
1

From Start-ups to Scale-ups:
Opportunities and Open Problems for
Static and Dynamic Program Analysis

Mark Harman∗, Peter O’Hearn∗
∗Facebook London and University College London, UK

Abstract—This paper1 describes some of the challenges and
opportunities when deploying static and dynamic analysis at
scale, drawing on the authors’ experience with the Infer and
Sapienz Technologies at Facebook, each of which started life as
a research-led start-up that was subsequently deployed at scale,
impacting billions of people worldwide.

The paper identifies open problems that have yet to receive
significant attention from the scientific community, yet which
have potential for profound real world impact, formulating these
as research questions that, we believe, are ripe for exploration
and that would make excellent topics for research projects.

I. INTRODUCTION

How do we transition research on static and dynamic
analysis techniques from the testing and verification research
communities to industrial practice? Many have asked this
question, and others related to it. A great deal has been said
about barriers to adoption of such techniques in industry, and
the question and variations of it form the basis for the peren-
nial panel sessions that spring up at countless international
conferences.

In this paper, we wish to make a contribution to this
discussion informed by our experience with the deployment
of the static analysis technique Infer [23], [28], [29], [109],
and the dynamic analysis technique Sapienz [45], [89], [91],
at Facebook.

We do not claim to have all, nor even many answers,
and our experience may be somewhat specific to continuous
deployment in the technology sector in general and, perhaps in
some places, to Facebook alone in particular. Nevertheless, we
believe that our relatively unusual position as both professors
(in Programming Languages and Software Engineering) and
also engineering managers/engineers in a large tech sector
company, may offer us a perspective from which we can make
a few useful contributions to this ongoing ‘deployment debate’.

We explain some of the myths, prevalent in Programming
Languages and Software Engineering research communities,
many of which we have, ourselves, initially assumed to be
merely ‘common sense’, yet which our more recent experience
in industry has challenged. We also seek to identify attributes
of research prototypes that make them more or less suitable
to deployment, and focus on remaining open problems and

1This paper accompanies the authors’ joint keynote at the 18th IEEE In-
ternational Working Conference on Source Code Analysis and Manipulation,
September 23rd-24th, 2018 - Madrid, Spain

research questions that target the most productive intersection
we have yet witnessed: that between exciting, intellectually
challenging science, and real-world deployment impact.

Many industrialists have perhaps tended to regard it unlikely
that much academic work will prove relevant to their most
pressing industrial concerns. On the other hand, it is not
uncommon for academic and scientific researchers to believe
that most of the problems faced by industrialists are either
boring, tedious or scientifically uninteresting. This sociological
phenomenon has led to a great deal of miscommunication
between the academic and industrial sectors.

We hope that we can make a small contribution by focusing
on the intersection of challenging and interesting scientific
problems with pressing industrial deployment needs. Our aim
is to move the debate beyond relatively unhelpful observations
we have typically encountered in, for example, conference
panels on industry-academia collaboration. Here is a list of
such (perhaps uncharitably paraphrased) observations:

1) Irrelevant: ‘Academics need to make their research
more industrially-relevant’,

2) Unconvincing: ‘Scientific work should be evaluated on
large-scale real-world problems’,

3) Misdirected: ‘Researchers need to spend more time
understanding the problems faced by the industry’,

4) Unsupportive: ‘Industry needs to provide more funding
for research’,

5) Closed System: ‘Industrialists need to make engineer-
ing production code and software engineering artifacts
available for academic study’, and

6) Closed Mind: ‘Industrialists are unwilling to adopt
promising research’.

While some of these observations may be true some of
the time, focussing any further attention on them leads both
communities into an unproductive dead end; none of these
paraphrased quotations provides much practical actionable
guidance that can be used by the scientific research community
to improve the deployability of research prototypes in industry.

We believe (and have found in practice) that practitioners
are, in the right circumstances, open minded and supportive
and willing to adopt and consider academic research proto-
types. More specifically,

With the right kind of scientific evidence in
the evaluation, industrialists are very willing to
adopt, deploy and develop research.
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In this paper we try to elucidate how the research commu-
nity might further and better provide such scientific evidence.
The research prototypes need not be immediately deployable.
This would require significant additional engineering effort
that the academics could not (and should not) undertake.
However, with the right kind of research questions and con-
sequent evidence in the scientific evaluation, researchers can
demonstrate an elevated likelihood that, with such further
engineering effort from industry, there will exist effective and
efficient deployment routes.

Even where the immediate goal of the research is not
deployment, we believe that consideration of some of these re-
search questions and scientific evaluation criteria may improve
the underlying science. For example, by clarifying the intended
deployment use case, the researcher is able to widen the
number of techniques that become plausible thereby ensuing
that the community retains promising techniques that might
happen to fall foul of some, in vogue evaluation criterion.

In the paper we provide a set of open problems and
challenges for the scientific research community in testing and
verification. We believe that these open problems are, and will
remain, pertinent to software deployment models that exhibit
continuous integration and deployment.

Although this constitutes a large section of the overall indus-
trial sector, we do not claim that these challenges necessarily
retain their importance when extended beyond continuous
integration and deployment to other parts of the Software Engi-
neering sector. We would be interested to explore collaboration
opportunities that seek to tackle these open problems.

The paper is structured as follows:
• Background. Section II: Our background lies in the

scientific community, while the principal focus of our
current work is in industrial deployment of static and
dynamic analysis. Section II provides a brief overview of
this industrial deployment to set this paper in the context
of our recent industrial experience.

• ROFL Myth. Section III: We initially fell into a trap,
which we characterise as believing in a myth, the ‘Report
Only Fault/Failure List’ (ROFL) myth, which we describe
in Section III. We want to surface this myth in Section III,
because we believe it may still enjoy widespread tacit
support in the approach to research adopted by the
community. We have experienced the pernicious effect
that misplaced ROFL belief can have on the deployability
of research work.

• Compositionality and Incrementality. Sections IV and
V: We have found that the related, but distinct, properties
of compositionality and incrementality are important to
the scalability of testing and verification through static
and dynamic analysis.

• Assume Tests Are Flaky. Section VI: A flaky test is one
for which a failing execution and a passing execution
are observed on two different occasions yet for both
executions, all environmental factors that the tester seeks
to control remain identical. We believe more work is
needed on flakiness of tests. We discuss this problem
in Section VI, where our focus is on moving beyond
identifying and reducing flakiness, to coping with and

optimising for flaky tests. We characterise this as the need
to recognise that the world into which we deploy testing
and verification techniques is increasingly one where we
could achieve greater impact by assuming that all tests
are flaky.

• TERF Ratio. Section VII. The Test-Execution-to-
Release-Frequency (TERF) Ratio is changing. We surface
the issue of accounting for (and reducing) test execution
cost in terms of this ratio in Section VII.

• Fix Detection. Section VIII: We had thought, before we
migrated to our industrial roles, that the problem of deter-
mining whether a bug is fixed was a relatively trivial and
entirely solved problem. That was another misconception;
the problem of fix detection is a challenging one and,
we believe, has not received sufficient attention from the
research community.

• Testability Transformation. Section IX: As a com-
munity, we regularly use code transformation in order
to facilitate testing and verification, for example, by
mocking procedures and modeling subsystems for which
code is unavailable. Sadly, this practice lacks a fully
formal foundation, a problem that we briefly touch on
in Section IX.

• Evaluation. Section X: We would like to suggest some
possible dimensions for scientific evaluation of research
prototypes, results along which we believe would provide
compelling evidence for likely deployability. These evalu-
ation criteria, discussed in Section X, are not an additional
burden on researchers. Rather, they offer some alternative
ways in which research work may prove actionable and
important, even if it might fail to meet currently accepted
evaluation criteria.

• Deployability. Section XI: Our experience lies primary
in the challenges of deployment within continuous inte-
gration environments, which are increasingly industrially
prevalent [101]. In Section XI we describe some of the
lessons we learned in our efforts to deploy research on
testing and verification at Facebook, focusing on those
lessons that we believe to be generic to all continuous
integration environments, but illustrating with specifics
from Facebook’s deployment of Infer and Sapienz.

• Find, Fix and Verify. Section XII: Finally, we could
not conclude without returning to a grand challenge. The
challenge combines the two authors’ research interests
and, we believe, has the potential for profound and
lasting impact on both the scientific and practitioner
community. The challenge is the find-fix-verify challenge
(FiFiVerify), which we believe is within the grasp of
the scientific community. Achieving FiFiVerify would
lead to practical deployed systems that are able to find
failing functionality and poor performance, automatically
fix them, and automatically verify the fixes’ correctness
and the absence of regressions as a result of fixes.
The FiFiVerify challenge has been described previously
elsewhere [68]. In Section XII, we generalise it to the
FiGiVerify problem of finding (Fi) functional or non-
functional issues, (genetically) improving (Gi) them and
verifying the improvement.
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II. BACKGROUND

The authors’ industrial experience arises primarily from
their work at Facebook, where they are involved in the
development of the static analysis tool Infer, and the dynamic
analysis tool Sapienz. This section provides a brief overview of
these two technologies, as the background to the observations
made subsequently about scalable static and dynamic analysis.
Naturally, we hope that our observations will extend and apply
more widely than Facebook. Our observations are sufficiently
general in nature that we believe they will be found applicable
to any tech sector organisation that deploys software into the
Internet and/or mobile application market, based on continuous
integration and deployment [46], [101].

There are millions of lines of code in Facebook’s Android
app alone, while there are also hundreds of thousands of
commits per week to the core software repositories maintained
by the company in its continuous integration and deployment
framework. The technical challenges raised by continuous
integration and deployment are felt, not only at Facebook,
but across the sector as a whole. For example, Memon et al.
have commented on these challenges in the context of scaling
testing at Google, in their excellent ICSE-SEIP paper [101].

The combination of code size and change frequency that
comes with continuous integration and deployment puts us, as
research scholars making a transition to industrial deployment
and practice, in a very fortunate and privileged position. Work-
ing at Facebook has given us opportunities to deploy the Infer
and Sapienz static and dynamic analysis techniques at scales
that are possible in few other environments. We have benefited
greatly from the considerable support, understanding (and
occasionally from the necessary forbearance) of the Developer
Infrastructure community and leadership at Facebook.

The Facebook culture of move fast, fail fast, bold experi-
mentation and explore within an open, collaborative and tech-
nically measurable and accountable environment has meshed
perfectly with our research and scientific instincts and modus
operandi. We believe that the relationship between academic
research and the tech sector is changing, much for the better.
Indeed, continuous integration and deployment is, in essence,
nothing more than an enormous, continuous and highly ex-
ploratory scientific experiment.

A. Infer: Static Analysis at Scale

Infer is a static analysis tool applied to Java, Objective C
and C++ code bases at Facebook. It grew out of academic
work on Separation Logic [108], [109], which attempted
to scale algorithms for reasoning about memory safety of
programs with embedded pointers – one of the most pressing
verification challenges of the 2000s – from 1,000s LOC [133]
to multiple 1,000,000s LOCs [31]. Infer arrived at Facebook
with the acquisition of the program proof startup Monoidics in
2013, and its deployment has resulted in tens of thousands of
bugs being fixed by Facebook’s developers before they reach
production. Infer is open source [29] and is used as well at a
number of other companies, including AWS, Mozilla, JD.com
and Spotify.

Fig. 1. Continuous Development and Deployment. Diff time is the time when
a developer submits a Diff (a code change) to the system for review. Post land
is the period after a diff has been incorporated into the master build of the
system. CI refers to the Continuous Integration of diffs into the code base
subject to code review. .

