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Abstract 

Purpose: Use projection-resolved optical coherence tomography angiography (PR-OCTA) to 

investigate the autoregulatory response in the three parafoveal retinal plexuses under hyperoxia. 

Design: Prospective cohort study. 

Subjects: Nine eyes from nine healthy participants. 

Methods: One eye from each participant was scanned using a commercial spectral-domain OCT 

system. Two repeated macular scans (3 x 3 mm2) were acquired at baseline and during oxygen 

breathing. Split-spectrum amplitude-decorrelation algorithm (SSADA) was used to detect blood 

flow. The PR algorithm was used to suppress projection artifacts and resolve blood flow in three 

distinct parafoveal plexuses. The Wilcoxon signed-rank test was used to compare between 

baseline and hyperoxic parameters. Coefficient of variation (CV), intra-class correlation 

coefficient (ICC), and pooled standard deviation (SD) were used to assess the reliability of 

OCTA measurements. 

Main Outcome Measures: Flow index and vessel density were calculated from the en face 

angiograms of each of the three plexuses, as well as from the all-plexus inner retinal slab. 

Results: Hyperoxia induced significant reduction in the flow index (-11%) and vessel density (-

7.8%) of only the deep capillary plexus (DCP, p < 0.001) and in the flow index of the all-plexus 

slab (p = 0.015). The flow index also decreased in the intermediate capillary plexus (ICP) and the 

superficial vascular complex (SVC), but these changes were small and not statistically 

significant. The PR-OCTA showed good within-session baseline repeatability (CV, 0.8%-5.2%, 

ICC, 0.93-0.98) in all parameters. Relatively large between-day response reproducibility was 

observed (pooled SD, 1.7%-9.4%). 
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Conclusions: Projection-resolved OCTA was able to show that the retinal autoregulatory 

response to hyperoxia affects only the DCP, but not the ICP or SVC.  
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The retina is one of the most metabolically active tissues of the human body.1, 2 A healthy retina 

possesses an intrinsic autoregulatory mechanism that modifies blood flow in response to 

different physiologic conditions in order to maintain homeostasis.3, 4 Impairments in the 

autoregulatory response have been associated with the pathogenesis of several vision-threatening 

diseases such as diabetic retinopathy (DR) and age-related macular degeneration (AMD).5-10 

Physiologic variations in oxygen delivery to retina was found to induce multiple hemodynamic 

changes.11, 12 The ability to characterize this response can be useful to investigate the retinal 

vascular physiology as well as pathophysiology of those diseases. 

Several noninvasive imaging modalities such as blue field entopic phenomenon,13, 14 

scanning laser Doppler techniques15, 16 and Doppler optical coherence tomography (OCT)17-19 

have been used to investigate autoregulation. These studies reported decrease in retinal blood 

velocity, vessel diameter and blood flow during increased tissue oxygenation (hyperoxia). More 

recently, OCT angiography (OCTA) has also been used to characterize a similar response in 

peripapillary inner retinal flow index and vessel density during hyperoxia.20, 21 Previous 

investigations described the hyperoxic response in the combined retina as a single vascular unit. 

However, histological studies in primates and human cadavers divided retinal circulation around 

macula into three distinct vascular plexuses.22-24 Bearing in mind the findings of oxygen 

distribution and consumption in different retinal layers,25-28 we predict that different retinal 

vascular layers might be reacting differently to changes in systemic oxygenation. Still, traditional 

imaging modalities lacked the capability to resolve the flow in these three plexuses separately, 

and hence we had limited understanding of how they react separately to oxygen. 

We have recently developed an algorithm called the projection-resolved29 OCT 

angiography (PR-OCTA) which allows for the visualization and segmentation of the three 
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distinct parafoveal vascular plexuses of the inner retina: superficial vascular complex (SVC), 

intermediate capillary plexus (ICP) and deep capillary plexus (DCP).30 In this study, we aim to 

characterize the change in flow index and vessel density of the parafoveal retinal plexuses in 

response to hyperoxia using PR-OCTA. 

Methods 

Study population 

The study was conducted at Casey Eye Institute and the protocol was approved by the Institution 

Review Board of Oregon Health and Science University. We adhered to the tenets of the 

Declaration of Helsinki and the Health Insurance Portability and Accountability Act in the 

treatment of human subjects. The nature of the study was explained to each participant and an 

informed written consent was obtained. Healthy volunteers were recruited to participate in this 

study. Volunteers were excluded if they had one of the following: ocular disease, inability to 

maintain stable fixation for scanning, visual acuity worse than 20/40, refractive errors more than 

-6.00 or +2.00 diopters, significant media opacity, or history of major ocular surgery, as well as 

systemic diseases that can affect microcirculation (such as diabetes and hypertension).  

