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ABSTRACT 

Blood transcriptomics consists in measuring the abundance of circulating leukocyte RNA on a 

genome-wide scale. Dimension reduction is an important analytic step which condenses the 

number of variables and permits to enhance the robustness of data analyses and functional 
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interpretation. An approach consisting in the construction of modular repertoires based on 

differential co-expression observed across multiple biological states of a given system has been 

described before. In this report, a new blood transcriptome modular repertoire is presented based 

on an expended range of disease and physiological states (16 in total, encompassing 985 unique 

transcriptome profiles). The input datasets have been deposited in NCBI’s public repository, GEO. 

The composition of the set of 382 modules constituting the repertoire is shared, along with 

extensive functional annotations and a custom fingerprint visualization scheme. Finally, the 

similarities and differences between the blood transcriptome profiles of this wide range of 

biological states are presented and discussed.  

 

 

 

 

 

 

 

 

 

 

 

BACKGROUND:  

Blood transcriptomics. 
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Blood transcriptome profiling approaches have been employed for nearly two decades in a 

wide range of settings [1-4]. It consists in measuring leukocyte transcript abundance on a genome-

wide scale. This application was enabled following the introduction of microarray technologies 

and more recently of RNA sequencing. Leukocyte transcriptome profiles have more commonly 

been measured in whole blood or peripheral blood mononuclear cell fractions. But studies have 

also investigated changes in transcriptome abundance in isolated leukocyte populations as well as 

in single cells [5, 6]. Global changes in transcript abundance can also be observed upon stimulation 

of the cells in vitro with host or environmental derived immunogenic factors, such as pathogen-

associated molecular pattern, antigenic peptides, as well as pro or anti-inflammatory cytokines or 

chemokines [7, 8]. 

Dimension reduction approaches. 

Approaches that permit organization or reduction of large number of variables being 

measured are commonly adopted when working with omics datasets. Principal component 

analyses (PCA) is usually employed as a “first line” dimension reduction strategy. It consists in 

converting sets of correlated variables into aggregate variables called principal components. 

Rather than being used to identify gene “signatures” PCA mostly serves to “reveal internal 

structure of the data in a way that best explains the variance in the data” [9]. For this reason, PCA 

tends to be performed as one of the first step in the analysis as the information it conveys can direct 

the design of downstream analyses. For instance, in an experiment where cells from different 

donors are exposed to stimuli in vitro a PCA plot would permit to determine among sample 

processing batch, donor and stimulation, which of these factors contributes the most to overall 

variance observed. If stimulations are especially potent they may “override” the variance 
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associated with donor-donor differences. But in cases where stimulations have subtler effects 

donor-donor differences may be the predominant source of variation. 

Clustering tends to be used in subsequent analysis steps and is by far the most commonly 

used dimension reduction approach. It consists in grouping transcripts based on similarities in 

expression levels. Individual genes can thus be reduced into “signatures”, each constituted by 

multiple genes that show some degree of correlation. Clustering can be applied either prior to or 

following feature selection. Clustering methods which are commonly used include hierarchical 

clustering and k-means clustering.  

Another less commonly employed approach to dimension reduction relies on the 

construction and mining of correlation networks. A network is constituted of “nodes” and “edges” 

(the later are the lines connecting the different nodes to indicate a relationship). Nodes can 

represent one of many different things e.g.: genes, proteins, samples, individuals etc..; likewise, 

the nature of the relationship depicted by the edges varies, e.g.: physical interaction, regulation, 

co-occurrence in literature abstracts. Also the first step when “reading” a network consists in 

determining what its nodes and edges represent. In a correlation network the nodes represent genes 

and the edges correlation in level of abundance of their product (RNA in the case of transcriptomic 

data). The use of correlation networks for transcriptome data analysis has been covered extensively 

in a recent review by Van Dam et al [10]. One of the approaches most commonly employed for 

correlation-based expression analysis is Weighted Gene Correlation Network Analysis (WGCNA) 

[11]. Using a transcriptome dataset as input, it consists in building a weighted correlation network 

(i.e. edges receive a “connection weight” according to the strength of the correlation). This network 

is subsequently partitioned into sets of highly correlated genes, referred to as modules, using 

hierarchical clustering.    
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Module repertoires.  

A first “modular repertoire framework” has been developed by our group over 10 years 

ago, specifically for analysis and interpretation of blood transcriptome data [12] [13]. Such a 

framework consists in: 1) A collection of transcriptional modules (i.e. the modular repertoire), 2) 

Functional interpretations for the different modules 3) A fingerprint visualization designed for 

mapping perturbations of a given modular repertoire (as compared to steady state or appropriate 

baseline).  

