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Abstract
Automatic algorithm configuration (AAC) is becoming a key ingredient in the design
of high-performance solvers for challenging optimisation problems. However, most
existing work on AAC deals with configuration procedures that optimise a single per-
formance metric of a given, single-objective algorithm. Of course, these configurators
can also be used to optimise the performance of multi-objective algorithms, as mea-
sured by a single performance indicator. In this work, we demonstrate that better
results can be obtained by using a native, multi-objective algorithm configuration pro-
cedure. Specifically, we compare three AAC approaches: one considering only the
hypervolume indicator, a second optimising the weighted sum of hypervolume and
spread, and a third that simultaneously optimises these complementary indicators, us-
ing a genuinely multi-objective approach. We assess these approaches by applying
them to a highly-parametric local search framework for two widely studied multi-
objective optimisation problems, the bi-objective permutation flowshop and travelling
salesman problems. Our results show that multi-objective algorithms are indeed best
configured using a multi-objective configurator.

Keywords
Algorithm configuration, local search, multi-objective optimisation, permutation flow-
shop scheduling problem, travelling salesman problem.

1 Introduction

Many optimisation tasks involve several competing objectives, and general-purpose
methods for determining and characterising good tradeoffs between these objectives
are of considerable academic and practical interest. Most algorithms for solving these
multi-objective optimisation (MOO) problems have parameters, whose settings have
substantial impact on performance, and finding good settings of those performance pa-
rameters can be quite difficult. As for single-objective optimisation algorithms, perfor-
mance parameters for MOO algorithms have traditionally been configured manually,
based on human intuition and limited experimentation. More recently, general-purpose
automated algorithm configuration procedures have become available and are increas-
ingly widely used for this purpose (see, e.g., López-Ibáñez et al., 2016).
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Standard, general-purpose algorithm configurators, such as irace (López-Ibáñez
et al., 2016), SMAC (Hutter et al., 2011), and ParamILS (Hutter et al., 2007, 2009), can and
have been used for optimising the performance of high-performance MOO algorithms
in terms of standard performance indicators, such as hypervolume, ε- or R-indicators
(see, e.g., Zitzler and Thiele, 1999; Knowles and Corne, 2002; Okabe et al., 2003). How-
ever, the performance of MOO algorithms is generally assessed using multiple perfor-
mance indicators, in order to characterise complementary properties of the solutions
produced by them, such as convergence and diversity (Zitzler et al., 2003). This sug-
gests the use of multi-objective configuration procedures that can effectively explore
the trade-off between multiple performance indicators—the use of multi-objective con-
figurators to optimise the performance of MOO algorithms (Blot, Pernet et al., 2017).

In this article, we present extensive evidence that multi-objective automatic algo-
rithm configuration is preferable over single-objective automatic algorithm configu-
ration for the performance optimisation of MOO algorithms when there are several
performance indicators of interest. In particular, we consider two well-known MOO
problems, the bi-objective permutation flowshop scheduling problem (PFSP) and the bi-
objective travelling salesman problem (TSP), and study a highly parameterised frame-
work of multi-objective iterated local search (MOLS) algorithms for those problems. For
the PFSP, we consider two naturally correlated, commonly used objectives: makespan
and flowtime, while in the case of the TSP, we use two uncorrelated optimisation ob-
jectives (López-Ibáñez and Stützle, 2012). In both cases, we configure our MOLS frame-
work for two complementary performance metrics: hypervolume and �′-spread. We
report results from experiments on a small configuration space of our algorithm frame-
work, which can be searched exhaustively, demonstrating that our general-purpose
multi-objective algorithm configuration procedure, MO-ParamILS (Blot et al., 2016),
can find a broad range of optimal or close-to-optimal configurations. Furthermore, we
show that within a much larger configuration space, using MO-ParamILS, better results
are obtained than by using ParamILS (Hutter et al., 2007, 2009), the standard, single-
objective configurator it was derived from. Finally, we provide some insights into the
MOLS configurations obtained from MO-ParamILS.

Our work presented here builds on and extends two recent, more limited studies
(Blot, Pernet et al., 2017; Blot, Jourdan et al., 2017). Here, we additionally consider the
bi-objective TSP, to investigate to which extent our results for the PFSP generalise to an-
other permutation-based MOP with uncorrelated objectives. To further strengthen our
results, we also consider large instances of the PFSP and a slightly different measure
of spread. Finally, we perform an exhaustive analysis of a small configuration space of
our MOLS framework on our training and test instance sets for our bi-objective PFSP
and TSP, in order to assess the results obtained with our automated configuration pro-
cedures against truly Pareto-optimal sets of configurations.

2 Preliminaries

In this section, we provide some background on multi-objective optimisation problems,
performance evaluation of multi-objective algorithms, and our multi-objective local
search framework.

2.1 Multi-Objective Optimisation (MOO)

In multi-objective optimisation, multiple criteria (or objective functions) characteris-
ing the quality of solutions of a given problem are optimised simultaneously. A MOO
problem involves minimising (w.l.o.g.) a vector of functions over a space of candidate
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solutions, that is, to determine

argmin
x∈D(f1(x), f2(x), . . . , fn(x)),

where n is the number of objectives (n ≥ 2), x = (x1, x2, . . . , xk ) is a vector of decision
variables (which may have discrete or continuous domains), D is the set of feasible
solutions, and each function fi (x) has to be minimised.

The concept of Pareto dominance is used to capture trade-offs between the criteria fi :
solution s1 is said to dominate solution s2 if, and only if, (i) s1 is better than or equal to
s2 according to all criteria, and (ii) there is at least one criterion according to which s1
is strictly better than s2. A set S of solutions in which there are no s1, s2 ∈ S such that s1
dominates s2 is called a Pareto set, a Pareto front, or—in the context of multi-objective local
search algorithms—an archive. The goal when solving an instance of a MOO problem
is to determine the best such set, i.e., the set X ⊂ D such that there is no x ′ ∈ D that
dominates any of the x ∈ X.

