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Abstract  

This work proposes a multi-criteria optimization-based approach for supporting the negotiated design of multi-

reservoir systems. The research addresses the multi-reservoir system design problem (selecting among alternative 

options, reservoir sizing), the capacity expansion problem (timing the activation of new assets and the filling of new 

large reservoirs) and management of multi-reservoir systems at various expansion stages. The aim is to balance 

multiple long and short-term performance objectives of relevance to stakeholders with differing interests. The work 

also investigates how problem re-formulations can be used to improve computational efficiency at the design and 

assessment stage and proposes a framework for post-processing of many objective optimization results to facilitate 

negotiation among multiple stakeholders. The proposed methods are demonstrated using the Blue Nile in a suite of 

proof-of-concept studies. Results take the form of Pareto-optimal trade-offs where each point on the curve or surface 

represents the design of water resource systems (i.e., asset choice, size, implementation dates of reservoirs, and 

operating policy) and coordination strategies (e.g., cost sharing and power trade) where further benefits in one 

measure necessarily come at the expense of another. Technical chapters aim to offer practical Nile management 

and/or investment recommendations deriving from the analysis which could be refined in future more detailed 

studies. 
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Impact statement 

 

The Nile basin is characterised by poverty, conflict, unemployment and in recent years is one of the largest sources 

of north-bound migration. Growing populations and their associated increased demand for food, energy, and water 

supply requires a reliable supply of water beyond what the current infrastructure and institutional arrangement on 

the Nile can deliver. An agreement between the Nile riparian countries could allow joint development of the Blue 

Nile reservoirs to expand agricultural water supply and energy availability. However, the Eastern Nile countries have 

differing views on what equitable or fair water use could be and agreeing on future development of water resources 

has been limited because of this. These challenges are compounded by imperfect knowledge of system function, 

insufficient dialogue and lack of sufficient joint working between the riparian countries. 

This thesis identifies gaps in the water resources planning and management literature on the topic of large reservoir 

system design and development. The research proposes design, management, and assessment approaches, and a 

negotiation framework to extend current approaches described in the literature and their application to the Nile 

planning problem. The approaches are applied to quantify the sectoral and country benefit trade-offs associated with 

water infrastructure development on the Blue Nile; assess which infrastructure designs (i.e., combinations, sizes, 

etc.) and management (operating rules) and the multi-country shared uses of new Blue Nile reservoirs could be 

acceptable considering multiple performance objectives of the Nile stakeholders. The studies can help to facilitate 

the ongoing Nile basin country efforts to explore possible reservoir designs, their coordinated management and 

investment strategies (e.g., joint investments and power-sharing from the proposed reservoirs). Many of the 

approaches proposed are applicable to other transboundary water resource development problems and other multi-

stakeholder system planning problems outside the water resources planning discipline.  
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1 Introduction  

This section gives background information on the water resource development planning problems that motivate the 

work. This will be followed by a description of the research questions and an outline of the rest of the thesis.  

1.1. General background  

Sufficient and reliable energy supplies are a pre-requisite for attracting investments and bolstering industry in 

developing countries [Dunkerley and Ramsay, 1982; Bartle, 2002; Javadi et al., 2013; Kenfack et al., 2014; Zhu et 

al., 2014]. However, many developing countries are ill-equipped to meet growing energy demands and suffer from 

frequent service interruptions [Alfaro and Miller, 2014; Dugoua and Urpelainen, 2014]. Energy security is therefore 

at the forefront of development agendas of many governments [Bartle, 2002; Kaygusuz, 2004; Amer et al., 2005; 

Porrua et al., 2009]. Despite its high cost, and its vulnerability to variability of climate, hydropower is an attractive 

source of energy for many regions around the world [Bartle, 2002; Yüksel, 2009; Seeger, 2010; Tortajada, 2015; 

Zarfl et al., 2015] and is increasingly advocated as an alternative green energy that helps combat climate change.  

New reservoirs can significantly alter hydro-physical processes given how they regulate flows of water, sediments, 

nutrients and the economic benefits associated with human water use [Tilmant et al., 2014; Wada et al., 2014; Wild 

and Loucks, 2014; Latrubesse et al., 2017].  The engineering, social, environmental, economic, and political impacts 

of large hydro dams can be significant. New reservoirs are frequently challenged also for their high costs [Ansar et 

al., 2014] or inappropriately balanced benefits [Bird and Wallace, 2001; Sneddon and Fox, 2008]. The World 

Commission on Dams reports poorly designed dams and multi-reservoir systems led to large societal opportunity 

costs [World Commission on Dams, 2000].   

Dams may reduce the availability and alter the timing of water deliveries for some water using sectors such as 

irrigated agriculture (food security under threat) and the environment (threat of socio-ecological damage). This is a 

reason why hydropower development projects can cause concern for downstream riparians who fear the potential 

negative consequences of modified flow regimes [Sneddon and Fox, 2008; Räsänen et al., 2012; Wu et al., 2013; 

Gebreluel, 2014]. The impact of large reservoirs can be contentious as evidenced by water disputes in some of the 

world’s large river basins [Block and Strzepek, 2010; Dinar, 2012; Räsänen et al., 2012]. However, despite a large 

opposition to dams, dam building and planning has sharply increased in recent years; with an estimated 3,700 dams 

either planned or in construction worldwide [Zarfl et al., 2015].  