The construction of a modular repertoire constitutes a dimension reduction step. The 

approach is similar to network correlation analyses described above: i.e. a network serves as a 

basis for module selection, its nodes represent genes, and edges connecting the nodes represent 

gene co-expression. The fact that differential co-expression across distinct biological states for a 

given system is taken into account may be the most distinctive feature (Figure 1). For instance, in 

the case of blood transcriptomics, the network would factor in whether co-expression between a 

pair of genes occurs across all the repertoire of pathological or physiological states or only in some 

of those states. This information is “encoded” in the network used for module construction via the 

weights which are attributed to each of the edges. Indeed, if ten different states are covered (i.e. 

ten different input datasets) then the weight of each edge will vary between 1 and 10 (co-expression 

observed in one state/dataset or up to 10 states/datasets). As will be further described in the article 

each module can subsequently be linked to the specific states in which its constitutive genes were 

co-expressed. 

To date two “modular repertoires frameworks” have been constructed and used for analysis 

and interpretation of whole blood transcritptome profiling data. A first repertoire based on 8 

disease states was published in 2008 (Table 1) [12]. The total combined number of samples across 
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the 8 input datasets was 239. Transcriptome profiles were generated from purified peripheral blood 

mononuclear cells using Affymetrix GeneChips. Five years later a second repertoire based on 7 

disease states and a total of 410 samples was constructed [14]. Transcriptome profiles were in this 

case generated from whole blood using Illumina Beadarrays. Input datasets encompass a wide 

breadth of biological states on which basis the weighted co-expression network was built. This 

included patients with autoimmune diseases (systemic lupus), inflammatory conditions (systemic 

onset juvenile arthritis), viral and bacterial infections (e.g. Staphylococcus infection, HIV, 

Influenza, RSV) or cancer (stage IV melanoma). Since perturbations across a wide range of states 

is factored into the construction of the repertoire it should prove suitable as a generic framework 

for interpretation of blood transcriptome datasets. And this appears to indeed be the case given the 

extent to which the two repertoire framework which have been previously published have been 

reused (Figure 2).  

Attempts were made at assigning functional interpretations to the modules constituting the 

framework. A common misconception is that function is used as a basis for the construction of 

modular repertoires. In fact, module construction is entirely data-driven and putative functions are 

only assigned afterwards based on gene ontology or pathway enrichment analysis the gene sets 

constituting each of the modules are subjected to. 

Visualization is another important element when is comes to interpretation of high 

dimensional data. Reducing the dimension of datasets from tens of thousands of variables to a few 

hundred opens new possibilities with that regard. A fingerprint representation was introduced 

along with the first generation of module repertoires published in 2008. It consists in fixing the 

position of individual modules on a grid. At each position a spot would indicate compared to a 

baseline either increase in abundance for transcripts constituting the module (in red) or decrease 
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in abundance (in blue). Functional interpretations can also be mapped to the grid to aid 

interpretation of the results.  

This article serves on one hand as a resource, making available a new blood modular 

transcriptome repertoire, along with: 1) the algorithm used for its construction, 2) the 16 input 

datasets, each representing a different disease or physiological state; 3) functional interpretations, 

along with underlying functional/literature profiles; and 4) a new fingerprint representation. It 

provides on the other hand a high-level unbiased molecular classification of a wide range of 

immunological processes involved in health maintenance and pathogenesis.    

 

METHODS: 

Study subjects 

Module construction: Gene expression datasets from 985 de-identified subjects from 

distinct cohorts from the Baylor Institute for Immunology Research (BIIR) were used for this 

study. Each of those studies was approved by the Baylor Institutional Review Board (IRB #’s 009-

240, 006-177, 002-197, 009-257, H-18029, HE-470506). Gene expression datasets were selected 

to cover major classes of immune states (Table 2), were required to have a minimum of 25 total 

samples, and at least 20% of the total samples were required to be appropriately matched controls.   

RNA extraction and processing 

Whole blood for all sample sets were collected into Tempus Blood RNA Tubes (Thermo 

Fisher Scientific). Total RNA was isolated from whole blood lysate using MagMAX for Stabilized 

Blood Tubes RNA isolation kit for Tempus Blood RNA Tubes (Thermo Fisher Scientific). RNA 

quality and quantity were assessed using Agilent 2100 Bioanalyzer (Agilent Technologies) and 
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NanoDrop 1000 (NanoDrop Products, Thermo Fisher Scientific). Samples with RNA integrity 

numbers values >6 were retained for further processing.  

