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Abstract

Background: Accumulating evidence suggests that activated hepatocytes are involved in the deposition of the
excess extracellular matrix during liver fibrosis via the epithelial to mesenchymal transition. Lipid accumulation in
hepatocytes are implicated in the pathogenesis of chronic liver injury. CD36 is known to mediate long-chain fatty
acid (LCFA) uptake and lipid metabolism. However, it is unclear whether LCFA directly promotes hepatocyte
activation and the involved mechanisms have not been fully clarified.

Methods: Mice were fed with a high fat diet (HFD) and normal hepatocyte cells (Chang liver cells) were treated
with palmitic acid (PA) in vivo and in vitro. Real-time polymerase chain reaction (RT-PCR) and western blotting were
used to examine the gene and protein expression of molecules involved in hepatic fibrogenesis and hepatocyte
activation. CD36 was knocked down by transfecting CD36 siRNA into hepatocyte cells. Hydrogen peroxide (H2O2)
and reactive oxygen species (ROS) levels were detected using commercial kits.

Results: HFD induced a profibrogenic response and up-regulated CD36 expression in vivo. Analogously, PA
increased lipid accumulation and induced human hepatocyte activation in vitro, which was also accompanied by
increased CD36 expression. Interestingly, knockdown of CD36 resulted in a reduction of hepatocyte lipid deposition
and decreased expression of Acta2 (34% decrease), Vimentin (29% decrease), Desmin (60% decrease), and TGF-β
signaling pathway related genes. In addition, HFD and PA increased the production of H2O2 in vivo (48% increase)
and in vitro (385% increase), and the antioxidant, NAC, ameliorated PA-induced hepatocyte activation. Furthermore,
silencing of CD36 in vitro markedly attenuated PA-induced oxidative stress (H2O2: 41% decrease; ROS: 39%
decrease), and the anti-activation effects of CD36 knockdown could be abolished by pretreatment with H2O2.

Conclusions: Our study demonstrated that LCFA facilitates hepatocyte activation by up-regulating oxidative stress
through CD36, which could be an important mechanism in the development of hepatic fibrosis.
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Background
Liver cirrhosis is the end-stage condition of various
chronic liver diseases, and fibrosis is the precursor of cir-
rhosis, which is also considered a severe disease [1, 2].
Liver fibrosis is a reversible wound healing response to
liver injury and is considered to be a pathological process

characterized by the production and excessive depos-
ition of extracellular matrix (ECM) [3, 4]. Liver fibro-
genic cells participate in the process via different
mechanisms of the epithelial-mesenchymal transition
(EMT) when epithelial cells lose their original charac-
teristics and gradually obtain a mesenchymal pheno-
type, and this transition can be called activation [5,
6]. Even though activated hepatic stellate cells (HSCs)
are the most important source of ECM proteins
during the fibrogenesis [7], a wealth of evidence has
confirmed that hepatocytes are involved in EMT dur-
ing hepatic fibrosis, and they have been considered to
be another type of myofibroblast-like cells [8]. It is
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known that activated hepatocytes up-regulate the ex-
pression of typical mesenchymal cell markers, such as
ɑ-SMA, type 1 collagen, vimentin, desmin, and fibro-
nectin, and down-regulate E-cadherin and cytokeratin
[9, 10]. TGF-β is recognized as a potent inducer of
EMT and a major cytokine in liver fibrosis that in-
duces the profibrogenic pathway and fibrosis in the
liver [11].
Excess lipid accumulation in the liver may be an im-

portant cause of pathogenesis in chronic liver injury
[12]. Studies have found a high correlation between stea-
tosis and the severity of hepatic fibrosis. The accumula-
tion of abnormally high amounts of lipids in hepatocytes
may induce increased susceptibility to secondary injury,
leading to an acceleration in the process of chronic liver
injury [13]. Increased free cholesterol accumulation in
HSCs plays a crucial role in the progression of liver fi-
brosis by promoting HSC activation, which results in
further accumulation of free cholesterol and exaggerates
liver fibrosis in a vicious cycle [14]. Furthermore, owing
to the emerging role of long-chain fatty acids (LCFA) in
fibrosis, Lars et al. proved that LCFA (oleate:palmitic
acid (PA) 2:1) had profibrogenic effects on LX-2 via up-
regulation of a-SMA and TGF-β mRNA expression [15].
However, the role of LCFA in the regulation of hepato-
cyte activation is unknown.
CD36, which belongs to the class B scavenger recep-

