
Representation Learning on Graphs: A Reinforcement Learning
Application

Author 1 Author 2 Author 3
Institution 1 Institution 2 Institution 3

Abstract

In this work, we study value function approx-
imation in reinforcement learning (RL) prob-
lems with high dimensional state or action
spaces via a generalized version of representa-
tion policy iteration (RPI). We consider the
limitations of proto-value functions (PVFs)
at accurately approximating the value func-
tion in low dimensions and we highlight the
importance of features learning for an im-
proved low-dimensional value function ap-
proximation. Then, we adopt different rep-
resentation learning algorithm on graphs to
learn the basis functions that best represent
the value function. We empirically show that
node2vec, an algorithm for scalable feature
learning in networks, and the Variational
Graph Auto-Encoder constantly outperform
the commonly used smooth proto-value func-
tions in low-dimensionl feat space.

1 INTRODUCTION

In reinforcement learning (RL), an agent, or decision
maker, takes sequential actions and observes the con-
sequent rewards and states, which are unknown a pri-
ori. These sequent observations improve the agent’s
knowledge of the environment with the final goal of
learning the optimal policy that maximizes the long
term reward. The learning control problem is usually
formulated as Markov decision process (MDP), where
each state has an associated value function, which es-
timates the expected long term reward for some policy
(usually the optimal one). Classical MDPs represent
the value function by a lookup table, with one entry for
each state. However, this does not scale with the state

Proceedings of the 22nd International Conference on Ar-
tificial Intelligence and Statistics (AISTATS) 2019, Naha,
Okinawa, Japan. PMLR: Volume 89. Copyright 2019 by
the author(s).

(and implicity also action) space dimension, leading to
slow learning processes in high-dimensional reinforce-
ment learning problems. Approximated reinforcement
learning addresses this problem by learning a function
to properly approximate the true value function. In
the literature, many types of functions have been stud-
ied [Kaelbling et al., 1996, Sutton and Barto, 1998].

In this work, we study linear value function approxi-
mation, where the value function is represented as a
weighted linear sum of a set of features (called ba-
sis function). Linear function approximation allows
to represent complex value functions by choosing ar-
bitrarily complex basis functions. Under this frame-
work, one of the main challenges is to identify the
right set of basis functions. Typical linear approxi-
mation architectures such as polynomial basis func-
tions (where each basis function is a polynomial term)
and radial basis functions (where each basis function
is a Gaussian with fixed mean and variance) have
been studied in the case of reinforcement learning
[Lagoudakis, 2003]. These architectures make the as-
sumption that the underlying state space has Eucli-
diean geometry. However, in realistic scenarios, the
MDP’s state space is likely to exhibit irregularities.
For instance, let consider the environment depicted in
Figure 1. As it can been seen in Figure 1(b), neigh-
boring states can have values that are far apart (such
as states on opposite sides of a wall). In such cases,
these traditional parametric functions may not be able
to accurately approximate value functions.

Consequently, other basis functions have been studied
to address this issue. Example of such methods in-
clude Fourier basis [Konidaris et al., 2011], diffusion
wavelets, [Mahadevan and Maggioni, 2006], Krylov
bases [Petrik et al., 2010] and Bellman Error Basis
Function [Parr et al., 2007, Parr et al., 2008]. In par-
ticular, [Mahadevan, 2007] proposes a graph spectral
framework for solving Markov decision processes by
jointly learning representations and optimal policies
called representation policy iteration (RPI). They first
note that MDPs can be intuitively represented using
graphs, with states being the nodes and the transi-

Representation Learning on Graphs: A Reinforcement Learning Application

Figure 1: (a) Maze environment. The dark grey
squares are strict walls, while the light grey square are
difficult access rooms. The red square is the goal room.
(b) Optimal value function computed using value iter-
ation [Montague, 1999].

tion probability being the similarity matrix. Then,
under the assumption that the value function is usu-
ally modelled as a diffusion process over the state-
graph (and therefore it is a smooth function), they
approximate the value function (smooth signal on the
graph) as a linear combination of the first Laplacian
eigenmaps on graphs. These features, known as proto-
value functions (PVFs), preserve the smoothness of
the value function. In this paper, we argue that con-
structing the graph that perfectly models the MDP
such that the value function is indeed smooth on the
graph is not trivial. Therefore, there is a need to
automatically learn the basis functions that capture
the geometry of the underlying state space from lim-
ited data to further improve the performance. Hence,
given the success of recent node embedding models
[Grover and Leskovec, 2016, Kipf and Welling, 2016b,
Ribeiro et al., 2017, Donnat et al., 2018], we propose
to investigate representation learning on graphs algo-
rithms, to learn basis functions in the linear value func-
tion approximation.