Microarray analysis 

Gene expression profiles from whole blood samples generated using Illumina HumanHT-

12 v3.0 or Illumina HumanHT-12 v4.0 expression BeadChips were obtained for 16 groups of 

patients selected as above. Sixteen datasets were used as input (Table 1). Each dataset’s expression 

data was preprocessed and clustered independently of the rest. First probes were discarded if they 

were not present (detection P < 0.01) in at least ten samples or in at least ten percent of the samples, 

whichever was greater. Then, the sample data for each dataset was normalized using the 

BeadStudio average normalization algorithm. Once normalized, the signal was floored such that 

all signals less than ten were set to ten. Then, the fold change was calculated relative to the median 

signal for that probe across all samples. If the difference between a signal and the probe’s median 

signal was less than 30, or the calculated absolute magnitude of the fold change was less than 1.2, 

the fold change was set to 1 in order to reduce noise from low-level responses. At this stage, probes 

were filtered again. Probes were retained only if they had a calculated absolute fold change greater 

than 1 in at least ten samples or in at least ten percent of the samples, whichever was greater. 

Finally, the data was transformed to the log2 of the calculated fold changes. 

Module construction algorithm 

Sets of coordinately regulated genes, or transcriptional modules, were extracted from the 

whole blood microarray datasets. Each of the preprocessed microarray datasets was clustered in 

parallel using Euclidean distance and the Hartigan’s K-Means clustering algorithm. The ‘ideal’ 

number of clusters (k) for each dataset was determined within a range of k=1 to 100 by means of 

the jump statistic [15] . Taking the sixteen sets of clusters as input (Table 2), we constructed a 
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weighted co-cluster graph [12, 16] . To select modules, we employed an iterative algorithm to 

extract sets of probes that are most frequently clustered together in the same datasets, proceeding 

from the most stringent requirements to the least as previously described [12] . This iteration 

differed from previous implementation of this algorithm in that the k was calculated independently 

for each dataset cluster and the size of the core sub-networks was smaller (10 probes). The 

algorithm also was changed from previous implementations to ensure that the core sub-networks 

co-clustered in the same datasets. Further details and an example of the code are included in the 

supplemental methods (Supplementary File 1). The resulting 382 module set constitutes the third 

generation of modular blood transcriptome repertoire constructed since the initial publication in 

2008 [12] of the first generation, and in 2013 of the second [14].   

Module annotation 

Module gene lists were investigated using Database for Annotation Visualization and 

Integrated Discovery (DAVID) version 6.7[17, 18] .  This database uses a modified Fisher exact 

test to identify specific biological/functional categories that are overrepresented in gene sets in 

comparison with a reference set (the human genome was used as the reference set). The top 

matched DAVID annotation cluster (using default settings), the top matched canonical pathway 

from Kyoto encyclopedia of genes and genomes (KEGG), the top matched pathway from 

BioCarta, and the top matched Gene Ontology biologic process (GO_BP) and molecular function 

(GO_MF) terms were identified for each module. Each module was also investigated for 

significant overlap with 2 other established blood transcriptome module repertoires[14, 19] . 

These findings are summarized in the module annotation spreadsheet (Supplemental File 2).   

Literature profiling: Acumenta Biotech Literature Lab™ (LitLab) was used to associate 

genes within a particular module to terms in PubMed abstracts [20]. Association scores reflecting 
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the strength of the associations were used to calculate the “Product Scores”. The top 3 terms that 

showed the strongest association and highest “Product Scores” were used to create the functional 

annotation. A similar approach using LitLab has been previously reported [7]. The steps taken to 

annotate all 382 modules is described briefly here. All statistical analyses were performed using 

Microsoft Excel (2010) with Visual Basic for Applications (VBA), Linux-based command line 

in Mac OS, and R statistical software. 

The first part into the construction of a Product Scores table consist of listing all the term 

available in LitLab (over 80,000). Next genes in each module were submitted as a list to LitLab 

Editor and manually validated using LitLab’s built-in validation tool and/or NCBI Gene 

(https://www.ncbi.nlm.nih.gov/gene) prior to submission for analysis using all domains available. 

