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Are adolescents with constipation more likely to suffer psychological maladjustment?1 

What percentage of Chiari I-type headaches show improvement after foramen magnum 

decompression (FMD)?2 

Does BCG vaccination reduce early childhood hospitalisation in Denmark?3 

Is diagnosis of coeliac disease associated with differences in adolescent anthropometry?4 

Does visual feedback affect the rate of chest compressions?5 

 

These are all questions asked in recent issues of this journal. In each case the authors collated 

information from a sample of individuals to yield an answer to their question. Differing study 

types were used ranging from observational audits and surveys through to randomised parallel 

and crossover trials. The study designs, participants, settings, sample sizes and key statistics 

are summarised in table 1. 

Table 1: Description of the five studies 
 

Study Design Participants Setting Sample size Key statistics  

1 Cross-sectional 
survey 

13-18 year olds 5 schools 1697  
(114 constipated) 

33.3% of constipated and 14.5% of 
non-constipated had 
maladjustment:  
OR 2.94 (1.95, 4.45) 

2 Retrospective 
review of audit 
database/ Before-
after study 

Chiari I-type 
headache cases  
having FMD 

Tertiary 
hospital 

39 80% showed improvement post 
FMD 

3 Randomised 
controlled trial 

Newborn 
babies 

3 Danish 
hospitals 

4262 children  
(2129 BCG,  
2133 controls) 

1047 hospitalisations BCG group vs 
1003 controls. HR 1.05 (0.93, 1.18) 

4 General health 
examination 
database 

17 yr old Israeli 
jews  

Eligibility 
assessmen
t for 
military 
service 

2,001,353 
adolescents;  
(10,566 with Coeliac 
Disease (CD)) 

Boys with CD had lower BMI 
(average 21.2 vs 21.7) 
CD girls were shorter (161.5 vs 
162.1 cm on average) 

5 Randomised 
crossover trial 

Hospital staff Tertiary 
hospital 

50 pairs of 
measurements – 
with and without 
visual feedback 

Rate  of chest compressions was 
lower and less variable in those 
receiving feedback 
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Despite these differences, the same basic principle is followed for each. A sample of the 

relevant group of individuals is identified and from observing what happens to this sample, 

inferences are made about the wider population. The inferences may be beneficial to similar 

individuals and those involved in their care. For example, clinicians trying to determine 

whether to perform FMD2 or parents considering the pros and cons of BCG vaccination. 3 

How well a question is answered by the study depends on how large a sample was studied in 

conjunction with other factors such as the variability of the measurements and/or event rates. 

Both researchers and patients intuitively understand that findings based on a larger sample are 

likely to be more accurate, and will have more confidence in results based on a randomised 

trial of 1,000 individuals than if only 10 patients had been recruited. What is less intuitive is 

that if a treatment is not shown to be effective in a small sample, it may still have benefits. 

Similarly, we are generally less inclined to also apply such intuitive logic to observational 

descriptive studies.  

This article will explain the rationale behind consideration of sample size for all types of 

research study, wherever data is collated to address a proposed research question. 

 

Making statements based on the available sample 

 

To explore these concepts further, consider the Chiari I-type headache study2. Here 32/39 of 

individuals showed improvement post FMD, which gives a sample estimate of 82.1% 

improvement rate. A 95% confidence interval for the rate is (67, 91%), which means that we 

are 95% confident that at least 67% of the population (in this case, Chiari I-type headache 

sufferers) will improve. If we wanted a more accurate estimate, then a larger sample size would 

give this. For example, suppose 1000 had been assessed and of these 821 had improved, then 

this would still be a rate of 82.1%, but the 95% confidence interval would now be (80, 84%), 

and we would therefore be 95% confident that at least 80% would improve. 

The data that we have is compatible with population estimates anywhere within the 95% 

confidence interval at the 5% significance level. Any hypothesised population estimate that we 

test against outside that interval will yield a p-value < 0.05 indicating a statistically significant 

difference and non-compatibility. There is a conceptual distinction between significance tests, 

which determine compatibility with a pre-specified hypothesised value, and confidence 

intervals, which have no prior hypothesis and seek only to identify a range of compatibility. 