OCT Angiography 

The experiment was conducted using the commercially available spectral-domain OCT system 

(RTVue-XR Avanti, Optovue, Inc., Fremont, CA). The system has an A-scan repetition rate of 

70 kHz with a center wavelength of 840 nm and a bandwidth of 45 nm. The axial and transverse 

resolutions in tissue are 5 μm and 22 μm, respectively. 

Volumetric scans, centered at the macula, were 3 × 3 mm with a depth of 1.6 mm. B-

scans in the fast transverse scanning direction were comprised of 304 A-scans. Two consecutive 
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B-scans were captured at each location before proceeding to the next location. A total of 304 

locations in the slow transverse direction were sampled. This formed a 3D data cube consisting 

of 304 × 304 × 512 pixels. The 608 B-scans in each data cube were acquired in 2.9 seconds. Two 

volumetric raster scans, one x-fast scan and one y-fast scan, were obtained and registered. This 

scan set was repeated a second time during each scan session. A scan session was included if at 

least one scan set was free of motion artifacts. 

Both the blood flow and structural information were obtained congruently using the 

AngioVue software, a commercial version of the split-spectrum amplitude-decorrelation 

angiography (SSADA) algorithm. A detailed description of the SSADA method can be found in 

our previous publications.21, 31 In short, the SSADA algorithm splits the spectrum into 11 sub-

spectra and calculates the signal amplitude-decorrelation between the two consecutive B-scans 

captured at each location. This method enhances the signal-to-noise ratio of flow detection.32 The 

decorrelation signal, representing here the blood flow signal for OCT angiography, is a function 

of light scattering due to the displacement of red blood cells over time. The subspectra used in 

SSADA have ¼ of the full OCT bandwidth and supports an angiographic depth resolution of 20 

µm, which is sufficient to resolve the retinal plexuses.   

Data Acquisition 

Experiments were performed in a quiet and dimly lighted room. During the first scan session, 

participants were asked to sit and breathe normally for 10 minutes to establish a baseline 

condition. Arterial blood pressure and pulse were taken and recorded. Participants were then 

asked to fixate on an internal fixation target. The baseline breathing condition was maintained 

while the operator used the real-time video image on the software interface to center at macula 

and acquire the 2 scan sets (constituting 1 scan session). The second scan session immediately 
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followed, during which participants were fitted with a simple face mask (OxyMask, Southmedic, 

Barrie, Ontario, Canada) and given supplemental oxygen for 10 minutes at a flow rate of 15 liters 

per minute. This rate delivered about 60-90% oxygen in the inspired oxygen (FiO2), creating a 

systemic hyperoxic condition. These FiO2 values were taken from mask’s manufacturer’s 

manual. Generally, the calculation of FiO2 is based on the assumption that at a constant 

supplemental O2 concentration and flow rate, FiO2 depends on the individual’s peak inspiratory 

flow rate, normally ranging around 20-30 L/min. At the end of the the 10 minutes, hyperoxia was 

maintained while blood pressure and heart rate were recorded and the participant’s eye was 

scanned. In order to assess between-day reproducibility of the baseline measurement and 

hyperoxic response, the protocol was repeated on a separate day. 

Data Processing 

Participants would be excluded if both scan sets from a single scan session were of poor image 

quality (marked motion artifacts, unfocused, off-center, or low signal strength). The participant 

was included if at least one scan set from each scan session passed the quality control. Using the 

directional graph search technique, structural OCT images were automatically segmented at the 

inner limiting membrane (ILM), nerve fiber layer (NFL), inner plexiform layer (IPL), inner 

nuclear layer (INL), outer plexiform layer (OPL), outer nuclear layer (ONL), photoreceptor 

inner/outer segment (IS/OS) junction, retinal pigment epithelium (RPE), and Bruch’s membrane 

(BM). Boundary lines defined on structural images were applied to corresponding angiography 

frames. Details about these methods are described in previous publications.30 

A detailed description of the projection-resolved algorithm can also be found in previous 

publications.29 In short, PR-OCTA uses a linear model to relate the decorrelation value of 

projected flow with its log amplitude OCT signal and the overlying in situ flow. This assumes 
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that both in situ and projected decorrelation values are affected by the reflectance amplitude. 

