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Abstract 

Progranulin (GRN) gene mutations are a major cause of frontotemporal dementia 

(FTD). Most mutations identified to date are null mutations, which are predicted to 

cause the pathology via haploinsufficiency. Decreased peripheral progranulin protein 

(PGRN) levels are associated with the presence of GRN null mutations and are 

accepted as reliable biomarkers. In this study, our aim was to test whether the 

presence of specific GRN splice site mutations (c.-8+2T>G and c.708+6_9del), could 

be predicted by peripheral mRNA or protein GRN levels, by studying affected and 

asymptomatic individuals from FTD families. We also tested four missense GRN 

variants to assess if altered GRN levels depended on the type of mutation. Our results 

confirmed a reduction in both mRNA and protein PGRN levels in the splice site 

mutation carriers, which is consistent with previous reports for null mutations. Our 

results also suggested that both decreased peripheral GRN mRNA and serum PGRN 

levels indicate the presence of pathogenic mutations in affected individuals, and 

identify the asymptomatic individuals at risk, without previous knowledge of genetic 

status. Both inferences suggest a potential use of peripheral GRN mRNA or serum 

PGRN levels as biomarkers for families with FTD.  

 

Keywords: Progranulin, ELISA, serum, splice site mutation, frontotemporal 

dementia 
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1. Introduction 

Progranulin protein (PGRN) encoded by the GRN gene, is a secreted growth factor 

precursor composed of 7.5 tandem repeats of highly conserved 12 cysteinyl granulin 

motifs. PGRN can be cleaved by elastase within the linker regions to generate 6kDa 

granulin pepdites [1]. Both PGRN and granulin peptides are widely expressed and 

have functions in development, wound repair, inflammation and tumorigenesis [1]. 

Mutations in GRN are a significant cause of frontotemporal dementia (FTD), 

accounting for 5-20% of familial and 1-5% of sporadic FTD patients [2] [3]. Currently 

in the Human Gene Mutation Database, 180 different GRN mutations have been listed 

and of these 147 are classified as pathogenic (HGMD; www.hgmd.org). Most of these 

alterations are frameshift, splice site [4] and nonsense mutations [5] however there 

have been reports of complete gene deletions [6]. All pathogenic mutations create null 

alleles and cause the loss of functional protein, resulting in haploinsufficiency, which 

can be measured in serum [7] [8] [9], plasma [4] [9] [10] [11] [12] and CSF [13] [14] 

presenting decreased protein levels. Not only null mutations, but missense variants, 

either non-pathogenic or with unclear pathogenicity, have also been reported. The 

clinical findings of FTD associated with GRN mutations are diverse and include 

behavioral changes (bvFTD), primary progressive aphasia (PPA), and movement 

disorders with extrapyramidal features such as parkinsonism and corticobasal 

syndrome. 

Here, we report molecular data on two Turkish families carrying GRN splice site 

mutations. One of these families presented a novel splice site mutation 

(NM_002087.2:c.-8+2T>G), the other family which we have previously reported 

[15], presented a known deletion also affecting a splice site 

(NM_002087.2:c.708+6_9del). In order to evaluate the effect of these splice site 

http://www.hgmd.org/
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mutations on the expression of GRN (both at the RNA and protein levels), we have 

compared the expression of GRN mRNA and serum PGRN between carrier and non-

carrier family members and controls. To assess whether any fluctuations in GRN 

RNA and protein levels were the consequence of the mutation type, we additionally 

studied 4 different missense variants. 

2. Materials and Methods 

2.1. Study Group 

Family ALZ-172 was found to carry the novel c.-8+2T>G mutation with six family 

members affected with FTD (Supplementary Figure-1). In our study, two 

asymptomatic carriers and one healthy non-carrier from family ALZ-172 were 

included in the evaluation of the GRN mRNA and serum PGRN levels. (Table-1). We 

recruited a total of eighteen individuals from Family DEM-35, in which the 

c.708+6_9del was identified (Supplementary Figure-2). From Family DEM-35, we 

included for molecular analysis two deletion-carriers affected with FTD, four 

asymptomatic deletion-carriers and twelve non-carrier first-degree relatives of the 

index patient (Table-1). 