tors, is a transmembrane glycoprotein that serves as a
facilitator of lipid transport and binds various lipids, e.g.,
LCFA and oxidized low-density lipoprotein (ox-LDL)
[16]. Previous studies demonstrated that CD36 is in-
volved in various diseases, such as insulin resistance,
atherosclerosis, and non-alcoholic fatty liver disease
(NAFLD) [17]. Additionally, our recent studies found
that CD36 plays an important role in balancing the
hepatitis B virus life cycle and hepatic inflammation,
which could lead to a new potential therapeutic strategy
for the prevention of chronic liver injury [18]. More im-
portantly, Wilhelm et al. demonstrated that ox-LDL
stimulated ECM synthesis in cultured HSCs through
CD36 [19], suggesting that CD36 plays an important role
in the pathogenesis of hepatic fibrogenesis.
The purpose of this study was to characterize and

examine the effects of PA, a LCFA, on hepatocyte activa-
tion and explore whether CD36 was involved in the po-
tential mechanism. Firstly, we found that PA treatment
significantly increased CD36 expression and induced
hepatocyte activation. Secondly, PA induced hepatocyte
activation depended on the oxidative stress pathway.
Thirdly, knockdown of CD36 reduced oxidative stress as
well as hepatocyte activation. Based on these data, we
suggested that CD36 activation by PA induces hepato-
cyte activation through a oxidative stress dependent
pathway.

Methods
Cell culture
The Chang liver cell line was obtained from BeNa Cul-
ture Collection and cultured with RPMI-1640 medium
containing 10% fetal bovine serum, 100 units/ml penicil-
lin, and 100 μg/ml streptomycin. All experiments were
carried out in serum-free RPMI-1640 medium contain-
ing 0.2% bovine serum albumin (BSA), 100 units/ml
penicillin, and 100 μg/ml streptomycin. The cells were
pre-incubated in serum-free medium for 12 h and then
subjected to PA for another 48 h. Antioxidants
N-acetylcysteine (NAC) and hydrogen peroxide (H2O2)
were obtained from Beyotine Biotechnology (Beijing,
China), and PA was obtained from Sigma (Poole, Dorset,
UK).

Animal model
Animal care and experimental procedures were ap-
proved by the Animal Care Committees at Chongqing
Medical University (Number: 2014056). Six- to
eight-week-old C57BL/6 J mice were randomly assigned
to receive a normal chow diet (NCD, Research Diets,
D12450B, 10 kcal% from Fat, n = 5) or a high-fat diet
(HFD, Research Diets, D12492, 60 kcal% from fat, n = 5).
Finally, the mice were killed after 14 weeks. Blood sam-
ples were taken for lipid profiles, and liver samples were
collected for further assessments.

Serum analysis
Serum triglyceride (TG) concentrations were determined
enzymatically with commercial kits (Jiancheng, Nanjing,
China). Free fatty acid (FFA) concentrations were deter-
mined calorimetrically using commercial kits (Applygen
Technologies, Beijing, China).

Cell proliferation assay
Cellular proliferation was assayed using a Cell Counting
Kit-8 (CCK-8) purchased from Beyotime Biotechnology
(Beijing, China). Briefly, hepatocytes were seeded at a
density of 2 × 104 in a 96-well culture plate and treated
with or without PA for 48 h. Then, absorbance was
measured at 450 nm via a Microplate Reader (Bio-Tek,
Vermont, USA).

Western blotting
The total protein content from hepatocytes or liver
was lysed using RIPA containing protease inhibitor,
and the protein content was measured and normal-
ized using a BCA Protein Assay Kit. Total proteins
(20–30 μg) were separated by SDS-PAGE and trans-
ferred onto PVDF membranes. After blocking with
3% BSA, the membranes were incubated with primary
antibodies anti-CD36, 1:2000 (Novus, Colorado, USA);
anti-a-SMA 1:500 (Sigma, Poole, Dorset, UK); anti-vimentin
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1:1000 (CST, Danvers, USA); and anti-β-actin, 1:3000
(ProteinTech, Wuhan, China) at 4 °C overnight and
subsequently incubated with their corresponding horse-
radish peroxidase-labeled secondary antibodies. Finally,
the blot was detected using an ECL advance Western
Blotting Detection Kit (Millipore, Temecula, CA, USA).
The protein relative intensity was analyzed using ImageJ
software (National Institutes of Health, USA).

