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ABSTRACT
Multi-objective local search (MOLS) algorithms are e�cient meta-
heuristics, which improve a set of solutions by using their neigh-
bourhood to iteratively �nd be�er and be�er solutions. MOLS
algorithms are versatile algorithms with many available strategies,
�rst to select the solutions to explore, then to explore them, and
�nally to update the archive using some of the visited neighbours.
In this paper, we propose a new generalisation of MOLS algorithms
incorporating new recent ideas and algorithms. To be able to instan-
tiate the many MOLS algorithms of the literature, our generalisation
exposes numerous numerical and categorical parameters, raising
the possibility of being automatically designed by an automatic
algorithm con�guration (AAC) mechanism. We investigate the
worth of such an automatic design of MOLS algorithms using MO-
ParamILS, a multi-objective AAC con�gurator, on the permutation
�owshop scheduling problem, and demonstrate its worth against a
traditional manual design.
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1 INTRODUCTION
Multi-objective local search (MOLS) algorithms are metaheuristics
speci�cally designed for multi-objective combinatorial optimisation
problems. �ey have been used to tackle combinatorial optimisa-
tion problems such as the travelling salesman problem [14], the
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quadratic assignment problem [9], or the permutation �owshop
scheduling problem (PFSP) [1, 9, 14]. Recently new ideas and new
MOLS algorithms have arisen in the literature, which raises the
question of the possible advantages of a uni�ed MOLS algorithmic
structure. �is structure would comprise numerous strategies, not
only from MOLS algorithms, but also from similar evolutionary
algorithms, and should be able to easily include new unknown
algorithms. �e strength of such a structure is to enable to both in-
stantiate existing algorithms and to design new hybrid algorithms.

�e design of new algorithms o�en is a long and tedious task.
Moreover, as the structure includes more and more possible com-
ponents and parameters, it becomes increasingly impracticable to
exhaustively analyse every possible combination of strategies, thus
suggesting the use of an external tool to automatically search for
the best con�gurations. Automatic algorithm con�guration (AAC)
has become in the last few years an increasingly e�cient and popu-
lar preliminary step in the use of metaheuristics. Indeed, algorithms
exposing numerous parameters can be automatically con�gured
in order to improve their performance on given classes of problem
instances. �e bene�t of this automatically design algorithms from
a highly parametric structure having already been shown for single-
objective SLS algorithms [17], we more speci�cally question here
the automatic design of a multi-objective metaheuristic structure.

In this paper, we �rst propose a new highly parametric MOLS
generalisation. �en, we investigate the performance of an AAC
procedure in comparison to an exhaustive analysis of all feasible
MOLS con�gurations. We use MO-ParamILS [2], a multi-objective
AAC con�gurator, in order to account for the fundamental multi-
objective nature of MOLS algorithms. �e experiments are con-
ducted on a well-known bi-objective permutation �owshop sched-
uling problem.

�is paper is organised as follows. First, Section 2 presents
multi-objective local search algorithms, and recent new ideas and
algorithms, then details a generalised MOLS structure and enumer-
ates its di�erent design points together with their related strategies.
Section 3 then lays out the design of the experiments, whose proto-
col is made explicit in Section 4, and whose results are discussed in
Section 5. Finally, Section 6 concludes this paper and draws some
perspectives.

2 MULTI-OBJECTIVE LOCAL SEARCH
ALGORITHMS

In this section, we present a brief literature review on MOLS algo-
rithms and report new recent strategies. �en, we propose a highly
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parameterisable generalisation of MOLS algorithms able to embed
these new strategies.

2.1 Multi-Objective Combinatorial
Optimisation

Multi-objective combinatorial problems appear when multiple cri-
teria are considered. �e Pareto dominance can be used to compare
two solutions s1 and s2: s1 is said to dominate s2 if and only if s1 is
be�er or equal to s2 according to all criteria, and there is at least
one criterion according to which s1 is strictly be�er than s2. If
neither s1 dominates s2 nor s2 dominates s1, both solutions are said
incomparable. Various alternatives to the Pareto dominance can
also be used, as for example, an aggregation between the criteria
or a lexicographic order.

Solving a multi-objective combinatorial optimisation problem
with the Pareto dominance aims to �nd the Pareto optimal set,
de�ned as the set of feasible solutions not dominated by any other
feasible solution. A Pareto set is then simply de�ned as a set of
solutions in which no solution dominates another.