Infer is notable for performing a ‘deep’ static analysis
of source code. It uses inter-procedural analysis and fol-
lows pointer chains, yet still scales to large code bases.
In comparison, popular open-source tools such as Findbugs
and Clang Static Analyzer do indeed scale, but limit their
reasoning, typically to a single file. A 2017 study of 100 recent
fixes, committed in response to Infer reports, in several bug
categories, found several categories for which the majority of
the bugs were inter-procedural [22], confirming that analysis
beyond intra-procedure reasoning can produce value. On the
other hand, while many research tools may often offer inter-
procedural analysis, they typically require a sophisticated
whole-program analysis, which may be precise, but sadly
cannot scale to 1,000,000s of lines of code.

Infer scales by implementing a novel compositional program
analysis, where the analysis result of a composite program is
computed from the analysis results of its parts [31]. Com-
positionality presupposes that ‘analysis result of a part’ is
meaningful without having the whole program, and allows for
an incremental deployment which fits well with Facebook’s
software development model.

Facebook practices continuous development where a shared
code base is altered by thousands of programmers submitting
‘diffs’ (code modifications). A programmer prepares a diff,
and submits it to the code review system. Infer participates as
a bot, writing comments for the programmer and other human
reviewers to consider. Figure 1 shows a simplified picture of
this process. The developers share access to a single codebase
and then land, or commit, a diff to the codebase after passing
code review. Infer is run at diff time, before land, while longer-
running perf and other tests are run post-land. Post-land is also
where employee dogfooding occurs.

When a diff is submitted, an instance of Infer is sparked
up in Sandcastle, Facebook’s internal continuous integration
system. Because of compositionality, Infer does not need to
process the entire code base in order to analyze a diff and,
as a result, it is very fast. For example, a recent sampling of
Infer’s diff analysis within Sandcastle for Facebook’s Android
App found that it was delivering comments to developers in 12
minutes (on average) whereas, were Infer to perform a whole-
program analysis on the entire app it would take over 1 hour.
There is a research paper describing Infer’s deployment as of
2015 [28], and a video of a talk on our experience with static
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analysis at scale from the CurryOn 2016 conference2.
Thus, Infer has its roots in program verification research,

but it deploys proof technology in a novel way, in what might
be termed continuous reasoning [107]. Proof technology is not
used to show that a complete program is absent of all errors,
but rather, to provide static reasoning about the source code
to cover many paths through an app at once. It is used on
diffs to prevent regressions, implementing a form of what is
sometimes referred to as ‘differential analysis’ [81], but there
is no claim that all regressions are caught (except sometimes
up to certain assumptions).

Remarkably, although program proving techniques have
traditionally been considered to be expensive, Infer is seen
internally as fast; deployed at the same place as unit tests in
continuous integration, and before human-designed end-to-end
tests.

Infer started as a specialized analysis based on Separation
Logic [108] targeting memory issues, but has now evolved
into an analysis framework supporting a variety of sub-
analyses, including ones for data races [23], for security (taint)
properties, and for other specialized properties. These sub-
analyzes are implemented as instances of a framework Infer.AI
for building compositional abstract interpreters, all of which
support the continuous reasoning model.

B. Sapienz: Dynamic Analysis at Scale

Sapienz is a multi-objective automated test case design sys-
tem, that seeks to maximize fault revelation while minimizing
the debug effort to fix. The current version aims to reduce the
debug effort by seeking to simultaneously minimise sequence
length while maximising coverage, to ensure actionability of
fault-revealing test sequences.

Sapienz is based on Search Based Software Testing (SBST)
[68], [70], [96], but it augments SBST with systematic testing
and is also designed to support crowd based testing [90] exten-
sions through its use of motif genes, which can subsequently
draw on patterns of behaviour harvested from user journeys
through a system under test [92].

Sapienz was developed as a research prototype (and made
publicly available as such3). It was subsequently briefly offered
as part of the tools and services of the Android testing start-
up Majicke, before being acquired by Facebook4 in February
2017. Since March 2017, the Sapienz technology has been
developed and deployed to test Facebook’s Android app5,
while work has already begun to extend Sapienz to iOS.

Sapienz is currently deployed to run continuously, testing
the most recent internal builds of the Facebook apps, using
FBLearner (Facebook’s Machine Learning infrastructure [72])
and Facebook’s OneWorld platform6 to support scalable de-
ployment on an arbitrary number of emulators. Currently, it is

2https://www.youtube.com/watch?v=xc72SYVU2QY
3https://github.com/Rhapsod/sapienz
4http://www.engineering.ucl.ac.uk/news/bug-finding-majicke-finds-home-

facebook/
5https://arstechnica.com/information-technology/2017/08/facebook-

dynamic-analysis-software-sapienz/
6https://code.facebook.com/posts/1708075792818517/managing-resources-

for-large-scale-testing/

Fig. 2. Sapienz workflow (Taken from the ISSTA 2016 paper [91])
.

deployed on (of the order of) 1,000 emulators, at any given
time, to test the Android app alone.

There is a (high quality) video presentation7 from FaceTAV
2017 by Ke Mao, outlining the initial Sapienz deployment at
Facebook8. The SSBSE 2018 keynote paper [45] describes the
current deployment of Sapienz in more detail, while the ISSTA
paper [91] contains more details of the underlying technology
and scientific evaluation of the research prototype.

FBLearner is a machine learning platform designed to
support machine learning at a global scale, through which most
of the ML training at Facebook runs [72]. Sapienz is merely
one of hundreds of services deployed on this framework.

Using the FBLearner infrastructure, Facebook applies ma-
chine learning to a wide range of problems. These include the
determination of which ads to display, and the performance of
distinct searches along verticals in response to search queries,
that specialize for different forms of content, such as videos,
photos, people and events. The machine learning infrastructure
is also used to support anomaly detection, image understand-
ing, language translation, and speech and face recognition [72].

All of these demanding ML tasks need to be performed at
a scale that supports, for example, ML inference phase execu-
tions run into the tens of trillions per day [72]. This scalability
allows Facebook to globally deploy the benefits of machine
learning in real time, supporting translations between more
than 45 languages (2000 translation language pairs), which
serve approximately 4.5 billion translated post impressions per
day. This language translation service alone effects hundreds
of millions of people, who see translated posts in their news
feeds, thereby lowering linguistic barriers to communication.

Sapienz currently uses the FBLearner Flow component to
deploy detection of crashing behaviour directly into the work
flow of engineers, integrated with Phabricator for reporting
and actioning fixes to correct the failures detected by Sapienz.

The Sapienz automated test design work flow is depicted in
Figure 2. The tool starts by instrumenting the app under test,
and extracting statically-defined string constants by reverse
engineering the APK. These strings are used as inputs for
seeding realistic strings into the app, a technique that has

7https://facetavlondon2017.splashthat.com/
8Sapienz presentation starts at 46.45 in this video:

https://www.facebook.com/andre.steed.1/videos/160774057852147/
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been found to improve the performance of other search based
software testing techniques [4], [49].

Sapienz’s multi-objective search algorithm initialises the
first population via the MotifCore component which runs
on the device or emulator. On Android, when evaluating
individual fitnesses, Sapienz communicates with the App Exer-
ciser via the Android Debugging Bridge (ADB) and monitors
the execution states, returning measurement data, such as
Android activities covered, to the fitness evaluator. The crashes
found are reported to a relevant engineer through Facebook’s
Phabricator Continuous Integration system9, using smart fault
localisation, developed in-house to triage the crash to a specific
line of code.

The ‘debug payload’ delivered to the engineer includes a
stack trace, various reporting and cross-correlation informa-
tion, crash-witness video (which can be walked through under
developer control and correlated to Android activities covered)
all of which combine to ensure a high fix rate, a lower-bound
of which10, at the time of writing, stands at 75%. Also, at the
time of writing (March 2018), work is underway to extend
Sapienz to iOS and other apps in the Facebook family of apps.

Sapienz uses a Search Based Software Engineering (SBSE)
approach to optimise for three objectives: code coverage,
sequence length and the number of crashes found. Work is also
underway to hybridise Sapienz with different search strategies
and other techniques to elevate coverage and fault revelation.

We also augmented the production version of Sapienz with
an ‘Automated Scientific Experimentation (ASE)’ FBlearner
workflow. The ASE workflow automatically runs different
candidate techniques on reference (benchmark) versions of the
Android app, collecting standard inferential statistical results,
widely recommended for use in SBSE [8], [71] and presents
these and graphical representations such as box plots.

The ASE workflow allows the Sapienz team to quickly
spin up experiments with new approaches, variations and
parameter choices, and to collect scientific evidence for their
performance, relative to the current productionised choices.
This allows us to fulfill the mantra of ‘move fast’, and
‘fail fast’; we continually experiment with new modes of
deployment. The ASE workflow can also support researchers
to work alongside the team’s engineers to quickly experiment
with different techniques and approaches to search. More
details on the ASE workflow can be found in the SSBSE 2018
keynote paper about Sapienz deployment [45].

When applied to the top 1,000 Google Play apps (for 30
minutes each), in an evaluation conducted in 2016 using the
research prototype version [91], Sapienz found 558 unique,
previously unknown, crashes on these 1000 apps.

III. MAKING BUG REPORTS MORE ACTIONABLE; MOVING
BEYOND THE ROFL MYTH

There is an implicit assumption, the ROFL (Report Only
Failure List) assumption which assumes that all that a testing

9http://phabricator.org
10Precisely determining a guaranteed ‘fix’ is, itself, a significant challenge

as we discuss in Section VIII. This is why we prefer to give a (conservative)
lower bound on fix rates, thereby avoiding over-claiming.

technology need do is to report a list of failures to the
engineer, in order for these to be fixed. Many very valuable
scientific contributions complete their evaluation with claims
constructed in terms of the number of faults found by the
technique.

The implicit mode of deployment for such studies is thus a
list of failures reported by the technique; the list of test inputs
for which the execution clearly fails. Such failures are deemed
to ‘fail’ either with reference to an implicit oracle [14], by
deviating from an agreed specification, or by distinguishing
the behaviour of a correct and a known-faulty version of the
program.

The ROFL assumption is also made by static analysis
researchers (ourselves included) when they assume that they
merely need to report a list of Faults (ROFL = Report Only
Fault List) with a low false positive rate. Thus ROFL applies to
both testing and verification equally: assuming that all the user
requires is a list of faults or failures is one sure way to skip
over all the interesting intellectual and scientific challenges
posed by deployment and will, thereby, also likely limit the
ultimate impact of the research.

Developers are, in practice, not short of lists of fault
and failure reports from which they might choose to act.
Many systems, such as those typically deployed through app
stores, for example [94], have ample mechanisms for users
to report bugs, and most practicing developers are typically
overwhelmed by such lists; their most pressing problem is
not simply finding more bugs; their problem is more nuanced.
They need to find bugs with:

1) Relevance: the developer to whom the bug report is sent
is one of the set of suitable people to fix the bug;

2) Context: the bug can be understood efficiently;
3) Timeliness: the information arrives in time to allow an

effective bug fix.
4) Debug payload: the information provided by the tool

makes the fix process efficient;
These four properties would likely remain relevant, even

were the human to be replaced by an automated repair tool
such as, for example, GenProg [85]. Therefore, whether or
not it is human, machine or hybrid that attempts the fix, we
believe that research work needs to move beyond the ROFL
assumption, to produce, not only lists of faults and/or failures,
but to also focus on the actionability of the bug reports.
Relevance: Actionability is not merely a property of a par-
ticular bug report, but it is also a property of the context in
which it is delivered to the developer.

A first problem is relevance. When a (static or dynamic)
program analysis issue is found, a question that arises is

“To whom should this bug report be directed?”
It is not only a question of responsibility, but also one of

finding someone who knows the code related to the issue
sufficiently well to act upon it; the person best placed to judge
a fix.