Supplementary Text-1 provides detailed clinical description of both families 

We also included in this study three index patients previously reported as carriers of 

NM_002087.2:c.99C>A (p.Asp33Glu), c.229G>A (p.Val77Ile) and c.626C>T 

(p.Pro209Leu) missense variants [15]. Additionally, we studied four asymptomatic 

carriers of the missense NM_002087.2:c.415T>C, (p.Cys139Arg) variant [15] that we 

had previously identified in the proband of the respective family.  

The control group consisted of 20 non-related individuals with no family history of 

dementia and without any known GRN mutations. Written informed consent was 
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obtained from all participants and this study was approved by the ethical committee of 

the Istanbul University.  

Peripheral blood samples were drawn into PAXgene tubes, and total RNA was 

extracted using the PAXgene blood RNA kit (PreAnalytiX, Hombrechtikon, 

Switzerland) according to the manufacturer's instructions. Serum samples were 

isolated according to standard procedures and stored at -80 ̊C.  

2.2. In silico prediction analysis 

PolyPhen-2 [16], MutationTaster [17] and SIFT [18] in silico prediction programs 

were used to evaluate the effect of missense variants on protein function and 

structure. MaxEntScan [19] was used to predict the splicing effects. Variants were 

classified according to the American College of Medical Genetics and Genomics 

(ACMG) guidelines. 

2.3. Enzyme linked immunosorbent assay (ELISA)  

PGRN levels in the serum samples were determined using the Progranulin (human) 

ELISA Kit (Adipogen, Incheon, Korea) in duplicate with a 1:200 serum dilution 

according to manufacturer’s protocol.  

2.4. Quantitative polymerase chain reaction (qPCR)  

GRN gene expression levels were determined using Power SYBR Green PCR Master 

Mix (Applied Biosystems) on an Agilent Mx3000P qPCR System (Agilent 

Technologies, Santa Clara, CA, USA). Samples were run in triplicates and normalized 

against glyceraldehyde 3-phosphate dehydrogenase (GAPDH) mRNA levels. At least 

two separate qPCR experiments were performed for each sample. The relative 

expression of GRN was calculated using the ΔΔCt method.  

2.5. Statistical Analysis 
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The nonparametric Mann–Whitney U test was used to compare PGRN levels between 

two groups and the Kruskal–Wallis test for comparison of more than two groups. 

Correlations between age and serum PGRN levels were tested using Spearman’s rho. 

Results were considered statistically significant for p≤0.05. The receiver operating 

characteristics (ROC) curve analysis was used to determine the optimal cut-off value 

of serum PGRN levels in splice site mutation carriers. The diagnostic accuracy of 

PGRN levels was assessed from the area under the curve (AUC). Optimal cut-off 

value that yielded the highest Youden index [sensitivity + (specificity – 1)] was 

selected. All analyses were performed using SPSS Statistics 21.0 software (IBM 

Corp., Armonk, NY, USA).  

3. Results 

3.1. In silico predictions 

Based on MaxEntScan scores, the novel c.-8+2T>G variant was found to likely 

disturb normal splicing due to loss of a splice donor site. The other splice site 

mutation (c.708+6_9del) was predicted to decrease the splicing of exon 6 due to 

decreased 5’ donor site score (Supplementary Table-1). In silico predictions of 

pathogenicity of the missense variants were presented in Supplementary Table-1. 

3.2. Serum PGRN levels 

Serum samples were available for two asymptomatic individuals carrying the c.-

8+2T>G splice site substitution, and one non-carrier first-degree relative. The serum 

PGRN levels were 64 and 85.1 ng/mL in the asymptomatic carriers and 121 ng/mL in 

the non-carrier relative (Figure 1A). 

Serum PGRN levels were measured in two affected and four asymptomatic family 

members carrying the c.708+6_9del splice site deletion, and twelve non-carrier first-
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degree relatives (Supplementary Table-2). The serum PGRN levels in affected 

patients carrying the deletion were 23 and 41 ng/mL while, the median serum PGRN 

levels were 68.8 ng/mL (range 27.7-84.7 ng/mL, n: 4) in asymptomatic carriers and 

152.3 ng/mL (range 78.8-234.5 ng/mL, n: 12) in non-carrier relatives (Figure-1B). 