In principle, MOO problems can be solved using single-objective optimisation algo-
rithms, by aggregating the objectives into a single function (Murata and Ishibuchi, 1998).
Using this approach, optimising a weighted sum of multiple objectives corresponds to
searching for an optimal solution to a given MOO problem in a single direction in ob-
jective space. It is known that in some cases, there can be solutions in an optimal Pareto
set S∗ that cannot be obtained in this manner (namely, when S∗ is not convex); therefore,
dedicated multi-objective optimisation algorithms are usually preferable.

2.2 Performance Evaluation

Multi-objective algorithms provide a Pareto set of solutions. In order to assess the qual-
ity of such Pareto sets, different indicators have been proposed (Zitzler and Thiele, 1999;
Knowles and Corne, 2002; Okabe et al., 2003). These usually characterise the final Pareto
set produced by a multi-objective algorithm in terms of convergence, distribution, or
cardinality. Since no single quality indicator captures all of these properties, it is recom-
mended to consider multiple indicators, preferably complementing each other, in order
to assess the performance of multi-objective algorithms (Zitzler et al., 2003).

In this work, we use a combination of two indicators: the classical hypervolume
(Zitzler and Thiele, 1999) and a complementary spread measure. These were chosen in
light of their common usage, their complementarity, and the additional requirements for
unary indicators that do not require reference sets arising in the context of the automatic
algorithm configuration process at the core of our study.

Hypervolume (HV) is by far the most broadly used performance indicator in the lit-
erature on multi-objective optimisation (Riquelme et al., 2015). Assuming normalised
objective values in [0, 1], the unary hypervolume measures the volume between the
Pareto set of solutions and the point (1, 1) (see Figure 1, left). HV is primarily a con-
vergence indicator, but also captures information about the diversity of the front of
solutions.

As a complementary indicator, we use a variant of spread to capture the distribu-
tional properties of the Pareto set. Refer to Figure 1, right, which shows two sets of solu-
tions, one well-distributed (squares) and the other unbalanced (circles). Given a Pareto
set S, ordered regarding the first criterion, we define

�′ :=
∑|S|−1

i=1 |di − d̄|
(|S| − 1) · d̄

,

where d̄ denotes the average over the Euclidean distances di for i ∈ [1, |S| − 1] between
adjacent solutions on the ordered set S. This indicator is to be minimised; it takes small
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Figure 1: Properties (left: hypervolume; right: spread) of two sets of solutions (squares:
well-distributed solutions; circles: unbalanced solutions).

values for large Pareto sets with evenly distributed solutions, and values close to or
greater than 1 for Pareto sets with few or unevenly distributed solutions. This slightly
differs from the widely used spread indicator (Deb et al., 2002) in that it does not use
extreme positions (after normalisation, the points (1, 0) and (0, 1)) and only considers
the distribution inside the Pareto set. Obviously, this indicator cannot be used alone to
assess a Pareto set, but it complements the information captured by the hypervolume
indicator. Using these two unary indicators, we can assess the performance of multi-
objective algorithms in terms of the quality, diversity, and distribution of the final Pareto
sets obtained. In our experiments, in order to facilitate analysis, we will consider the
minimising variant of hypervolume, calculated as 1 − HV , so that performance of a
multi-objective algorithm is optimised by minimising both indicators.

2.3 Multi-Objective Local Search Algorithms

The algorithm investigated in this article, is an iterated Multi-Objective Local Search
(MOLS) algorithm, detailed in Algorithm 1 (Blot, Jourdan et al., 2017).

The MOLS algorithm has four distinct components—selection, exploration, archive,
and perturbation—each of which exposes several parameters that potentially impact per-
formance. These phases are presented hereafter, together with the space of parameter
configurations (i.e., combinations of parameter values) considered in our experiments,
which are summarised in Table 1.

Selection. The first step of every iteration is the selection of a subset of solutions
from the current archive to be further explored. How these solutions are selected
is controlled by parameter select-strat. We can either select all solutions from
the current archive, or only a specific number of them (specified by parameter
select-size); in the latter case, solutions can be selected either uniformly at
random, or according to the order in which they have been inserted in the archive
(from oldest to newest). In all cases, a solution whose neighbourhood has been
completely explored is never selected again.

Exploration. The neighbourhood of each selected solution is explored independently,
in order to determine new neighbours as candidate solutions to be archived. The
parameter explor-strat determines whether all or only some neighbours are
explored (exhaustive vs partial exploration). If the exploration is exhaustive (val-
ues all, all_imp), all improving and nondominated neighbours, or only all
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improving neighbours, are added as candidates, respectively. Otherwise, explo-
ration is terminated when a given number (parameter explor-size) of either
improving (values imp, imp_ndom) or nondominated (value ndom) neighbours
have been found and added as candidates. Nondominated neighbours evaluated
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Table 1: MOLS parameter space (10 920 configurations).

Phase Parameter Parameter values

Selection select-strat {all, rand, newest, oldest}
Selection select-size {1, 3, 10}
Exploration explor-strat {all, all_imp, imp, imp_ndom, ndom}
Exploration explor-ref {sol, arch}
Exploration explor-size {1, 3, 10}
Archive bound-size {20, 50, 100, 1000}
Perturbation perturb-strat {kick, kick_all, restart}
Perturbation perturb-size {1, 5, 10}
Perturbation perturb-strength {3, 5, 10}

Selection: (1 + 3 × 3) combinations; Exploration: (1 + 2 + 3 × 2 × 3); Perturbation: (3 × 3 + 3 + 1); Total: 10 ×
21 × 13 × 4 = 10920 configurations.

during an imp_ndom exploration are also added as candidates. The parameter
explor-ref corresponds to the reference of the exploration and specifies if the
“improving” and “nondominating” criteria are computed using the current solu-
tion (being explored, value sol) or the current set of all selected solution (value
arch).

Archive. When all solutions selected from the archive are explored, the resulting can-
didates are added to the archive, and Pareto-dominated solutions are filtered out.
If the size of the archive exceeds the value of parameter bound-size, excess solu-
tions are selected and removed uniformly at random, in order to limit exploration
within the same region of the search space.