The idea behind recent successful representation learn-
ing approaches is to learn a mapping that embeds
nodes on a graph as low-dimensional vectors. They
aim to optimize the representations so that geomet-
ric relationships in the embedding space preserve the
structure of the original graph. [Hamilton et al., 2017]
surveys recent representation learning on graph meth-
ods. Therefore, in this work we generalize the RPI
algorithm [Mahadevan, 2007] algorithm to allow dif-
ferent basis functions, and analyze the performance of
several representation learning methods for value func-
tion approximation.

The rest of this paper is structured as follows: in
Section 2 we provide background material, providing
details on Markov decision processes and value func-
tion approximation and describing the representation

learning algorithm used in this work. The General
Representation Policy Iteration is described in Sec-
tion 3. In Section 4 we run experiments and discuss the
results. We proceed to summarize the main findings
and give direction for future work. We finally conclude
in Section 5.

2 BACKGROUND

2.1 Markov decision process (MDP)

Markov decision processes are discrete time stochas-
tic control processes that provide a widely-used math-
ematical framework for modeling decision making
strategies under uncertainty. Specifically, at each time
step, the process is in some state s, and the agent can
choose any action a that is available in state s. In
part as a consequence of the action taken, the agent
finds itself in a new state s′ and observes an instan-
taneous reward r. We define a discrete MDP by the
tuple M = (S,A, P,R), where S is a finite set of dis-
crete states, A a finite set of actions, P describes the
transition model −with P (s, a, s′) giving the probabil-
ity of moving from state s to s′ given action a − and
R describes the reward function − with R(s, a) giv-
ing the immediate reward from taking action a in sate
s. Given a policy π : S 7→ A, a value function V is
a mapping S 7→ R that describes the expected long-
term discounted sum of rewards observed by the agent
in any given state s when following policy π. Solving
a MDP requires to find a policy that defines the op-
timal value function V ∗, which satisfies the following
constraints:

V ∗(s) = max
a

(
R(s, a) + γ

∑
s′∈S

P (s, a, s′)V ∗(s′)
)
.

This recursive equation is known as the standard form
of Bellman’s equation. The optimal policy is a unique
solution to the Bellman’s equation and can be found
by dynamic programming, iteratively evaluating the
value functions for all states.

2.2 Value Function Approximation

In large state spaces, computing exact value func-
tions can be computationally intractable. A possi-
ble solution is to estimate the value function with
function approximation (value function approxima-
tion method) [Bertsekas and Tsitsiklis, 1996]. Com-
monly, the value function is approximated as a
weighted linear sum of a set of features (called
basis function) [Montague, 1999, Mahadevan, 2007,
Konidaris et al., 2011, Lagoudakis, 2003]

φ1, φ2, . . . , φd : Ṽ (s|θ) =

d∑
i=1

θiφi(s) ≈ V (s),

Author 1, Author 2, Author 3

where d is the dimension of the features space.

The basis functions φi can be hand-crafted
[Sutton and Barto, 1998] or automatically con-
structed [Mahadevan, 2007], and the model param-
eters θ = [θ1, θ2, . . . , θd] are typically learned via
standard parameter estimation methods such as least-
square policy iteration (LSPI) [Lagoudakis, 2003].
However, how to properly design the set of basis for
a data-efficient function approximation framework is
still an open question. The main question is how to
find the set of basis φ that is a low-dimensional (to
ensure a data-efficient learning) and yet meaningful
representation of the MPD (to reduce the subopti-
mality due to the value function approximation).