Due to the small number of carriers of the splice site mutations in each family, all 

splice site mutation carriers were combined in a single group in the statistical 

comparison of serum PGRN levels. In this analysis, the median serum PGRN levels in 

all splice site mutation carriers (median 66.4 ng/mL, range 23-85.1 ng/mL, n= 8) were 

significantly (p<0.001) lower than that of non-related controls (median 181.6 ng/mL, 

range 101.1-266 ng/mL, n=20). We then test whether decreased serum PGRN levels 

could be used to distinguish, asymptomatic splice site mutation carriers from controls. 

Asymptomatic carriers (median 68.8 ng/mL, range 27.7-85.1 ng/mL, n= 6) were 

found to have significantly (p<0.001) lower PGRN levels than controls.  

ROC curve analysis (Supplementary Figure-3) including all splice site mutation 

carriers and all non-carriers suggested that a cut-off chosen at 93.1ng/mL would 

predict null mutation carriers from controls and non-carriers with a sensitivity of 

100% and a specificity of 97% (area under the curve, 0.99 p<0.001). 

Figure-1 

In addition to the mentioned splice site mutations, the effect on serum PGRN levels of 

four additional missense variations was also evaluated in three index patients and four 

asymptomatic carriers. When considering all variant carriers separately, it was evident 

that asymptomatic/affected splice site mutation carriers had prominently low serum 

PGRN levels (Figure-2). Strikingly, the PGRN levels in p.Cys139Arg carriers were in 

the same range as that of individuals carrying splice site mutations (Figure-2), and the 
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median serum PGRN levels (median, 60.7 ng/mL, range 47.8-68.6 ng/mL, n= 4) were 

significantly lower than those found in controls (p=0.002). Serum PGRN levels in 

carriers of p.Val77Ile and p.Pro209Leu missense variants (114.8 ng/mL and 128.9 

ng/mL, respectively) were higher than the levels for carriers of splice site mutations 

and p.Cys139Arg. However, they were still lower than the range observed for controls 

(Figure-2). In the p.Asp33Glu carrier the serum PGRN levels (269.8 ng/mL) were 

prominently higher than the levels for carriers of splice site mutations and even for 

other missense variants. Interestingly, the serum PGRN levels in the p.Asp33Glu 

carrier were higher than those observed for controls, as well (Figure-2). When 

considering all pathogenic variant carriers (splice site mutations and p.Cys139Arg) 

together, the PGRN levels in carriers of pathogenic variants were found to be 

significantly (p=0.01) decreased compared to those of non-pathogenic variant carriers 

(p.Asp33Glu, p.Val77Ile, p.Pro209Leu).  

Figure-2 

3.3. GRN mRNA expression levels 

To see whether the significant lower serum PGRN protein levels were the 

consequence of decreased GRN mRNA expression, we analyzed GRN mRNA levels 

in splice site mutation carriers. We found that mRNA levels were significantly 

decreased (p=0.006) in splice site mutation carriers compared to controls (Figure-3).  

When we evaluated GRN mRNA levels in all carriers of missense variants, we found 

that mRNA levels were significantly decreased (p=0.025) compared to controls but no 

significant difference (p=1) was observed when compared with splice site mutation 

carriers (Figure-3). Considering the low serum PGRN levels in p.Cys139Arg carriers 

we statistically analyzed p.Cys139Arg carriers separately from other missense carriers 
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(p.Asp33Glu, p.Val77Ile and p.Pro209Leu) in terms of GRN mRNA levels. Our 

results showed that mRNA levels in p.Cys139Arg carriers were not significantly 

different (p=0.742) from splice site mutation carriers, but were significantly decreased 

(p=0.01) compared to controls. When the carrier of p.Asp33Glu was excluded, due to 

high serum level, and two other missense (p.Val77Ile and p.Pro209Leu) carriers were 

included in statistical analysis together with carrier of p.Cys139Arg, the difference 

still remained significant (p=0.002) when compared to controls. However we did not 

find any significant difference (p= 0.569) in GRN mRNA levels between pathogenic 

variant carriers (splice site mutations and p.Cys139Arg) and non-pathogenic variant 

carriers (p.Asp33Glu, p.Val77Ile, p.Pro209Leu).  