At Facebook, when an analysis is running post-land (see
again Figure 1), a number of heuristics are used to find the
most appropriate developer to whom a bug report should be
sent. One heuristic performs a binary search of diffs to find
the one that ‘caused’ the issue.
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However, such problems are fundamentally heuristic and
there is no perfect answer. For instance, the developer who
‘caused’ the problem might have left the team, or even left the
company. Developing effective recommender systems for bug
reports remains an open problem, and is increasingly impor-
tant in open source and crowd-sourced software development
scenarios [93].
Context: Naturally, developers tend to find bug reports more
actionable when they provide sufficient context to allow them
to quickly determine causes and remedial actions.

However, even a perfect bug-assignment mechanism that
achieves full relevance, and with suitable context (were it ever
to exist), would run into the human cost of context switching.
If a developer is working on one problem, and then they are
confronted with a report from a program analyzer on a separate
problem, then they must swap out the mental context of the
first problem and swap in the second. It is well-known from
psychological studies that such context switching can be an
expensive operation, not only for software engineers, but for
their users too [76].
Timeliness: Running an analysis at diff submit time rather
than post-land time elegantly, although only partially, resolves
some of the problems of context and relevance: If an analysis
participates as a bot in code review, then the developer’s
mental state is already ‘swapped in’ (helping alleviate context
swapping), because the developer is already expecting to be
discussing the code with the human reviewers. Furthermore,
if the issue concerns a change in a newly submitted diff, then
there is an increased chance that it is relevant to the developer.
In this way timeliness can go some of the way to addressing
context and relevance issues.

However, relevance is not fully solved by diff submit time
analysis alone. A developer might be refactoring code, and the
analysis tool flags a number of pre-existing issues (and the fact
that they are pre-existing is fooled by the refactoring). These
issues are not relevant to the purpose of the diff.

A warning signal might involve a trace that starts from
code in the diff, for example, in product code, but uncovers a
problem in distant framework code. The product developer
might be ill-advised to go into the framework code to fix
the issue (and in some organisations may be prevented from
doing so by code access privileges). In general, the relevance
problem is very important to the effectiveness of a program
analyzer, and is deserving of research attention.

Even with these caveats, the benefits of diff submit time
deployment were highlighted by our experience with Infer:
The first deployment we considered was a post-land, batch-
mode, ROFL deployment of the analysis, together with a
manual (rather than automated bisect-based) bug assignment.
The fix rate for this deployment mode (the rate at which
developers chose to resolve the issues) was close to 0%.

However, when we switched to a diff submit time deploy-
ment, the fix rate rocketed to over 70%. We learned from bitter
experience, that an identical technical analysis, deployed in
two different modes that differed only in terms of the point
within the development lifecycle at which they reported, could
have fundamentally different response rates from developers.

It therefore seems critical that researchers should attempt to
consider, report on and evaluate the specific modes of deploy-
ment through which they envisage their research techniques
might best be deployed; those that would find most traction
with developers. Failure to do so might invalidate the scientific
findings of the study, so it poses a powerful threat to validity
that needs to be considered in any empirical analysis.

Failure to consider a wide range of deployment modes, and
report on and evaluate the best-suited to the research technique
introduced is also important to ensure that good ideas are not
overlooked. Otherwise promising research techniques might
be abandoned by researchers or rejected by referees, simply
because they fail to suit the implicitly-supposed default de-
ployment mode.

For improved timeliness, we have found it best to deploy
as many analyses as possible at diff submit time rather than
post land. Not only is the signal more likely to be relevant and
timely, but fixing bugs early is well-known to be (dramatically)
less costly than fixing them later on [15].

Sapienz was initially deployed post-land, yet achieved fix
rates approaching 75%. It was initially deployed post-land,
simply for efficiency and scalability reasons (it can test mul-
tiple diffs in a single Android APK file). However, more
recently, in March 2018, we deployed a lightweight version
of Sapienz at diff commit time.

Deploying Sapienz at diff commit time further elevated
the fix rate. This highlights a difference between static and
dynamic analyses: While static analysis reports likely faults,
dynamic analysis reports likely failures. Failures are, perhaps,
inherently more compelling for engineers, since they find it
hard to ignore the evidence that there is a problem that needs
addressing.

We combine both the Sapienz and Infer tools in our deploy-
ment at Facebook. For example, when Infer comments on a
line of code that may lead to an Null Pointer Exception (NPE)
and Sapienz also discovers a crash that it traces back to the
same NPE at the same line of code, Sapienz files a task for
the engineer to check. This combined deployment mode has a
(close to) 100% fix rate at the time of writing, indicating the
potential for high-impact combinations of static and dynamic
analysis.

Our observations about diff submit time versus post land
time, and the ROFL assumption are not unique to Facebook.
Indeed we are replicating and corroborating the experiences
reported by other practitioners at other companies. For exam-
ple, related observations have been made at Microsoft, with
Prefix (ROFL) and Prefast (similar to our diff submit time
observations) [83], by Coverity [35], and by Google [101],
[117].
Debug payload: Finding a failing execution is a strong signal
to a developer of the need to fix the bug that causes it. As
we noted, finding a true positive failure in a timely fashion
has a good probability to occasion a fix. However, timely true
positive failure reporting, although a valuable pre-requisite, is
often insufficient on its own to ensure that a bug fix takes
place. We believe that insufficient research attention is paid to
the ‘debug payload’; the information supplied with a failing
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execution that tends to help an engineer fix the bug(s) that
cause an observed failure.

Despite its practical importance, the problem of debugging
support has been overlooked, and attempts to launch scientific
events focusing on problems associated with debugging assis-
tance have had an unfortunate tendency to wane, through lack
of a large and strong coherent community of researchers. One
example of an excellent scientific event, which has now sadly
demised is the AADEBUG workshop series on automated
algorithmic debugging (1993-2005).

Notwithstanding admirable efforts by highly dedicated indi-
viduals to build a ‘debugging scientific community’ there re-
mains, at the time of writing, no regular international scientific
event focusing on debugging support for developers. Partly as
a result of this lack of an event around which a community can
coalesce, technical support for debugging activities clearly lags
behind other advances in program development environments,
as it has continued to do for some time [59].

We hope that Automated Program Repair [84], Genetic
Improvement [112], recent approaches to code synthesis and
other related automated code improvement techniques that
have recently witnessed an upsurge in scientific activity, may
alleviate some of the pressure on human debugging effort.
Nevertheless, it is undoubtedly the case that one of the surest
routes to real world impact for program analysis research lies
in the area of debugging assistance.

IV. COMPOSITIONAL TESTING AND VERIFICATION

The concept of compositionality comes from language se-
mantics, and is often associated with Frege: a semantics is
compositional if the meaning of a composite term is defined
in terms of the meanings of its parts. Likewise, a program
analysis is compositional if the analysis result of a composite
program is computed from the results of its parts [32].

In the program analysis context we are discussing here,
we are concerned with automatic compositionality, where
the analysis algorithm decomposes the problem into parts
and recomposes them as needed. This contrasts to manual
compositionality where the human specifies the interfaces of
procedures or modules (thus enabling local analysis).

Compositionality pre-supposes that the ‘result of the part’
makes sense without having all of the surrounding context.
This means that a compositional analysis does not need the
entire program: it is in a sense the opposite of traditional
‘whole program analysis’ [10].

Compositionality also supports diff submit time analysis.
For example, through compositionality Infer is able to achieve
a ‘begin anywhere’ formulation of its analysis; in principle, the
analysis may start at an arbitrary line of code. This opens the
way to analyzing program components or libraries before they
are run, and that sort of use case was, in fact, a key part of the
application of Infer to multi-threading in Facebook’s Android
Newsfeed [23].

While the basic principles of compositional static analysis
are well known [40], most research in the area focusses on
whole programs. Further development of automatic composi-
tional analysis is a key research direction. An important part

of this involves effective signal. It is not always obvious when
or where errors should be reported in a compositional analysis
(it is easier to imagine for whole program). Fundamental work
is needed here.

Note that the word ‘compositional’ is used in some works on
testing (e.g. [52]), in a way that is somewhat different from
Frege’s original sense (which presupposes getting a testing
result without having the complete program); rather, the idea
of procedure summary from static program analysis is used in
a testing scenario to help scale the analysis by avoiding re-
computing information. This might be more directly related to
what we term an ‘incremental’ approach (see below), where
the subsequent release is considered to be a composition of
the previous release and a change. Perhaps methods that mix
static and dynamic analysis would address the compositional
testing problem [26]

Mocking of as-yet unimplemented procedures is one prac-
tical example where testing does already allow for compo-
sitionality; it allows for testing to be performed when the
whole program is not known, in such a way that testing
results remain valid for any instantiation of the mocked out
procedure. This is a form of what we referred to above
as manual compositionality. Fully automatic compositional
testing would, for example, allow us to decompose system
tests to tackle the false positive problem for unit tests [55],
using a fragment of a system, and a corresponding fragment of
a system test as a unit test in the knowledge that the unit test is
realistic and cannot yield a false positive. It would therefore be
interesting and exciting to see more research on composition
testing and verification.

A. Research Questions that Address Compositional Testing
and Verification

CVF Compositional Verification Formulation: How do we
best formulate a compositional version of verification
approaches, such as CEGAR, interpolation, numerical
abstract domains, so that we can ‘begin-anywhere’ in the
code with the stataic analysis and demonstrate effective
signal, for example, in terms of fix rate.

CTF Compositional Testing Formulation: How do we best
formulate testing so that we can start system level (end
to end) test case design, from any point in the program
under test and in an arbitrarily determined state.

V. INCREMENTAL TESTING AND VERIFICATION

Compositionality naturally gives rise to incremental anal-
ysis, where changing a part of a system does not necessitate
re-analyzing the whole system. Nevertheless, compositionality
is not necessary for incrementality: it is possible in principle
to do a whole program analysis, to store summaries of the
analysis results for program components, and to only re-
analyze changed parts, re-using the stored summaries. This
sort of incremental analysis does not presuppose that a part can
be analyzed without having the whole (which is the hallmark
of compositionality).

A key technique in inter-procedural static analysis has been
to use procedure summaries to avoid re-computing informa-
tion. If an abstract state at a call site matches one already seen,
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the summary can be used without re-analyzing the procedure.
This is the basis of the fundamental RHS algorithm [115], and
the idea is used in many static analyzers. However, summary-
based interprocedural analysis is used mostly to attack the
scaling problem for a program analysis, to make it work
for large codebases. Comparatively less work has targeted
incremental analysis of code changes. We acknowledge that
valuable work has been done in this direction (e.g., [41],
[119]), but much more is needed.

The direction of incremental dynamic analysis is even less
developed, and yet could be even more impactful. Potentially, a
host of currently-expensive dynamic analyses could be moved
from post-land to diff time, where the reports are more easily
actionable.

The work on SMART (Scalable DART, [6], [52]) works
by importing the concept of procedure summary from static
analysis into a dynamic analysis context. As far as we are
aware, procedure summaries have been used in SMART to
address the scalability challenge, not to move an analysis
from a post-land to a diff-time, incremental deployment. The
general idea to use symbolic procedure summaries in testing
may extend to the problem of making automatic incremental
testing.

Most current research on automated software testing con-
siders the system under test to be a monolithic piece of
code. Although there may be different levels of testing, such
as unit level through to system level, the piece of code
tested is typically treated as an atomic monolith. A more
realistic scenario, better-suited to a world of low TERF (Test-
Execution-to-Release-Frequency) ratios, takes account of the
development history, thereby supporting incremental testing
to collaborate with incremental development and continuous
deployment. Sadly there is very little work on incremental
automated testing in the research literature.

By ‘incremental software testing’ we mean automated test
case design that constructs new test cases, that is aware of (and
exploits) the history of changes to the system and previous
tests, thereby increasing the efficiency of automated test case
design. Incremental testing should have the property that the
time to execute a system-level test is proportional to the
execution time for the changed code alone (rather than the
execution time of the whole system into which the diff is
deployed); system testing execution benefits for unit test costs.
Similarly, the time to automatically design the test case should
be proportional to the size of the diff to be tested, rather than
the code base into which it will be deployed.