Perturbation. When the inner termination criterion is met, the neighbourhood ex-
ploration is stopped and a perturbation of the current archive is applied, in or-
der to diversify the search. The parameter perturb-strat specifies the pertur-
bation mechanism. Either new solutions, generated uniformly at random (value
restart) are considered, or a kick move (values kick, kick_all) is applied to
a given number of solutions (parameter perturb-size), or all solutions of the
archive, respectively. A solution selected for a kick move is replaced by a solution
reached by given number (parameter perturb-strength) of search steps, per-
formed sequentially and uniformly at random within the given neighbourhood.

3 Automatic Algorithm Configuration for Multi-Objective Problems

The goal of automatic algorithm configuration (AAC) is to automatically determine a con-
figuration (i.e., parameter setting) that optimises the performance of a given algorithm
for a given class of problem instances. In this context, we call the algorithm whose pa-
rameters are being optimised the target algorithm and the procedure that configures the
target algorithm a configurator.

Algorithm configuration is a machine learning process, whose general concept is
illustrated in Figure 2. It involves making a prediction of the optimal configuration of
the target algorithm over a training dataset, usually relative to a given running time
or computational budget. The configurations resulting from this training are then re-
evaluated on a disjoint test dataset to ensure the unbiasedness of the final prediction.
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Figure 2: Automatic configuration of a given parameterised target algorithm for a given
set of problem instances.

Given a parameterised target algorithm A, a space � of configurations of A, a dis-
tribution of instances D, a performance indicator o : � × D → R, and a statistical pop-
ulation parameter E; the algorithm configuration problem consists in optimising the
aggregated performance of the target algorithm A across all instances i ∈ D, as given in
Eq. 1 (in which Aθ denotes the algorithm obtained by associating the configuration θ to
the target algorithm A). {

optimise E[o(Aθ, i), i ∈ D]

subject to θ ∈ �.
(1)

Algorithm configuration supposes that the limit implied by Eq. 1 exists and is finite. The
most commonly used statistical parameter is the simple average of the performance of
the target algorithm.

AAC has traditionally been defined as a single-objective optimisation problem,
with either running time or solution quality as the optimisation objective. Recently (Blot
et al., 2016), AAC has been extended to simultaneously deal with multiple performance
metrics of a given target algorithm, giving rise to the notion of multi-objective auto-
matic algorithm configuration (MO-AAC). While in single-objective AAC (SO-AAC),
the performance of the target algorithm is represented as a scalar value and the output of
the configurator is a single configuration, in MO-AAC, target algorithm performance is
vector-valued, and the configurator produces a Pareto set of optimised configurations.

In our experiments, we will compare two SO-AAC approaches and one MO-
AAC approach optimising the performance of a multi-objective local search algorithm.
Specifically, as in previous work, we consider three distinct AAC approaches (Blot, Per-
net et al., 2017):

HV , a SO-AAC approach that optimises the hypervolume indicator only.

HV+�′, a SO-AAC approach that optimises a weighted sum of hypervolume (with
a 0.75 coefficient) and �′ spread (with a 0.25 coefficient).

HV ||�′, a MO-AAC approach that simultaneously considers hypervolume and �′

spread.

The latter two approaches are motivated by the previously mentioned belief that
the performance assessment of multi-objective algorithms benefits from the use of
multiple performance indicators (Zitzler et al., 2003). By comparing HV to the two
other configuration approaches, we aim to assess this belief in the context of auto-
matic configuration of MOLS algorithms. Furthermore, by comparing HV +�′ and
HV ||�′, we intend to assess the benefits of MO-ACC compared to SO-ACC with
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aggregated performance metrics. The aggregation coefficients (0.75 and 0.25) have been
set since the �′ indicator is a complementary measure to the hypervolume that enables
to focus on convergence first and diversity second.

While numerous state-of-the-art SO-AAC procedures can be found in the litera-
ture, including irace (López-Ibáñez et al., 2016), based on statistical racing, SMAC (Hut-
ter et al., 2011), based on regression models, and ParamILS (Hutter et al., 2009), based
on iterated local search, only a few MO-AAC procedures exist, including SPRINT-race
(Zhang et al., 2015) and MO-ParamILS (Blot et al., 2016). In the following, we use
ParamILS, one of the most widely used SO-AAC procedures, and MO-ParamILS, its
recent multi-objective extension. Both configurators are based on iterated local search
within the space of valid target algorithm configurations enabling a fair comparison
between AAC approaches.

Indeed, SPRINT-race is a very simple and noniterative multi-objective racing proce-
dure. Its public implementation requires to fully evaluate every possible configuration
on every possible instance that it is not admissible in our context.

The core algorithm of MO-ParamILS is given by Algorithm 2. Like its predecessor
ParamILS, it is based on an iterated local search (Lourenço et al., 2003; Hoos and Stützle,
2004), in which the incumbents (i.e., the best solutions so far) are iteratively improved
by mean of both local search and perturbation mechanisms. Three parameters are ex-
posed: the number r of initial random configurations, a restart probability prestart, and
the number s of random search steps performed in each perturbation phase. The up-
date() function performs target algorithms runs and ensures that the different config-
urations can be compared, while the archive() function simply discards dominated
configurations.

ParamILS and MO-ParamILS start by considering r random configurations, in or-
der to compare the initial (usually default) configuration to a few others to make
sure of its relevance. Then, they apply a local search procedure, which is based on
the one-exchange neighbourhood, that is, modifying a single parameter value at a time.
A tabu mechanism is also used to ensure that the configurator is never stuck. Be-
tween iterations, there is a prestart chance to restart the search from a new configuration,
uniformly chosen at random from the search space. Otherwise, a perturbation of s ran-
dom steps is performed. The main difference between ParamILS and MO-ParamILS
is that the former focuses on optimising a single configuration with regard to a sin-
gle performance indicator, while the later optimises an archive of configurations, that
is, the set of the current best configurations with regard to the multiple performance
indicators.

Specifically, we used the FocusILS variants of both configurators, since these usu-
ally give the best performance. For more details on those configurators, we refer the
interested reader to Hutter et al. (2009) and Blot et al. (2016).