The representation policy iteration algorithm (RPI)
was introduced in [Mahadevan, 2007] to address this
problem. It is a three steps algorithm consisting of (1)
a sample collection phase, (2) a representation learn-
ing phase and (3) a parameter estimation phase. RPI
is described in further details in Section 3. In this
work, we propose to generalize RPI to allow differ-
ent representation learning method. In particular, we
first observe that state space topology of MDPs can be
intuitively modeled as (un)directed weighted graphs,
with the nodes being the states and the transition
probability matrix being the similarity matrix. When
the transition probabilities are unknown, we can con-
struct a graph from collected samples by connecting
temporally consecutive states with a unit cost edge.
Therefore, similarly to [Mahadevan, 2007], we propose
to construct the graph from collected samples of an
agent acting in the environment given by the MDP. We
then learn representations on the graph induced by the
MDP using node embedding models. Finally, we use
the learned representation to linearly approximate the
value function. In the next section, we describe the
node embedding models that we exploit within this
framework.

2.3 Representation Learning on Graph

We propose to use the following learned node embed-
ding models as basis functions for the value function
approximation in order to automatically learn to en-
code the graph structure - hence the MDP - into low-
dimensional embeddings.

Node2Vec Node2vec [Grover and Leskovec, 2016]
is an algorithmic framework for learning continuous
feature representations for nodes in networks. It is
inspired by the powerful language model Skip-gram
[Mikolov et al., 2013] which is based on the hypothesis
that words that appear in the same context share
semantic meaning. In networks, the same hypothesis
can be made for nodes, where the context of a node

is derived by considering the nodes that appear in the
same random walk on the graph. Therefore, node2vec
learns the node embeddings based on random walk
statistics. The key is to optimize the node embeddings
so that nodes have similar embeddings if they tend
to co-occur on short (biased) random walks over the
graph. Moreover, it allows for a flexible definition of
random walks by introducing parameters that allow to
interpolate between walks that are more breadth-first
search or depth-first search.

Specifically, for a graph G = (V, E ,W) (where V
is a set of nodes, E is a set of edges and W the
weight matrix) and a set WS of biased random walks
w = u1, u2, ·, uT collected under sampling strategy
S on the graph G, node2vec seeks to maximize the
log-probability of observing a network neighborhood
NS(u) for a node u ∈ V conditioned on its feature
representation, given by f (a matrix of size |V | × d
parameters, where d is the dimension of the feature
space):

max
f

∑
w∈W

T∑
t=1

logPr(NS,w(ui)|f(ui))

where NS,w(ui) describes the neighborhood of the ith
node in the walk w.

Struc2Vec By introducing a bias in the sampling
strategy, node2vec allows to learn representations that
do not only focus on optimizing node embeddings
so that nearby nodes in the graph have similar em-
beddings, but also consider representations that cap-
ture the structural roles of the nodes, independently
of their global location on the graph. The recent
node embedding approach, struc2vec, proposed by
[Ribeiro et al., 2017] addresses the problem of specif-
ically embedding nodes such that their structural
roles are preserved. The model generates a series
of weighted auxiliary graphs G′k, k = 1, 2, ... from
the original graph G, where the auxiliary graph Gk
captures structural similarities between nodes k-hop
neighborhoods. Formally, let Rk(ui) denotes the or-
dered sequence of degrees of the nodes that are exactly
k-hops away from ui, the edge-weights, wk(ui, vj), in
the auxiliary graph G′k are recursively represented by
the structural distance between nodes ui and vj de-
fined as

wk(ui, vj) = wk1(ui, vj) + d(Rk(ui), Rk(uj)),

where w0(ui, vj) = 0 and d(Rk(ui), Rk(uj)) is the dis-
tance between the ordered degree sequences Rk(ui)
and Rk(uj) computed via dynamic time warping
[Ribeiro et al., 2017].

Once the weighted auxillary graphs G′k are computed,
struc2vec runs biased random walks over them and

Representation Learning on Graphs: A Reinforcement Learning Application

proceeds as node2vec, optimising the log-probability
of observing a network neighborhood based on these
random walks.

GraphWave The GraphWave algorithm as pro-
posed by [Donnat et al., 2018] takes a different ap-
proach to learning structural node embeddings. It
learns node representations based on the diffusion of
a spectral graph wavelet centered at each node. For
a graph G, L = D − A denotes the graph Lapla-
cian, where A is the adjacency matrix and D is a
diagonal matrix, whose entries are row sums of the
adjacency matrix. Let U denote the eigenvector de-
composition of the graph Laplacian L = UΛUT and
Λ = diag(λ1, λ2, . . . , λ|V |) denote the eigenvalues of L.