While there is work on selective regression testing [54],
[136], seeding of test cases [4], [9], [49] and test case regen-
eration and augmentation [118], [138], we have found little
work on automated test case design that exploits knowledge
of previous tests [33], the mapping between these tests and
changes to the system, and their outcomes, in order to improve
the efficiency of ongoing testing in a continuous integration
environment.

Such research might, for example, exploit test case caching,
and reuse partial test sequences and the resulting system states
in subsequent compositions of previous test fragments.

A. Research Questions that Address Incremental Testing and
Verification

We outline a few possible research questions that are
naturally suggested by continuous integration and deployment:
IVF Incremental Verification Formulation: How do we

best formulate an incremental version of verification
approaches that demonstrate efficiency on diffs propor-
tional to the size of the diff rather than the size of the
code base into which the diff is deployed?

ITF Incremental Testing Formulation: How do we best for-
mulate testing so that test design and execution time are
proportional to the size of a diff (and/or diff execution
time) rather than to the size (respectively execution time)
of the code into which the diff is deployed?

IVF would allow, for example CEGAR [37], interpolation
[95], and numerical abstract domains [77] to scale to millions
of lines of code. We believe progress in this direction would
be very exciting because this ‘stretch goal’ is far beyond the
current state of the art. ITF could be even more impactful,
as it could conceivably transform computationally expensive
end-to-end testing techniques to where they could be run at
diff time.

See [107] for further discussions on compositional and
incremental testing and verification.

VI. SURVIVE AND THRIVE, EVEN WHEN WE ASSUME
TESTS ARE FLAKY (ATAF)

An important difference between verification and testing
derives from the way in which execution has increasingly
become nondeterministic. Whereas programming languages
have included new semantic features that have posed novel
challenges for verification research and practice, the dramatic
increase in the stochastic behaviour of most deployed systems,
over a similar period, has posed challenges for software
testing; tests are ‘flaky’ [50], [87], [100]. In this section we
explore this test-specific challenge, which can be summarised
with the aphorism: Assume all Tests Are Flaky (ATAF).

Flakiness challenges implicit assumptions at the very heart
of much of the research on software testing. We might like to
think of a test T for a program p as a boolean:

Tp : Bool

This is, essentially, the simplest form of test Oracle [14]; one
in which there is a simple boolean outcome that determines
whether the test has passed or failed. The nomenclature of
most research literature on software testing is imbued with this
notion of tests as deterministically and reliably either ‘passing’
or ‘failing’, with an implicit ‘Law of the excluded middle’, that
allows for no other possible outcome from the application of
a test input to a system under test.

However, this attractively deterministic world is highly
unrealistic, and by relying on the assumption that few tests
are flaky, we miss many research opportunities, and important
avenues for greater research impact.

The reality of testing, in most continuous integration en-
vironments, is that it is safer to Assume Tests Are Flaky
(ATAF). That is, all tests that can fail, will also sometimes pass,
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in apparently identical test scenarios. A flaky test, T , when
applied to a program p may thereby yield different outcomes
on different occasions, such that it is better to think of the test,
not is having a boolean outcome, but as having a probabilistic
outcome:

Tp : [0..1]

At first sight, this may seem like a problem of context:
surely if we had sufficient context on the execution environ-
ment of the system under test, we might be able to reduce
or remove sources of non-determinism in software testing?
Unfortunately, the search for such a wider context, even if it
were theoretically possible, is certainly practically impossible;
there are simply too many external components, services and
resources upon which the execution of the system under test
depends, and which cannot be controlled by the tester.

Rather than resisting any move from the comforting world
of {0, 1} to the non-deterministic world of [0..1], we believe
that the software testing research community should embrace
flakiness; start from the assumption that we ‘Assume Tests
Are Flaky’ (ATAF): how does an ‘ATAFistic world’ change
the research perspective and what new opportunities emerge
for novel research problems? Here are some examples of how
the ATAFistic world changes testing theory and practice:
Regression testing: In regression test optimisation [44], [137]
it is typical to assume that we should optimize according
to objectives such as execution time, coverage, and resource
consumption [60]. However, in the ATAFistic world, we have
an additional objective to consider: test case prioritization
might usefully favour more deterministic tests over those that
are less deterministic (more flaky), for instance, so that more
certainty can be achieved sooner in the test process. Such an
ATAFistic regression testing model seems well suited to testing
models underpinned by information theory [36], [139].

It might prove more subtle than merely choosing to pri-
oritise for early determinism overall. Rather, the tester may
have a property of interest for which he or she would like to
receive an early signal from testing. In this scenario, the tester
would like test case prioritisation to favour early execution
of test cases that contribute most to reducing uncertainty
with respect to this property of interest; surely a paradigm
well-suited to solutions grounded in information theory [120]
(especially where it is already known to be applicable to
testing [7], [36], [134], [139]). We believe that this is a
novel research area that, hitherto, remains untackled by the
growing research community working on information theory
for software engineering.
Mutation testing: In mutation testing [78], fundamental con-
cepts such as the mutation score need to be adapted to cater for
an ATAFistic world. This opens up new research possibilities,
such as the construction of mutation operators that tend to
reduce test flakiness (while accepting that it is impossible to
eliminate it).

In general, it seems unrealistic to expect a one-size-fits-
all approach to mutation testing to be successful; mutants are
concerned with simulating real faults, but different systems
and different scenarios and workflows occasion very different
kinds of faults. Therefore, it seems natural to expect that

mutation testing research will evolve to cater for specific
contexts and scenarios, leading to more tailored mutant design
[3], [67] and mutant selection policies tailored to the program
under test [2].

However, we need to go further than simply tailoring
mutants to the program under test, but also to the ‘test
question’ for which we are seeking some ‘answer signal’;
different test objectives will require different kinds of mutant.
Previous research has investigated specific types of mutants
for revealing security issues [24], interface interactions (such
as feature interactions on integration) [43], and memory faults
[132], for example, yet there appears to be no work on tailoring
mutants to questions that are unavoidably probabilistic, due
to the inherent flakiness of the tests (ATAF). This challenge
of tailoring mutants to maximise signal in the presence of
flaky tests, therefore, remains open and, we believe, potentially
would have significant impact on the deployment of practical
mutation testing systems.
Foundations: The theoretical foundations of software testing
need to be revisited, and reconstructed for an ATAFistic
world. Even fundamental concepts such as coverage, need
to be refined, since the program elements that are covered
by a given test case may differ on different executions. We
noticed this phenomenon when testing a web-based weather-
reporting application, for which statement coverage for a
given test suite depended on the prevailing weather conditions
[4]. Not every aspect of software testing foundations need
necessarily change. For example, if a particular branch is non-
deterministic, then the execution of the statements it controls
will be consequently also non-deterministic, suggesting that
there will remain a subsumption relationship between branch
coverage and statement coverage, even in an ATAFistic world.

1) Research Questions that Address the ATAF Assumption:
The Assume Tests Are Flaky (ATAF) assumption may provide
a useful point of departure for an intellectually rich landscape
of research possibilities.

Here we sketch a few open research questions that flow
from this ATAFistic starting point:

TFA Test Flakiness Assessment Can we find quick and
effective approximate measures of the flakiness of a test
case?

TFP Test Flakiness Prediction Can we find predictive
models that will allow us to predict the degree of
flakiness of a test case?

TFA Test Flakiness Amelioration Can we find ways to
transform test goals so that they yield stronger signals
to developers in the presence of test flakiness?

TFR Test Flakiness Reduction Can we find ways to reduce
the degree of test flakiness or to transform a flaky
signal into a more abstract, interpolated or otherwise
transformed version that makes flakiness less of an
issue? Perhaps it would be intellectually rewarding to
construct an Abstract Interpretation [39] for Testing and
Verification, such that the elevated level of abstraction
tends to reduce unwanted variability due to flakiness;
we can say more definite things about more abstract
properties of the System Under Test.
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RTT Reformulate Test Techniques for an ATAFistic world
Can we find new formulations of, for example, Regres-
sion Testing, Mutation Testing, Search Based Testing,
Dynamic Adaptive Testing, Model Based Testing, etc,
that place at their heart, the assumption that All Tests
Are Flaky (ATAF) to some degree, and which cater for
this a natural way? This research agenda is in stark
contrast to merely seeking, generic or test-technique-
specific, approaches to reduce flakiness in order that
existing formulations become applicable, once again.

A. Prior work on the Flakiness Problem

There has been previous work on the flakiness problem;
understanding what makes test cases flaky and how to min-
imise the pernicious effects of flakiness on testing methods
that, implicitly or explicitly, assume tests to be deterministic.
We briefly review this literature here, explaining why we
believe it is necessary, yet not sufficient, because we need to
move beyond the control of flakiness to acceptance and even
optimisation for flakiness: assume all tests are flaky.

Luo et al. [87] categorise causes of flakiness in 201 commits
made in 52 Open Source projects, for which they are able to
categorise the cause in 161 cases. The must common of which
are

1) Asynchronous wait (74/161; 45%), in which a test makes
an async call and does not fully await the response;

2) Concurrency (32/161; 20%), in which undesirable thread
interaction (other than async wait) occurs, such as race
conditions, deadlocks and atomicity violation;

3) Test order Dependency (19/161; 12%), in which one
test depends on the outcome of another and this test
order may change dynamically (e.g. shared access), a
phenomenon also studied by Zhang et al. [141] as one
cause of flakiness.

These results were partially replicated in the more recent
study by Palomba and Zaidman [111], who introduced the
concept of refactoring of test smells to reduce test flakiness.
Like Luo et al, Palomba and Zaidman also report that asyn-
chronous wait is responsible for 45% of the flakiness they
discovered, and that and currency issues are also prevalent
(ranked in 4th place at 17%). However, unlike the previous
work of Luo et al, Palomba and Zaidman report that (non-
network-related) I/O operations are responsible for a much
larger number of flakiness issues (22% vs. only 3% in the
earlier study), and also found that network issues are important
(10% of cases).

Flakiness is also a phenomenon that may differ at different
levels of test abstraction; The Luo et al. study extracted
any commits with tell-tale key words (e.g., “flak*”), whereas
the Palomba and Zaidman study focuses on JUnit tests. We
observe that, while flakiness undoubtedly poses problems at
the unit level, it is even more challenging at the system level,
and particularly so for automatically generated tests. In these
situations, it is common to experience async wait flakiness
(and harder to control for it when the test is auto generated).

Gao et al. [50] consider the related problem of understand-
ing the impact of flakiness at different layers (user interaction

layer, behavioural layer, and code layer), concluding that
testers should do their best to control flakiness at each level.

All of this research has been concerned with understanding
and/or removing sources of flakiness to attempt to control
the flakiness problem, seeking to migrate testing from the
uncomfortable new world of non-determinism to the more
familiar (and comfortable) world in which a test either passes
or fails, reliably and repeatably.

We believe that where it is possible to reduce or control
flakiness this is clearly desirable, but we also would like to
stress that hoping we may ever return to world of deterministic
testing is quixotic in the extreme. The software industry
badly needs automated system level testing, for efficiency
and effectiveness of continuous integration and deployment.
However, in order to have all the benefits that accrue form
automated system test design, we believe it better to assume
all test are flaky. Even though some will not be flaky, making
this assumption in research work will prioritize the central
challenge posed by flakiness.

We believe there will be dramatic real world impact if the
community would undertake more research on the problem of,
not only coping with flakiness, but perhaps even constructing
test automation approaches that actually benefit from it. If
we can reformulate testing problems such that flaky tests are
merely a ‘fact of life’, then we may be able to, for example,
smooth fitness landscapes, better adopt probabilistic testing
approaches, and maybe also finally place testing properly
within the framework of information theory, such that test
signals can truly be thought of in an information theoretic
sense.