4 Experimental Setup

In this section, we present the two bi-objective permutation problems we used in our
experiments: the permutation flow-shop scheduling problem (bPFSP) and the travel-
ling salesman problem (bTSP). We choose these problems, because they are comple-
mentary in the sense that the classical bPFSP naturally involves two strongly correlated
objectives, while the classical bTSP is constructed in way that gives rise to independent
objectives. We also describe the protocol we use for configuration our multi-objective
local search framework for these problems.
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4.1 The Bi-Objective Permutation Flow-Shop Scheduling Problem (bPFSP)

The permutation flow-shop scheduling problem (PFSP) involves scheduling a set of
N jobs {J1, . . . , JN } on a set of M machines {M1, . . . ,MM}. Each job Ji is processed se-
quentially on each of the M machines, with fixed processing times {pi,1, . . . , pi,M}, and
machines can only process one job at a time. The sequencing of jobs is identical on every
machine, so that a solution may be represented by a permutation of size N . The comple-
tion times Ci,j for each job on each machine for a given permutation π = (π1, . . . , πn)
are computed using Eq. 2 to Eq. 5.

Cπ1,1 := pπ1,1 (2)

Cπ1,j := Cπ1,j−1 + pπ1,j ∀j ∈ {2, . . . , m} (3)

Cπi,1 := Cπi−1,1 + pπi,1 ∀i ∈ {2, . . . , n} (4)

Cπi,j := max(Cπi−1,j , Cπi ,j−1) + pπi,1 ∀i ∈ {2, . . . , n} ∀j ∈ {2, . . . , m}. (5)
The completion time Ck of a job Jk corresponds to its completion time on the last ma-
chine Ck,m. In the following, we consider the bi-objective PFSP (bPFSP), minimising
two widely studied objectives, makespan Cmax (Eq. 6) and flowtime FT (Eq. 7), where
makespan is the total completion time of the schedule, and flowtime is the sum of the
individual completion times Ci of the N jobs.

Cmax := max
i∈{1,...,N}

Ci (6)

FT :=
N∑

i=1

Ci. (7)

Naturally, these two objectives are strongly coupled via the completion times for the
individual jobs.

Arguably the most widely studied PFSP are those introduced by Taillard (1993),
with numbers of jobs, N ∈ {20, 50, 100, 200, 500} and numbers of machines, M ∈
{5, 10, 20}. There are 10 instances for every valid (N,M ) combination in Taillard’s bench-
mark set.

In the following, we consider three types of PFSP instance sets, characterised by
their number of jobs, N ∈ {50, 100, 200} and a fixed number of machines set to M = 20.
The higher the number of jobs, the more challenging the instances tend to be. For the
exhaustive analysis and the test phase of the three AAC approaches, we use the 10 Tail-
lard instances for each of those N values. For the training phase of the AAC approaches,
we used a different, completely disjoint, set of instances, composed by newly generated
Taillard-like instances. We generated 30 of these instances for each M ∈ {50, 100, 200},
using the original generation procedure.

When running MOLS on bPFSP instances, we initialise the search using the 2-phase
local search algorithm by Dubois-Lacoste et al. (2011), which is based an iterated greedy
(IG) procedure (Ruiz and Stützle, 2007). This method is known to produce relatively
good and well-distributed solutions sets. We use 25% of the overall time budget for
this initialisation, and 75% for the remainder of each MOLS run. Classical PFSP neigh-
bourhoods include the exchange neighbourhood, where the positions of two jobs are
exchanged, and the insertion neighbourhood, where one job is reinserted at another po-
sition in the permutation. In this study, we consider a hybrid neighbourhood defined as
the union of the exchange and insertion neighbourhoods, which is known to lead to bet-
ter performance than considering each neighbourhood independently (Dubois-Lacoste
et al., 2015).
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4.2 The Bi-Objective Travelling Salesman Problem (bTSP)

The Travelling Salesman Problem (TSP) can be defined by a complete weighted graph
G whose nodes represent cities, while edges corresponds to direct paths between cities.
In the symmetric TSP, the graph is undirected, and edge weights correspond to dis-
tances between cities. Given a TSP instance G, the goal is to determine a round trip (or
tour) passing through every city exactly once such that the overall distance travelled is
minimised, that is, a minimum-weight Hamiltonian cycle in G. We note that any Hamil-
tonian cycle in G corresponds to a permutation of the cities. The TSP is one of the most
widely studied combinatorial optimisation problems.

In the following, we consider the bi-objective symmetric TSP (bTSP), in which each
instance is defined by a graph G as in the standard TSP, but each edge between two
nodes i and j have two weights, c1

i,j and c2
i,j . We now define the two objectives as the

total distance covered by a given round trip according to each of the two distance ma-
trices (d1)i,j and (d2)i,j . Both objectives have to be minimised.

A benchmark set of Euclidean instances (available online1) has been widely used in
the literature to assess the performance of bTSP algorithms (Paquete et al., 2004; Lust
and Teghem, 2010; Dubois-Lacoste et al., 2015). These instances were constructed by
combining two independently generated distance matrices, computed using Euclidean
distance between cities randomly placed on a two-dimension grid; therefore, unlike in
the case of the bPFSP discussed earlier, the two optimisation objectives are uncorre-
lated. The bTSP benchmark set contains six instances each for 100, 300, and 500 cities,
meaning 15 different pairwise independent combinations of two instances per bench-
mark size. For our exhaustive analysis and the test phase of the three AAC approaches,
we used these 15 instances. For the training phase of the AAC approaches, we used a
different, completely disjoint, set of newly generated instances containing 30 instances
for each number of cities, obtained using the original generator from the DIMACS
challenge.

Each run of MOLS is initialised using the well-known nearest neighbour heuristic
applied to only one of the two objectives, resulting in two greedily constructed tours.
Subsequently, we perform local search steps in the classical two-opt neighbourhood, ac-
cording to which the neighbours of a given tour are obtained by removing two non-
adjacent edges and reconnecting the resulting fragments by two new edges such that a
different tour is obtained (Croes, 1958).

4.3 AAC Protocol

Our MO-ParamILS multi-objective algorithm configuration protocol proceeds in three
phases: training, validation, and test.

Training: In the training phase, MO-ParamILS is independently run multiple times
on a given training set of instances; each of these runs produces a Pareto set of
configurations. Multiple runs of MO-ParamILS are used, because individual runs
can suffer from stagnation and to make effective use of parallel computing re-
sources. However, as different MO-ParamILS runs usually use different subsets
of the given training set, the configurations obtained from them cannot be fairly
compared to each other.