Metaheuristics are generic methods, o�en preferred to exact
methods on combinatorial problems, since they allow to quickly
�nd very good solutions. �ey are divided into two categories: the
bio-inspired methods, such as evolutionary algorithms, ant colonies
and particle swarms optimisation algorithms, and the stochastic
local search methods.

2.2 Recent Ideas in MOLS
Stochastic local search (SLS) algorithms have been widely used for
single-objective optimisation [10], and their extensions to multi-
objective optimisation are known to achieve excellent performance
by iteratively improving a Pareto set. Many popular multi-objective
local search algorithms (MOLS) are based on the Pareto local search
(PLS) [21] and its numerous variants, such as the iterated PLS [6],
the stochastic PLS [7], and the anytime PLS [9]. �e dominance-
based multi-objective local search (DMLS) [14] was proposed to
generalise many of the PLS algorithms and some other very similar
evolutionary algorithms, such as the Pareto archived evolution
strategy (PAES) [13].

DMLS algorithms iterate three phases: (i) the selection phase, in
which solutions are selected from the archive; (ii) the exploration
phase, in which the neighbourhood of the selected solutions are ex-
plored and candidate neighbours are extracted; and (iii) the archive
phase, in which the current archive is updated with the candidate
neighbours. However, this generalisation is not able to include all
recent MOLS of the literature (e.g., in [1, 9]) since new ideas fall
outside its scope.

�ese ideas are reported in the following. In phase (ii) of a
DMLS, only the quality of the solution explored is considered while
it has been shown that comparing the neighbours to the whole
archive o�en leads to be�er performance [9]. A reference point
should then be added to the exploration strategy. When several
solutions are selected, the neighbourhoods are explored one by one.
New exploration strategies may appear if we consider the union
of the neighbourhood of all solutions as a unique neighbourhood.
Likewise, all selected solutions are explored in phase (ii) no ma�er
what happens. �erefore, it could be interesting to add a stopping

Algorithm 1: Multi-Objective Local Search Algorithm
Input: A set of solutions
Output: A set of solutions
archive← initial set;
until termination criterion is met do

/* phase (i) */

selection← select (archive);
/* phase (ii) */

candidates← �;
until condition or selection = � do

current← pick (selection);
reference←

refer (archive, current, candidates);
neighbours← exploration (current, reference);
candidates, selection← update ( candidates,

selection, current, reference, neighbours);
/* phase (iii) */

archive← combine (archive, candidates);
return archive;

criterion for this phase, e.g., taking into account the neighbours
already found.

In most literature MOLS algorithms, including the DMLS gen-
eralisation, candidate neighbours necessarily need to be archived
before being able to be explored later – the three phases being
executed in the same order iteratively. However, archiving may dis-
card some useful neighbours, especially if the exploration strategy
enables multiple candidate neighbours to be archived in a single it-
eration. It has been shown that exploring neighbours that might be
immediately discarded can also lead to increasing performance [1],
i.e., it may be e�cient to restart from phase (i) again directly a�er
phase (ii).

Additionally, in the DMLS structure the acceptance criteria of
archiving candidate neighbours is to merge both sets of solutions
and accept any non-dominated solutions for inclusion, then use an
optional criteria to avoid large archives. �erefore, strategies such
as only accepting dominating neighbours [9] as candidate solutions
for archiving also fall outside of this scope.

Finally, in all MOLS algorithms, the archive (i.e., the current set
of solutions) is a Pareto local set, meaning that no solution of the
archive dominates another. �erefore, the archive always contain
the best solutions found (locally). However, this additional Pareto
constraint might sometimes hinder the diversity of solutions in the
archive, e.g., when it becomes necessary to bound the size of the
archive. In some cases, especially near local optima, �nding out
new dominating solutions is very di�cult and it could be bene�cial
to temporary relax the Pareto constraint to allow exploring the
best dominated solutions that would have been otherwise simply
discarded. For this reason, in our generalisation the archive is a
simple set of solutions, and not a Pareto local set.