Given a heat kernel gs(λ) = e−sλ for a given scale s,
GraphWave uses U and gs to compute a vector ψu
representing diffusion patterns for node u as follows:

ψu = Udiag(gs(λ1), gs(λ2), . . . , gs(λ)|V |)U
T δu

where δu is the one-hot indicator vector for node u.
Then, the characteristic function for each node’ coef-
ficients ψu is computed as

φu(t) =
1

|V |

|V |∑
m=1

eitΨmu

Finally, to obtain the structural node embedding f(u)
for node u, the paramatric function φu(t) is sampled
at d evenly spaced points t1, . . . , td:

f(u) =
[
Re(φu(ti), Im(φu(ti))

]
t1, . . . , td.

Variational Graph Auto-Encoder As opposed
to directly encoding each node, auto-encoders aim
at directly incorporating the graph structure into
the encoder algorithm. The key idea is to com-
press information about a node’s local neighborhood.
The Variational Graph Auto-Encoder proposed by
[Kipf and Welling, 2016b] is a latent variable model
for graph-structure data capable of learning inter-
pretable latent representations for undirected graphs.
The Graph Auto-Encoder uses a Graph Convolutional
Neural Network (GCN) [Kipf and Welling, 2016a] to
encode graphs and another GCN to reconstruct the
graph. The Variational Graph Auto-Encoder makes
use of latent variables.

3 GENERAL REPRESENTATION
POLICY ITERATION

Within the context of approximated value function,
the representation policy iteration algorithm (RPI)
was introduced in [Mahadevan, 2007] to properly learn

the approximating function. Namely, RPI is a three
steps algorithm consisting of (1) a sample collection
phase, to build a training dataset with the quadruples
{(si, ai, si+1, ri)}; (2) a representation learning phase,
that defines the proper set of basis functions; and (3) a
parameter estimation phase, in which the coefficients
θθθ are learned. A generalized version of the RPI algo-
rithm [Mahadevan, 2007] is described in Algorithm 1.

In the original RPI, the representation learning phase
is predefined. Namely, an undirected weighted graph
G is built from the available data set D. Then a dif-
fusion operator O, such as the normalized Laplacian
is computed on graph G and the d-dimensional basis
functions φφφ = [φ1, . . . , φd] are constructed from spec-
tral analysis of the diffusion operator. Specifically, φi
are the smoothest eigenvectors of the graph Laplacian
and are known as proto-value functions (PVFs). Un-
der the assumption that the value function is actually
smooth on the considered graph, it can be efficien-
cly represented as a linear combination of the PVFs.
However, it is not guaranteed that we can construct a
graph from a limited number samples such that its de-
rived proto-value functions reflect the underlying state
space.

To overcome this limitation, we propose to use the
node embedding methods described in 2.3 automati-
cally learn the basis functions from the geometry of
the underlying state space to further improve the per-
formance.

Algorithm 1 General Representation Policy Iteration

Input: π0: sampling strategy, N : number of ran-
dom walks to sample, T : length of each walk, d
dimension of the basis functions, model represen-
tation learning model, ε convergence condition for
LSPI.
Output: ε-optimal policy π
1. Sample Collection Phase
Collect a data set D of T successive samples
{(si, ai, si+1, ri), (si+1, ai+1, si+2, ri+1), . . .} by fol-
lowing sampling strategy πm for maximum T steps
(terminating earlier if it results in an absorbing goal
state).
2. Representation Learning Phase
Build basis function matrix φ = model(D, d).
3. Control Learning Phase
Using a parameter estimation algorithm such as
LSPI or Q-learning, find an ε-optimal policy π that
maximizes the action value function Qπ = φθπ

within the linear span of the bases φ.

In the following, we describe how to apply these
features learning methodologies within reinforcement
learning strategies.

Author 1, Author 2, Author 3

In the original RPI, the representation learning phase
is predefined. Namely, an undirected weighted graph
G is built from D. Then a diffusion operator O, such
as the normalized Laplacian is computed on graph
G and the basis functions are constructed from spec-
tral analysis of the diffusion operator. Specifically, φi
are the smoothest eigenvectors of the graph Laplacian
and are known as proto-value functions (PVFs). The
key is that given a state-graph that perfectly repre-
sents the MDS, the value function is modelled as a
diffusion process over the graph (and therefore it is a
smooth function). Hence, given the spectral properties
of the Laplacian operator, the proto-value functions
are a good choice of basis functions for preserving the
smoothness of the value function.