After the analysis was completed the summary result page was exported to an xls file. Using UNIX 

command line, the exported files were converted to csv files with the filename appended in the last 

column of each row and vertically appended. The “merged” file was used to populate the table 

including all available LitLab terms. The top 3 terms with highest Product Scores were selected to 

represent the module functional annotation and are tabulated in column I of the module annotation 

table (Supplementary file 2). 

 

Module grid visualization 

Modules were arranged on a grid based on similarities in patterns of activity across the 16 input 

datasets, each of them corresponding to a different pathological or physiological state. First, 

modules were partitioned using K-means clustering, which resulted in the constitution of 38 

clusters. Given the possibility of collapsing values of the modules constituting each cluster in a 

single “aggregate” value the term “module aggregate” was used to designate each cluster (A1 to 
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A38).  Of these 38 k-means clusters, 27 comprised of more than one module. Modules were next 

arranged on a grid with each row corresponding to modules belonging to the same aggregate 

(Figure 4). Therefore, the total number of row on the grid equals 27 and number of columns equals 

the largest number of modules for a given aggregate, which is 42 (for aggregate A2). For each 

module the highest of the two values indicating increase or decrease is selected for visualization 

(e.g. if % increase > % decrease, then a red sport representing % increase is shown). 
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RESULTS:  

Input datasets 

Sixteen datasets were used as input for the construction of a third blood transcriptome 

module repertoire. This collection encompasses 985 individual whole blood transcriptome 

profiles. All the samples were processed in the same facility and and run on Illumina HT12 

beadarrays. Each dataset corresponds to a different pathological or physiological state. The range 

has been expended considerably compared to the first and second repertoires which were published 

previously (Table 1).  

Some “core” pathologies are again covered, with for instance systemic lupus 

erythematosus, systemic onset juvenile idiopathic arthritis, liver transplant recipients under 

immunosuppression and patients with metastatic melanoma, which are represented in all three 

versions. Infectious diseases are again well represented, including viral respiratory viruses, 

influenza and RSV, as well as HIV and infections caused by Mycobacterium tuberculosis, 

Staphylococcus aureus, or Burkholderia pseudomallei (agent of Melioidosis).  

New to this third framework are inflammatory conditions of the skin, lung or circulation 

(COPD, juvenile dermatomyositis, Kawasaki disease, respectively. A neurogenerative disease 

(MS). Primary immune deficiency (B-cell deficiency) and physiological variant, pregnancy.  
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Absent from this repertoire, which were represented earlier are type 1 diabetes and 

Escherichia coli infection. The intent while constituting the collection of input dataset was to 

capture a wide breadth of immunological response or perturbations (e.g. interferon responses, 

inflammation, autoimmune processes, tolerance, "loss” of a leukocyte population) as to be able to 

construct a “generic” modular repertoire. Number of samples included in each of the datasets are 

provided in the methods section and in Table 2. The datasets have been deposited in the NCBI 

Gene Expression Omnibus, GEO (GSE100150).  

 

Module repertoire construction 

The algorithm employed for construction of the module repertoire is described in details in 

the supplementary methods section. Pseudocode is also provided to facilitate implementation in 

different programming language. The major steps are also described in Figure 3. Briefly: 1) input 

datasets are assembled; 2) transcripts which show no or very little expression across all conditions 

are filtered out; 3) clustering is performed for each individual dataset; 4) a weighted co-expression 

network is constructed, where edges between the genes represent at least one co-clustering event 

in one of the input datasets. Weight is assigned based on the total number of co-clustering events 

(up to 16, when co-clustering between the pair of genes occurs in all input datasets); 5) The 

resulting network is mined to identify highly inter-connected sub-networks, which form modules. 

The approach takes into account weights since the first sub-networks to be “extracted” are those 

with the highest number of states in which co-clustering is observed. 

This approach captures relationships that exist among constitutive elements of our 

biological system (blood) and the given range of disease states. It is unbiased in that it does not 

rely on any previous information about interactions among genes or knowledge about the gene 



 15 

function. Using this technique, from >47,000 total transcripts, 15132 total transcripts passed the 

expression filter and 382 modules were identified which consist of 14,502 of those transcripts 

(95.8%).  

 

Blood transcriptome modular repertoire 

The output of the module repertoire construction process is a collection of gene sets, aka 

“modules”. The gene composition of each of the 382 module which were identified is provided in 

a supplemental file (Column D: Number of unique genes; Column E: Illumina probe IDs; and 

column F: symbols of member genes). Average number of unique constitutive genes per module 

is 37.1, median is 26.5 and range is [12 – 169]. Extensive functional profiling was also carried out 

with, enrichment results provided for: a) Literature lab abstract keyword profiling (column I) [ref], 

b) DAVID (columns J-L) [ref], KEGG (columns N-P), Biocarta (columns R-T) [ref], OMIM 

(columns U-X), GOTERM (columns Y-AF). In addition, extent of overlap with the previous 

modular repertoire as well as with a set of modules constituted at Emory university [ref] is 

presented in columns AG-AN. 