Therefore, the projected flow signal is lower than the in situ flow signal in a linear fashion. This 

allowed the visualization of the 3 distinct retinal vascular plexuses in the inner parafoveal area 

without significant flow projection artifact. 

En face angiograms were constructed by maximum flow projection within relevant slabs. 

The inner retinal slab was defined between the ILM and OPL (Figure 1). The inner retina was 

subdivided into 3 slabs corresponding to the 3 retinal plexuses commonly described in 

histological studies and visualized on composite OCT B-scan of the parafoveal region. SVC slab 

contains flow projection in the inner 80% of ganglion cell complex (GCC: layers between NFL 

and IPL), ICP is located in the outer 20% of GCC and inner 50% of INL, and DCP shows the 

flow in the outer 50% of INL and all of OPL. 

Flow index and vessel density were automatically calculated from decorrelation values of 

pixels contained in the annulus region of the en face retinal angiograms (Figure 1). The annulus 

region was manually centered at the foveal avascular zone (FAZ) with the internal and external 

diameters set at 0.6 and 2.5 mm, respectively. Flow index is the average pixel decorrelation 

value and contains information on both vessel area and blood flow velocity. However, it cannot 

be considered true volumetric blood flow due to the saturation of decorrelation values in large 

vessels with fast velocities. Vessel density is the percent area of pixels with decorrelation values 

above a threshold defined as two standard deviation about noise at the FAZ. 

Statistical Analysis 

Statistical analysis was performed using Microsoft Excel 2013 (Microsoft office, Microsoft 

Corporation, Redmond, WA) and SPSS v. 24.0 (IBM Corporation, Armonk, NY). A paired t-test 

was used to compare heart rate (HR) and mean arterial pressure (MAP) between baseline and 
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hyperoxia. The 2 consecutive scan sets (if both were included) were averaged for each scan 

session. The parafoveal inner retinal flow index and vessel density in the three vascular plexuses 

and inner retina were presented as mean and standard deviation (SD) of all baseline and 

hyperoxia scan sets from all scan sessions. The Wilcoxon signed-rank test was used to compare 

baseline and hyperoxic flow index and vessel density. Change in these measurements during 

hyperoxia was calculated as the average change and standard deviation of all participants during 

both testing days. Coefficient of variation (CV) and intra-class correlation coefficient (ICC) with 

95% confidence interval (CI) were used to measure within-session baseline repeatability. 

Between-day hyperoxic response reproducibility was measured using pooled SD after averaging 

the measurements of the two scans in each scan session. 

Results 

Nine participants (3 females and 6 males; average age, 27.2 ± 5.2 years) were enrolled and 

scanned on day 1. Eight participants were scanned on both days. A total of 67 scans were 

acquired, seven were excluded because of motion artifact. No participants or scan sessions were 

excluded from the study. Average HR for baseline and hyperoxia were 73.5 ± 3.1 and 72.5 ± 

7.46 beat/min, respectively. Average MAP was 84.5 ± 8.9 and 81.0 ± 7.5 mmHg for baseline and 

hyperoxia, respectively. There was no significant difference between the two conditions in HR or 

MAP (t-test, p > 0.05). 

Projection-resolved OCTA showed good within-session repeatability in baseline flow 

index and vessel density measurements in all retinal vascular plexuses (Table 1). Generally, the 

flow index has larger measurement variability than vessel density as measured by the CV and 

ICC. For most plexuses, the population variation of baseline measurements tended to be smaller 

for the vessel density compared to the flow index (Table 1). Both flow index and vessel density 
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declined after breathing oxygen in most plexuses.  This hyperoxic response was statistically 

significant (p < 0.001) in the DCP, but not in the SVC or ICP. The hyperoxic response was larger 

for the flow index relative to the vessel density. However, the population variability of the 

hyperoxic response was also proportionally larger for the flow index. The decrease in flow signal 

in response to hyperoxia could be directly appreciated on the en face PR-OCT angiograms of the 

DCP (Figure 2). 

A consistent reduction of flow index and vessel density in deep plexus was observed in 

almost all subjects on both days (Figure 3). However, the magnitude of response can change 

between days, as evidenced by the relatively large between-day response reproducibility (Table 

2). For both vessel density and flow index, the variability in the hyperoxic response was 

approximately twice that of the repeatability of the baseline measurements. Thus the response 

variability is partially but not entirely explained by measurement noise. 

