and Future Work

In this chapter, we summarize our contributions in Section 6.1. Then, we make a

discussion on our work for real-world problems in Section 6.2. Finally, we provide

some future directions of this work in Section 6.3.

6.1 A Summary of Contributions
The framework consists of five steps: (1) acquire data from the Web, (2) extract

features from the Web data, (3) select features from extracted features, (4) train su-

pervised learning models, and (5) estimate disease rates and provide early warning

before disease outbreak happens. We have made three contributions to complement

and improve the framework.

First, we have proposed a joint feature selection method, which consists of a

time series similarity filter and a semantic filter. The former filter is based on Pear-

son correlation, and ensures the features remained are potentially good predictors.

The later semantic filter is based on word embeddings, and succeeds in eliminating

confounding features, i.e. queries that may be highly correlated with disease rates,

but are not referring to the target disease. Using the proposed feature selection

method, we have made two case studies, estimating ILI rates from Web search data

and IID rates from Twitter data. For both linear (elastic net) and nonlinear regres-

sion models (Gaussian Processes), the experimental results demonstrate significant

improvement over strong baseline models.

Second, we have investigated the utility of multi-task learning techniques to
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disease surveillance from Web search data. A number of related disease surveillance

models from different geographies are jointly trained using linear (multi-task elastic

net) and nonlinear (multi-task Gaussian Processes) models. The data structures

are shared during joint training, which exploits the relatedness between tasks and

improves the generalization of the model. We used ILI estimation as a case study,

and have shown that the multi-task learning can provide an improved estimate of

disease rates when (1) training data is available for multiple geographic locations,

and (2) when ground truth training data is sporadic. In addition, we have shown that

multi-task learning can improve the estimates of a different country by exploiting a

denser health reporting scheme of a reference country.

Third, we have also proposed a transfer learning framework for delivering con-

siderably accurate disease rate models without the existence of ground truth infor-

mation for a target location. Our framework consists of three steps: (1) learn a

regularized regression model for a source country, (2) map the source queries to

target ones using semantic and temporal similarity metrics, and (3) re-adjust the

weights of the target queries. Our solution is evaluated on the task of estimating

ILI rates. In the experiment, we learn a source model for the US, and subsequently

transfer it to three other countries, namely France, Spain and Australia. Overall, the

transferred models achieve strong performance in terms of Pearson correlation with

the ground truth, and their mean absolute error does not deviate greatly from a fully

supervised baseline.

6.2 Discussions

Disease surveillance, or more broadly speaking, public health surveillance, aims

to monitor and assess the health of a population, and to craft health policies to

address the identified health problems. According to Paul and Dredze (2017), there

are mainly three components in a public health cycle: (1) assessment, (2) policy

development, and (3) assurance.

The aim of the first stage assessment is to monitor the health of a population,

and to identify health issues. In the second stage, health policies need to be devel-
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oped to address the results of assessment. In the last stage, results of the policies are

evaluated. Our work in this thesis focus on the first stage assessment. We estimate

disease rates in (nearly) real-time, and this complements traditional disease surveil-

lance in monitoring the health of a population. In addition, our estimations are 2

to 3 weeks ahead of the official numbers published by established health agencies.

This can provide an early warning before epidemics happen and affect the second

stage policy development. Our work can also be used to evaluate the effectiveness

of the policies. For instance, Wagner et al. (2017) evaluated the population impact

of a new pediatric influenza vaccination program in England using social media

content.

Web-based disease surveillance systems can be used for both developed coun-

tries where well-established health systems exist and ground truth is sufficient, and

low and middle income countries where such well-established health infrastructure

is missing and ground truth partially and does not exist.

For developed countries, although well-established health systems exist, there

is usually several weeks delay on reporting. Web-based disease surveillance can

complement traditional disease surveillance systems by providing accurate esti-

mates of disease rates in (nearly) real-time, as described in the literature and Chap-

ter 3. This is especially useful during epidemics period, when disease rate is needed

in very short time.

Low and middle income countries can benefit more from Web-based disease

surveillance. When ground truth only partially or does not exist, supervised learning

models are hardly to be used. Multi-task and transfer-learning techniques described

in Chapter 4 and 5 are presented for this purpose. Experiments were conducted in

developed countries for evaluation purpose. However, given user-generated content

and partial (or no) ground truth in a new country, our models can be easily deployed.

However, we have to admit that our models tend to work well when the culture

between two countries are not distant. If the search behavior between countries are

quite different, for example people in the target country are more concerned about

diseases and therefore search more, our models will overestimate disease rates.
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6.3 Future Work
During the development of the thesis, a lot of interesting ideas and issues have

emerged. However, due to time and resource constraint, only some of them have

been discussed. Here I summarize the possible directions of the future work.

First, we can make a case study that learns a disease surveillance model from a

country with sufficient ground truth, and then transfers the model to a low or middle

income country, where only a poor (or no) healthcare infrastructure is established.