2.3 MOLS Structure
Algorithm 1 outlines our generalised MOLS structure where the
three phases of the DMLS are kept and completed. Indeed, following
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Algorithm 2: Iterated Multi-Objective Local Search Algorithm
Input: A set of solutions
Output: A set of solutions
current archive← initial archive;
current archive← local search (current archive);
best archive← current archive;
until termination criterion is met do

tmp archive←
perturb (current archive, best archive);

tmp archive← local search (tmp archive);
current archive←

combine (current archive, tmp archive);
best archive←

combineBest (best archive, current archive);
return best archive;

the previous section, the exploration phase (ii) and the archive
phase (iii) are generalised. In phase (ii), the pick() function selects
one or many solutions from the ones selected in phase (i). �e
refer() function enables to choose the reference point, e.g., the
current archive or the current picked solution(s). At last, the use
of the update() function and additional stopping conditions in
both Algorithm 1 and the explore() function allows to shorten
the entire exploration when useful or necessary.

Stochastic local search are exploitation methods, that needs to
be diversi�ed to perform be�er. �e iterated local search (ILS)
algorithm [16] gives a way to do that for single-objective optimi-
sation by adding a phase to perturb the current solution and so,
diversify the search, and another to accept or not the new solution
found. We propose in Algorithm 2 a general way to iterate a MOLS,
through an extended MOLS algorithm making use of the diversity.
�e perturb() function plays the same role as in single-objective
optimisation while the combine() and combineBest() functions
are needed to manage the archives following the archiving policy.

2.4 MOLS Strategies
�e role of the strategies corresponding to every unspeci�ed sub-
functions of Algorithms 1 and 2 are detailed and some example of
instantiation are given. �e strategies used in the following sections
are also speci�ed (see Section 4 Table 1).

Selection. �e selection phase of Algorithm 1 selects the solutions
of the current archive whose neighbourhood will be explored in
the following phase of the algorithm. Either all the solutions of the
archive (strategy all), or only a subset of solutions may be selected.
�e choice of the subset can be done either uniformly at random
(strategy rand), or according to indicators, such as their lifetime in
the archive (strategies oldest and newest), or their contribution
to hyper-volume [9], crowding or sharing in the archive [4].

It is also possible, following an activation/desactivation scheme,
to �ag solutions as to ensure they will not be selected, and thus not
explored, for example to avoid exploring again a solution already
fully explored, or to speed up the algorithm by avoiding unrequired
explorations [19]. In that case, the selection phase only consider
activated solutions, and the state of a solution is generally handled

in the exploration phase (e.g., desactivating explored solutions, or
newly found neighbours).

Pick. �is function replaces the implicit mechanism of DMLS that
iteratively explores the neighbourhood of every selected solutions
one by one. One or more solutions are picked among ones selected
by the selection function. �e union of the neighbourhood of each
picked solution will be considered in the exploration function. Let
us remark that the DMLS process can be imitated: only one solution
is picked without replacement during an iteration.

Reference. �e neighbourhood explorations is conditioned by
a reference to which is compared the neighbours. �is reference
point can be either set to the current picked solutions or to the
current archive. Candidate neighbours found during the iteration
(phase (ii)) can also been used as reference point.

Exploration. �is function enables the exploration of the joined
neighbourhood of the solutions picked. Explorations strategies are
determined according to how much of the neighbourhood they
explore, and to which neighbours they select. �ey can either
explore the neighbourhood entirely (strategy all), or only partially
until their termination criterion is met. For partial exploration
strategies, the most popular strategies include stopping a�er the
�rsts dominated neighbours (strategy imp) or a�er the �rst non-
dominated neighbours (strategy ndom), returning for both all non-
dominated neighbours visited.

Update. At the end of every exploration, the sets of selected
solutions and candidate neighbours are updated. In the DMLS
framework, the picked solutions were removed from the set of
selected solutions, and selected neighbours were simply merged
into the candidate set. Here, the picked solutions are allowed to
remain in the selection set – to be picked again –, and neighbours
can be included in the selection set directly before phase (iii).

Combination / Archive. In phase (iii) of Algorithm 1 the current
archive is updated with the set of candidate neighbours. �is com-
bination can be as simple as merging the two sets of solutions and
discarding any dominated solutions, or can include any �ltering
mechanisms such as in the selection phase. As mentioned earlier,
the archive is here a simple set of solutions, with no hard restriction
of being a Pareto set at all time.

Termination Criteria. Algorithm 1 can include a natural termina-
tion criterion when no solution from the archive can be selected
again. Otherwise, common popular termination criteria including
time spent by the algorithm, number of iterations, number of iter-
ations without improvement, or number of global evaluation can
also be set.

Initialisation. �e initial archive from which Algorithm 2 starts
is necessarily non empty. It is usually composed either by solutions
taken uniformly at random, or by high-quality solutions, o�en
obtained with a scalarisation-based subsidiary algorithms [9].