Taken together outputs from this wide range of functional enrichment analyses was 

employed to assign, when possible, a consensus functional association title for modules (column 

C). For instance, M16.3 (145 genes) shows the following enrichment pattern (encompassing, 

literature terms,  pathways, diseases, ontologies in columns I through AF): T-Lymphocytes, 

Lymphocytes / Structure_of_Caps_and_SMACs; Ikaros_and_signaling_inhibitors / Primary 

immunodeficiency /  Lck and Fyn tyrosine kinases in initiation of TCR Activation / lymphocyte 

activation / phosphatase activity. While some of the terms may appear rather cryptic or lack 

specificity based on overall convergence “T-cell” was the consensus functional annotation title 
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assigned for this module. However, for the majority of modules functional annotations did not 

show sufficient convergence, or were too few for a consensus annotation to be assigned and 

received instead the TBD label (279 out of 382 modules).  

Module-level analyses 

For each module the proportion of its constitutive transcripts which abundance levels differ 

between study groups is determined (e.g. cases vs controls; pre-treatment vs post-treatment). Two 

values are computed, corresponding to percent of transcripts increased and percent of transcripts 

decreased. Cutoffs employed to determine change can be adjusted based on study design and level 

of tolerance for false positives or negatives chosen by the user. For instance, for group comparisons 

cutoffs can be based both on statistics, fold changes and/or differences with or without multiple 

testing correction (e.g. p-value <0.01, FC = 1.5, Diff = 50, FDR = 0.1).  

Comparisons can also be made at the individual subject level (e.g. one case vs controls). 

When comparing an individual sample to a control group a combined fold change and difference 

cutoff can be used (e.g. FC = 1.5, Diff = 50). Alternatively, the cutoff can be adjusted based on 

variance observed for each individual module among the control group samples (cutoff = means 

of control ± 2SD).  

Fingerprint grid plot visualization 

Differential expression at the module level can be displayed as a “fingerprint”, where the 

percentage of differentially expressed genes for a given module is represented by either a red spot 

or a blue spot, indicating increased abundance and decreased abundance for the constitutive 

transcripts, respectively (Figure 4). Each module is assigned a fixed position on a grid plot 

(coordinate on the grid; i.e. rows and columns). The number and intensity of the spots may denote 
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quantitative differences, sometimes correlated for instance with disease severity. Differences in 

distribution of the spots on the grid and their color may denote qualitative differences. 

Such fingerprint grid plots were generated along with each of the two previous versions of 

blood transcriptome module repertoires. In those earlier versions the modules were arranged based 

on the order in which they were identified when running the script for module construction, which 

is based on weight and module size. However, for the third version presented here modules are 

arranged on the grid instead based on similarities in transcriptional patterns across the 16 input 

datasets. This is described in more details in the materials and methods section. A consequence of 

adopting this approach is that each row on the grid is constituted by modules for which changes in 

expression levels is often coordinated (Figure 4, module grid on the right). It means that, when 

mapping changes for a given disease, modules on the same row tend to follow the same trend 

(increase or decrease), which makes the fingerprint easier to read. It also means that a certain 

degree of functional convergence can be found for a given row of modules. This is for instance the 

case of row A28, which comprises 6 distinct “interferon modules”.  

In the example provided in Figure 4 transcriptome profiles of 55 pediatric patients with 

SLE and 14 control subjects are compared. As was previously reported an interferon signature 

dominated the response (A28), and was accompanied by modules associated with cell cycle (A27 

and A29, including antibody production). Increase in abundance levels of modules associated with 

inflammation and neutrophils, another hallmark of the lupus transcriptome signature, was also 

observed (A35). These changes were also accompanied by decrease in transcript abundance, which 

was more apparent for some modules that belong to A1, A2 and A3. More specifically, under A1, 

the most marked decreases were observed for modules which the functional map associates with 

protein synthesis (dark purple color, at positions 1, 5, 11 and 19 on row A1).   
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One may even go one step further and “aggregate” changes observed by row, further 

reducing dimension for a given dataset from 382 modules to 27 “aggregates” (Figure 4, module 

aggregates on the left). While employing the simplest framework possible would generally be best, 

our earlier work shows that distinct interferon modules are biologically and clinically meaningful 

[21]. Whether to work at the module-level or aggregate-level would depend then on the desired 

level of resolution.  