VII. BETTER UNDERSTANDING AND REDUCTION OF COSTS

Mobile software release cycles have become considerably
shorter (compared to previously widely-used software deploy-
ment models), while continuous integration and deployment
has simultaneously become the norm rather than the excep-
tion, accelerated by web-based and app store-based software
deployment paradigms [94]. In more traditional software de-
velopment environments, such as so-called shrink-wrapped
software deployment, or Code Of The Shelf (COTS) [128], the
release cycle was markedly slower. Faster release cycles mean
that we now have to distinguish between two very different
aspects of test efficiency:

1) Human Test Efficiency: human design of test cases has
traditionally been (and remains) a significant bottleneck
that inhibits more effective and efficient software testing.

2) Computational Test Efficiency: the machine time re-
quired to (possibly design and) execute test cases and to
deliver a signal back to developers.

Fortunately, due to advances in automated test case design
[5], [27], [68], the slow, error prone and tedious task of human
test case design is gradually, finally, receding to be replaced
by ever-more automated test environments. A remaining chal-
lenge for further automation and replacement of tedious human
effort in test case design centres on the Oracle problem [14].
The oracle problem is more resistant to automation, since
the determination of correct operating behaviour may some-
times inherently involve judgment concerning the connection
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between requirements and system under test; an aspect of
the development process most closely associated with human
domain expertise.

In more traditional modes of deployment, in which an
application was released (perhaps at most) several times per
year, we have been fortunate enough to enjoy an extremely low
ratio of the time to execute tests, relative to the time to release
a freshly built version of the system. This Test-Execution-
to-Release-Frequency (TERF) Ratio has traditionally been
sufficiently low that computational test efficiency has been
regarded as unimportant. However, in emerging Internet and
mobile deployment scenarios, this assumption no longer holds,
especially as advances in automated testing reduce problems
associated with lack of human efficiency, but transfer this cost
to the machine.

For instance, Google recently reported [101] that of 5.5
million test cases, only 63,000 typically failed (flakily or
otherwise). Clearly, if we can be almost sure that a test
will pass without needing to execute it, then it may become
computationally efficient to avoid executing it. In this way,
we need research that moves beyond producing test suites, to
research that prioritises test suites; already a research topic of
growing importance [137].

In a continuous development environment in a large scale
tech sector organisation, tens to hundreds of changes may be
submitted to the continuous integration system every minute,
while build times for the entire ‘release candidate’ version
of a large system might run to tens of minutes, even with
large scalable infrastructure. Even in smaller (or growing) tech
sector organizations, the TERF (Test-Execution-to-Release-
Frequency) ratio is typically orders of magnitude higher than
for previously prevalent deployment models, for which many
widely-used test techniques were primarily developed. A dra-
matically higher TERF ratio, raises profound questions for
automated testing research.

Many of our observations apply equally well to testing and
verification, and by extension to static and dynamic analyses.
However, focusing attention on deployability does bring some
of the differences between verification and testing into sharp
relief. In order to verify system correctness the verification
algorithm must complete, whereas testing, being essentially a
counterexample-driven approach, is fundamentally an anytime
algorithm; it can be terminated at any time, yielding the
current set of counterexamples discovered. Therefore, from its
inception, one of the primary focuses of research on verifica-
tion has been the computational efficiency of the underlying
verification algorithms, and also of the practical efficiency of
their implementations.

Although both verification and testing started as a human-
centric activity, the verification community quickly moved
away from the idea of human mathematicians performing
proofs [127], to consider automated verification systems, and
from there, immediately encountered the efficiency challenge:
a challenge that has remained central to research in the area
ever since.

By contrast, testing activity was already prevalent in in-
dustry before it became a topic of research interest. Research
initially focussed on moving testing activity away from the

tedious error-prone human-centred process to an automated
process. As the community more successfully tackles this test
automation problem, it needs to engage with the computational
efficiency challenges that have already been considered in the
verification community.

The testing community has made great strides in lifting the
test burden from human shoulders to place it more squarely
on machines [27], [68]. This automation has dramatically
scaled up test effectiveness and efficiency over the painful
past of human-designed and executed tests (notwithstanding
recent developments in crowd-sourced testing [90]). Perhaps,
in the testing research community, we have tended to implicitly
assume that computational cost is thus, like early inaccurate
aspirations for electric power from nuclear fission, simply ‘too
cheap to meter’ [124].

VIII. THE FIX DETECTION CHALLENGE

Testing and verification techniques have challenges in de-
termining when a fix has occurred, but the details of the
challenge are different for testing and verification. For static
analysis, the challenge derives from the way in which the code
base is continually changing, so traditional instrumentation
and markers that identify the fault location may change. This
situation can be addressed with a source code ‘bug hash’, but
such a hash is unlikely to be perfect in the presence of a high
level of code change.

Testing techniques also need to track the location of faults,
where they have been able to triage a failing test to a particular
fault, but they also need to track whether failure (the symptom
of the fault) disappears and this requires a form of ‘crash hash’;
a unique identifier for a failure.

The complex nature of the mapping between faults and
failures, coupled with the changing code base, make it a
challenge to define suitable bug and crash hash techniques.
We seek techniques that maximise the chance of detecting a
fix, without introducing false positive fix identifications. Our
deployment of both Infer and Sapienz at Facebook uses a
conservative lower bound on fix detection. The problem of
detecting fixes conservatively, yet with minimal false positives
remains an interesting challenge that we consider in this
section.

It is customary in software testing research to assume that
the problem of detecting when a bug is fixed is relatively triv-
ial. Indeed, many studies of software testing techniques, (in-
cluding those by one of the authors), start from the apparently-
reasonable assumption that we reside in a world in which
it is easy to distinguish between faulty and fixed versions
of the software under test. However, while the observation
of a field failure remains relatively uncontroversial, detecting
when the underlying cause has been addressed is far from
straightforward.

This is partly a ramification of the ATAF (Assume Tests Are
Flaky) observation; the field failure may temporarily appear
to have been fixed, simply because the available tests are
insufficiently deterministic to reliably reveal it. However, this
aspect of the ATAF problem can be ameliorated by repeated
test execution, and therefore simply degenerates to a problem
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of test efficiency. There are other, more subtle reasons why
detecting the presence of a fix is non-trivial.

A fault may lead to multiple different failures. Testing
activity typically reveals the failure, not the fault and it
may only reveal a proper subset of the failures caused by a
given fault. Multiple faults may contribute to the same failure
observation. An attempted fix may remove some of the failure
manifestations of a given fault, but not all.

It has been known for some time [15], [103] that it is
important to distinguish between faults and the failures they
cause, and that there may exist such subtle relationships that
map faults to failures. However, research also needs to take
account of how this relationship is affected by a continuous
deployment environment with high TERF ratio.

In such a scenario, partial coincidental correctness and
failed error propagation [7], [123], [129] become paramount
concerns, because testing only reveals a subset of failures due
to a fault, and ongoing changes may cause further failures to
emerge or disappear, independent of any attempts to fix those
that testing has revealed so far.

This independent emergence and disappearance of failure
manifestations is also subject to the ATAF problem, and is
typically transient, due to the ongoing regular changes to the
code base. In such a scenario there is a challenge in detecting
when a fix can be said to have occurred.

A. Research Questions on Fix Detection
The need for better fix detection raises scientifically inter-

esting (and industrially high impact) research questions that
we would suggest are worthy of further research and study:
PFD Partial Fix Detection Problem. In the presence of

multiple failures caused by a single fault, how can
we best detect partial fixes (that remove some failures,
though not necessarily all, without regression)?

NFD Noisy Fix Detection Problem. Given the ATAF princi-
ple, and continual changes to the code base that, without
techniques to ameliorate, may otherwise partially fault
mask, or confound failure signals from multiple faults,
how can we detect when a fault is fixed?

TFD Transient Fix Detection Problem. If a fault, f1 is fixed
by a change c1 it might mean that the failure F (f1) asso-
ciated with fault, f1, disappears (i.e. ¬F (f1)). However,
to be more precise, we should take account of time: it
can be f1 is fixed by a change C(c1, t1) for time t1 to t2
because ∀t.t1 ≤ t ≤ t2· 6= F (f1, t). All fixes are thereby
generalised to transient fixes, with the ‘traditional’ view
of a fix as the limit (fixed for an indefinite period). This
raises interesting research questions, such as

a) What other code can influence a transient fix
(changing its status from fixed to unfixed)? Per-
haps dependence analysis [17], [75] and mutation
analysis [78] can be helpful here?

b) How can defensive code be added to improve
fix resilience (thereby extending the window of
transience)?

c) How can we optimise the window of transience, by
choosing from available fixes or by warning against
code modifications that may break previous fixes?

Note that fix detection is relevant to static as well as
dynamic analysis. For example, in the static case, a tool can be
fooled into thinking a fix has been achieved if, for example, a
refactoring takes place which changes the “bug hash” or other
method of identifying a report; an analogue of NFD above.

IX. TESTABILITY AND VERIFIABILITY TRANSFORMATION

One possibility, known as testability transformation [25],
[66], [97], allows us to test, not the ultimate deployment
candidate, but some version of it, from which useful test signal
can be extracted. The goal of testability transformation is to
quickly arrive at a useful version of the system under test from
which a better and/or faster signal can be extracted.

The transformation to the system need not necessarily create
a version that is functionally equivalent to the original [66].
For instance, expensive set up and tear down phases may be
avoidable, while expensive interactions may be unnecessary
for testing and thus mocked. However, the rapidly increas-
ing TERF (Test-Execution-to-Release-Frequency) ratio creates
other possibilities for new research directions that are currently
under-developed, among which we wish to draw attention to
the problem of fully incremental testing.

Transformation has been familiar in both testing and verifi-
cation, where it is common to mock procedures that have yet to
be implemented in order to test early, or to model with stubs,
the behaviour of inaccessible code, such as operating system
routines, in order to verify. For example, when Microsoft’s
Static Driver Verifier tool is applied to a Windows driver, it
replaces calls from the driver to operating system functions,
and even some C programming language functions, by model
code that does not behave in the same way as the usual
execution context of the drivers [11].

Surprisingly, given its prevalence, the provision of formal
foundations of testing and verification transforms remains an
open challenge [61]. Since such transformations need not
necessarily preserve functional equivalence, they differ from
more traditional transformation approaches [42], [51], [56]
which are meaning preserving (usually by construction) in the
traditional sense of functional correctness [73], [102]. It is
perhaps ironic that a transformation that is used as part of the
process of testing and verification need not, itself, preserve
functional correctness in order to best perform this role.
However, in order to rely more fully on this role, there remains
a pressing need for formal underpinning of the techniques used
for testability/ verification transformation [61].

A recent set of open research questions on Testability
transformation, encompassing problems including semantic
definitions, abstract interpretation, mutation testing, metamor-
phic testing, and anticipatory testing can be found elsewhere
[58].

X. EVALUATION CRITERIA

The evaluation criteria that are typically used in scientific
evaluation of testing and verification tend to focus on effi-
ciency and effectiveness, where effectiveness is often charac-
terised by the number of faults detected by the technique under
investigation. It is useful to know how many faults are detected
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by a technique, particularly when this is part of a controlled
experiment with a known pool of faults [34], [47], [104], but
there are other important criteria to be taken into account.

The evaluation criteria we list here are neither intended to
replace execution criteria, nor are we suggesting that they are
all mandatory. Rather than placing an additional burden on the
shoulders of scientists, with yet more evaluation obligations,
we offer these as alternative dimensions for evaluation, along
which it is possible to provide compelling scientific evidence
that a proposed technique will add value and may be likely
deployable in practice. If a technique performs well according
to just one of these criteria, then this might suggest that it
shows promise, even should it fail on others (or on more
traditional efficiency and effectiveness) criteria.