1https://eden.dei.uc.pt/∼paquete/tsp
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Table 2: Small version of the MOLS parameter space (300 configurations).

Phase Parameter Parameter values

Selection select-strat {all, rand, oldest}
Selection select-size {1, 10}
Exploration explor-strat {imp, imp_ndom, ndom}
Exploration explor-ref {sol, arch}
Exploration explor-size {1, 10}
Archive bound-size {1000}
Perturbation perturb-strat {kick, kick_all, restart}
Perturbation perturb-size {10}
Perturbation perturb-strength {3, 10}

Selection: (1 + 2 × 2) combinations; Exploration: (3 × 2 × 2); Perturbation: (2 × 2 + 1); Total: 5 × 12 × 5 = 300
configurations.

Validation: To fairly compare configurations obtained from different MO-ParamILS
runs and to reduce the number of configurations ultimately evaluated in the test
phase, every configuration from the training phase is evaluated on the same, fixed
subset of training instances. Based on the performance measurements thus ob-
tained, Pareto-dominated configurations are removed.

Test: The Pareto set of configurations obtained from the validation phase is evaluated
again, on a set of test instances that does not contain any of the instances used for
training or validation. Again, Pareto-dominated configurations are removed.

Using this protocol, we compare the three AAC approaches described in Section 3.
In the case of the HV approach, ParamILS is used during the training phase to only
optimise the hypervolume of the target algorithm, since the configuration scenario is
single-objective. However, during the subsequent validation and test phases, the con-
figurations resulting from the single-objective training are assessed using both hyper-
volume and �′ spread separately, in a Pareto way. Ultimately, it is expected that this
approach only finds good hypervolume values and disregards the �′ spread value.
Similarly, the HV +�′ approach uses ParamILS during the training phase to optimise
an aggregation of hypervolume and �′ spread, while the assessment of the validation
and test phases are then performed in a Pareto way.

These two SO-AAC approaches constitute the baseline against which our MO-AAC
approach is compared to. While they focus on specific directions of the multi-objective
space and use an optimisation criterion less complete than the final evaluation, they rep-
resent the performance that our multi-objective approach will have to at least match. We
note that this makes effective use of an off-the-shelf SO-AAC procedure, while taking
into account the multi-objective nature of the algorithm configuration problem we are
ultimately trying to solve.

In the following, this protocol is used in conjunction with two different configu-
rations spaces (in the training phase). First, we consider a small configuration space of
300 configurations, described in Table 2. This smaller configuration space has been de-
fined based on preliminary experiments, in which we informally identified parameters
and parameter values most likely to result in good performance of our target algorithm
framework. The small size of this search space permits us to perform validation and
testing in an exhaustive way, where the performance of each of the 300 configurations
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Table 3: AAC experimental protocol.

Phase Small configuration space Large configuration space

Training No default configuration No default configuration
1 random configuration 10 random configurations
10 ParamILS runs 20 ParamILS runs
100 MOLS runs budget 1000 MOLS runs budget
max 10 MOLS run per config. max 100 MOLS run per config.

Validation 1 run per instance 1 run per instance
Test 10 runs per instance 10 runs per instance

is assessed on the entire training and test instance sets, respectively. This exhaus-
tive analysis of the configuration space enables the comparison of the configurations
resulting from the training phase to ones that may otherwise be never considered.
As stated previously, our goal with this analysis is to demonstrate that our AAC ap-
proaches can effectively configure a multi-objective local search for solving bi-objective
permutation problems.

The second configuration space, detailed in Table 1 and already presented in Sec-
tion 2, enables the comparison between our three AAC approaches in a much richer
space with 10,920 configurations. We note that, because of the relatively high running
times for each configuration and the stochastic nature of our target algorithm, search-
ing this space exhaustively would require a computational budget orders of magnitude
beyond that used for the experiments described in the following.

Table 3 summarises the details of our AAC protocol for both configuration spaces.
The main differences concern the training phase. For the small (large) configuration
space, ParamILS starts by evaluating a single (10) random configuration, and can exe-
cute 100 (1000) MOLS runs before stopping, where each selected configuration cannot
be run more than 10 (100) times. Due to the reduced size of the small configuration
space, only 10 independent runs of ParamILS are performed, compared to 20 runs for
the large space. In the validation phase, the configurations resulting from the training
phase are evaluated on all training instances, running every configuration once on each
instance. In the test phase, each of the configurations in the Pareto set obtained from
the validation phase is run 10 times on every test instance. For both validation and test
phases, the performance of each configuration is assessed based on the average hyper-
volume and spread values over the runs. Obviously, for the small configuration space,
our exhaustive analysis ensures that the performance of all configurations are known
for all training and test instances, and we will directly use these results in the validation
and test phases to avoid recomputing the performance of configurations selected in the
training phase.

Table 4 details the CPU running time for a single run, 100 runs, and 1000 runs of
a MOLS algorithm. The last two columns correspond to the running time of a single
run of (MO-)ParamILS on the small and large configuration spaces, without taking into
account the slight system time overhead induced by launching the MOLS executable.
Note that to obtain the total training time, these durations should be multiplied by the
number of (MO-)ParamILS runs (10 and 20, respectively). Moreover, the time required
for the validation and test steps is not pointed out since it depends on the number of
configurations returned by the training step.
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Table 4: CPU running time.

Scenario 1 MOLS run 100 MOLS runs 1000 MOLS runs

bPFSP 50 50 seconds 1.39 hours 13.89 hours
bPFSP 100 3.33 minutes 5.56 hours 2.31 days
bPFSP 200 13.33 minutes 22.22 hours 9.26 days
bTSP 100 1.5 minutes 2.5 hours 1.04 days
bTSP 300 4.5 minutes 7.5 hours 3.12 days
bTSP 500 7.5 minutes 12.5 hours 5.21 days

Table 5: Indicator bounds used in the HV+� approach.