Discussion 

Autoregulatory mechanisms ensure a relatively constant supply of oxygen through a wide range 

of variation in blood oxygen content. Hyperoxia reduces retinal blood flow as measured by 

Doppler OCT,19  blue field entopic technique,13, 14 laser Doppler flowmetry,15 and laser Doppler 

velocimetry.16 In our previous OCTA investigation, we also found significant reduction in the 

flow index and vessel density in the inner retinal circulation around the optic disc.20 

The retinal vascular autoregulation is actually more complicated than a uniform 

homeostatic response due to interactions with the choroid.  The choroidal circulation is thought 

to provide relatively constant flow,33-36 while the retinal circulation varies in response to changes 

in partial pressure of oxygen (pO2).
37   In recent animal hypoxia experiments by Yi et al., retinal 

blood flow increased so much that total oxygen extraction actually increased.27 Assuming that 
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inner retinal oxygen consumption is constant during hypoxia,38 they hypothesized that the 

increase in retinal oxygen extraction must have been caused by increased need to supply the 

outer retina to compensate for the drop in oxygen flux from the choroidal circulation.27 This 

hypothesis is based on the fact that the avascular outer retina is supplied by both the retinal and 

choroidal circulations, which had been established by microelectrode oxygen tension 

measurements in animals.25, 39, 40  

Based on the results by Yi et al.,27 we further hypothesize that the autoregulatory vascular 

response to changes in oxygen concentration would be greatest in the DCP, which supplies the 

outer retina.   Because the choroidal flow does not respond to pO2, the fraction of outer retina 

oxygenated by the choroid would change with its oxygen content, with the DCP flow 

overcompensating to cover the need.  This hypothesis can now be directly tested using the PR-

OCTA algorithm29 that could visualize and measure the DCP separate from the ICP and SVC.  

We expected to find that the DCP would have a greater reduction in flow index and vessel 

density during hyperoxia. The SVC and ICP blood flow should also be reduced, but to a much 

small extent, as they only need to maintain inner retinal oxygen flux. 

Our expectations were confirmed by the experimental findings shown in this paper. The 

difference in hyperoxia-evoked autoregulation of blood flow between the three retinal vascular 

layers were striking. Hyperoxia induced significant reductions in the flow index and vessel 

density of in the DCP.  In contrast, the reduction of flow index and vessel density in the SVC and 

ICP were too small to be statistically significant.  The explanation is that during oxygen 

breathing, the oxygen tension in the avascular outer retina increases26, 36, 41 due to greater supply 

from the choroidal circulation, which maintains constant flow despite greater pO2.
33-35 Thus to 

maintain steady oxygen flux in the outer retina, the DCP must compensate with greater 
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vasoconstriction and reduced flow.  This maintains the oxygen tension in the outer retina at a low 

enough level to prevent potential damage from oxidative stress.42, 43 The reduction in DCP flow 

would in turn reduce oxygen flux to the mid-retina and thereby blunt the response of ICP and 

SVC to systemic hyperoxia.  

The changes we measured in the DCP and all-plexus slabs (11% and 3.5%, respectively) 

were in the flow index. Flow index is calculated by averaging the decorrelation value in the 

parafoveal region. Decorrelation is not linearly related to blood velocity – laboratory 

measurements using the current OCTA system showed that the decorrelation-velocity curve 

begins to flatten around 2 mm/second and reaches saturation at approximately 6 mm/second.44 

Thus, the percentage reduction in flow index was expected to be smaller than the change in 

volumetric blood flow as measured by laser Doppler11 or Doppler OCT techniques.19 

The differential regulation of capillary plexuses has been previously reported in the retina 

and cerebral cortex. Kornfield and Newman observed that flicker stimulation in rats can produce 

much larger response in the retinal ICP than in the SCP and DCP.45 Similarly, observations in 

cortical vascular layers in response to sensory stimulation indicated greater increases in blood 

flow in the middle capillary layers.46 In contrast to arterioles and venules, capillaries lack smooth 

muscles in their walls. Thus, the mechanism by which capillaries can actively regulate their 

blood flow independently from the more superficial arteriolar layers is still not fully understood. 