This is significant as web-based disease surveillance approaches will be particularly

useful for regions that lack syndromic surveillance systems.

Second, we can take the advantage of current developments in deep learning

and develop a disease surveillance model using deep neural networks. Deep neu-

ral networks have demonstrated their advantages in many tasks, such as computer

vision, natural language processing, and information retrieval (Goodfellow et al.,

2016; Goldberg, 2016). Compared to tradition machine learning techniques, deep

learning is good at automatically identifying high-level features from data and solv-

ing complex problems. This may improve the current Web-based disease surveil-

lance systems.

Third, we can exploit the methods for disease rate forecasting. The majority

of the community work on estimating disease rates in real-time, i.e. they are now-

casting disease rates. Forecasting models, such as hidden Markov model and RNN,

can predict the diseases rates days to weeks before the outbreak happen. This can

provide early warning to public health agencies.
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Glossary

n-grams A contiguous sequence of n items from a given sample of text or speech.

The items can be phonemes, syllables, letters, words or base pairs according

to the application. 31

Akaike information criterion (AIC) An estimator of the relative quality of statis-

tical models for a given set of data; the model with lowest AIC is preferred.

55

Autoregressive (AR) A type of random process, which is used to describe certain

time-varying processes. It specifies that the output variable depends linearly

on its own previous values and on a stochastic term. 50

Autoregressive integrated moving average (ARIMA) A generalization of au-

toregressive moving average model used in some cases where data show

evidence of non-stationarity, where an initial differencing step can be applied

one or more times to eliminate the non-stationarity. 51

Autoregressive moving average (ARMA) A parsimonious description of a

(weakly) stationary stochastic process in terms of two polynomials, one

for the autoregression and the second for the moving average. 50

Autoregressive moving average model with exogenous inputs (ARMAX) Autoregressive

moving average model that use exogenous inputs (X) for forecasting. 51
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Bayesian information criterion (BIC) A criterion for model selection among a

finite set of models; the model with the lowest BIC is preferred. 55

Coefficient of determination Denoted as R2, which measures the proportion of the

variance in the dependent variable that is predictable from the independent

variables. 52

Continuous Bag of Words (CBOW) A model loops on the words of each sen-

tence and uses each of these contexts to predict the current word. 65

Correlation In this thesis, it refers to Pearson correlation, which is a measure of

the linear correlation between two variables. It has a value between 1 and−1.

26

Disease surveillance The continuous, systematic collection, analysis and interpre-

tation of health-related data needed for the planning, implementation, and

evaluation of public health practice. 21

Elastic net A regularized regression method that linearly combines the `1 and `2

penalties of the Lasso and ridge methods. 48

Feature extraction A dimensionality reduction process, where an initial set of raw

variables is reduced to more manageable groups (features) for processing,

while still accurately and completely describing the original data set. 31

Feature selection Also known as variable selection, attribute selection or variable

subset selection, is the process of selecting a subset of relevant features (vari-

ables, predictors) for use in model construction. 26

Flu News Europe Joint ECDC and WHO/Europe weekly influenza update. 24

Gaussian Processes (GP) A stochastic process (a collection of random variables

indexed by time or space), such that every finite collection of those random

variables has a multivariate normal distribution, i.e. every finite linear com-

bination of them is normally distributed. 49
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Google Flu Trends A web service operated by Google, which provided estimates

of influenza activity for more than 25 countries. By aggregating Google

Search queries, it attempted to make accurate predictions about flu activity.

36

Google Trends A website by Google that analyzes the popularity of top search

queries in Google Search across various regions and languages. 34

Ground truth A term used in various fields to refer to information provided by di-

rect observation (i.e. empirical evidence) as opposed to information provided

by inference. 27

ILI rates Number of patients with influenza-like illness symptoms within a popu-

lation. 24

Influenza-Like Illness (ILI) Also known as acute respiratory infection and flu-like

symptoms, is a medical diagnosis of possible influenza or other illness caus-

ing a set of common symptoms. 23

Kernel methods A class of algorithms that use kernel functions, which enable

them to operate in a high-dimensional, implicit feature space without ever

computing the coordinates of the data in that space, but rather by simply com-

puting the inner products between the images of all pairs of data in the feature

space. 49

Latent Dirichlet Allocation (LDA) A generative statistical model that allows sets

of observations to be explained by unobserved groups that explain why some

parts of the data are similar. 64

Latent Semantic Analysis (LSA) A technique in natural language processing, in

particular distributional semantics, of analyzing relationships between a set of

documents and the terms they contain by producing a set of concepts related

to the documents and terms. 64
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Least absolute shrinkage and selection operator (Lasso) A regression analysis