Perturbation. In Algorithm 2, the starting point of every sub-
sidiary local search is determined by applying a perturbation to
either the current archive or the best archive, or also by restarting
from a new archive. Following single-objective strategies to escape
local optima, perturbations are generally based on kicks, where
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the current solution is replaced by one of its neighbours selected
uniformly at randomly, multiple times. Kick-based multi-objective
perturbations select a subset of an archive, then apply a kick on
each of the selected solutions.

Other examples of possible perturbations strategies include restart-
ing from new solutions obtained by an initialisation strategy, or
using a deconstruction/reconstruction mechanism to alter the current
solutions.

3 EXPERIMENTAL DESIGN
In this section, we brie�y present automatic algorithm con�gura-
tion, then describe the case study problem used in the experiments,
its objectives, and the multi-objective performance indicators used
to compare the di�erent con�gurations.

3.1 Automatic Algorithm Con�guration
�e goal of automatic algorithm con�guration (AAC) is to deter-
mine a con�guration (i.e., a parameter se�ing), optimising a given
algorithm over a given class of problem instances. �e algorithm
performing the AAC procedure is called the con�gurator, whereas
the algorithm being con�gured is called the target algorithm. A
AAC procedure is typically performed when the analysis of the
con�guration space of the target algorithm – all the valid combina-
tions of its parameter values – is too expensive to be carried out
manually.

Notorious literature single-objective con�gurators include tools
such as irace [15], ParamILS [12], or SMAC [11]. �ey optimise
the estimated quality of the target algorithm using a single quality
indicator, such as the average running time or quality. Recently,
multi-objective con�gurators such as SPRINT-race [23] or MO-
ParamILS [2] have shown the possibility and the bene�ts of using
multiple performance indicators. It has also been shown that, on
multi-objective AAC scenario optimising multiple multi-objective
performance indicators of multi-objective target algorithms, using
a multi-objective con�gurator should be preferred to using a single-
objective con�gurator with an aggregation of the performance
indicators [3].

3.2 Case Study: Bi-objective Permutation
Flowshop Scheduling Problem

�e permutation �owshop scheduling problem (PFSP) involves
scheduling a set of N jobs {J1, . . . , JN } on a set of M machines
{M1, . . . ,MM }. Each job Ji is processed sequentially on each of
the M machines, with �xed processing times {pi,1, . . . ,pi,M }, and
machines can only process one job at a time. �e sequencing of
jobs is identical on every machine, so that a solution may be repre-
sented by a permutation of size N . In the following, we consider
the bi-objective PFSP, minimising both the makespan and the �ow-
time of the schedule, two objectives widely investigated in the
literature [18], where makespan is the total completion time of the
schedule, and �owtime is the sum of the individual completion
times of the N jobs.

Classical PFSP neighbourhoods include the exchange neighbour-
hood, where the positions of two jobs are exchanged, and the inser-
tion neighbourhood, where one job is reinserted at another position

in the perturbation. We consider here the union of these two classi-
cal neighbourhoods, as this hybrid neighbourhood has been shown
to lead to be�er performance than considering each neighbourhood
independently [9].

3.3 Multi-Objective Automatic Algorithm
Con�guration

We use two complementary indicators to compare the performance
of MOLS algorithms on the tackled bi-objective PFSP: the unary
hypervolume [24], a volume-based convergence performance in-
dicator, and the ∆ spread [5], a distance-based distribution metric.
Both indicators were required to be unary performance indicators
as a current constraint of all literature AAC procedures. In the fol-
lowing, we assume that all objective values have been normalised
to [0, 1] and are to be minimised, meaning that the nadir is at (1, 1)
and the ideal at (0, 0).

�e unary hypervolume indicator measures the hypervolume
of the objective space between the solutions of a given Pareto set
and the nadir point. Hypervolume is maximised when the Pareto
set is reduced to the ideal point. However, in the following, in
order to achieve a con�guration scenario where both indicators
are to be minimised we will always consider the complement HV
between hypervolume and the hypervolume of the ideal point
(HV = 1 − hypervolume).