Module grid plots are provided for each disease / physiological state in a supplementary 

file (Supplementary file 3). Six such module fingerprints representative of the range of signatures 

observed are shown in Figure 5. Blood transcriptome perturbations were for instance most 

widespread in the case of both MS and S. aureus infection (top panels) but with opposite patterns 

of changes, which will be even more apparent when profiles are compared directly across all 16 

states (Figure 6). Changes associated with COPD or stage IV melanoma (middle panels) were 

most subtle but nonetheless distinct, with differences in abundance vs controls subjects most 

visible for aggregates A24 through A26 (Oxydative phosphorylation, Monocytes, Inflammation), 

and A36 through A38 (“erythrocytes”, “neutrophil activation”). In the case of SLE and TB (bottom 

panels) interferon signatures constituted a common trait (A28) but with at the same time opposite 

patterns observed for an aggregate which was directly adjacent (A29: cell cycles). Other subtler 

differences in intensity of sets of modules associated with inflammation were also observed 

between these two diseases (A33-A35).       

Heatmap visualization 

A more traditional heatmap visualization can also be employed to represent module-level 

or module aggregate-level data. One configuration has module aggregates set as rows and 

disease/physiological states as columns (Figure 5). Hierarchical clustering can then be used to 

arrange states on the heatmap based on similarities in abundance profiles across module 



 19 

aggregates. Such a heatmap permits to explore high-level similarities in blood transcriptome 

profiles across all 16 states. The first order of separation groups in one cluster a rather unexpected 

set of diseases, which are: acute HIV infection, Multiple sclerosis, Juvenile Dermatomyositis and 

COPD. All remaining 14 states are grouped in a second cluster, with RSV figuring as an outlier. 

The main trend driving the dichotomy between the first four diseases and the rest was an overall 

suppression of modules associated with inflammation / myeloid cell responses (A34-A38), 

accompanied by an increase in modules corresponding to aggregates A1 through A8 which are in 

part associated with lymphocytic responses. The factors underlying these two distinct 

“overarching” signatures are unclear. Diseases belonging to either group can display marked 

interferon signatures (e.g. acute HIV infection on one hand and SLE or Influenza infection on the 

other). The dichotomy does not appear to run along the traditional Th1/Th2 paradigm either, nor 

does it seem to reflect organ involvement. 

Another heatmap configuration consists in arranging disease/physiological states as rows 

and modules belonging to a given aggregate as columns (Figure 6).  In the example shown on 

figure 6, modules constituting the A28 aggregate were used. These modules are annotated 

functionally as “interferon modules”. In this case, as could be expected, the dichotomy obtained 

separates diseases or states in which interferon signatures are present (all infectious diseases, with 

the notable exception of S aureus sepsis, systemic autoimmune/autoinflmammatory diseases such 

as SLE, SoJIA and liver transplant recipients under immunosuppressive therapy), from those in 

which interferon signatures are absent (JDM, Kawasaki disease, B-cell deficiency) and even 

possibly repressed (COPD, Melanoma, Pregnancy and MS).  
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DISCUSSION:  

Improvements compared to the two earlier version of published blood module repertoires 

include: 1) the expansion of the number and range of biological states included for module 

construction to 16, encompassing nearly 1000 individual transcriptome profiles; 2) the grouping 

modules on the fingerprint grid based on similarities in activity profiles across diseases. This later 

development allows on one hand accommodating for the larger number of modules identified in 

this version (384) and on the other adds another level of dimension reduction with the possibility 

to analyze and visualize blood transcriptome changes at the “module aggregate level” (27 

aggregates). 

Further improvements may of course already be envisioned for subsequent versions of 

blood modular repertoire, with for instance the use of blood transcriptome datasets generated via 

RNAsequencing as input, or the possible introduction of more robust clustering methods as a basis 

for the construction of weighted co-clustering networks. Another direction to explore next could 

also include development of more specialized repertoires, focusing for instance on a given 

spectrum of diseases (e.g. neurogenerative disorders, respiratory illnesses).  