Scenario (1-HV) lower (1-HV) upper � lower � upper

bPFSP 50 0.48 0.5 0.2 1
bPFSP 100 0.44 0.46 0.1 1.1
bPFSP 200 0.355 0.375 0.3 1.3
bTSP 100 0.13 0.24 0.6 1.7
bTSP 300 0.09 0.2 0 2
bTSP 500 0.08 0.18 0 2

Finally, Table 5 reports the bounds used for each scenario to compute the aggre-
gation in the case of the HV+� approach. These bounds have been determined using
preliminary data from the exhaustive analysis on the training sets of instances.

5 Experimental Results

We now present and discuss the results from our computational experiments, first for
the small configuration space, and then for the large configuration space. All experi-
ments have been conducted in parallel on the grace cluster of the ADA research group
at the Leiden Institute of Advance Computer Science (LIACS). Each of the 32 nodes of
grace is equipped with two 16-core 2.10GHz Intel Xeon E5-2683 v4 CPUs with 40 MB L3
cache and 94 GB RAM, running CentOS 7.4.1708.

5.1 Small Configuration Space

Here, we compare our three AAC approaches (HV , HV +�′, and HV ||�′) to each other
and in relation to the results of our exhaustive analysis made possible by the size of
the small configuration space. We recall that we transform the hypervolume (HV ) into
a minimisation measure (1 − HV ) to simplify the analysis of our results, and thus,
when speaking of good hypervolume values, we refer to high HV (i.e., low values of
1 − HV ).

The results from this analysis for training and test instance sets are shown in Fig-
ures 3 and 4. Generally, the shapes of the Pareto sets in objective space are similar be-
tween validation and test results, indicating that our AAC approaches do not suffer
from over-fitting. Therefore, we will focus our discussion on the test results seen in
Figure 4. Table 6 details how many unique (in parentheses: non-unique) configurations
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Figure 3: Exhaustive analysis on training instances (left: bPFSP; right: bTSP). ×: HV

approach, o: HV+�′ approach, �: HV ||�′ approach, +: exhaustive analysis.
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Figure 4: Exhaustive analysis on test instances (left: bPFSP; right: bTSP). ×: HV ap-
proach, o: HV +�′ approach, �: HV ||�′ approach, +: exhaustive analysis.
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Table 6: Number of configurations after training, validation, and testing.

Small space Large space

Scenario Approach Configs Pareto Final Configs Pareto Final

bPFSP 50 HV 10 2 2 20 2 2
HV+�′ 10 4 2 10 2 2
HV ||�′ 32 (38) 9 7 145 14 11

bPFSP 100 HV 10 4 3 19 (20) 1 1
HV +�′ 8 (10) 3 3 20 4 2
HV ||�′ 36 (42) 12 6 171 (172) 27 19

bPFSP 200 HV 10 3 3 20 4 3
HV +�′ 9 (10) 5 3 16 (20) 2 2
HV ||�′ 29 (39) 11 8 111 (117) 14 9

bTSP 100 HV 6 (10) 1 1 15 (20) 2 1
HV+�′ 6 (10) 2 2 15 (20) 6 4
HV ||�′ 16 (26) 3 3 62 (73) 11 5

bTSP 300 HV 9 (10) 2 2 13 (20) 4 2
HV+�′ 9 (10) 5 5 12 (20) 5 2
HV ||�′ 33 (41) 8 6 107 (130) 18 12

bTSP 500 HV 6 (10) 5 4 16 (20) 4 4
HV+�′ 8 (10) 5 4 14 (20) 3 2
HV ||�′ 36 (40) 12 11 135 (145) 25 22

were found by each AAC approach, and how many of these survived the validation and
test phases. (Recall that Pareto-dominated configurations are pruned in those phases.)
Figure 5 shows the parameter distribution of the 300 configurations on test instances
according to our three selection mechanisms (crosses: + × �, polygons: ��
, and cir-
cles: o⊕⊗) and our three exploration strategies (red: +�o, green: ×�⊕, and blue: � 
 ⊗).
Finally, Tables 7 to 12 list the Pareto-optimal configurations within the small configura-
tion space. A “∗” symbol indicates that the value of the respective parameter does not
impact the performance of the configured MOLS when the other parameter values are
held fixed at the values shown. Conversely, when a specific parameter is shown, any
deviation from it will reduce performance.

First, we will discuss the results for the bPFSP. None among the 300 possible config-
urations simultaneously achieves good hypervolume and spread values (see Figure 4);
the Pareto front is distinctly non-convex. While for the smallest scenario with 50 jobs,
most of all configurations achieve good hypervolume values (i.e., low 1 − HV ), such
configurations get rarer as the number of jobs increases. This result was expected, since
it is known that larger bPFSP instance are harder for multi-objective local search. Exam-
ining these results in more detail, we observe that the imp exploration strategy always
obtains rather bad hypervolume values (see Figure 5). For 50 jobs, this strategy leads
to better spread values; however, this tends to be no longer true for larger instances.
For the three instance sizes, the imp-ndom and ndom strategies appear to give better
performance in terms of hypervolume.

All three approaches find very good, even near-optimal configurations—in partic-
ular, HV ||�′, which achieves spreads over the entire Pareto-front. The 10 configurator
runs of HV and HV +�′ produce close to 10 unique configurations each (see Table 6),

Evolutionary Computation Volume 27, Number 1 163



A. Blot et al.

Figure 5: Exhaustive analysis parameter distribution on test instances (left: bPFSP; right:
bTSP); Selection strategy: +×�: all (crosses), ��
: oldest (polygons), o⊕⊗: rand
(circles); Exploration strategy: +�o: imp (red), ×�⊕: imp_ndom (green), � 
 ⊗: ndom
(blue).
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Table 7: 50-job bPFSP optimal configurations (small space).

1-HV �′ Selection Exploration Archive Perturbation

0.4747 0.7775 oldest 10 ndom arch 1 1000 ∗ 10 ∗
0.4754 0.7640 all ndom arch 1 1000 ∗ 10 ∗
0.4770 0.7420 all imp_ndom sol 10 1000 ∗ 10 ∗
0.4837 0.6798 rand 1 imp arch 10 1000 ∗ 10 ∗
0.4853 0.5856 rand 1 imp sol 10 1000 ∗ 10 ∗
0.4855 0.5277 ∗ 10 imp arch 1 1000 ∗ 10 ∗
0.4860 0.4433 rand 1 imp arch 1 1000 ∗ 10 ∗
0.4862 0.4093 ∗ imp sol 1 1000 ∗ 10 ∗
0.4877 0.3336 oldest 1 imp sol 1 1000 kick ∗ 10

Table 8: 100-job bPFSP Pareto-optimal configurations (small space).