�e ∆ spread indicator measures the distance-based distribution
of set of solutions in a bi-objective context. Given a Pareto set S ,
ordered regarding the �rst criterion, we de�ne

∆ :=
df + dl +

∑ |S |−1
i=1 |di − d̄ |

df + dl + (|S | − 1) · d̄
,

where df and dl are the Euclidean distances between the extreme
positions (1, 0) and (0, 1), respectively, and the boundary solutions
of S , and d̄ denotes the average over the Euclidean distances di
for i ∈ [1, |S | − 1] between adjacent solutions on the ordered set
S . �is indicator is to be minimised; it takes small values for large
Pareto sets with evenly distributed solutions, and values close to 1
for Pareto sets with few or unevenly distributed solutions.

4 EXPERIMENTAL PROTOCOL
In this section, we specify the sets of instances used in our experi-
ments, together with a description of the considered training and
validation PFSP instances, the considered MOLS parameter space,
and the exhaustive and AAC approaches.

4.1 PFSP Instances
�e classical PFSP instances widely used in the literature are the
Taillard instances [22]. �eir number of jobs range in N = {20, 50,
100, 200, 500}, while their number of machines range in M = {5, 10,
20}. �ere are 10 available Taillard instance for every valid (N ,M)
combination.

In the following, we consider three types of PFSP instance sets,
characterised by their number of jobs: N = 20, 50, and 100 jobs.

For the exhaustive approach and the validation of the AAC ap-
proach, we use the Taillard instances, and include 10 instances for
each number of machines (M = 5, 10, 20), for a total of 30 instances
by instance set. For the training of the AAC approach, we used a
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Table 1: Investigated parameters leading to 189 con�gura-
tions of MOLS

Phase Parameter Parameter values
Initialisation initStrat {rand, neh, ig}

Selection selectStrat {all, rand, newest, oldest}
Selection selectSize {1, 3}

Exploration explorStrat {all, imp, ndom}
Exploration explorRef {pick, arch}
Exploration explorSize {1, 3}

di�erent, completely disjoint, set of instances, composed by newly
generated Taillard-like instances. We generated 80 instances for
each number of jobs (18 di�erent instances for M = 5, 10 and 20
machines, and 2 di�erent instances for each intermediate instance
size).

4.2 MOLS Con�guration Space
�e MOLS strategies and parameters considered in our experiments
are reported in Table 1. �ese strategies account for a total of
3 × (1 + 3 × 2) × (1 + 2 × 2 × 2) = 189 valid MOLS con�gurations.

As for the initialisation of our MOLS iterative structure (Algo-
rithm 2), we considered three strategies. First, a strategy where
10 initial solutions are generated uniformly at random (strategy
rand). �en, a strategy where 5 solutions are obtained using NEH,
a well known �owshop constructive heuristic [20], according to
5 uniformly distributed aggregations of the two objectives: one
optimising the sole makespan, one optimising the sole �owtime,
and three optimising a mixture of both. �e third strategy combine
each of the 5 NEH solutions with the application of a simple iterated
greedy (IG) algorithm. We used the IG algorithms and parameter
values of Dubois-Lacoste et al. [8] (i.e., d = 4, 5, 5; Tc = 0.4, 0.5, 6;
and NLS = ∞, 3, 1 for the pure makespan IG, the pure �owtime IG,
and the aggregation-based IG, respectively).

�e global termination criterion of the MOLS algorithm is set to
Trun = 0.1×N ×M seconds. Regarding the termination criterion of
the inner MOLS (Algorithm 1), it stops when either a total of N ×N
iterations are reached, or N successive iterations are performed
without improvement. We choose to consider then a kick-based
perturbation: a single solution is selected uniformly at random
from the current archive, kicked 3 times, and the search starts again
from the resulting solution.

�e quality of a given con�guration is obtained by computing the
arithmetic means of the hypervolume and the ∆ spread over all the
runs the con�guration has been run on. �ese indicators having
already been computed on normalised objectives, no additional
normalisation has been performed.

4.3 Exhaustive Approach
�e baseline of our experiments is the exhaustive analysis of all
MOLS algorithm con�gurations on all Taillard instances. We per-
formed 30 runs of every valid MOLS con�guration for all instances.
All con�gurations having a termination criterion of Trun, 30 runs
being performed on every 10 instances of each size, for every of the

189 valid MOLS con�gurations, the exhaustive analysis of the three
sets of validation instances has taken a total computation time of
189 ×Ttest, with

Ttest =
∑

M ∈{5,10,20}
Trun × 10 × 30

seconds; i.e., approximately 46 days, 115 days, and 230 days for
each number N ∈ {20, 50, 100} of jobs, respectively.