Real-time reverse transcription polymerase chain reaction
Total RNA was homogenized from cultured cells and
livers of C57BL/6 J mice using RNAiso Plus reagent
(Takara, Dalian, China). cDNA synthesis and quantita-
tive real-time PCR were performed with commercial kits
(Takara, Dalian, China) using the Bio-Rad CFX Connect
TM Real-Time System (Bio-Rad, Hercules, CA, USA)
according to the manufacturer’s instructions. β-actin
served as the reference housekeeping gene in vivo and in
vitro. All the primer pairs used in this study are listed in
Table 1.

ROS, H2O2, and malondialdehyde (MDA) assays
Hepatocyte intracellular ROS and H2O2 content was
measured using the ROS and H2O2 Assay Kit (Beyotime,
Beijing, China) according to the manufacturer’s instruc-
tions and was normalized by protein concentration.

Hepatic MDA content was evaluated using a commercial
kit (Jiancheng, Nanjing, China) and was normalized by
total liver protein.

BODIPY 493/503 staining
BODIPY 493/503 (4, 4- difluoro-1, 3, 5, 7- tetramethyl- 4-
bora- 3a, 4a- diaza- s- indacene) is a fluorescent lipophilic
stain widely used to label lipid droplets in plants. Briefly,
solubilized BODIPY 493/503 in DMSO at 2.5 mg/ml was
stored at − 20 °C in the dark. Fixed cells were incubated
with a working concentration of 0.2 μg/ml BODIPY
staining solution in the dark for 30 min at 37 °C. The cells
were washed twice with PBS, and the stained cells were
visualized using a fluorescence microscope (Zeiss, Jena,
Germany).

Statistical analysis
The data are expressed as the mean ± SEM. Statistical
analysis was performed using Student’s t-test when
only two value sets were compared and one-way ana-
lysis of variance followed by Turkey’s multiple com-
parison test when the data involved three or more
groups. A difference was considered significant if the
P was less than 0.05.

Results
HFD enhances profibrogenic gene expression, along with
increased CD36 expression
Serum FFA and TG levels were increased in HFD-fed
mice compared with NCD-fed mice (Fig. 1a). Hepatic
mRNA expression of markers of fibrogenesis, including
Acta2, Col 1, and Col 4, was significantly up-regulated in
HFD-fed mice (Fig. 1b). Additionally, we also found that
HFD increased hepatic CD36 protein and mRNA ex-
pression (Fig. 1c, d).

PA promotes hepatocyte activation and up-regulates
CD36 expression
Hepatocytes were treated with PA at different concentra-
tions and times to determine the effect of PA on hepato-
cyte lipotoxicity and proliferation. We noticed that there
was significant cytotoxicity at the 0.4 mmol/L concentra-
tion, but PA was comparatively non-toxic at the
0.1 mmol/L and 0.2 mmol/L concentrations (data not
shown). Furthermore, there was no stimulatory effect of
PA on hepatocyte proliferation (Fig. 2a). Following BOD-
IPY staining, we explored the concentrations of PA that
enhanced lipid accumulation in hepatocytes (Fig. 2b).
We found that CD36 protein expression was increased
in PA-treated hepatocytes at both 0.1 mmol/L and
0.2 mmol/L concentrations (Fig. 2c). Homoplastically,
PA up-regulated the protein expression of a-SMA and
VIMENTIN and the mRNA expression of Acta2,Vimentin
and Desmin (Fig. 2d), which allowed hepatocytes to

Table 1 Primers for quantitative real-time PCR

Gene Primer sequences

Human CD36 Forward: 5′-CTTTGGCTTAATGAGACTGGGAC-3′
Reverse: 5′- GCAACAAACATCACCACACCA-3′

Human β-actin Forward: 5′-GTTGTCGACGACGAGCG-3′
Reverse : 5′-GCACAGAGCCTCGCCTT-3′

Human Acta2 Forward: 5′-CATCATGCGTCTGGATCTGG-3′
Reverse : 5′-GGACAATCTCACGCTCAGCA-3′