For some study types one approach may be favoured over the other. Significance tests are 

generally considered when presenting the results of a randomised trial, whereas an 

observational study may omit this approach entirely depending on the precise research 

question.For example, suppose that prior to the study the authors ascertained that improvement 

in at least 75% of patients would warrant routine use of FMD. When testing against a 

hypothesised value of 75%, the sample of 39 would have yielded a p-value >0.05, a non-

significant difference, indicating compatibility with 75% (as also shown by the confidence 

interval which contains this value). For the sample of 1000 (where the 95% confidence interval 

does not contain 75%), a significant result would be obtained (p<0.05), indicating non-

compatibility. 



This example illustrates the correspondences in interpretation between p-values and confidence 

intervals. Larger samples lead to narrower confidence intervals as they enable more population 

scenarios to be excluded. Note that if interest lies on the difference between two groups, for 

example the heights of 17 year olds with and without coeliac disease, then the hypothesised 

population value will be zero (ie. no difference in average height between the two groups). The 

confidence interval will be for the difference in means (or percentages) between the two groups. 

If this interval excludes zero then the difference is statistically significant. 

 

What do power calculations have to do with this? 

 

Studies don’t always give a definitive, or even very useful, answer to the research question 

posed. For example, if the aim of the headache study had been to determine whether the 

improvement rate was at least 75%, then the sample of 39 would not have been sufficient. Even 

though performing the significance test gives a non-significant p-value >0.05, this does not 

necessarily mean that the improvement rate is lower than 75%. The 95% confidence interval 

(67, 91%) shows that the data are in fact compatible with an improvement rate as high as 91% 

(as well as values below 75%). We still don’t know whether FMD yields the necessary 

improvement rate to warrant usage as the answer given from the available sample is too 

imprecise. If a larger sample had been studied then the results would have been more 

conclusive. 

Before starting a study a decision needs to be made as to whether it is feasible to collect a 

sufficiently sized sample to address the research question within a plausible time frame. Power 

calculations can tell us how many subjects are needed to obtain a significant p-value if there is 

a difference of a given size from the hypothesised value (75% in example above). Alternatively, 

power calculations can give the number needed to estimate a specified size of estimate (again 

75% in above example) with given precision.  

 

Finding the right number 

 

There are formulae, that are known as power calculations, which can be used to identify how 

many need to be sampled to make the estimates sufficiently precise and/or statistical 

significance likely. 

These formulae can readily be identified in appropriate statistics textbooks and articles,6-13 or 

via the many online calculators available, identified by a simple google search. Hence in theory 

this is a relatively easy process – locate a formula or online calculator, plug in a few values and 

get a number of individuals/items/things that you should collect information on to answer your 

specified research question. However, there are decisions to make as to which formula and/or 

online calculator to use, what values to plug into this and how to properly interpret the number 

that magically comes out. The aim of this short paper is to guide the reader through some 

calculations so that they are better equipped to address these issues. Formulae are given and 



these relate to those found on our online calculators webpage.14 

(http://tinyurl.com/samplesizeCASC ). 

 

Using a formula/online calculator 

There are two types of sample size formulae. The first of these is aligned with significance 

testing and providing p-values, the second is akin to confidence intervals. Although within the 

results you will probably present both of these, you need only do one type of sample size 

calculation. It depends on whether the emphasis in your study is on detecting a difference, or 

on estimating parameters with sufficient precision.  

In this paper, both types of formulae are presented for both binary and numeric outcomes. A 

binary outcome is one which takes one of two values. For example, the headache study had a 

binary outcome - headaches either improved or not and the study was interested to identify the 

percentage who improved3. By contrast, a numeric outcome is usually summarised by the mean 

of the values. For example, the average of the changes in rates of chest compressions for a 

clinician using two feedback methods.5 

Often the population parameter being estimated is the difference between two distinct groups 

of patients (with and without disease; treated vs control).  In this case it is the difference in 

percentages or means between groups for binary and numeric outcomes respectively that is of 

interest. The difference may be between distinct groups of individuals, for example the 

percentage difference between those with and without constipation1, or the difference in mean 

BMI between boys with Coeliac disease or not4. Alternatively, measurements may be paired, 

within individual or by taking matched pairs of individuals, and these differences summarised, 

for example the rate of chest compression when the same clinician uses visual feedback or not.5 

Formulae are shown for these scenarios.  