 

Figure-3 

Discussion 

Most GRN mutations identified to date are predicted to cause the pathology via a 

haploinsufficiency mechanism by creating premature stop codons, which in turn result 

in nonsense mediated decay (NMD). In GRN we have previously reported one splice 

site deletion and 4 missense variants in five different individuals. In this study, we 

have evaluated the effect of these variants in RNA expression and serum protein 

levels as well as of the novel c.-8+2T>G splice site substitution by performing mRNA 

quantification and measuring serum PGRN levels. 

The novel c.-8+2T>G variant is located in the splice donor site of intron 0 following 

non-coding exon 0 of GRN gene. Near the same region, there are two other mutations 

(c.-8+3A>T and c.-8+5G>C) that have previously been reported [3] [20] [21] [22]. Of 

these, the c.-8+5G>C mutation was identified in eleven Belgium families mainly 
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diagnosed with FTD [3] [21] [22] and is known to prevent splicing of intron 0, 

leading to degradation of the mutant transcript and complete loss of its translation [3]. 

The novel c.-8+2T>G variant we studied here was found to likely disturb normal 

splicing due to loss of splice donor site, according to in silico analysis. In our study, 

we recruited two asymptomatic c.-8+2T>G carriers belonging to the same family with 

multiple affected family members. We have found that the serum PGRN and mRNA 

levels in asymptomatic individuals carrying the c.-8+2T>G variant were reduced 

compared to controls. We were not able to measure protein and mRNA levels in 

affected individuals, because their serum and RNA samples were not available.  

The other splice site mutation (c.708+6_9del) studied here, is located within a repeat 

sequence (TGAGTGAG) next to the splice donor site of GRN intron 6. In silico 

analysis predicted that this deletion could decrease the splicing of exon 6 due to 

decreased 5’ donor site score. Apart from us, two other studies have identified similar 

deletions in the same repeat sequence in different positions [23] [24] [25]. In their 

study Skoglund and colleagues (2011), reported that the deletion causes alteration in 

the splicing pattern and generates aberrant transcripts with premature stop codon, 

which are most probably degraded by NMD. We showed here that serum PGRN 

levels were reduced in affected patients and asymptomatic individuals carrying the 

c.708+6_9del. In addition to decreased serum PGRN level, we have found that GRN 

mRNA levels were also decreased in deletion carriers when compared with controls. 

Our findings are consistent with the other two studies that showed reduction in GRN 

brain mRNA levels in patients carrying the deletion [23] [24]. This decrease was 

modest both in our and in previous studies. However, this decrease may reflect the 

expected haploinsufficiency, even if not at the expected 50% reduction of the normal 

level, as seen in most GRN mutations. Interestingly, the decreased CSF amyloid levels 
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found in the index patient of this family suggest the co-occurrence of β amyloid 

pathology. A recent study by Tan et al showed Aβ deposition in 43% of FTD cases 

with GRN mutations but in none of the cases with MAPT mutations [26].  FTD 

patients may have coexisting amyloid pathology suggesting a potential role of these 

mutations in the increase of the risk of amyloid accumulation in these patients [27].  

All carriers of c.708+6_9del in Family DEM-35, are known to also have a novel 

nonsense variant (NM_001123066.3:c.262C>T, p.Gln88*) in the alternatively spliced 

exon 3 of the Microtubule-associated protein tau (MAPT) gene. In our study, we were 

not able to determine if the presence of MAPT p.Gln88* had any effects on serum 

PGRN levels, because there were no affected individuals carrying only one of the 

variants in the family. However, MAPT p.Gln88* is not expected to be pathogenic 

since the vast majority of reported pathogenic mutations in MAPT coding region are 

missense, deletion and silent type variants affecting the interaction of tau with 

microtubules. 

More details associated with this variant can be found in supplementary material. 

In our study, a cut-off value chosen at 93.1ng/mL reliably distinguished studied GRN 

splice site mutation carriers from controls and non-carriers. This threshold value is in 

line with that previously published by Sleegers et al. [7] that established a serum 

PGRN cut-off level of 94ng/mL to predict GRN null mutations but is higher than 

more recently proposed plasma or serum cut-off values [4] [8] [11] [12]. The 

discrepancies between our cut-off value and the values of previous studies may have 

arisen from inter-laboratory variability associated with the ELISA methods. 