method that performs both variable selection and regularization in order to

enhance the prediction accuracy and interpretability of the statistical model it

produces. It is a combination of ordinary least squares and `1-norm regular-

ization. 48

Linear regression A linear approach to modeling the relationship between a de-

pendent variable and one or more explanatory variables (or independent vari-

ables). 46

Machine Learning (ML) A field of artificial intelligence that uses statistical tech-

niques to give computer systems the ability to “learn” (e.g., progressively

improve performance on a specific task) from data, without being explicitly

programmed. 26

Matérn covariance function A covariance function that handles abrupt changes

in the predictors. 62

Mean absolute error (MAE) A measure of the averaged absolute difference be-

tween the estimated and observed variables. 54

Mean squared error (MSE) A measure of the averaged squared difference be-

tween the estimated and observed variables. 54

Moving average (MA) A common approach for modeling time series, which spec-

ifies that the output variable depends linearly on the current and various past

values of a stochastic term. 50

Multi-task elastic net A multi-task version of elastic net, which explores the linear

relations between different tasks. 84

Multi-task Gaussian Processes A multi-task version of Gaussian processes,

which explores the nonlinear relations between different tasks. 84
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Multi-task learning A subfield of machine learning in which multiple learning

tasks are solved at the same time, while exploiting commonalities and differ-

ences across tasks. 27

Natural Language Processing (NLP) A subfield of computer science, informa-

tion engineering, and artificial intelligence concerned with the interactions

between computers and human (natural) languages, in particular how to pro-

gram computers to process and analyze large amounts of natural language

data. 26

Neural networks An information processing paradigm that is inspired by the way

biological nervous systems, such as the brain, process information. The key

element of this paradigm is the novel structure of the information processing

system. It is composed of a large number of highly interconnected processing

elements (neurones) working in unison to solve specific problems. 50

Nonlinear regression A form of regression analysis in which observational data

are modeled by a function which is a nonlinear combination of the model

parameters and depends on one or more independent variables. 49

Ordinary least squares A type of linear least squares method for estimating the

unknown parameters in a linear regression model. The parameters are chosen

by minimizing the sum of the squares of the differences between the observed

dependent variable and those predicted by the linear function. 46

Recurrent Neural Networks (RNN) A class of neural network where connections

between nodes form a directed graph along a sequence. This allows it to

exhibit temporal dynamic behavior for a time sequence. 64

Regression Statistical processes for estimating the relationships among variables.

More specifically, regression helps one understand how the typical value of

the dependent variable changes when any one of the independent variables is

varied. 26
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Ridge regression Also known as Tikhonov regularization, a commonly used

method of regularization of ill-posed problems. It is a combination of or-

dinary least squares and `2-norm regularization. 48

Root mean square error (RMSE) Also known as root mean square deviation, the

square root of mean squared error. 54

Skip-Gram A model loops on the words of each sentence and tries to use the cur-

rent word of to predict its neighbors. 65

Squared exponential (SE) A stationary covariance function with smooth sample

paths. 62

Syndromic surveillance A type of disease surveillance. It refers to the surveil-

lance of a specific syndrome (a set of related symptoms). 22

Topic modeling A type of statistical model for discovering the abstract “topics”

that occur in a collection of documents. Topic modeling is a frequently used

text-mining tool for discovery of hidden semantic structures in a text body.

41

Transfer learning A subfield of machine learning that focuses on storing knowl-

edge gained while solving one problem and applying it to a different but re-

lated problem. 28

User-generated content Also known as user-created content, is any form of con-

tent, such as images, videos, text and audio, that have been posted by users of

online platforms such as search queries log, blogs, wikis, discussion forums,

posts, chats, tweets, and other forms of media. 25

Web-based disease surveillance Disease surveillance that utilizes online user-

generated content as a data source. 25

Word embeddings Language modeling and feature learning techniques in natural

language processing where words or phrases from the vocabulary are mapped
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to vectors of real numbers. Conceptually it involves a mathematical embed-

ding from a space with one dimension per word to a continuous vector space

with a much lower dimension. 26

Word2vec A model developed by Google to produce word embeddings. The mod-

els are shallow, two-layer neural networks that are trained to reconstruct lin-

guistic contexts of words. 64





Appendix C

Acronyms

API Application Programming Interface. 25

ASPREN Australian Sentinel Practices Research Network. 45

BRFSS Behavioral Risk Factor Surveillance Systems. 23

CDC Centers for Disease Control and Prevention. 23

ECDC European Centre for Disease Prevention and Control. 24

EISN European Influenza Surveillance Network. 24

HHS Department of Health and Human Services. 44

IID Infectious Intestinal Disease. 59

ILINet Influenza-Like Illness Surveillance Network. 23

NSDUH National Survey on Drug Use and Health. 23

PHE Public Health England. 44

RCGP Royal College of General Practitioners. 44

SISSS Spanish Influenza Sentinel Surveillance System. 45

SN French GPs Sentinelles Network. 45
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