Human Vimentin Forward: 5′-ACCCGCACCAACGAGAAGGT-3′
Reverse : 5′-ATTCTGCTGCTCCAGGAAGCG-3′

Human TGF-β Forward: 5′-AAGTTGGCATGGTAGCCCTT-3′
Reverse: 5′-CCCTGGACACCAACTATTGC-3′

Human Snail2 Forward: 5′-GCAGTGAGGGCAAGAAAAAG-3′
Reverse : 5′-TCGGACCCACACATTACCTT-3′

Human Twist1 Forward: 5′-TCCATTTTCTCCTTCTCTGGAA-3′
Reverse: 5′-CCTTCTCGGTCTGGAGGAT-3′

Human Zeb1 Forward: 5′-CAGTCAGCTGCATCTGTAACAC-3′
Reverse: 5′-CCAGGTGTAAGCGCAGAAAG-3′

Mouse CD36 Forward: 5′-GAGCCATCTTTGAGCCTTCA-3′
Reverse: 5′-TCAGATCCGAACACAGCGTA-3′

Mouse β-actin Forward: 5′-CGATGCCCTGAGGCTCTTT-3′
Reverse: 5′-TGGATGCCACAGGATTCCAT-3′

Mouse Acta2 Forward:5′-CCAGAGCAAGAGAGGGATCCT-3′
Reverse: 5′-TGTCGTCCCAGTTGGTGA-3′

Mouse Col1 Forward: 5′-CAACCTGGACGCCATCAAG-3′
Reverse: 5′-CAGACGGCTGAGTAGGGAACA-3′

Mouse Col4 Forward:5′-CCGAGCCAGTCCATTTATAGAATG-3′
Reverse: 5′-CAGCGAAGCCAGCCAGAA-3′
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acquire an activated phenotype. Moreover, this trend was
consistent with the mRNA expression of TGF-β and key
downstream transcription factors Snail, Twist and Zeb1
(Fig. 2e). These results suggest that PA mediates the
up-regulation of CD36 expression and promotes hepato-
cyte activation.

CD36 is involved in PA-induced hepatocyte activation
A PA concentration of 0.2 mmol/L has a marked effect on
hepatocyte activation; therefore, we selected this concen-
tration for additional experiments. We knocked down
CD36 by transfecting CD36 siRNA into hepatocytes to
confirm the role of CD36 in PA-induced hepatocyte acti-
vation. Our data demonstrated that CD36 siRNA transfec-
tion resulted in markedly decreased CD36 protein and
mRNA expression in PA-induced hepatocytes by western
blotting and real-time PCR (Fig. 3a, b), which suggested
that the CD36 knockdown hepatocyte cell model has been
established successfully. BODIPY staining showed that
lipid accumulation clearly decreased in the CD36 knock-
down group (Fig. 3c), suggesting that PA promotes hep-
atocyte lipid accumulation by CD36. Protein expression of
activated hepatocyte markers a-SMA and VIMENTIN de-
creased in the CD36 knockdown group compared with
the control group (Fig. 3d). Meanwhile, the mRNA ex-
pression of Acta2,Vimentin, Desmin, and TGF-β signaling
pathway related genes, such as TGF-β, Snail, and Zeb1,
were also down-regulated in the CD36 knockdown group
(Fig. 3e, f ). These findings suggest that PA promoted hep-
atocyte activation was mediated by CD36.

CD36 mediates PA-induced hepatocyte activation via
oxidative stress
Oxidative stress has been shown to be involved in hep-
atotoxicity when pro-oxidative capacity overwhelms
antioxidant capacity. As shown by our results, HFD-fed
mice had greater H2O2 and MDA production in the liver
than control mice (Fig. 4a, b). Similarly, the production
of H2O2 and ROS was considerably higher in hepato-
cytes treated with PA than in the control group (Fig. 4c).
Knockdown of CD36 considerably decreased the pro-
duction of H2O2 and ROS in hepatocytes treated with
PA (Fig. 4d). These results suggested that the level of
oxidative stress depends on hepatocyte CD36 expression
when treated with PA. We individually applied the anti-
oxidant NAC in PA-treated hepatocytes and H2O2 in
PA-treated hepatocytes with CD36 knockdown to
determine whether the oxidative stress mediated by
CD36 was involved in PA-induced hepatocyte activation.
We further found that NAC significantly decreased
PA-induced hepatocyte activation and TGF-β signaling
pathway related genes (Fig. 4e, f ). In addition, the H2O2

supplement largely abrogated the improved effect of
CD36 knockdown on hepatocyte activation (Fig. 4g-i).
These data suggest that oxidative stress is critical in
PA-induced hepatocyte activation and that this activa-
tion is mediated by CD36.