Additionally, cut-off values are expected to show differences depending on the use of 

different biological sample (serum vs plasma). Almeida et al showed that there was a 

difference between serum and plasma cut-off values with 8.7% lower values for 
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plasma [9]. Also these authors determined that mean serum PGRN levels can change 

depending on the ELISA kit used. It is also important to establish a specific cut-offs 

for specific methodologies and specific laboratories. As we used the recently 

established cut-off of 61ng/mL, our asymptomatic splice site mutation carriers could 

not be distinguished. Given that there were only eight GRN splice site mutation 

carriers in our study, more mutation carriers will need to be assessed to more 

precisely determine the optimal cut-off value. 

When considering the two splice site mutations, our results suggest that the 

measurement of serum PGRN levels may identify asymptomatic individuals at risk 

for the development of FTD, even without any knowledge of the underlying GRN 

mutation. As only two affected mutation carriers were available to our study, we were 

not able to test correlation between serum PGRN levels and age of disease onset. 

When we evaluated missense mutation carriers, the serum PGRN level for the benign 

p.Asp33Glu carrier was higher than for splice site mutation and other missense 

carriers, as expected. Interestingly the serum levels of the p.Asp33Glu carrier were 

higher even than the levels observed for controls, suggesting that other factors 

affecting serum PGRN levels in this patient. Also, we observed a significant reduction 

both in protein and RNA levels in p.Cys139Arg carriers. The p.Cys139Arg variant 

had been previously reported by us and by other studies [10] [28] [29].  Based on in 

silico predictions, p.Cys139Arg was predicted to be likely pathogenic because it 

disrupts one of the cysteine disulfide bridges in granulin domain F, responsible for the 

typical folding of the protein [28]. In our previous study, we identified this variant in 

a female patient diagnosed with FTD. Unfortunately, serum and mRNA samples of 

this index patient were not available, therefore it was not possible to include her in 

this study. We have however, included four of her asymptomatic first degree relatives 
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carrying this variant. We observed significantly lower serum PGRN levels in 

asymptomatic p.Cys139Arg carriers when compared to healthy controls. Our findings 

were consistent with previous studies that reported low serum/plasma PGRN levels in 

carriers of p.Cys139Arg [10] [30]. This finding can possibly be explained by 

decreased PGRN activity and/or GRN production due to altered full-length PGRN 

function and abnormal cleavage of PGRN into granulins [31]. Though mRNA levels 

are generally not expected to be affected in carriers of missense mutations, in 

p.Cys139Arg carriers, unexpectedly, we observed significantly lower RNA levels. 

Though this decrease seems to be difficult to explain through known mechanisms, it 

is possible that decreased GRN mRNA levels resulted independently from the 

mutation, as reported in a previous study, where patients without any GRN mutation 

were shown to display decreased peripheral GRN mRNA levels [32]. The levels of 

serum PGRN observed for carriers of other missense variants (p.Val77Ile and 

p.Pro209Leu) seem to be in between those observed for carriers of pathogenic 

variants (splice site mutations and p.Cys139Arg missense variant) and controls. This 

may suggest that a deregulation of PGRN can occur also in carriers of missense 

variants and that these variants can play a role in the disease as genetic modifiers or 

risk factors. Therefore, the significance of lower peripheral GRN mRNA and PGRN 

levels in missense mutation carriers needs to be further investigated in larger samples 

and including different variants. Also, decreased PGRN levels in carriers of 

pathogenic variants compared to carriers of non-pathogenic variants as shown in our 

results, may suggest that screening PGRN levels rather than mRNA levels could be 

more informative to discriminate pathogenic from non-pathogenic GRN variants. 

We can summarize our key findings as follows: 
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1) So far, it was known that GRN mRNA levels of affected c.708+6_9del carriers 

were decreased in brain tissue. In this study we have shown for the first time that 

GRN mRNA levels of c.708+6_9del carriers are decreased in peripheral blood, as 

well. 

2) In this study, the c.-8+2T>G and c.708+6_9del splice site mutations were shown 

for the first time to be associated with lower serum PGRN levels in both 

asymptomatic and affected mutation carriers. 