Note that the time required by the exhaustive approach increases
exponentially with the number of parameters and their individual
number of possible parameter values. Here it would have been
excessively expensive to consider additional parameters (e.g., more
detailed initialisation, exploration or perturbation strategies) or
additional parameter values(e.g., more numerical values, or new
strategies).

4.4 AAC Approach
We choose to use MO-ParamILS [2], a recent multi-objective AAC
con�gurator itself based on a MOLS algorithm, as the con�gurator
for the AAC approach, in order to take advantage of its intrinsic
multi-objective nature in order to con�gure our multi-objective
structure, and to avoid aggregating the hypervolume and the spread
into a single performance indicator.

MO-ParamILS protocol uses three phases. First, it learns the
best con�gurations of the given algorithm over a given training
instance set. Because AAC procedures are generally very sensi-
tive to the order in which the instances are considered, and given
the stochasticity of ParamILS, this �rst step is carried out multi-
ple times, with di�erent random seeds and permutations of the
training instance set. �en, because the quality of the �nal con-
�gurations of each of these ParamILS runs have been computed
using ultimately di�erent subsets of the training set and di�erent
number of algorithm runs, a second phase in necessary in order to
compare all �nal con�gurations fairly. �is second phase re-use
the same training set of instances, but simply reassess the qual-
ity of every �nal con�guration on a joint subset of instances, to
discard any dominated con�guration. At last, the quality of every
non-dominated con�guration is then assessed in a third phase on a
second set of instances, disjoint from the training set.

For the training, 30 runs have been performed on each set of
training instances, with a total training time per run ofTtraining = 36
minutes, 1 hour and 30 minutes, and 3 hours for each instance
set, respectively. Each MO-ParamILS run was set to start from a
single con�guration, drawn uniformly at random. �en, each �nal
con�guration of the 30 runs was reassessed using a single run on
each of the 80 instances of the training set of instances. As there
are 18 instances of size M = 5, 10 and 20, and 2 instance for other
intermediary number of machines, the total reassess computational
time by unique �nal training con�guration is

Treassess =
∑

M ∈{5,10,20}
Trun × 18 +

∑
6≤M ≤9

11≤M ≤19

Trun × 2

seconds. As for the validation on the Taillard instances, we reused
the data of the exhaustive analysis, which would have taken Ttest
seconds by unique �nal con�guration.

In comparison to the exhaustive approach, the time required by
an AAC approach can be more or less arbitrary. Indeed, a great
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part of the time spent here by MO-ParamILS lies in the validation
of the training solutions, whose number is generally small and
does not increase, whereas considering a bigger search space only
lengthen the training phase of the AAC mechanism, with a rate
that can be arbitrarily determined. AAC con�gurators can handle
search spaces of con�gurations many times bigger than the one
considered in this paper (e.g., ParamILS and MO-ParamILS optimis-
ing the performance of the CPLEX solver within up to 1048 valid
con�gurations in Blot et al. [2]).

5 EXPERIMENTAL RESULTS
All the experiments have been conducted in parallel on the 24 cores
of two (12 × 1.9GHz, 32GB RAM) Intel E5-2609v3 machines.

On the set of 20-job training instances, the 30 MO-ParamILS
runs have resulted in 38 unique con�gurations, that have thus been
reassessed on the full training test. Of these 38 con�gurations, a
single one was non-dominated on the classical Taillard instances.
In total, the training, reassessment and test phases then account for
30×Ttraining+38×Treassess+1×Ttest ≈ 1 day and 22 hours . On the
set of 50-job training instances, the 30 MO-ParamILS runs have re-
sulted in 41 unique con�gurations, 5 of them being non-dominated
on the validation set. �e total time is then approximately 7 day
and 5 hours. Finally, on the set of 100-job training instances, the
MO-ParamILS runs have resulted in 59 unique con�guration, 4 of
them being non-dominated on the validation set. �e total time is
then approximately 15 days and 4 hours. In comparison, the exhaus-
tive approach was much longer and took approximately 46 days,
115 days, and 230 days on the three validation sets, respectively.