In this section, we set out evaluation criteria, with a
particular focus on deployability of testing and verification
techniques. We believe that techniques that perform well
according to some or all of these criteria will tend to be more
deployable than those that do not, irrespective of the number
of faults and failures detected by the techniques concerned.

A. Sim-CIDie: Simulating Continuous Integration and De-
ployment (CID) Environments

Software deployment increasingly uses continuous integra-
tion and deployment, yet researchers typically do not have
access to such systems. It is not essential to evaluate all
research on testing and verification in the context of Contin-
uous Integration and Deployment (CID). Nevertheless, where
scientific results can be presented that support claims for CID,
this will likely be a strong indicator of deployability and
actionability of research findings. How then, are researchers
to experiment and report on the results of their techniques in a
CID setting, without working in an organisation that practices
CID?

Fortunately, researchers can easily simulate the effects of
continuous integration by taking a series of open source
releases of a system, decomposing each release into smaller
change components, and simulating the effect of these landing
into a repository at different rates and interleavings. Large
scale repositories of OSS code changes (together with their
reviews) are publicly available to support this [110].

This creates a simple simulation of the typical workflow
in a continuous integration environment. Researchers can also
simulate the disruptive effects referred to in Section VIII, by
constructing different versions of changes to the repository,
each of which interfere with one another.

Indeed, the ability to control the degree of interference, the
rate at which changes land into the repository, and their size
and overlap, could be one of the advantages of proper experi-
mentation; the ability to experiment with controlled parameters
in the laboratory setting. It would be very encouraging to
see research that tackles these challenges using laboratory–
controlled experiments in terms of the parameters that affect
the deployment of static and dynamic analyses in a continuous
integration environment

In order to evaluate scalability, especially scalability in
terms of people, researchers may have to simulate, but these

simulations can be based on sensible assumptions and pa-
rameters. For example, consider the example of automated
generation of test cases, for which the primary driver of
scalability is likely to be the execution time (of the system
under test). In order to experiment with this and report on this
dimension of scalability, researchers can simply insert delays
into the example systems under test on which they report.

This simple delay-insertion approach would provide a simu-
lation that would allow researchers to report graphs indicating
the impact of increases in execution time on the technique’s
bugs-per-minute.

Similarly, for investigating practical real-world space and
time scalability on realistic examples for a static analysis
technique, the driver may be code size. Once again, the
researcher can easily find ways to synthetically increase the
size of code in a non–trivial way, in order to report on this
dimension of scalability.

B. Exploring, defining and measuring signal

Critical to all work on Testing and Verification is the ‘signal’
that the automated static and dynamic analysis techniques
provide, both to other tools and to the software engineers
they serve. The research community should surely prioitise
the exploration definition and formalisation of measures of
signal, since this is such a key output from all static and
dynamic analysis. However, ‘defining and exploring the signal’
remains a surprisingly under-researched topic, given its pivotal
role in actionability of research findings and deployability of
the techniques about which those findings are reported.

Static and dynamic analyses can produce a variety of
different kinds of signal, including (but not limited to) bug
lists, proof of bug type’s absence, potential fix candidates,
warning of potential issues, crash reports with stack traces, test
coverage achieved, and localisation information (to help locate
bug causes). It is easy to become primarily concerned with the
technical challenges of computing this signal in reasonable
time and at scale. However, for deployment it is helpful to
asses the actionability of a signal, for which we offer candidate
definitions below:

Signals are provided as an input to some client. The client
could be a developer (who potentially benefits from the signal)
or a downstream tool or system (that can make use of the
signal).

Definition 1 (Signal Client): The client for a signal, is an
actor (a human, a tool, system or service) that is able to
respond to the signal by performing an action.

The concept of a client is a context-sensitive one; the same
human (or tool) in different contexts, would be regarded as a
different client. For example, a developer receiving a signal,
as he or she edits a file to make a change, is a different client
to the same developer receiving the signal some time after he
or she has landed the change into the repository.

Definition 2 (Actionable Signal): The signal is actionable if
there is a particular action that a client can perform to improve
the software system as a result of receiving the signal.

We wish to define a metric for signal effectiveness that
captures the cost involved in acting on the signal. That is,
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the concept of actionability implicitly has an associated cost.
Suppose that the client that receives the signal is a developer.
If we tell a developer that there is a crash in a system, without
further information, then it is possible that they will be able,
with great effort, to locate the cause of the crash and resolve it.
If we flag a bug to a product developer which is due to a flaw
in a library not under their control, it can be more difficult to
act than for a bug whose cause is in their own code. The form
and quality of error reports also affects actionability, through
the cost involved in acting on the signal.

One way to measure this cost, would be through a ‘signal
effectiveness metric’ that formulates cost (and other influenc-
ing factors) in terms of the probability of action by the client
receiving the signal.

Definition 3 (Effectiveness Metric): An effectiveness metric
is any function from signal, σ (and possibly additional optional
qualifying parameters, x̄ such as client c, platform p, language
l, system s etc) to [0..1].

The effectiveness metric, f(σ, x̄), denotes the likelihood that
the client, c, will act on the signal σ. When not parameterized
by c, the effectiveness metric refers to an arbitrary client.

This definition is simply a generic (and abstract) definition
of effectiveness; it can surely be refined. It could be broken
down further, as it is influenced by the cost of actionability,
the relevance of reports, timeliness, and other factors. Our goal
in introducing this definition is simply to seek to stimulate the
research community to refine and improve it, or to replace
it, but not to ignore it. We believe that defining appropriate
effectiveness metrics remains an interesting open research
question for the scientific community.

Many techniques already implicitly involve an effectiveness
assessment that could be characterised as a measure of the
likelihood that intervention with positive intent would lead
to positive outcome. For instance, the assessment of fault
localisation [79], [80], [139], [140] traditionally measures the
likelihood that the truly faulty statement is accurately elevated
(to a top N rank) by the ‘suspiciousness’ metric used to
localise.

Identifying the client to which the signal is sent is important
in assessing effectiveness. The same signal directed to different
clients can have different effectiveness. For instance, a fault
localisation technique will have different effectiveness (as
measured by outcome of positive-intent intervention) when
sent to a human debugger and an automated repair tool [85].

In both cases the desired outcome is a fix, but the human
will require the truly suspicious statement to be relatively high
in the ranking, while the repair tool merely requires that the
combination of localisation and repair will perform better than
repair alone and may, thereby, tolerate a lower ranking of the
truly faulty statement.

The Infer experience described in Section III, where diff
time deployment led to a 70 percent fix rate, where previous
ROFL deployment for the same analysis was near 0 percent, is
an extreme example of how directing signal to different clients
can have different effectiveness.

It would greatly benefit the evaluation of deployability if
actionability and effectiveness metrics were to be defined and
applied to report on these two important properties of the

signals that emerge from a tool or technique. Even when
effectiveness cannot be measured directly (e.g., if obtaining
a user population is not practical) then factors that influence
effectiveness such as timeliness and relevance could still be
measured. All told, measures such as these would complement
the more traditional, and still valuable, metrics such as false
negative and positive rates.

1) Cost of obtaining signal: Bugs per unit resource: In the
evaluation of testing and verification techniques, it is easy to
focus exclusively on the benefits offered by the technique, and
ignore the overall cost.

Indeed, as academics ‘landing’ in a major company, we
admit that we both underestimated the significance of cost.
For example, in 2015 we improved the number of (potential)
bugs found by Infer’s iOS analysis. However, there was a
performance cost: Infer went from taking 3% of the datacenter
capacity allocated to iOS CI, to taking over 20%. Infer was
therefore throttled back to run less frequently, until we were
able to reduce the ‘perf’ costs for the improved analysis. As a
result, we not only started to pay even closer attention to perf,
we also began to use bugs-per-minute as a measure to help us
decide whether to deploy new candidate analyses.

For adoption and deployment, there is always an implicit
cost-benefit analysis, and researchers can therefore improve
information relevant to deployability, simply by surfacing the
discussion of this trade-off. Consider presenting results that
report the behaviour of the proposed approach with respect to
a cost-benefit model. Bugs-per-minute and other cost-benefit
measures might form part of the comparison of different
analyses. As a result, there may be unexpected ‘sweet spots’
that render a technique useful, where it would otherwise be
discounted according to ‘default’ cost-benefit assumptions.

There is a human cost in the signal-to-noise ratio (as
discussed in Section X-B2), but there are also other resource-
based costs (such as the execution time) to find that signal.
Suppose a proposed new test technique, α finds twice as
many (true positive) issues as the state–of–the–art technique
ω. It may appear, on the surface, that α outperforms ω. The
evaluation of many studies of testing verification are just so-
constructed, making plausible scientific claims based on total
number of faults detected by different techniques.

However, one really cannot answer the question: ‘which is
better α or ω?’, without taking into account both the rate of
issues reported (e.g. bugs found per minute), and the mode in
which the proposed technique should best be deployed.

It is fairly obvious that the rate is more compelling scien-
tifically (and more important practically) than some absolute
amount of issues reported. The absolute amount is always an
‘amount within a given budget of time’ in any case, and so
comparing simply the ‘absolute amount of signal’ might be
unfair; the researcher might be able to choose a time budget for
which α outperforms ω and some other time budget for which
ω outperforms α. Clearly reporting merely a total number of
bugs found, for example, allows the researcher to inadvertently
fall into a ‘Cherry-picked Time Budget’(CTB) fallacy.

Instead, if we consider the rate at which issues are reported,
we also bring into focus the consideration of the proposed
deployment mode. To illustrate, consider the three different
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Fig. 3. Question: Which technique is best? Answer: all of them (each in
different deployment modes) .

program analysis techniques depicted in Figure 3. Each could
be a static, dynamic or hybrid analysis; what we care about
is the rate at which they find faults as a cumulative faults–
reported growth profile over time.

Which of the three techniques is the top performing?
Technique A finds the most faults, but not initially. If we are
prepared to wait, then Technique A will yield the most faults
found and be declared the ‘winner’. The scenarios in which it
would make sense to wait this long preclude smoke testing and
regression testing of overnight builds. However, for scenarios
where there is a major release every few months, for example,
Technique A would be the top performer, all else being equal.

On the other hand, suppose we want to deploy the technique
to perform a more shallow (but fast) analysis to find crashes
quickly for a so-called ‘smoke’ test. For such a smoke test,
perhaps Technique B or Technique C would be preferable.
If we wanted a super fast smoke test, perhaps giving the
developer almost instantaneous feedback on a build, then
Technique C would outperform the other two. On the other
hand, if the smoke build process itself takes a few minutes
(or longer), then Technique B would be the best-fitted to that
deployment scenario.

This discussion reveals how important it is for researchers
to articulate the deployment scenario for their approach. Re-
searchers can then demonstrate that their proposed technique is
better–fitted to that scenario than a plausible alternative state–
of–the–art for that scenario. Doing so will increase chances
of adoption, and will also provide more precise scientific
evidence for the evaluation of the technique’s efficacy.

None of these observations is surprising; they denote little
more than common sense. What is perhaps more surprising,
is that few of them are taken into account in the scientific
evaluation of proposed testing and verification techniques (the
authors of this paper are at least as guilty of this as the rest
of the community).

As a scientific community, we rightly want to accept work
that demonstrates evidence for an advance on the state–of–
the–art, but too often we can be seduced by simple metrics,
such as ‘total number of bugs reported’ and thereby overlook
potentially promising techniques that may have something to
offer, even though they fail to outperform the state–of–the–art

on, for example, total bugs reported.
By treating testing and verification evaluation as an analysis

of cost-benefit, we believe that results are more likely to
be useful to other scientists and to potential adopters of the
proposed techniques. Therefore, we suggest that researchers
should report faults or failures detected per unit of resource,
and to report results that show how this measure of value
(faults and failures reported) varies as the unit of resource
increases.