3) In spite of the limited number of subjects, our results can support the potential use 

of serum PGRN levels as an easy-to-apply biomarker to predict the presence of GRN 

mutations in asymptomatic individuals at risk and/or affected individuals. However, 

because of its novel findings, our results need to be further replicated in larger study 

groups carrying these mutations. 
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Table-1. Descriptive characteristics of patients and families according to GRN variant type 

                                                                                                                                                                                                                                                                                                             

Values are expressed as mean±SD and percentages. Abbreviations: AD: Alzheimer Disease, F: Female, FTD: Frontotemporal dementia, M: Male, P: polymorphism, PCA: Posterior Cortical 

Atrophy. 

 

 

 

Patients/Family  
 

Variant Sex (F/M) Age Age of onset Clinical Status Diagnosis 

Family ALZ-172 (n=3) c.-8+2T>G 2/1 55.3±2.1 - 
Asymptomatic carriers (n=2) - 

Non-affected (n=1) - 

Family DEM-35 (n=18) c.708+6_9del 10/8 37.6±17.4 47.5±4.9 

Affected (n= 2) FTD 

Asymptomatic carriers (n=4)  

Non-affected (n=12)  

Family FTD-16 (n=4) p.Cys139Arg 2/2 44.75±8.7 - Asymptomatic carriers (n=4) - 

ALZ-132 p.Pro209Leu 0/1 51 45 Affected PCA 

ALZ-35 p.Val77Ile 0/1 64 50 Affected AD 

ALZ-42 p.Asp33Glu 0/1 80 76 Affected AD 

Controls (n=20)  12/8 49.9±17.1 - Non-affected - 
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Figure-1. Serum PGRN levels. (A) asymptomatic carriers of c.-8+2T>G, non-carrier 

and controls, (B) asymptomatic and affected family members with the 

c.708+6_+9delTGAG deletion, non-carrier family members and controls 
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Figure-2. Serum PGRN levels for individual variant carriers relative to median control 

levels. Circles represent pathogenic and likely pathogenic mutations, squares represent 

missense variants with uncertain significance and crosses represent benign and likely 

benign missense variants. Black straight line indicates the median for serum PGRN 

levels of controls with the 25th and 75th percentiles indicated by the dotted black lines.  
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Figure-3. GRN mRNA expression levels in controls, splice site mutation and missense 

variation carriers. The outlier value in missense variation carriers belongs to p.Asp33Glu 

carrier.   
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Supplementary Text-1 

Clinical description of families carrying GRN splice site variants  

GRN c.-8+2T>G (Family ALZ-172) 

The proband (Supplementary Figure-1, Patient II-9), 52-year-old-age female, admitted 

to the neurology outpatient clinic with migraine type headache attacks. She was also 

seeking genetic counseling because of her family history including several dementia and 

headache patients. She had no cognitive complaints and her neurological examination 

and neurophysiological evaluation were normal. There were no pathological findings in 

the MRI of the brain. There was no reported consanguinity between her parents but both 

were from same small-sized village. Her mother had a history of young-onset dementia 

with an onset age of 61 and she died at 69 years. She had a history of migraine type 

headaches in her early life. The proband had eight siblings, three brothers and five 

sisters. The oldest brother (Supplementary Figure-1, Patient II-1) died of progressive 

dementia presenting with language problems and behavioural disturbances at the age of 

71. First symptoms appeared when he was 68 and he became bedridden and died in the 

third year of the disease. He also had a history of migraine type headaches in his youth. 

Sister II-2 (Supplementary Figure-1) also had young-onset dementia with an onset age 

of 57. Presenting symptoms were behavioural problems and language deficits and she 

died after she became bedridden at 62 years. She was also suffering from migraine type 

headaches in her youth. Sister II-3 (Supplementary Figure-1) is 69 years old and still 

alive, and she has dementia presenting with speech problems and behavioural changes 

with onset at 66 years. She was also suffering from migraine type headaches at her 

younger ages. Brother II-4 (Supplementary Figure-1) is 66 years old and still alive and 

has had dementia for 8 years presenting with speech disturbances and behavioural 

problems in addition to asymmetrical parkinsonism. Migraine type headache was also in 
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his past medical history. Sister II-6 (Supplementary Figure-1) is 61 years old and living 

with dementia which presented with speech problems and severe apathy when she was 

56. There was asymmetrical parkinsonism in her neurological examination. She has no 

history of migraine type headache and her elementary school performance was reported 

to be below average. Sister II-7 (Supplementary Figure-1) is a 56 years old woman 

suffering infrequent migraine type headaches. Family members stated that her school 

performance was also below average and that she had mental retardation (IQ was 71).  