Only formulae for binary outcomes and means are given in this paper. Whilst these are the 

most commonly used and widely applicable examples of power calculations, it should be noted 

that formulae exist for many other scenarios, such as non-normal data, hazard ratios, odds ratios 

and/or hierarchical data. The principles of these formulae are similar although they relate to 

more complex situations, and are hence beyond the scope of this paper.  

 

Terms to understand 

If the outcome is numeric, then an estimate will be needed of the variability of the 

measurements. This is expressed as the standard deviation (sd). Larger values of the sd indicate 

greater variation.  

With a numeric outcome, we can express the difference we would like to detect as a 

standardised difference (sdiff), which is the difference divided by the sd. For example, if the 

sd of the change in rates of chest compression using two methods is 13, a difference of 8 will 

be equivalent to a sdiff of 0.6 (8/13).  

Power is the ability of a study to detect a difference if it exists, and is usually set at 80, 90 or 

95%. A power of 80% means that if the difference exists there is an 80% chance that this study 

will identify it. Hence there is a one in 5 (20% = 100-80%) chance of not identifying the 

http://tinyurl.com/samplesizeCASC


difference, so although a power of 80% is often used (and will require smaller numbers), it is 

generally better to have a higher power.  

Significance level is usually set at 5%. This is the chance of falsely declaring a difference when 

the population value is actually as hypothesised. 

Precision is a measure of how closely we would to estimate the true value. The width of the 

confidence interval is synonymous with precision. When using the confidence interval based 

formulae, the precision needs to be expressed in the same terms as the outcome (percentage or 

mean range) and is defined, in the formulae presented here (and associated weblink given 

above) as half the width of the resultant confidence interval. For example, to estimate the 

difference in average height of coeliac and non-coeliac 17 year olds to within ± 0.1, the 

precision is entered as 0.1 and we expect to obtain a confidence interval of width 0.2 

 

Some power calculations  

Some commonly used formula are presented here with examples. As explained above, the 

appropriate formula depends on whether it is a difference that is to be detected or a precision 

attained, and whether the outcome is numeric or categoric. The formulae are organised 

accordingly. 

 

Detecting a difference 

 

1) Numeric outcomes 

 

To detect a specified difference sdiff with 90% power between two groups at the 5% 

significance level requires 
𝟐𝟏

𝒔𝒅𝒊𝒇𝒇𝟐
  in each group. 

Reduce this number by a quarter for 80% power and add a quarter for 95% power. 

 

For example, the sd of heights of 17 year olds is known to be about 10cm and a study aims to 

detect a difference in average height of coeliac and non-coeliac 17 year olds of 0.5 cm or more. 

This is a sdiff of 0.5/10 = 0.05.  

The sample size required to do this is 
21

0.052
= 8400 per group ie. a total of 16,800 17 year olds, 

half of whom have coeliac disease. 

To detect the same difference with 80% power, would require 6300 per group (8400 x 0.75). 

For 95% power, the numbers per group need to be increased to 10,500 (8400 x 1.25).  

 

 



Paired data 

If there are pairs of observations and it is the mean difference between pairs that is to be 

compared to an average of zero (implying no difference), then half the sample size given above 

is the number of paired observations that need to be made. Note that the sdiff must be based on 

the sd of the within pair differences, which will be different to the sd within each group as the 

pairing removes variation due to differences between groups (such as differences in age, sex, 

diet, exercise level, disease status).  

For example, with the rate of chest compressions crossover trial, patients are measured using 

different methods but it is the difference that is of interest ie. each individual contributes one 

difference to the dataset despite having 2 measures made. To detect a difference between 

methods of 0.4 sdiff with 90% power at the 5% significance level will require 
10.5

0.42
= 66 

clinicians to make paired measurements. To detect the difference with 80% or 95% power 

requires 50 and 83 clinicians respectively.  