These observations impact deployability, but also feed back
into more scientific reporting considerations: suppose, for
instance, we wish to perform a non-parametric inferential
statistical test for the effect size of the improvement of a
technique over the state–of–the–art. This is a common ‘best
practice” in much empirical software testing work [8], [71].
Here too, the use-case (intended deployment scenario) should
also be considered, for example, to motivate the choice of
transformation to be applied to the effect size test performed
[105].

The specific units of resource in question will differ from
study to study. They could be measured as elapsed time, CPU
cycles, memory consumed, or some other domain-specific
appropriate determination of the cost of testing or verification.

Rather than inhibiting scientific work by providing yet
another burdensome set of evaluation criteria, this cost-benefit
approach may free scientists to find new avenues of deploy-
ment, by considering interesting sweet spots for their particular
technique that maximally optimise the cost-benefit outcome
for some chosen deployment mode.

2) Cost of exploiting signal: Signal to Noise Ratio and a
generalisation of false positives: Research on software testing
and verification often pays particular attention to false positive
rates. However, developers may be tolerant of a modest level
of false positives, provided that the technique provides overall
value. The false positive rate is a specific instance of the
more general problem of ‘noisy reporting’. We believe that a
more nuanced evaluation, in terms of this more general noisy
reporting problem, would provide more reliable scientific
findings regarding the effectiveness of testing and verification
techniques.

For example, consider the situation, illustrated in Figure 4,
where Technique A has a false positive rate of 20%, and each
false positive has to be investigated by a developer, costing
the developer, on average, five minutes of time to establish
that ‘this is a false positive’. Compare this to Technique B,
which has a false positive rate of 40%, all of which need
to be investigated, but which require developers to spend
only 20 seconds each, on average, to determine that the false
positive is, indeed, not worth considering further. Suppose
both techniques find approximately the same number of faults
with similar severities, and differ only in their false positive
rates. Clearly the technique with the higher false positive rate
(Technique B) will be preferable.

The take home message is that noise to the developer
(the overall cost of these false positives) is not merely a
one-dimensional false positive count. It is (at least) a two-
dimensional measurement, according to the twin costs of num-
ber of false positives and time to dismiss them. More generally,
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Fig. 4. Noise has at least two dimensions of cost: number of false positives
and the cost of dismissing them from further consideration. However, most
scientific evaluations of static and dynamic analysis techniques consider only a
single dimension: number of False Positives. This can lead to the abandonment
of otherwise promising research ideas and prototypes..

the overall noise (to the downstream client application or user)
is the property that we should seek to measure, evaluate and
reduce in the scientific understanding of static and dynamic
analysis. This ‘noise’ level is likely to be multidimensional,
since there are different types of cost along different axes, and
each may also have a different weight in its contribution to
the overall cost. Taking this into account provides for a far
richer space of candidate solutions to analysis problems and,
thereby opens the door to many more potentially promising
research ideas.

If noise is (at least) two-dimensional, what about signal?
This too, we argue, is multidimensional. Consider two tech-
niques with identical false positive rates and dismissal costs,
but where there is a difference in the time required to fix
the bugs reported as true positives, based on the information
provided by each technique. This situation is depicted in
Figure 5. Even when a technique reports a true positive, there
is still the cognitive load on the developer who has to fix the
bug, or, in the case of automated repair, has to check and
satisfy him or herself that the patch is correct. This cognitive
load is also a cost; the cost of action. The debugging payload
provided to the developer may contain irrelevant information,
and this has the same detrimental effects as the false positives
studied so much more widely by the community.

Overall, therefore, researchers need to provide estimates of
the relevance of the information provided in order to fix true
positives relative to the total information provided (which we
term the ‘Relevance Ratio’). Researchers also need to estimate
the amount of time required to dismiss false positives, (which
we term the ‘False-Positive Dismissal Cost’).

Techniques with higher relevance and lower false positive
dismissal cost will tend to be preferable, even if they have
higher rates of false positives and find fewer faults. Although
providing these estimates is challenging without involving
human subjects, we believe that surfacing these issues in sci-
entific publications will help to ensure that they are discussed
and accorded the full scientific attention they merit.

Researchers can and should report on such metrics in their
research submissions, articles and grant proposals. We surface
them here with the aim of facilitating and motivating the value

Fig. 5. Signal has at least two dimensions of value: number of issues reported
(e.g. bugs reported), shown here as the vertical axis and the ease with which
they can be fixed, due to the ‘debug payload’ of the reporting technique (the
horizontal axis here). The overall signal is the area under the graph. Typically,
scientific evaluations simply report along a single dimension, such as number
of bugs found, but a more nuanced evaluation involving other dimensions
might also highlight promising scientific advances that might otherwise go
unnoticed. .

of this reporting for wider uptake and deployment of research
prototypes.

Reporting on the signal–to–noise ratio, rather than focusing
solely on false positives will support a more nuanced scientific
debate of merits and de-merits of a proposed approach. Taking
account of these nuances may help to ensure that promising
techniques are not overlooked because of superficially poor
performance (in terms, for example, of their total numbers of
false positives). We therefore suggest, merely that researchers
should report an assessment, even if very approximate, of the
Relevance Ratio and the False-Positive Dismissal Cost.

XI. DEPLOYABILITY

Whether or not research is undertaken with ultimate de-
ployment in mind, it may be helpful to understand, and report
on some of the factors that affect deployability of research
techniques. A lot has been said in the literature on the topic
of the scale of industrial software systems and the need for
techniques to scale up. This is undoubtedly important and we
touch on it briefly later in this section. However, less widely
studied and potentially far more important, is the issue of
friction.

That is, it may be possible to find useful engineering
compromises that trade precision for scale, making scale
a relatively surmountable challenge to ultimate deployment.
However, a technique that exhibits unnecessary friction is
not only less likely to be deployed, but it may be harder to
overcome this potent barrier to deployment than it is to scale
the apparently unscalable.

Although scale can usually be recast as a trade-off, friction,
on the other hand, often arises because of the very design
and fundamental static and dynamic analysis characteristics,
philosophy or approach adopted. Where such decisions be-
come ‘baked in’ early in the design of a technique they may
doom the research agenda to ultimate failure. It is therefore
prudent to consider friction at the outset and throughout the
development of a research technique, even if there is no
immediate plan or desire for deployment.
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A. Friction
In discussing friction, we do not mean to focus on the

generic barriers and problems that inhibit the adoption and on-
going use of a technique proposed by the research community
and considered for adoption in industry. These barriers to
adoption have been widely discussed elsewhere [38], [114],
[121]. Excessive focus on them can lead to the research
community becoming demotivated and disengaged from the
challenges of seeking real-world industrial impact.

Rather, we wish to view friction from the specific point of
view of the would-be adopters (implementors and users) of
a proposed technology; how much does the technique itself
require effort from them in order to adopt and continue to
use the technique? Thus friction is not a generic barrier that
inhibits any and all deployment attempts, but a technique-
specific resistance to adoption that can be identified, tackled
and reduced to maximise adoption likelihood; minimising
friction will maximise deployability.

There are two types of friction that can impede deployment
of static and dynamic analysis tools: inertial friction, and
ongoing drag.

We define inertial friction for an analysis technique to be
the time taken from the decision to adopt to the first developer
receiving the first signal from the system.

Definition 4 (Inertial Friction, IF): The inertial friction
IF(t, c) of a tool, t for a client c is the minimum possible
effort that c will expend between the decision to adopt the tool
and the first signal returned by the tool.

We distinguish IF , the inertial friction, from the ‘Drag of
On-going use’ (or ‘on-going drag’), DO, which is any effort
required by a client, per signal, in order to get further signals,
once the first signal has been obtained from the technology.

Definition 5 (Drag On-going, DO): The Drag (On-going),
DO(v, c) for deployment version v, and a client c, is a measure
of the average effort required from the client c, per signal
produced by v between vt0 and vt′ , where vt0 is the time at
which the first signal from version v is returned to the client
c, and vt′ is the time at which version v is decommissioned.

By contrast with inertial friction, on-going drag is defined
per version, because one important goal of deployment should
be to continually release new versions of the technology, with
each successive version reducing the ongoing drag. Many
techniques have been adopted, yet subsequently discarded due
to ongoing drag; the effort required to continue to receive
useful signal from the technology.

While it will undoubtedly be difficult for developers of
research prototypes to envisage all the new scenarios that
might lead to such ongoing drag, any instances that can be
factored out and considered to be germane should naturally be
the subject of considerable attention; reducing such inherent
on-going drag will be critical to winning champions within an
organisation, once the inertial friction has been overcome.

Inertial friction is something that potential adopter devel-
opers might assess before adopting a technique, and reducing
it is critical for increasing initial deployment likelihood. It
is worthwhile considering multiple modes of deployment, in
order to reduce inertial friction, even if this means sacrificing
some of the signal that can subsequently be obtained.

The on-going drag must also be continually checked (and
perhaps reduced) to ensure continual deployment. This gives
us the following simple ‘if...do’ pseudo code for IF . . .DO
deployment, the goal is to repeatedly deploy friction reduction
such that this pseudo code fails to terminate:

begin
if reduce(IF) ≤ sufficiently_low

then do
reduce DO
if DO > tolerable_drag_threshold

then exit fi
od

else no_deployment
fi cease_deployment

We parameterise IF and DO by the client, c because there
are at least two distinct types of client affected by inertial
friction when deploying a new tool:

1) the clients that will use the signal from the new tool to
improve software products;

2) clients (likely engineers assisted by existing tooling)
that will build and maintain the new tool so that it can
provide this signal efficiently and effectively.

Here are two examples of IF :
Inertial Friction (for tool users) for Infer Static Analysis:

The ROFL-myth example for Infer, mentioned in Sec-
tion III, in which we initially (and unsuccessfully) expected
developers to switch context to solve bug reports in batch
mode was one example of high inertial friction for tool users.
We attribute our initial failure to successfully deploy entirely to
this inertial friction. Once we moved beyond the ROFL myth
to diff-time testing, as explained in Section III, we went from
zero (fix rate) to hero (∼70% fix rate) pretty fast.
Inertial Friction (for tool users) for Sapienz Dynamic
Analysis: In order to automatically design tests that target
the revelation of problems we need to know what constitutes
a ‘problem’. In order to automate test design this means
that the test tool needs oracle information [14]. One way of
making this available to the tool would be for the developer
to add assertions to their code that, inter alia, communicate
the definition of a good (respectively bad) state to the test
tool. Having this information could dramatically improve the
performance of the tool, but it introduces friction on the
developer who has to define and insert the assertions.

If that friction is necessarily encountered before the tool
can be deployed then it would be inertial friction. Of course,
it could be that the tool would initially use an implicit oracle
[14] (such as ‘applications should not crash’) and, only some
time after deployment, seek additional assertions from authors,
thereby deferring the friction from inertial friction to on-going
drag.

Of course, the potential adopter community are not the
only engineers who might be concerned with the inertial
friction of the software testing for verification technology. We
have witnessed many otherwise promising research techniques,
including those with low inertial friction to potential adopters,
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that fail to be adopted in industry due to the inertial friction
to the tool developers.

For example, a technique with a highly fragile language-
sensitive instrumentation technology that needs to be carefully
tuned and adapted before it can be applied, or a technique that
requires detailed mathematical models to be constructed for
large parts of the system to be verified, would each have high
developer inertial fiction.

As a result, neither is likely to find adoption due to inertial
friction, not on the engineers who might use the signal from
these tools, but due to the friction on those who have to de-
velop technology to deliver that signal. Successful deployment
therefore also requires an initial version of the technique for
which tool-developer inertial friction is also minimised.