Brother II-8 (Supplementary Figure-1) is 54 years old and has mild behavioral 

disturbances for 3 years. He became more stubborn and hasty. His neurological 

examination was normal. Neurophysiological evaluation revealed signs of dysexecutive 

syndrome. Cranial MRI showed atrophy of the brain in the left frontoparietal areas with 

asymmetric enlargement of the lateral ventricles and left sylvian fissure. 

GRN c.708+6_9del (Family DEM-35) 

The index patient (Supplementary Figure-2, Patient V-18) was admitted to our 

neurology department with speech problems and mild behavioral changes when he was 

44. In his first neurological evaluation there was rigidity and bradykinesia 

predominantly in his right extremity. MMSE score was 21 and neurophysiological 

evaluation revealed non-fluent aphasia and dysexecutive syndrome. MRI of the brain 

showed atrophy mainly in the left frontoparietal areas and there was asymmetrical 

enlargement of the lateral ventricles and left sylvian fissure. Atrophy of the brain 

progressed over time and left hippocampus became atrophic in the MRI study performed 

when he was 47 years old. Positron emission tomography revealed hypometabolism in 

the left frontal, temporal, basal ganglia and thalamus. Amyloid beta42 levels were below 

the normal range (364pg/ml) and total tau levels were 196pg/ml in cerebrospinal fluid.  

His symptoms progressed over time, there was no L-dopa response and he became mute 
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and wheelchair bound when he was 47. He died due to aspiration pneumonia when he 

was 50 and totally bedridden. The sister (Supplementary Figure-2, Patient V-14) of the 

index patient developed a progressive non-fluent aphasia when she was 51 years old. In 

her first neurological evaluation there was no parkinsonism and her MMSE score was 

25. Over time behavioral disturbances including disinhibition, excessive shopping, loss 

of empathy, stereotypic movements and apathy added to the clinical picture and her 

symptoms progressed over time. She developed an L-Dopa unresponsive parkinsonism 

and became mute and bedridden when she was 58 years old. MRI and PET studies of the 

brain conducted two years after the presentation of the first symptoms showed atrophy 

and hypometabolism in the left insula, prefrontal and temporal areas. 

Supplementary Text -2 

Details of MAPT p.Gln88* variant 

Exome sequencing of index case from Family DEM-35 revealed a novel variant 

(NM_001123066.3:c.262C>T, p.Gln88*) in the alternatively spliced exon 3 of the 

Microtubule-associated protein tau (MAPT) gene. In Family DEM-35 segregation 

analysis (n=17) revealed that all carriers of c.708+6_9del were also carrying the 

p.Gln88* variant and c.708+6_9del non-carriers did not harbor the p.Gln88* variant. 

This novel variant is located in the projection domain of the protein that mediates the 

interaction of tau with the neural plasma membrane [1]. Pathogenic MAPT mutations are 

clustered in exons 9–13 encoding the microtubule binding domains (that mediate 

interaction of Tau with microtubules). So far no pathogenic mutations have been 

reported in the alternatively spliced exons 2 or 3. Co-occurrence of GRN mutations with 

MAPT variants have been previously reported [2] [3]. In the study of Moreno et al., it 

has been found that the MAPT p.Ala152Thr variant co-segregated with the GRN c.709-

1G>A mutation. Even though the p.A152T variant presented a limited influence on 
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clinical phenotype in symptomatic c.709-1G>A GRN carriers, decreased serum PGRN 

levels in c.709-1G>A carriers were shown to be independent of the presence of MAPT 

p.Ala152Thr variant. In our study, however, we were not able to determine if the MAPT 

p.Gln88* had any effects in the clinical features of GRN c.708+6_9del- carriers, because 

there were no affected individuals carrying only one of the variants in the family. Co-

segregation of this variant with the GRN c.708+6_9del could be explained by the close 

proximity (1.7Mb) of MAPT and GRN genes at Chromosome 17. 
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Supplementary Table-1 

In silico analysis of pathogenicity of the studied variants 

 

*In silico prediction programs (PolyPhen-2, SIFT, MutationTaster, respectively) were used to evaluate the effect of 

nonsynonymous variants on protein function and structure. ** MaxEntScan was used to predict the splicing effect. 