Figures 1, 2 and 3 show the �nal quality of the 189 feasible con�g-
urations described in Table 1 on the three validation sets of Taillard
instances , respectively. �is �nal quality is obtained by computing
the arithmetic means of both hypervolume and ∆ spread of the
900 runs performed by every con�guration (30 runs on all 30 Tail-
lard instances per validation set). Pluses indicate the �nal quality
of every con�guration as computed by the exhaustive approach.
Red triangles show Pareto optimal con�gurations, whereas blue
circles show the MO-ParamILS �nal con�gurations. Details of the
Pareto optimal con�gurations and MO-ParamILS �nal con�gura-
tions are given in the top and bo�om half of Tables 2, 3, and 4. We
show these con�gurations sorted according to their quality in the
corresponding validation Taillard instances. Additionally, a check
mark (X) in the P column means that a con�guration found by
MO-ParamILS is Pareto optimal. Note that we choose to associate
the all exploration strategy with the arch reference point, even
if it does not use one in practice, as it always explores and selects
all (non-dominated) neighbours; however, this is in philosophy
equivalent to using directly the current archive as reference point.

On the easier instance set of Taillard instances with N = 20 jobs
(Figure 1, Table 2), the feasible MOLS con�gurations are well sepa-
rated into two separate clusters, one almost completely dominating
the other. �e exhaustive analysis found 5 optimal con�gurations,
whereas MO-ParamILS resulted in a single, non-optimal, con�gura-
tion. However, the hypervolume of this con�guration is very good,
and Figure 1 shows that it is, although non-optimal, very close to
the optimal front.
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Figure 1: Exhaustive performance – 20-jobTaillard instances

Table 2: Optimised con�gurations – 20-job Taillard instances

HV ∆ Init Selection Exploration P
Pareto optimal con�gurations
0.385337 0.939578 ig oldest 1 imp 1 pick
0.385424 0.939541 ig newest 3 imp 1 arch
0.385721 0.938868 ig newest 3 ndom 1 arch
0.385795 0.937560 ig newest 3 ndom 3 arch
0.386045 0.937512 ig newest 1 ndom 1 arch

AAC con�gurations
0.385338 0.939837 ig rand 3 imp 3 pick

On the instance set of Taillard instances with N = 50 jobs (Fig-
ure 2, Table 3), the feasible MOLS con�gurations are separated into
two separate clusters and few con�gurations with a good hyper-
volume and an excellent spread. �e exhaustive analysis found 10
optimal con�gurations, whereas MO-ParamILS resulted in 5 con�g-
urations. 4 of these 5 con�gurations corresponds to the Pareto front
of the be�er cluster, while the 5th con�guration correspond to one
of the few con�gurations outside the two clusters, and achieved the
optimal spread. A part of the optimal Pareto front was not found by
MO-ParamILS (see Figure 3 the con�gurations with hypervolume
≈ 0.344 and ∆ spread ≈ 0.947); however, the con�gurations within
being well separated from the other could explain why they were
much harder to reach for a neighbourhood-based con�gurator such
as MO-ParamILS.

On the much more challenging instances of Taillard instances
with N = 100 jobs (Figure 3, Table 4), the feasible MOLS con�gu-
rations are separated into a single cluster and few other separate
con�gurations. �e exhaustive analysis found 7 optimal con�gura-
tions, whereas MO-ParamILS resulted in 4 con�gurations. Of these
4 con�gurations, the �rst is not optimal, but achieved an excellent
hypervolume, the next two are optimal, one in the main cluster of
solutions and the other being one a the separate con�gurations. At
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Figure 2: Exhaustive performance – 50-jobTaillard instances

Table 3: Optimised con�gurations – 50-job Taillard instances

HV ∆ Init Selection Exploration P
Pareto optimal con�gurations
0.341332 0.953271 ig oldest 3 imp 3 pick
0.341530 0.952665 ig rand 3 imp 3 pick
0.341728 0.952256 ig all - imp 1 arch
0.342817 0.951881 ig newest 3 ndom 3 pick
0.342983 0.951602 ig all - all - arch
0.343086 0.951471 ig rand 1 ndom 1 arch
0.343305 0.947833 ig newest 3 ndom 3 arch
0.343443 0.946379 ig newest 3 ndom 1 arch
0.346891 0.946321 ig oldest 3 ndom 1 arch
0.347032 0.945645 ig oldest 3 ndom 3 arch

AAC con�gurations
0.341565 0.954026 ig oldest 1 imp 3 pick
0.341728 0.952256 ig all - imp 1 arch X
0.341778 0.952433 ig all - imp 3 arch
0.342983 0.951602 ig all - all - arch X
0.347032 0.945645 ig oldest 3 ndom 3 arch X

last, the last con�gurations achieved a very poor hypervolume, but
is excellent regarding the ∆ spread.