Discussion
The purpose of our current study was to clarify the ef-
fects of lipids on hepatocyte activation. Here, we show

Fig. 1 Effects of HFD on profibrogenic gene and CD36 expression in the livers of C57BL/6 J mice. Mice were fed a normal chow diet (NCD) or a
high-fat diet (HFD) for 14 weeks. The levels of FFA and TG in serum were measured as described in the Materials and methods (a). The hepatic
mRNA expression of Acta2, Col 1, and Col 4 was determined by real-time PCR (b). The hepatic protein expression of CD36 was examined by
western blotting (c). The hepatic mRNA expression of CD36 was determined by real-time PCR (d). The results are depicted as the mean ± SEM,
*P < 0.05 versus the NCD group
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that: 1) LCFA treatment induced hepatocyte activation,
evidenced by up-regulated expression of Acta2,
Vimentin, Desmin, and TGF-β signaling pathway; 2)
CD36 inhibition attenuated LCFA-induced hepatocyte ac-
tivation; 3) Oxidative stress was critical in LCFA-induced
hepatocyte activation, which was mediated by CD36.
Many studies have demonstrated the potential role of

functional food ingredients in controlling dyslipidaemia
and lipid metabolism both in animal models and in
humans [20]. Excess lipids intake induces hyperlipid-
aemia and lipid accumulation in the liver that results in
the development of NAFLD [21]. Previous studies have
suggested a close association between lipids and liver fi-
brosis. Increased cholesterol intake accelerated liver fi-
brosis, which was mainly due to increased free
cholesterol accumulation in HSCs, thus promoting HSC
activation [14]. Previous studies also indicated that
LCFA and ox-LDL had profibrogenic effects on HSCs

via the up-regulation of ECM synthesis [15, 19]. Numer-
ous studies have demonstrated that hepatocytes are im-
portant cells when they evolve into an activated
phenotype in the development of hepatic fibrosis over
decades [11, 22]. Although there are reports that FFA
has a certain effect on HSC activation [15], there is a
relatively poor understanding of the FFA involved in
hepatocyte activation. In this study, we demonstrated
that PA induces hepatocyte activation, as evidenced by
increased mRNA abundance of Acta2, Vimentin and
Desmin, which are representative markers of hepatocyte
activation.
The activation of TGF-β signaling pathways has been

verified, and this activation could promote the subse-
quent activation of EMT transcription factors, including
SNAIL, ZEB and TWIST, which allows epithelial cells to
acquire a mesenchymal phenotype [23]. In particular, it
is now accepted that TGF-β is a crucial fibrogenic

Fig. 2 Effects of PA on hepatocyte activation and CD36 expression. Hepatocytes were incubated in serum-free medium containing different
concentrations of PA. After the time indicated, a CCK-8 cell proliferation assay was performed to detect hepatocyte proliferation in response to
PA (a). Lipid accumulation was observed by BODIPY staining (original magnification× 800, b). The protein expression of CD36, a-SMA, and
VIMENTIN was examined by western blotting (c). The mRNA expression of Acta2, Vimentin, Desmin and TGF-β signaling pathway related genes
TGF-β, Snail, Twist, and Zeb1 was determined by real-time PCR (d, e). The results are depicted as the mean ± SEM, *P < 0.05 versus the 0 mmol/L
PA group
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mediator in the induction of hepatocyte activation,
which plays a significant role in the perpetuation of hep-
atic fibrosis [24]. Our data demonstrated PA increased
the mRNA expression of TGF-β signaling pathway re-
lated gene expression, including TGF-β, Snail, and Zeb1,
and these genes were down-regulated in the CD36
knockdown hepatocytes. Our results suggest that PA
may be involved in the regulation of hepatocyte activa-
tion through TGF-β related pathways, which may be me-
diated by CD36.