Abbreviations: ACMG: American College of Medical Genetics and Genomics, B: benign, D: damaging, DC: disease 

causing, P: polymorphism, PrD: probably damaging, T: tolerated 

 

 

 

 

 

 

 

 

 

 

 

 

 

Variant Effect 
In silico pathogenicity 

prediction* 
ACMG Classification 

c.-8+2T>G splice site donor Loss of  donor splice site** Pathogenic 

c.708+6_9del splice site donor 
Weakens normal 
donor splice site** 

 
Pathogenic 

p.Cys139Arg 
non 

synonymous_coding 
PrD/D/DC Likely pathogenic 

p.Pro209Leu 
non 

synonymous_coding 
PrD/T/DC Uncertain significance 

p.Val77Ile 
non 

synonymous_coding 
B/T/P Benign 

p.Asp33Glu 
non 

synonymous_coding 
B/T/P Likely benign 
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Supplementary Table-2 

Individual characteristics, results of the genetic status, and serum PGRN levels in family 

DEM-35 

 

Patient ID Gender Affection 

status 

 

Age at 

examination 

 

MMSE 

score 

 

Serum 

PGRN level 

(ng/ml) 

 

GRN 

c.708+6_9del 

mutation  

Patient III-4 M non affected 78 na 202,4 no 

Patient V-11 M non affected 60 30 234,5 no 

Patient V-14 F affected 56  41 yes 

Patient V-16 F asymptomatic 52 30 68,8 yes 

Patient V-18 M affected 46  23 yes 

Patient VI-8 M non affected 34 30 116,3 No 

Patient VII-2 M non affected 15 na 230,3 No 

Patient V-6 F non affected 44 30 129,8 No 

Patient V-1 F non affected 49 30 156,2 No 

Patient V-7 F non affected 32 na 79 No 

Patient VI-6 F non affected 40 30 183,2 No 

Patient VI-1 F Asymptomatic

- Mental 

retardation 

21 15 68,7 Yes 

Patient VI-2 M asymptomatic 9 30 84,7 Yes 

Patient VI-3 F asymptomatic 29 30 27,7 Yes 

Patient VI-4 F non affected 27 30 190 No 

Patient VI-5 F non affected 19 30 127,2 No 

Patient VI-10 M non affected 34 30 148,4 No 

Patient VI-9 M non affected 32 30 104,6 No 
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Supplementary Figure-1 

ALZ-172 family pedigree 

 

 

 

The arrow indicates the proband. Black filled symbols: affected patients; white symbols: 

unaffected family members. M: c.-8+2T>G carrier, N: c.-8+2T>G non-carrier 
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Supplementary Figure-2 

 

DEM-35 family pedigree 

 

 

The arrow indicates the proband. Black filled symbols: affected patients; grey symbol: 

patient with mental retardation; white symbols: unaffected family members. M: 

c.708+6_9del carrier, N: c.708+6_9del non-carrier 
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Supplementary Figure-3 

The receiver operating characteristics (ROC) curve 

 

The ROC curve was generated using data from 8 splice site mutation carriers and 33 

non-carriers. The area under the curve (AUC) was determined with a 95% confidence 

interval and was 0.992 (p<0.001). The diagonal line represents a reference line showing 

zero sensitivity and zero specificity. Results were statistically significant (p < 0.05), 

(null hypothesis: Area = 0.5) 

a. Under the non-parametric assumption 
b. Null hypothesis: true area=0.5 
 

 

Area under curve (AUC) Serum PGRN 

Area  0.992 

Standart Errora 0.010 

95%CI 0.973-1.000 

p-valueb <0.001 

Sensitivity 100.00 

Specificity 97.00 