Here we give two concrete examples of inertial friction on
the tool developers: one static (drawing on experience with
Infer) and one dynamic (drawing on experience with Sapienz):
Inertial Friction (for tool developers) for Infer Static
Analysis:

Static analysis tools are often thought of as push-button,
but researchers and practitioners in the field know that there
can be considerable human startup time. For example, the
tool developer might need to design a model for intricate
(and changing) programming language details, such as library
calls for which source is unavailable. One of the precursors
of Infer developed an adaptive program analysis, the aim of
which was to make it easier to run the tool and get more
meaningful results than previously obtainable. Dino Distefano,
one of the founders of Monoidics and an engineer on the
Infer team at Facebook, used to talk about minimizing the
‘time spent before pressing the button’, aiming to shrink it
from months to days or hours. He conceived of technical
advances related to discovering data structure descriptions and
discovering preconditions precisely in order to minimise this
time [16], [32]. Measuring and minimising ”Push The Button”
(PTB) time is critical to determining whether a technique can
be successfully deployed.
Inertial Friction (for tool developers) for Sapienz Dynamic
Analysis: The design of Sapienz was explicit in its attempt
to minimize intertial friction for tool developers, because the
original deployment scenario was that it would be run on arbi-
trary APK files from Android applications, for which there was
no source code available. As a start-up, it was essential that the
tool would run ‘out of the box’ on an unseen application and
give some signal (find some crashes) with zero set up cost. Its
ability to do this meant that we assumed absolutely no white
box coverage. Doing so traded fitness function guidance for
(considerable) reduction in inertial friction and was critical to
the early adoption of the technology at Facebook.

The definitions we have introduced in the section are merely
suggestions. One important research question for the scientific
community is to define suitable metrics that can be used to
assess the inertial friction and ongoing drag for testing and
verification techniques, as well as other software engineer-
ing techniques. Such metrics would be useful in addressing
questions of research actionability, by assessing the research-
controllable parameters that influence deployability.

B. Serendipitous Deployment Pivots
The first few versions of the proposed research technique to

be deployed might benefit from a ‘Lean Startup’ model [116].
The goal of deployment is to address the practical static or
dynamic analysis problem in hand. However, a ‘lean startup
model’ would also aim to gain information, concerning use-
cases and, in the case of friction, the ongoing drag that each
use case incurs. This information can be used to optimise
subsequent versions of the system to reduce the ongoing drag
of the most frequent use cases.

It can often happen that the mode of deployment envisaged
by the research team is not that found most beneficial to
engineers who use the tools. Such unanticipated use-cases
need not invalidate the tool; they may well enhance its impact.
Unexpected avenues of impact can offer new opportunities to
exploit the research in ways not originally foreseen by the
researchers.

Many researchers have experienced and commented, often
anecdotally, or off-the-record, on the unexpected use-case
phenomenon. We have witnessed it too and would like to
document it here with an example. In 2002, one of the
authors and his colleagues deployed a static analysis tool
at DaimlerChrysler in Berlin, called Vada; a simple variable
dependence analysis tool [63], based on research work on
program slicing. The aim of Vada was to assist Search Based
Testing at DaimlerChrysler. The use-case initially envisaged
was to deploy dependence analysis to reduce search space size
[64], [98].

However, the developers also found Vada useful to under-
stand the relationships between input parameters to C func-
tions and their influence on defined variables. The engineers
found Vada’s analysis to be particularly useful for globals, as a
means of program comprehension, which was unplanned and
unexpected. This additional, unanticipated use-case occasioned
a great deal of subsequent development to augment with
may- and must- analysis and techniques to better expose the
previously internal dependence analysis to developers.

Before long we were starting to field requests from our users
for new analyses to support the unplanned deployment and we
started to develop visualisations to further support this use-
case. This visualisation effort fed back in to research develop-
ment, with our subsequent work reporting on the visualisations
themselves [18], and the prevalence of dependence clusters we
were finding [20].

These dependence clusters were an apparent artifact of a
(very simple) visualisation; the Monotonic Slice size Graph
(MSG), which simply plots the size (vertical axis) of all slices
in increasing order of size (on the horizontal axis). Other
researchers subsequently also reported finding widespread
prevalence of dependence clusters in other languages such as
Java [125] and Cobol [57] and in both open and closed source
[1].

More recently we were able to demonstrate the potentially
pernicious effects of dependence clusters [135], thereby moti-
vating this initial interest. As a result of chasing an unexpected
use-case for a deployed research prototype, we were thus
rewarded with a rich seam of novel research questions and
intellectually-stimulating scientific investigation.
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Ironically, our research team had started to move away
from its initial vision of slicing and dependence analysis as
a comprehension support [21], [62], because of the large size
of static slices [19]. Instead, we had become more focused
on dependence analysis as a support for downstream applica-
tions [65]. However, through our engagement with industrial
deployment of our prototype tooling, we discovered that real-
world developers were, indeed, finding slices useful when
debugging, just as Weiser had initially envisaged and reported
in his seminal PhD work from the 1970s that introduced
program slicing [130].

C. Scale

Scale means different things to different people. Different
techniques will scale (or fail to scale) in different dimensions,
but scalability needs to be addressed in order to assess the
degree of deployability for a technique.

However, lack of scalability should not be a reason to reject
a proposed scientific project or research paper; many appar-
ently unscalable techniques have subsequently been found to
scale, due to subsequent innovations and discoveries. It is
important to report on apparently unscalable, yet otherwise
promising technologies in the hope that others may subse-
quently find techniques to tackle their scalability.

Nevertheless, for those researchers who additionally want
to demonstrate deployability and thereby to maximise chances
of more immediate impact, it will be important to report on
scalability and, to identify the relevant dimension and drivers
of scalability. For example, one might imagine that the primary
driver of computational time scalability for a static analysis
technique will be the code size to which the technique is
applied. By contrast, for a dynamic analysis, the execution
time of the system under test may have more influence on the
overall compute-time scalability.

In order to address scale, researchers should identify the
primary drivers of scalability and present results that report
on the impact of these drivers on the overall speed (see
Section X-B1).

In scientific studies of software analyses, ‘scale’ is typically
used to refer to space and time scalability and is, thereby,
directly related to well-understood algorithmic space and time
complexity analyses. However, there are other dimensions
of scalability that may prove equally and sometimes more
important for a technique to be deployed.

In industry, the term ‘scale’ is often used to refer to scaling
in terms of people, as well as engineering artefacts, such as
machines or lines of code. Is it much harder for a technology
to be deployed to 1,000 people than to 10? This notion of
‘scalability’ draws us into the question of the inertial friction
and ongoing drag (on tool deployers and their users). These
aspects of a proposed software analysis technology can also
be addressed, assessed and evaluated and they are, themselves,
important when judging deployability, and to which we now
turn.

XII. THE FI FI/GI VERIFY CHALLENGE: COMBINING
TESTING AND VERIFICATION FOR ANALYSIS AND

MANIPULATION

No keynote paper on a topic as broad as static and dynamic
analysis for testing and verification would be complete without
a grand challenge. The supply of grand challenges to software
engineering and programming languages researchers shows
little sign of drying up. Indeed, the supply of such challenges
considerably out-paces the deployment of techniques that meet
them.

Therefore, we do not propose to introduce, here, yet another
completely new challenge. Rather, we would like to develop
and better articulate the existing challenge of FiFiVerify (Find,
Fix and Verify systems automatically), generalising it to the
wider challenge of FiGiVerify: Find, (Genetically) Improve
and Verify, automatically.

Fixing bugs is merely one way in which systems can be
improved. Increasingly, however, it is becoming realised that
functional correctness is merely one form of overall fitness
for purpose. We therefore generalise the FiFiVerify vision
to cater for all forms of fitness for purpose, not merely the
more narrowly construed functional correctness of the software
system.

This challenge rests on what we believe to be one of the
most exciting possibilities for research on testing and verifica-
tion: its combination with automated program improvement,
through techniques such as Genetic Improvement [69], [82],
[112] Code Synthesis [56], [88], Code transplantation [13],
[113], [122], [126], Tuning [74], [131] and Automated Repair
[12], [85], [106].

The original formulation of the FiFiVerify Challenge con-
sidered analysis, to find and fix bugs and verify the fixes; code
manipulation was limited to bug–fixing patches. What if we
could further manipulate the program code to achieve perfor-
mance improvements? After all, in many practical deployment
scenarios, particularly mobile

performance is the new correctness
We believe that there is an open challenge to find ef-

fective and efficient ways to combine testing, improvement
and verification; testing to find issues (both functionality
failure and performance problems), improvement to address
the issues, and verification to ensure that the improvements are
correct (e.g., side effect free). In this section, we briefly recap
the FiFiVerify challenge and generalise it to the FiGiVerify
challenge.

We have previously argued for both the importance and near
realisability of the FiFiVerify challenge [68]; the community
is close to realising the ability to create “tools that will find,
fix and verify the systems to which they are applied”: to
“take a program that may contain bugs (from some identified
bug class, such as memory faults) and return an improved
program” that “has all bugs for the specified class fixed and
is verified as being free from this class of faults” [68].

Sadly this FiFiVerify ‘vision’ remains just that; a vision,
with a set of associated open problems. However, it would
still appear that the primary challenge is to find scalable ways
in which to compose various existing solutions to test case
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design [27], [48], [91] decomposible verification [30], [32],
[53], [86] and automated repair [85], [106]. There is no known
fundamental (technical or scientific) reason why we cannot
find such a composition and thereby achieve the ‘FiFiVerify’
vision.

A. FiGiVerify: Find, Genetically Improve and Verify

We can generalise FiFiVerify to GI (Genetic Improvement):
FiGiVerify would consist of finding performance issues, such
as regressions through which a system has become insuffi-
ciently performant, and fixing these using genetic improve-
ment. The verification obligation requires a demonstration that
there has been no functional regression. It may turn out that
this version of the vision is, in part, easier to achieve than
FiFiVerify, because the verification constraint is simply to
demonstrate that the improved version of the system is at
least as correct as the previous version, rather than requiring
a demonstration of the absence of an entire class fault.

There has been recent research on such regression verifica-
tion problems, in which the verification obligation is, not to
prove the system fully correct, but merely to demonstrate the
absence of regression with respect to a reference implemen-
tation [53]. Such regression verification approaches have also
recently found application in automated bug fixing [99], and
so we can be optimistic that they may find application, both
for FiFiVerify and in FiGiVerify.

It is, indeed, exciting to imagine a combination of tech-
niques that allows us to identify scenarios where performance
can be improved, perhaps even opportunistically during devel-
opment as an additional ‘program improvement collaborator’;
a FiGiVierfy bot that confers/interacts with human engineers
through the continuous integration backbone that runs through
the modern code review systems at the heart of most CI
deployment.

Such a program improvement collaborator could suggest
small modifications to the system that improve performance,
according to multiple non-functional properties [69], and to
automatically improve these using test-guided genetic im-
provement, but with the additional certainty that comes from
a guarantee of the absence of any functional regressions.

One might imagine that human developers would continue
to add new functionality, but without needing to pay too
much attention to the daunting task of balancing perhaps
five different performance criteria, such as footprint size,
bandwidth consumption, battery consumption, execution time,
throughput and so on.

Instead of the human engineers concerning themselves with
this impossible multi-criteria balancing act, a ‘21st-century
compiler’ or IDE, imbued with testing and verification and
genetic improvement capabilities would optimise the multiple
competing non-functional constraints and properties, poten-
tially producing multiple versions of the system for different
use cases, platforms and domains.

This challenge was formulated in 2012 as the GISMOE
(Genetic Improvement of Software for Multiple Objectives)
challenge [69]. Since 2012, there has been considerable
progress, and several breakthroughs, on Genetic Improvement

techniques [112]. The GISMOE challenge did not include any
notion of verification of the improved code, so FiGiVerify is
essentially the meet point of the FiFiVerfiy Challenge and the
GISMOE Challenge:

FiGiVerify = GISMOE + FiFiVerify
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