Compared to earlier versions of modular repertoires reusability should be facilitated by the 

availability of R Scripts which have been developed to perform module repertoire analyses and 

generate grid or heatmap fingerprint visualizations. These scripts will be available on GitHub and 

described in detail in a separate publication (in preparation, early draft to be deposited shortly in 

BioRxiv). These bioinformatics tools were recently used as a basis for a weeklong workshop 

organized at the Sorbonne universite’s Inflammation-Immunopathology-Biotherapy Department. 

Hands-on training activities included the analyses by participants of several public blood 

transcriptome datasets generated using samples obtained from patients with RSV infection and 



 21 

control subjects. This exercise also permitted to compare aggregate-level modular RSV fingerprint 

obtained across the six different studies. Furthermore, the heterogeneity at the level of individual 

patients observed with and across RSV dataset was explored, leading to the characterization of 

several modular RSV signatures “endotypes”.    

Finally, this third generation of blood modular repertoires also served as a backbone for 

development of cost-effective assays that can be substituted for genome-wide screens in biomarker 

discovery and in immune phenotyping or monitoring (Altman et al. manuscript in preparation and 

to be submitted to BioRxiv). The so-called transcriptome fingerprint assays are based on down-

selecting to the most representative genes (i.e. surrogate genes) within each module.  This can be 

achieved via a purely unsupervised data driven methodology. Such assays will be able to recognize 

changes occurring at the global level (as the original modular repertoire), while ensuring 

practicality, and cost effectiveness in that it can be performed using sensitive 'meso-scale' profiling 

assay (interrogating tens or hundreds of transcripts) such as high-throughput PCR, or targeted 

RNA sequencing.  
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FIGURE LEGENDS 

Figure 1: Construction of weighted co-clustering networks. Weighted co-clustering networks 

are used as a basis for the construction of modular repertoires. A distinctive characteristic of such 

networks is that they factor in differences in co-expression across different “states” of the 

biological system. For the blood transcriptome these states would be different diseases or 

physiological phenotyes. The weighting of the network is illustrated on this figure. Under scenario 

A the genes are co-expressed in all three disease states. The weight attributed to the edges of the 

network on the right is three. Under scenario B and C, co-clustering only occurs in two or one of 

the disease states, resulting in attributions of weights or 2 and 1, respectively.  

Figure 2: Reuse of successive generations of blood modular repertoires. Two successive sets 

of blood modular repertoires were published previously, the first one in 2008 and the second in 

2013. Citations were surveyed to ascertain the extent to which such “frameworks” can be 

subsequently reused. On these circular plot distinctions are made between self and third party 

reuse. Results are further broken down by disease areas.  
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Figure 3: Overview of the module repertoire construction process. Briefly, the starting point 

for the construction of blood transcriptional module repertoire is a collection of transcriptome 

datasets. In this case 16 datasets spanning a wide range of immunological and physiological states 

were employed. First of all each dataset is independently clustered via k-means clustering. Next, 

gene co-clustering events are recorded in a table, where the entries indicate the number of datasets 

in which co-clustering was observed for a given gene pair. Subsequently the co-clustering table 

serves as input for the generation of a weighted co-clustering graph (as illustrated in Figure 1), 

where nodes represent genes and edges represent co-clustering events. The largest, most highly 

weighted subnetworks among a large network constituted of 15,132 nodes are identified 

mathematically and assigned a module ID. The genes constituting this module are removed from 

the selection pool and the process is repeated resulting in the selection of 382 modules constituted 

by 14,502 transcripts.  

Figure 4: Fingerprint grid plot. Modules are attributed a fixed position on a grid. Increase in 

abundance of the transcripts constitutive of a given module is represented by a red spot. Decrease 

in abundance is represented by a blue spot. Modules arranged on a given row belong to a module 

aggregate (noted A1 to A38). Changes at the “aggregate-level” are represented by spots to the left 

of the grid next to the denomination for the corresponding aggregate. In addition a module 

annotation grid is provided below where a color key indicates functional associations attributed to 

some of the modules on the grid.  
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Figure 5: Fingerprint grid plots mapping transcriptome repertoire perturbations across six 

representative disease states. Each grid represents changes in abundance observed at the module-

level in subject from different disease groups compared to their respective controls. Modules 

occupy a fixed position on the grid, with red spots indicating the proportion of transcripts 

constitutive of a given module for which abundance is significantly increased and blue spots 

indicating conversely the proportion of constitutive transcripts for which abundance is decreased.  