1-HV �′ Selection Exploration Archive Perturbation

0.4299 0.7865 oldest 10 ndom arch 1 1000 kick 10 3
0.4299 0.7979 oldest 10 ndom arch 1 1000 kick_all ∗
0.4332 0.7802 oldest 1 ndom arch 1 1000 kick 10 ∗
0.4336 0.7640 all ndom arch 1 1000 ∗ 10 ∗
0.4344 0.7541 rand 10 imp_ndom arch 1 1000 ∗ 10 ∗
0.4351 0.7540 all imp_ndom sol 1 1000 ∗ 10 ∗
0.4370 0.7470 rand 10 imp_ndom arch 10 1000 ∗ 10 ∗
0.4387 0.7338 rand 1 imp arch 10 1000 ∗ 10 ∗
0.4397 0.5396 rand 1 imp sol 10 1000 ∗ 10 ∗
0.4402 0.4409 ∗ 10 imp arch 1 1000 ∗ 10 ∗
0.4407 0.3428 oldest 10 imp sol 1 1000 ∗ 10 ∗
0.4410 0.3201 rand 1 imp sol 1 1000 ∗ 10 ∗
0.4410 0.3371 all imp sol 1 1000 ∗ 10 ∗
0.4454 0.2711 oldest 1 imp sol 1 1000 kick 10 ∗

Table 9: 200-job bPFSP Pareto-optimal configurations (small space).

1-HV �′ Selection Exploration Archive Perturbation

0.3600 0.8093 oldest 1 ndom arch 1 1000 restart/kick 10 ∗
0.3618 0.8027 oldest 10 ndom arch 1 1000 ∗ 10 ∗
0.3638 0.7628 rand 1 imp_ndom arch 1 1000 ∗ 10 ∗
0.3645 0.7534 all imp_ndom arch 1 1000 ∗ 10 ∗
0.3686 0.3511 rand 1 imp sol 1 1000 ∗ 10 ∗
0.3687 0.3456 ∗ 10 imp sol 1 1000 ∗ 10 ∗

and all of these show good hypervolume values. However, after validation and test-
ing, for both AAC approaches, few configurations remain, and those tend to have good
hypervolume but average spread. On the other hand, our MO-AAC approach, HV ||�′,
produces many more configurations after the training, validation and test phases. Com-
pared to the other approaches, HV ||�′ clearly achieves better coverage of the optimal
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Table 10: 100-city bTSP Pareto-optimal configurations (small space).

1-HV �′ Selection Exploration Archive Perturbation

0.1372 0.7389 rand 10 imp_ndom sol 10 1000 ∗ 10 ∗
0.1431 0.6572 all imp_ndom sol 10 1000 restart
0.1443 0.6544 all imp_ndom arch 10 1000 restart
0.1902 0.6488 oldest 1 ndom sol 1 1000 kick 10 3

Table 11: 300-city bTSP Pareto-optimal configurations (small space).

1-HV �′ Selection Exploration Archive Perturbation

0.1003 1.3582 oldest 10 imp_ndom sol 1 1000 ∗ 10 ∗
0.1006 1.3417 oldest 10 imp_ndom sol 10 1000 ∗ 10 ∗
0.1092 1.0409 oldest 10 ndom sol 10 1000 ∗ 10 ∗
0.1128 0.7933 rand 10 imp_ndom arch 1 1000 ∗ 10 ∗
0.1129 0.7880 rand 1 imp_ndom arch 1 1000 ∗ 10 ∗
0.1171 0.5003 rand 1 imp sol 10 1000 restart
0.1183 0.2288 rand 1 imp sol 1 1000 restart
0.1190 0.0409 rand 1 imp arch 1 1000 restart

Table 12: 500-city bTSP Pareto-optimal configurations (small space).

1-HV �′ Selection Exploration Archive Perturbation

0.0841 1.3767 oldest 10 imp_ndom sol 1 1000 ∗ 10 ∗
0.0989 1.2983 oldest 1 imp_ndom arch 10 1000 ∗ 10 ∗
0.1003 1.2897 oldest 10 ndom arch 10 1000 ∗ 10 ∗
0.1015 1.1290 oldest 10 ndom sol 10 1000 ∗ 10 ∗
0.1159 1.0080 rand ∗ imp_ndom arch 1 1000 ∗ 10 ∗
0.1403 0.8468 oldest 10 ndom arch 1 1000 kick 10 ∗
0.1616 0.4420 rand 1 imp sol 10 1000 ∗ 10 ∗
0.1624 0.0000 rand 1 imp ∗ 1 1000 ∗ 10 ∗

Pareto set of configurations (Figure 4). Note that all three approaches use the same time
budget for configuration, the number of final solutions being strongly dependant of the
kind (single-objective or multi-objective) of AAC used for training.

Regarding the nature of the configurations, we observe a trend across the three in-
stance sizes (Tables 7 to 9): The best hypervolume is always reached with the oldest
selection strategy, the ndom exploration strategy, and the arch exploration reference set
choice. Slightly worse hypervolume, but better spread is achieved using the imp_ndom
exploration strategy. Finally, the best spread values are obtained from configurations
using the imp exploration strategy, although this comes at the cost of rather bad hyper-
volume. In almost every case, the perturbation strategy did not significantly impact the
performance of the nondominated configurations.
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Our results on the bTSP differ markedly from those on the bPFSP. Firstly, we observe
that the shape of the Pareto-optimal front of configurations varies with instance size:
While it is convex for 100 cities with some degree of correlation between hypervolume
and spread, for larger instances, the correlation between the two performance indicators
decreases, and the front becomes non-convex. In contrast to the bPFSP, where the two
objectives were correlated, for our bTSP benchmark sets, the objectives are completely
independent; therefore, the final archives are much bigger, as there exists a richer space
of trade-off solutions. The impact on spread is evident from Figure 4; values above 1
correspond to two tightly clustered sets of solutions separated by a large gap that the
respective configuration of MOLS failed to cover, and spread values of 0 correspond to
final sets containing only two solutions, which are produced when the imp exploration
strategy fails to sufficiently diversify.