 

2) Binary outcomes 

 

The percentages in each group with the outcome are to be compared. If these are %1 and %2, 

then this difference can be detected with 90% power at the 5% significance level if the 

following number are assessed in each group: 

𝟏𝟎. 𝟓{%𝟏(𝟏𝟎𝟎 − %𝟏) + %𝟐(𝟏𝟎𝟎 − %𝟐)}

(%𝟏 − %𝟐)𝟐
 

As before, this number reduces by a quarter for 80% and increases by a quarter for 95% power. 

 

For example: 

i) The randomised trial of BCG vaccination aimed to detect a fall in the hospitalisation 

rate of 20% to 16% or lower. For 90% power, 5% significance, this requires: 

 
10.5{20(100−20)+16(100−16)}

(20−16)2
=

10.5(1600+1344)

42
 = 1932 per group,  

a total of 3864 randomised to 2 equal sized groups (BCG vaccinated or not). 

ii) Assuming 15% of normal children and 25% of children with constipation have 

psychological maladjustment, this difference can be identified with 90% power at the 5% 

significance level with two groups of 331 children (
10.5{25(100−25)+15(100−15)}

(25−15)2 =

10.5(1875+1275)

100
= 331). For 80% power the sample could be reduced to 249 per group. 

 

 

Notice that the above two examples relate to quite different study forms, a RCT and an 

observational study, yet the sample size formula required is the same. The formula required 

depends on the outcome (in this case difference in percentages in two groups) and the power 

and significance required. 



 

 

Being sufficiently precise 

Divide the quantity stated by the precision required squared (ie. precision2) to give the sample 

size required to estimate with 95% confidence.  

 

1) Numeric outcomes 

 

8sd2  per group 

 

For example, to estimate the difference in average height between coeliac and non-coeliac 17 

year olds to within ± 1cm ( precision = 1), assuming a sd of 10 cm, will require 
8 𝑥 102

12
= 800 

per group, total 1600. 

 

For a more precise estimate within ± 0.5 cm, requires a larger sample of  
8 𝑥 102

0.52 = 3200 per 

group, total 6400. 

 

Paired data 

For paired measurements, the number of pairs required is half of the sample size per group as 

given above (ie. 4sd2  paired measurements).  

For example, to estimate the average difference between rates of compression using 2 methods 

to within ± 4, where the sd of the within pair differences is 13, requires 
4 𝑥 132

42 = 43 clinicians 

making paired assessments. 

 

2) Binary outcomes  

To estimate a single percentage ( %1 ): 4 %1 (100 - %1) 

For example, if 80% of patients with Chiari I-type headaches improve then this can be 

estimated to within ± 8% with 95% confidence using a sample of 
4𝑥80(100−80)

82
=

320 𝑥 20 

64
=

100 patients.  

 

To estimate a difference in percentages (%1, %2) : 4 {%1 (100 - %1)+ %2 (100 - %2)} 

For example, to estimate a fall in percentages hospitalised when given BCG vaccination from 

20% to 16% with a precision of 2.5% (ie. confidence interval width 5%) would require a sample 

of 
4 𝑥 (20.80+16.84)

2.52 =
11776

6.25
= 1885 per group, a total of 3770 children. 

 

 



Unequal groups   

 

Sometimes when two groups are to be compared it is not anticipated that they will be of equal 

size. For example, in the study to compare psychological maladjustment rates between 

adolescents with and without constipation, this was a survey across schools and the numbers 

in the two groups would not be expected to be equal.  

An imbalance can be adjusted for by increasing the overall sample size.7 If the above formulae 

estimate that n per group is required assuming equal sized groups, this is a total sample of 2n. 

To account for an imbalance between groups of k:1, the total sample size will need to be 

increased to 
𝒏(𝟏+𝒌)𝟐

𝟐𝒌
 

For example, in the constipation study it was anticipated that about 10% of the children would 

have constipation. This is an imbalance of 9:1 ie. for every 9 that are healthy, there will be 1 

who is constipated and hence k=9. 