Figure 6: Patterns of abundance of module aggregates across 16 disease or physiological 

states. Each column on this heat map corresponds to a “module aggregate”, numbered A1 to A38 

(minus A9-A14 and A19-A24 which each included only one module). Each row on the heatmap 

corresponds to one of the 16 datasets used for construction of the module framework. A red spot 

on the heatmap indicates an increase in abundance of transcripts comprising a given module cluster 

for a given disease or physiologic state. A blue spot indicates a decrease in abundance of 

transcripts. No color indicates no changes. Disease or physiological states were arranged based on 

similarity in patterns of aggregate activity via hierarchical clustering.  

Figure 7: Patterns of abundance of the six interferon modules constituting aggregate A28 

across 16 disease or physiological states. Each column on this heat map corresponds to one of 6 

interferon modules constituting the module aggregate A28. Each row corresponds to one of the 16 

datasets used for construction of the module framework. A red spot on the heatmap indicates an 

increase in abundance of transcripts comprising a given module cluster for a given disease or 

physiologic state. A blue spot indicates a decrease in abundance of transcripts. No color indicates 

no changes. Disease or physiological states and modules were arranged via hierarchical clustering` 

based on similarity in patterns of aggregate activity. 
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TABLES 

Table 1: Comparison of the characteristics of the input datasets used for the construction of three 

consecutive generations of blood transcriptome module repertoires. 

 
Generation 1 Generation 2 Generation 3 

Number of States 8 7 16 
States 

   

Systemic onset  juvenile idiopathic arthritis X X X 
Pediatric systemic lupus erythematosus X X X 
Juvenile dermatomyositis   X 
Type 1 Diabetes X   

Multiple sclerosis   X 
Kawasaki disease   X 
COPD   X 
Tuberculosis  X X 
Burkholderia pseudomallei infection  X X 
Respiratory Syncytial Virus infection   X 
Influenza virus infection X  X 
Human Immunodeficiency Virus infection  X X 
Escherichia coli infection X   

Staphylococcus aureus infection X  X 
B-cell deficiency   X 
Liver transplant recipients X X X 
Metastatic melanoma X X X 
Pregnancy   X 
Number of Input Datasets 8 9 16 
Number of individual Profiles 239 410 985 
Sample source PBMCs Whole Blood Whole Blood 
Platform Affymetrix U133A&B Illumina Hu6 v2 Illumina HT12 v3.0 
Rounds of  module selection 3 8 15 
Number of modules 28 260 382 
Year published & reference 2008 [ref] 2013 [ref] Current work 

 

Table 2: Datasets used for module construction 

Sixteen distinct datasets were used as input for module repertoire construction. Each dataset 

corresponds to a different condition or physiological state and comprises both cases and matched 

controls. Each dataset was processed as a single batch at the same facility with the data generated 

using Illumina HumanHT-12 v3.0 Gene Expression BeadChips. In total the collection comprises 

a total of 985 individual transcriptome profiles.  

 

 

Dataset Category 
# Samples 

(Cases) 
# Samples 
(Control) 

# Samples 
(Total) 
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1 Staphylococcus aureus Bacterial Infection 99 44 143 

2 Burkholderia pseudomallei Bacterial Infection 35 12 47 

3 Tuberculosis Bacterial Infection 23 11 34 

4 Influenza Viral Infection 25 14 39 

5 RSV Viral Infection 70 14 84 

6 HIV Viral Infection 28 35 63 

7 Pediatric SLE Autoimmune 55 14 69 

8 Multiple Sclerosis Autoimmune 34 22 56 

9 Juvenile Dermatomyositis Autoimmune 40 9 49 

10 Kawasaki disease Autoinflammatory 21 23 44 

11 Systemic Onset Idiopathic 
Arthritis Autoinflammatory 62 23 85 

12 COPD Inflammatory 19 24 43 

13 Melanoma Malignancy 22 5 27 

14 Pregnancy Physiologic variant 25 20 45 

15 Liver transplant recipients Immunosuppressed 94 30 124 

16 B-cell deficiency Immunodeficiency 20 13 33 

 

Supplementary File 1: Module generation and pseudocode  

This word document describes the algorithm employed for the construction of this modular 

repertoire framework along with pseudocode which may be used as a basis for implementation in 

programming languages such as R or Python.  

 

Supplementary File 2: Annotated module repertoire framework 

This excel spreadsheet lists the 382 modules constituting this third generation of blood 

transcriptome module repertoires. Included are number of genes, list of member genes by symbol 

and probe ID, summarized functional annotations.  
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Supplementary File 3: Module fingerprint grids of all 16 pathological and physiological 

states 

This PDF documents contains the modular fingerprints generated for each of the 16 input 

datasets.  

 