Previous studies have revealed that oxidative stress is
closely related to TGF-β signaling pathway in liver fibro-
genesis [25]. It has been reported that the superabun-
dant accumulation of lipids in hepatocytes could exceed
the oxidative capacity of metabolism, causing oxidative
stress [26], and CD36 may participate in this process.
CD36 is an important mediator of the production of
ROS and oxidative stress [27], besides regulation of hep-
atic fatty acid uptake and TG storage, it also plays a
pathological role in the development of various diseases

Fig. 3 Effects of the suppression of CD36 on PA-induced hepatocyte activation. CD36-knockdown hepatocytes were treated with 0.2 mmol/L PA
for 48 h. The protein and mRNA expression of CD36 were examined by western blotting (a) and real-time PCR (b). Lipid accumulation was
observed by BODIPY staining (original magnification× 800, c). The protein expression of a-SMA and VIMENTIN were examined by western blotting
(d). The mRNA expression of Acta2, Vimentin, Desmin and TGF-β signaling pathway related genes TGF-β, Snail, Twist and Zeb1 were determined by
real-time PCR (e, f). The results are depicted as the mean ± SEM, *P < 0.05 versus the NCD group
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[17]. So, in the present study, we sought to determine
whether CD36 is involved in PA-induced hepatocytes ac-
tivation through oxidative stress. Our data showed that
PA or HFD significantly increased the level of oxidative
stress in hepatocytes or C57BL/6 J mice and that these
phenotypes were reversed after knockdown of CD36 in
hepatocytes. In addition, N-acetylcysteine, an antioxi-
dant, largely inhibited the hepatocyte-activating effects
of PA. Furthermore, supplementation of H2O2 markedly

abrogated the improved effects of CD36 knockdown on
hepatocyte activation. Taken together, our data suggest
that oxidative stress is critical in PA-induced hepatocyte
activation and that this activation is mediated by CD36.
Currently, increasing attention has been paid to the in-

volvement of CD36 in liver diseases. In fact, CD36 has
been associated with obesity and diabetes in human dis-
eases; Particularly, increased expression of hepatic CD36
is closely related to the development of NAFLD and

Fig. 4 The oxidative stress involved in PA-induced hepatocyte activation mediated by CD36. H2O2 levels and MDA levels in the livers of mice fed
an NCD or HFD for 14 weeks are shown (a, b). *P < 0.05 versus the NCD group. Hepatocytes were incubated in serum-free medium containing
0.2 mmol/L PA for 48 h, and H2O2 levels and ROS levels were then determined (c). *P < 0.05 versus the PA(−) group. CD36-knockdown
hepatocytes were treated with 0.2 mmol/L PA; after 48 h, H2O2 levels and ROS levels were measured (d). *P < 0.05 versus the NC group.
Hepatocytes were incubated in serum-free medium containing 0.2 mmol/L PA for 48 h alone or with pretreatment of NAC for 2 h. The mRNA
expression of Acta2, Vimentin, Desmin and TGF-β signaling pathway related genes TGF-β, Snail, Twist, and Zeb1 were determined by real-time PCR
(e, f). *P < 0.05 versus the NAC(−) group. CD36-knockdown hepatocytes were treated with 0.2 mmol/L PA for 48 h in the absence or presence of
H2O2 for 24 h. The mRNA expression of Acta2, Vimentin, Desmin and TGF-β signaling pathway related genes TGF-β, Snail, Twist, and Zeb1 were
determined by real-time PCR (g-h). The protein expression of a-SMA and VIMENTIN were examined by western blotting (i). *P < 0.05 versus the
H2O2 (−) group. All results are depicted as the mean ± SEM
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non-alcoholic steatohepatitis (NASH) with insulin resist-
ance [28]. Moreover, our previous work has demon-
strated that CD36 plays an important role in balancing
hepatic ROS and regulating macrophage infiltration,
which could be a new potential therapeutic strategy to
prevent NASH development [29]. Hence, it is believed
that CD36 is emerging as a novel target for chronic liver
disease.

Conclusions
Our findings demonstrated that PA induces the produc-
tion of oxidative stress, promoting hepatocyte activation,
thus playing an imperative role in the process of hepatic
fibrosis. Furthermore, we have uncovered, for the first
time, the molecular mechanisms involved in hepatocyte
activation via oxidative stress were mediated by CD36,
which could be used to acquire novel targets for the pre-
vention and treatment of hepatic fibrosis and may pro-
vide a new entry point for researchers studying hepatic
fibrosis.
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