Our HV configuration approach produced few configurations, achieving near-
optimal hypervolume. HV +�′ produced weak training results on the 100-city instances,
but worked well on the 300-city instances, because of the shape of the Pareto-optimal
front. As for the bPFSP, HV ||�′ found many more configurations and achieved far better
coverage of the Pareto front. In our test instances from the literature, all three AAC ap-
proaches produced optimal configurations for 100-city instances, HV +�′ and HV ||�′

still did on 300-city instances, and only HV ||�′ managed to find most of the optimal
configurations on the 500-city instance (see Figure 4).

Analysing the MOLS configurations in more detail, those that achieve the best hy-
pervolume values always use the imp_ndom exploration strategy with the sol refer-
ence set. While for 300- and 500-city instances, the oldest selection strategy is pre-
ferred, for 100 cities, the more common rand selection strategy performs better. Simi-
larly to the bPFSP, the choice of perturbation mechanism does not significantly impact
the performance of optimal configurations.

For both problems, within the small configuration space, all three AAC approaches
are able to find configurations very close to the true Pareto-front. The two SO-AAC
approaches strongly favour the hypervolume indicator, while the MO-AAC approach
is able to accurately cover the full range of Pareto-optimal configurations.

5.2 Large Configuration Space

In this section, our three AAC approaches are now tested against a much larger search
space, in order to study their scalability.

Figure 6 shows the final configurations produced by all three AAC approaches for
our six benchmarks (two problems, three instance sizes). We also show the configura-
tions of the smaller set of configurations that we exhaustively evaluated in Section 5.1,
in order to show that these final configurations map very closely those found within the
small space, which suggests that the small space indeed captures the high-performance
configurations from the much larger space and, more importantly, demonstrates that
our AAC approaches effectively finds such configurations. In the following, we will
focus on the performance of our three AAC approaches.

Both SO-AAC approaches, HV and HV +�′, produced few nondominated configu-
rations in their final testing phase—typically between 2 and 4 on each instance set (see
Table 6). As one might expect, HV always finds a final configuration with near-optimal
hypervolume. The results for HV+�′ are similar to those for HV for the bPFSP, but
markedly different on our bTSP benchmarks. For 100-city bTSP instances, HV +�′ cov-
ers the Pareto front, while for 300 cities, it finds the two extreme configurations, due
to accidentally well-adapted weights used for aggregating hypervolume and spread.
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Figure 6: Large-scale analysis on test instances (left: bPFSP; right: bTSP). x: HV ap-
proach, o: HV +�′ approach, �: HV ||�′ approach, +: exhaustive analysis.
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However, due to the non-convex shape of the front, no trade-off configurations are
found between these extremes. For 500-city instances, HV +�′ only finds configurations
with near-optimal hypervolume, similar to what we observed for the bPFSP.

On the other hand, our MO-AAC approach, HV ||�′, consistently provides many
more nondominated configurations, except for the small 100-city bTSP instance set,
where the Pareto front is completely covered by all three approaches. In all cases, the
sets of configurations found by HV ||�′ are very well distributed over the entire front of
optimal configurations. Although HV +�′ sometimes finds better configurations (e.g.,
on the 100- and 200-jobs bPFSP scenarios), HV ||�′ always produces configurations with
similar performance.

Overall, our MO-AAC approach, HV ||�′, produces substantially better results than
the two SO-AAC approaches, HV and HV +�′. HV finds excellent sets of configura-
tions with respect to hypervolume, but provides only very few of those and conse-
quently fails to achieve good spread. HV+�′ sometimes provides better results and,
under favourable circumstances, can cover the entire set of Pareto-optimal configura-
tions; however, especially for more challenging scenarios, its performance is similar to
that of HV . The main drawback of this approach is the requirement of a costly prelim-
inary step for calibrating the weights used for aggregating the two optimisation objec-
tives. Finally, HV ||�′, our native MO-AAC approach, always efficiently covers the entire
Pareto-front of configurations, while still finding sets of configurations with excellent
hypervolume, as produced by the two SO-AAC approaches.

6 Conclusion

In this article, we have studied the question how to best approach the automated con-
figuration of multi-objective optimisation algorithms. From the literature, it is known
that no single metric completely characterises the performance of MOO algorithms,
and that therefore, it is best to evaluate such algorithms using multiple complementary
performance metrics. Consistent with this insight, we have studied the use of multi-
objective configuration techniques for MOO algorithms, contrasting two approaches
built around a standard, single-objective configuration procedure with one using a
natively multi-objective algorithm configurator. Substantially expanding on our own,
preliminary work in this area, we have conducted extensive experiments with a highly-
parametric local search framework, MOLS, applied to two well-known MOO prob-
lems, the bi-objective permutation flowshop and travelling salesman problems. We
have found strong evidence that automated configuration of highly parametric MOO
frameworks such as ours is effectively possible using existing techniques and, more
importantly, that indeed, by using a natively multi-objective algorithm configurator—
here, MO-ParamILS (Blot et al., 2016)—the best configuration results can be achieved.
Specifically, using MO-ParamILS, we could consistently obtain large and diverse sets
of configurations of our MOLS framework.

In future work, we intend to study how the degree of correlation between the ob-
jectives of a given MOO problem impacts the performance of our automated algorithm
configuration approaches and that of the configurations thus obtained. Our results pre-
sented here already provide some evidence for qualitative differences arising from very
high and very low degrees of correlation, as found in the bi-objective PFSP and TSP, re-
spectively, but it is yet to be determined to which degree these findings are independent
of other differences between these benchmark problems.

We also believe that it would be very interesting to expand the investigation pre-
sented here to other types of MOO problems—notably, to problems from machine
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learning and data mining, whose design and calibration usually gives rise to trade-offs
between several performance objectives, such as sensitivity and specificity, thus provid-
ing a new direction for the area of automated machine learning (AutoML).
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