However, it is not guarantee that we can construct a
graph from a limited number samples such that its de-
rived proto-value functions reflect the underlying state
space.

We propose to use the node embedding methods de-
scribed in 2.3 automatically learn the basis functions
from the geometry of the underlying state space to
further improve the performance.

4 EXPERIMENTS

4.1 Set up

We consider the two-room environment used in
[Mahadevan, 2007]. It is shown in Figure 2(a). It
consists of 100 states in total, divided into 57 accessi-
ble states and 43 inaccessible states representing walls.
There is one goal state, marked in red and the agent
is rewarded by +100 for reaching the goal state.

We also consider an other environment Figure 2(b))
consisting of a single room with obstacles. There are
also 100 states in total, some of which are inaccessible
since they represent exterior walls and 14 of which are
accessible from neighboring states with a fixed prob-
ability p = 0.2 (they represent a moving obstacle or
difficult access space). All other state are reachable
with probability 0.9. The agent is rewarded by +100
for reaching the state located at the upper-right cor-
ner.

We construct the corresponding graphs where each lo-
cation is a node, and the transitions (4 possible ac-
tions: left, right, up and down) are represented by the
edges.

We run and evaluate the General Representation Pol-
icy Iteration (GRPI) algorithm using embedding mod-
els from Section 2.3 to compute the basis functions in
the second phase of the algorithm.

(a) (b)

Figure 2: Two different maze environments. The pur-
ple nodes represent strict walls, while the blue nodes
are difficult access rooms. All other nodes represent
accessible rooms The node shown in red is the goal
room. Best seen in color.

1. We collected as set D of samples from a 100 ran-
dom walks, each of length 100 (or terminating
early when the goal state was reached). Four
actions (move up, down, left or right) are pos-
sible from each state. If a movement is possi-
ble, it succeeds with probability 0.9. Otherwise,
the agent remains in the same state. When the
agent reaches the gold state, it receives a reward
of 100, and is randomly reset to an accessible in-
terior state. We use off-policy sampling (π0 =
random policy) to collect the samples, except in
the case of node2vec, where the samples are gen-
erated under a biased random walk. We use
grid search to find the optimal hyperparameters
p = 1 and q = 4 that guide the walk according to
[Grover and Leskovec, 2016].

2. We used sample transitions in D to build an
undirected graph where the weight matrix W is
the adjacency matrix and run model(D, d) with
model ∈ (node2vec (n2v), struc2vec (s2v), varia-
tional graph auto-encoder (VGAE), GraphWave
(GW)) for diffenrent choices of d. In the case of
node2vec, we directly use the collected samples to
derive the node neighboroods used in the objec-
tive function.

3. We learned the parameters of the linear value
approximation using the parameter estimation
method LSPI [Lagoudakis, 2003] using the sam-
ples set D.

4. We used the policies learned by GRPI for each
model to run simulations starting from each ac-
cessible states. We compare the performance of
each models in terms of the average number of
steps required to reach the goal. We also com-
pare to the traditional PVF basis functions. The
results for the two environments, averaged over 20

Representation Learning on Graphs: A Reinforcement Learning Application

(a)

(b)

Figure 3: Average number of steps required to reach
the goal steps using the various basis functions. On
the x axis we make the dimension of the basis func-
tions vary. Best seen in color. 3(a) corresponds to the
two-room environment, while 3(b) corresponds to the
obstacle-room environment.

independent runs, are shown in Figures 3(a) and
3(b). Each run consists of episodes of a maximum
of 100 steps, where each episode is terminated ear-
lier if the agent reached the goal state.

4.2 Discussion

Figures 3(a) and 3(b) provide the average number of
steps to reach the goal as a function of the dimen-
sion of the basis function. We first observe that the
policy learned via the GraphWave basis function lead
to very poor performances regardless of the dimension
size. We investigate this phenomenon by looking at
the approximate value function learned under these
basis. The approximate state values are depicted in

Figure 4: Approximate value function via GRPI using
GraphWave basis function of dimension 70 on the two-
room environment.