The previous formula showed that 249 per group were required to detect a difference of 10% 

in psychological maladjustment (15% and 25% per group) with 80% power and 5% 

significance. This is a total sample of 598. To adjust for the smaller numbers of constipated 

children, the sample needs to be increased to 
249 𝑥 (1+9)2

2 𝑥 9
=

24900

18
= 1384, which will consist 

of 138 with constipation (10%) and 1246 without. 

 

Some points to note 

 

Each of the formulae requires estimation of some quantities, for example the sd of the measures 

or the percentages in each group. This may appear nonsensical. For example, if we knew the 

percentages of BCG vaccinated and non-vaccinated who were hospitalised (to put into the 

formula), we would not be doing a study to estimate the percentage difference between the 

groups! 

Sample size estimation is not a precise art. It can give guidance and ball-park figures, but if all 

information for exact calculation were available we would not need to do the study.  

This does not mean that sample size calculation is not worth doing. It is important to ensure 

that a study is likely to have a reasonable chance of yielding useful information. It is unlikely 

that we would have no idea of the likely range of estimates required and these can be used to 

inform calculation.  

The size of difference to be detected, sdiff or the difference in percentages, should be informed 

by an understanding of the minimal clinically important difference.  It is important that all 

estimates are clinically plausible and suitably justified, with estimation never determined with 

reference to the available or preferred sample size.  

In the above calculations, the formulae give the minimum number required and in all cases, 

where this is not a whole number, has been rounded up. The number given is the minimum 



number for statistical analyses, consideration needs to be given when designing the study to 

the proportion of eligible participants that will refuse to take part and the likelihood of missing 

data and/or loss to follow up. These factors will impact on the feasibility of attaining the 

necessary sample size in the timeframe available.  

There are some relatively minor discrepancies with the sample size estimates given in the 

example papers and the numbers given here, but this does not indicate errors. All calculations 

agree to a reasonable extent, with differences attributable to differing approximations in the 

formulae used.  

There are often other factors that should be considered. For example, if we compare heights 

between those with and without coeliac disease, we may wish to adjust for differences in age, 

sex and ethnicity of children as well as other potential confounders associated with 

anthropometry. It is worth noting that in this case, taking into account these covariables will 

only serve to reduce overall variation (sd), so estimation not taking them into account will be 

conservative. The formulae given are based on a single primary outcome. If there are multiple 

comparisons, then the sample sizes will need to be larger. As noted earlier, only the most basic 

calculations are given in this paper, further formulae exist for more complex scenarios.  

No amount of increasing the sample size can account for biases in the data. 

 

 “But I’m not doing a clinical trial so this is irrelevant” 

 

It’s a common misconception that power calculations are only required for clinical trials of the 

randomised controlled type variety. This is untrue. 

Wherever sampled data is used to address a research question, the sample size needs to be 

adequate to give a useable answer to that question. 

In this paper, a variety of examples are given to illustrate applicability. The headache study 

was a single sample descriptive study, the differences in constipated and non-constipated an 

observational comparison. 

 

Conclusions 

This article should provide a large enough sample of information to enable the reader to 

understand that sample size calculation should always be given consideration before 

commencing a study with 95% confidence. 

It should be borne in mind that having an adequate sample size is only one important facet of 

research design. Samples selected should be representative and measures of outcome both 

reliable and valid. No amount of increasing the sample can correct for such deficits in design 

and doing so will merely result in obtaining a more precise estimate of the wrong answer, or 

the right answer to the wrong question.   



When preparing a manuscript for publication this journal refers authors EQUATOR 

guidelines15 which aim to ensure that whatever type of study is being undertaken all important 

statistical considerations are made. The majority of the guidelines make reference to sample 

size determination, including those for observational (STROBE16) and diagnostic testing 

(STARD17) studies. This paper explains the basis of sample size calculation with simple 

examples given as manual calculations, replicable via online calculators if preferred. Sample 

size estimation need not be overly complex nor a black-box affair. The aim of this paper is to 

enhance adherence to guidelines and incorporation of this important element of research in 

practice. 
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