Studies on somatosensory cortex give evidence that pericytes might be responsible for blood 

flow regulation in capillaries.47 Contraction of pericytes in response to hyperoxia can produce 

constriction of deep capillaries and consequently increasing vessel wall resistance and decreasing 

blood flow. Moreover, the regulation of DCP blood flow might be happening at the level of pre-

capillary sphincter or the penetrating arterioles connecting the ICP to the DCP.48  
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Prior to the development of PR-OCTA, it would have been difficult to noninvasively 

study the retinal plexuses. Classically, fluorescein angiography (FA) and indocyanine green 

angiography (ICGA) have been used to image the ocular circulation.49-51 However, these two-

dimensional imaging modalities cannot separate retinal and choroidal circulations, let alone 

resolve retinal plexuses.52, 53 With the introduction of OCTA technology, three-dimensional 

angiograms of the retinal and choroidal circulations could be separated.54, 55 However, the retinal 

plexuses still could not be cleanly separated due to the flow projection artifact that projects flow 

signal from the superficial retinal vessels onto the deeper structures.56 The projection artifacts 

would cause flow from the SVC and ICP to be projected onto the DCP,55, 57 making it impossible 

to accurately measure flow and vessel density in the DCP.   

The projection-resolved algorithm distinguishes between the true and false positive flow 

signals by comparing the intensity-normalized decorrelation value in each voxel to all of the 

more superficial voxels in the same A-scan line, taking into account that projected signal is 

usually weaker than the true in situ source flow signal.29 This method effectively resolved the 

projection artifacts on both en face and cross-sectional angiograms and improved the axial 

resolution of OCTA, allowing for better visualization of the three parafoveal vascular plexuses 

with proper quantification of vessel density and flow index.  PR-OCTA showed very good 

within-session repeatability for flow index and vessel density measurements for the inner retina 

as a whole.  However, the repeatability for single plexuses, and particularly for the DCP, was 

slightly worse.   

We observed a relatively large between-day variation in the hyperoxic response that 

could not be entirely explained by measurement error as reflected in within-session repeatability. 

The excess variability could be due to variations in the internal physiological state and 
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environmental factors.  In order to reliably measure individual hyperoxic response magnitude, it 

may be necessary to average response from several stimulus cycles.  

 Alterations to hemodynamics of retinal circulation and its normal physiologic responses 

are suggested to be involved in pathophysiology of multiple retinal diseases such as age-related 

macular degeneration, diabetic retinopathy, and branch retinal vein occlusion.5-7, 37, 58, 59 Deep 

understanding of these associations can serve as a basis for future efforts of developing more 

effective and efficient diagnostic and therapeutic strategies. PR-OCTA has the potential to be 

useful in investigating autoregulation dysfunction in retinal diseases. 

The main limitation in this pilot study is the small sample size. Additionally, our results 

were based on observations from a single time-point after systemic hyperoxia had already been 

established. However, the hypothesis and findings at this stage are useful for designing larger 

studies to confirm the results and provide dynamic analysis of hyperoxic response in retinal 

microcirculation. 

In summary, PR-OCTA demonstrated the capability of visualizing and measuring 

individual retinal plexuses, allowing for further physiological investigations. We reported a 

significant decrease of flow index in the retina in response to systemic hyperoxia. This response 

was found to be specifically caused by the change in the DCP but not the ICP or SVC; giving a 

new evidence of the interplay between choroidal and retinal circulation in oxygenating the 

avascular outer retina.  
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Figure Legends 

Figure 1. Projection-resolved optical coherence tomography angiography (PR-OCTA) 

images from a baseline scan session. (A-C) En face maximum flow projection angiograms for 

the three parafoveal retinal plexuses: superficial vascular complex (SVC), intermediate 

capillary plexus (ICP), deep capillary plexus (DCP).  Flow index and vessel density were 

calculated in the annulus region between the two green circles. (D) Cross-sectional PR-OCTA 

with gray-scale reflectance signal and color-coded flow signal. The anatomic boundaries 

(dotted lines) demonstrate the results of automated computer segmentation of inner retinal 

layers and are used to derive the slab boundaries of the retinal plexuses.  The relevant retinal 

layers were inner limiting membrane (ILM), ganglion cell complex [GCC: including nerve 

fiber layer (NFL), ganglion cell layer (GCL), and inner plexiform layer (IPL)], inner nuclear 

layer (INL), and the outer plexiform layer (OPL).  

Figure 2. En face angiograms of superficial, intermediate and deep parafoveal vascular plexuses 

of the same participant during baseline scan session (A-C), and after hyperoxia (D-F). Note the 

difference in flow signal (color scale) and vessel density between baseline and hyperoxia. The 

decrease is visually apparent in the deep capillary plexus (DCP), but not in the superficial 

vascular complex (SVC) or intermediate capillary plexus (ICP). 

Figure 3. Deep vascular plexus hyperoxic response in flow index (left) and vessel density (right) 

for each participant on both days. 