Figrue 4. Because GraphWave aims at learning em-
beddings that are exclusively structural, we hypothe-
sis that they fail at capturing global network proper-
ties. In fact, the embeddings learned by GraphWave
for the corner states in the two-room environment are
equals, making it obviously impossible to learn dif-
ferent state value with linear approximation. This
suggests that although the GraphWave is a power-
ful model for capturing structural information in net-
works, it is not a good choice of basis function for
approximating smooth value function on a graph.

On the other hand, we notice that although struc2vec
was also designed to capture structural similarities be-
tween nodes, it also preserves the local properties of
the graph by considering neighborhoods of different
sizes [Ribeiro et al., 2017]. Hence, struc2vec is able
to accurately approximate the value function even in
graphs that have a perfectly symmetrical structure
such as the two-room environment.

Finally, the result show that VGAE and node2vec are
good choices of basis functions for approximating the
value function in low dimension. Indeed, they lead
to good performances in terms of number of steps to
reach the goal states with basis functions of dimension
as low as 20 for VGAE and 30 for node2vec. On the
contrary, observe that the PVFs require dimension of
at least 70 to reach comparable performances on the
two-room domain and dimension of 50 on the obstacle-
room domain.

The observed that the sampling strategy used in
node2vec has a significant impact on the performance
of the learned policy. Using grid search, we find that
the optimal value of the parameters p and q that guide
the random are 1 and 4 respectively. We show the per-
formances of node2vec with selected values of p and q
in 5. When p < q and q > 1, the strategy is bi-

Author 1, Author 2, Author 3

Figure 5: Average number of steps required to reach
the goal steps using node2vec with varying parameters
p and q. On the x axis we make the dimension of the
basis functions vary.

ased to encourage walks to backtrack a step and to
visit nodes that are close to the current node in the
walk. Therefore, it leads to walks that approximate
a BFS behavior, gathering a local view of the under-
lying graph with respect to the starting node. On
the other hand, when p > q and q < 1, the walk
approximate a DFS behavior and lead to more out-
ward exploration. [Grover and Leskovec, 2016] show
that the first type sampling strategy allow to reflect
structural equivalences of nodes whereas the second
type allows to capture homophily within the network.
Figure 5 suggests that for approximating value func-
tions, structural equivalence plays a more important
role than homophily.

4.3 Main Findings and Future Work

We summarize below the main findings of our work.

• Using basis functions that automatically learn to
embed the geometry of the graph induced by the
MPD can lead to improved performance over the
proto-value function.

• Such embedding models need to capture the struc-
tural equivalence of the nodes while preserving the
local properties of the graph.

• Under a sampling strategy that satisfy the
requirements of the previous point, Node2vec
[Grover and Leskovec, 2016] outperforms the
commonly used proto-value functions.

• The Variational Graph Auto-Encoder, which is
more complex than node2vec and requires more

training, leads to minor performance improve-
ment compared to node2vec.

These findings encourage the further study of repre-
sentation learning on graphs for achieving efficient and
accurate policy learning for reinforcement learning. In
particular, the question of scalability in large or con-
tinuous state space arises. Future work include ana-
lyzing to what extend one can efficiently learn good
embeddings with limited samples in very large state
spaces. Another interesting open question in this di-
rection, is to investigate weather good representations
can be inferred for states that have never been visited.

Naturally, future work should also aim at further im-
proving the quality of the embeddings for the problem
of reinforcement learning. A possibility would be to
make use of the reward observed during the sample
collection phase to build features that are not only
based on state transitions, but capture reward infor-
mation as well.

5 CONCLUSION

In this work, we study the representation policy iter-
ation algorithm with a modified representation learn-
ing phase that allows to use any model for comput-
ing the basis functions in the linear value approxima-
tion. We investigate several models for learning high
quality node embeddings that preserve the geometry
of the graph induced by the Markov decision process.
We compare the performance of several representation
learning model in the context of value function ap-
proximation. Finally, we observe that models that are
designed to capture the global structural geometry of
the graph while preserving local properties do well at
approximating the value function in low feature space
dimensions, significantly outperforming the commonly
considered proto-value functions for this task.

References

[Bertsekas and Tsitsiklis, 1996] Bertsekas, D. P. and
Tsitsiklis, J. N. (1996). Neuro-Dynamic Program-
ming. Athena Scientific, 1st edition.