In overall, the AAC approach always lead to excellent con�gura-
tions, either optimal or dominated by very few other con�gurations.
�ese con�gurations spread well over the real optimal Pareto front
for the two sets of bigger instances, with a single con�guration in
the case of the set of smallest instances that can be explained by
the performance similarity of the high-performing con�gurations
induced by the easier instances.

Regarding the optimal con�gurations and the �nal MO-ParamILS
con�gurations, they greatly di�er for each set of instances, with
some notable similarities. First, the IG initialisation was used on
virtually all optimal con�gurations, with a single con�guration
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Figure 3:Exhaustive performance–100-job Taillard instances

Table 4:Optimised con�gurations–100-job Taillard instances

HV ∆ Init Selection Exploration P
Pareto optimal con�gurations
0.302815 0.968639 ig newest 1 ndom 1 pick
0.302981 0.968505 ig newest 1 ndom 3 pick
0.304468 0.967600 ig newest 1 ndom 3 arch
0.304574 0.967595 ig newest 1 ndom 1 arch
0.314142 0.967553 ig oldest 3 all - arch
0.316194 0.963828 ig all - all - arch
0.327318 0.962354 neh all - all - arch

AAC con�gurations
0.303123 0.973554 neh newest 1 ndom 3 pick
0.314142 0.967553 ig oldest 3 all - arch X
0.316194 0.963828 ig all - all - arch X
0.412647 0.964528 rand all - all - arch

using the NEH initialisation, despite it exposing many parameters
(e.g., number of aggregation, running time, parameters of the dif-
ferent inner IG algorithms) being not considered here. �ere is no
doubt even be�er results can be achieved by optimising these addi-
tional parameters for each set of instances, and by considering other
complex and similarly parametric initialisation mechanisms (e.g.,
TPLS [8]). Most of the optimal con�gurations use the newest and
oldest selection strategies, rather than the classical rand and all
strategies found in the literature. As for the explorations strategies,
on both sets of 20-job and 50-job instances, be�er hypervolume is
achieved using the imp strategy while a be�er spread is achieved
with the ndom strategy. On the set of bigger 100-job instances, a
similar conclusion is reached regarding the ndom and the all strate-
gies. At last, a vast majority of the �nal con�gurations use the
current archive as reference point during the exploration, unlike
most non-exhaustive exploration strategies of the literature, which
use the current solution as reference point. However, we note that
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on every set of instances, the optimal con�guration regarding the
hypervolume always use the picked solutions (i.e., here, the current
solution) as reference point.

6 CONCLUSION
In this paper, we presented a method to automatically design MOLS
algorithms for combinatorial optimisation problems.

First, we proposed a new MOLS generalisation, unifying existing
MOLS algorithms with new ideas and designed to easily include
new components and strategies. Our structure exposes numerous
components, strategies and parameters, that must be tuned for
speci�c classes of problem instances in order to achieve increased
performance. As such, the question of using AAC mechanisms to
automatically tune this structure arises naturally. We investigated
the performance of automatically designed MOLS algorithms, in
comparison to the performance obtained by exhaustively analysing
all feasible MOLS con�gurations. We used three sets of instances
of a well-known bi-objective permutation �owshop scheduling
problem, and MO-ParamILS, a multi-objective AAC procedure.

Our experiments showed that for the three sets of instances the
AAC procedure was able to systematically design e�cient MOLS
algorithms, matching the performance of optimal con�gurations.
Moreover, the exhaustive analysis required to constrain the feasible
con�gurations considered to a small subset of the possible MOLS
con�gurations. AAC procedures being typically not constrained
by the size of the search space, we strongly believe that similar
results would be achieved when considering many more feasible
con�gurations.

Based on our results, we conclude in the strong promises of using
an AAC procedure to automatically design MOLS algorithms for
given classes of problem instances. Furthermore, we believe that
this promise also applies to other types of highly parametric multi-
objective metaheuristics. Regarding the MOLS structure itself, we
believe that including strategies from other algorithms, such as for
example evolutionary algorithms mechanisms, could enable the
design of strong hybrid metaheuristics. Finally, the performance of
automatically designed (hybrid-)MOLS algorithms should also be
investigated on problems where manually designed metaheuristics
already perform well (e.g., scheduling problems, routing problems)
and compared to the performance of state-of-the art algorithms.
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