[Donnat et al., 2018] Donnat, C., Zitnik, M., Hallac,
D., and Leskovec, J. (2018). Learning structural
node embeddings via diffusion wavelets. In Pro-
ceedings of the 24th ACM SIGKDD International
Conference on Knowledge Discovery & Data
Mining, KDD ’18, pages 1320–1329, New York, NY,
USA. ACM.

[Grover and Leskovec, 2016] Grover, A. and Leskovec,
J. (2016). node2vec. In Proceedings of the 22nd

Representation Learning on Graphs: A Reinforcement Learning Application

ACM SIGKDD International Conference on Knowl-
edge Discovery and Data Mining - KDD ’16, pages
855–864.

[Hamilton et al., 2017] Hamilton, W. L., Ying, R.,
and Leskovec, J. (2017). Representation learn-
ing on graphs: Methods and applications. CoRR,
abs/1709.05584.

[Kaelbling et al., 1996] Kaelbling, L. P., Littman,
M. L., and Moore, A. P. (1996). Reinforcement
learning: A survey. Journal of Artificial Intelligence
Research, 4:237–285.

[Kipf and Welling, 2016a] Kipf, T. N. and Welling, M.
(2016a). Semi-supervised classification with graph
convolutional networks. CoRR, abs/1609.02907.

[Kipf and Welling, 2016b] Kipf, T. N. and Welling, M.
(2016b). Variational graph auto-encoders. CoRR,
abs/1611.07308.

[Konidaris et al., 2011] Konidaris, G., Osentoski, S.,
and Thomas, P. (2011). Value Function Approxi-
mation in Reinforcement Learning using the Fourier
Basis. Proceedings of the Twenty-Fifth Conference
on Artificial Intelligence, pages 380–385.

[Lagoudakis, 2003] Lagoudakis, M. (2003). Least-
squares policy iteration. The Journal of Machine
Learning Research, 4:1107–1149.

[Mahadevan, 2007] Mahadevan, S. (2007). Learn-
ing Representation and Control in Markov Deci-
sion Processes: New Frontiers. Foundations and
Trends R© in Machine Learning, 1(4):403–565.

[Mahadevan and Maggioni, 2006] Mahadevan, S. and
Maggioni, M. (2006). Value function approximation
with diffusion wavelets and laplacian eigenfunctions.
In Weiss, Y., Schölkopf, B., and Platt, J. C., editors,
Advances in Neural Information Processing Systems
18, pages 843–850. MIT Press.

[Mikolov et al., 2013] Mikolov, T., Chen, K., Cor-
rado, G., and Dean, J. (2013). Efficient estima-
tion of word representations in vector space. CoRR,
abs/1301.3781.

[Montague, 1999] Montague, P. (1999). Reinforce-
ment Learning: An Introduction, by Sutton, R.S.
and Barto, A.G. Trends in Cognitive Sciences,
3(9):360.

[Parr et al., 2008] Parr, R., Li, L., Taylor, G., Painter-
Wakefield, C., and Littman, M. L. (2008). An
analysis of linear models, linear value-function ap-
proximation, and feature selection for reinforcement
learning. In Proceedings of the 25th International
Conference on Machine Learning, ICML ’08, pages
752–759, New York, NY, USA. ACM.

[Parr et al., 2007] Parr, R., Painter-Wakefield, C., Li,
L., and Littman, M. (2007). Analyzing feature gen-
eration for value-function approximation. In Pro-
ceedings of the 24th International Conference on
Machine Learning, ICML ’07, pages 737–744, New
York, NY, USA. ACM.

[Petrik et al., 2010] Petrik, M., Taylor, G., Parr, R.,
and Zilberstein, S. (2010). Feature selection using
regularization in approximate linear programs for
markov decision processes. In Proceedings of the
27th International Conference on Machine Learning
(ICML-10), June 21-24, 2010, Haifa, Israel, pages
871–878.

[Ribeiro et al., 2017] Ribeiro, L. F., Saverese, P. H.,
and Figueiredo, D. R. (2017). Struc2vec: Learn-
ing node representations from structural identity.
In Proceedings of the 23rd ACM SIGKDD Inter-
national Conference on Knowledge Discovery and
Data Mining, KDD ’17, pages 385–394, New York,
NY, USA. ACM.

[Sutton and Barto, 1998] Sutton, R. S. and Barto,
A. G. (1998). Reinforcement learning: An intro-
duction. IEEE Trans. Neural Networks, 9(5):1054–
1054.