Most infrastructure developments concern multiple stakeholders with potentially conflicting interests, differing 

perception of risk and opportunity. In this context promoting consensus-based decision-making requires catering for 

both the interests and concerns of different stakeholders. Accommodating different partys’ needs is necessary in a 

transboundary context to reduce conflict [Swain, 2011; Anghileri et al., 2013; Sadoff et al., 2013]. The fact that 
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water, land, energy and financial resources are distributed unevenly in many transboundary basins can incentivise 

cooperation – the coordinated use of resources [Conway et al., 1996; Wichelns et al., 2003; Conway, 2005; Tafesse, 

2005; Dinar, 2006; Cascao, 2008; Vaughn et al., 2009]. Resource pooling such as sharing expertise, cost sharing or 

facilitation of loans can enhance individual and shared benefit of cooperation  [Whittington and McClelland, 1992; 

Wichelns et al., 2003], yielding gains that can be greater than the value of the disputed water itself to the users. 

However, significant challenges in assessing, designing and negotiating the implementation and management of 

water systems remain. These include the lack of adequate knowledge base needed for decision making, difficulty to 

consider multiple issues in the design problems and incorporate the views of stakeholders in multi-stakeholder 

problems.  

To achieve development targets, system planners should consider the impact of new developments on existing uses 

and how overall benefits could be enhanced. Negotiated introduction of new dams and coordinating their 

implementation and use could help achieve consensus among stakeholders and reduce chances of conflict. For this, 

new approaches are needed to improve the design, financing, and management of dams to meet local, national and 

regional development needs, goals and preferences. 

The  thesis proposes and applies new formulations of the multi-objective and multi-stakeholder reservoir system 

design, management, and negotiation planning problem using many objective optimization algorithms (MOEAs) 

[Vemuri, 1974; Hernandez-Diaz et al., 2007; Hadka and Reed, 2013; Maier et al., 2014a] and visual analytics tools 

[Keim et al., 2008; Vitiello et al., 2012; Woodruff et al., 2013]. 

1.2. Research Questions 

How can designs of new or extended reservoir systems consider the impacts on the performance of existing and 

future water users?  

Does joined up consideration of the sizing, scheduling and operating rules of reservoirs improve system 

performance?  

Given sensitivity of performance metrics to uncertain future parameters, how can multi-objective evolutionary 

algorithms be used to compare performance of alternative infrastructure options?  

Can the performance of reservoirs be improved by using operating strategies that adapt to recent system 

performance? 

How can the benefits of multi-stakeholder cooperation be considered, along with performance trade-offs, in the 

negotiated design of infrastructure systems and their management? 
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1.3. Thesis outline  

This work first reviews the literature (Chapter 2) to identify knowledge gaps in the planning, negotiation, and 

implementation of reservoir systems and their management.  The proposed Blue Nile reservoirs are used as a case 

study (Chapter 3) to test problem formulations of increasing complexity (please see Figure 1) using the many 

objective optimization and visual analysis approach to help with better infrastructure and operating rule designs, 

scheduling of system expansions, presentation of complex water system design and assessment of results and 

negotiation approaches. Chapter 4 describes the overall method used in the study. The next two chapters focus on 

the design of new multi-reservoir systems. The methods consider the potential contribution of each existing and 

proposed component of a water system to a coordinated management to suggest best designs (i.e., the selection, size 

and operating rules given in Chapter 5) and their scheduling (Chapter 6) considering the flexibility of reservoir 

operating policies as the reservoir system expands.  

These will be followed by Chapter 7 and 8 which use new formulations of the many objective optimization approach 

to help identify robust designs and allow stakeholders visualise and compare pre-identified options (even when 

dominated) with non-dominated options.  

Chapter 9 demonstrates an adaptive reservoir operation to prioritize the multi-purpose use of reservoirs in a range of 

hydrological conditions (e.g., droughts of different magnitudes and lengths). These are followed by (in Chapter 10) 

a hybrid multi-objective optimization and multi-criteria weighing approach to support the negotiated design of water 

systems considering resource-sharing mechanisms (e.g., power-trade and/or cost sharing). Chapter 11 summarizes 

the findings, while Chapter 12 presents the limitations of the study and proposed future works. 
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Figure 1 Thesis flow diagram (conceptual interdependence of the chapters in this report) 
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2 Literature review  

Reservoir system designs (e.g., selecting among options, sizing), their management and the timing of system 

expansions is an important decision consideration in many water resources planning problems that involve multiple 

stakeholders with potentially diverging interests. This chapter reviews the literature on reservoir system design in 

particular and the design, decision support and negotiation support approaches in the general water resources 

planning management literature to take stock of the historical development, account for the latest conceptual, 

algorithmic and methodological developments and to identify knowledge gaps. 

2.1 Water resources system modeling 

Computer models are employed extensively in water resource planning to help decision makers understand the 

impacts of alternative management options on water resources systems; the majority being simulation models. Water 

resources planning problems are often complex; and are difficult to handle with conventional simulation modelling 

because invariably too many possible combinations of assets and their coordinated operation rules need to be 

considered [Khaliquzzaman and Chander, 1997], in such contexts, optimization models are more appropriate [Harou 

et al., 2009].  

Optimization models provide insight into best management practices to maximize benefits [Afshar et al., 1991; 

Askew, 1974; J Harou, 2010; Revelle and Kirby, 1970]. Problem formulation used in simulation and optimization 

assessments can affect the predictions of the consequences of alternative solutions and consequently which solutions 

are considered ‘‘optimal’’ [Roy, 1991; Kasprzyk et al., 2009]. Quinn et al.  [2017] suggest a ‘rival-framings’ 

framework to interrogate multiple competing hypotheses of how complex water management problems should be 

formulated. Moreover, various optimization approaches have important limitations. For example, many hydro-

economic models assume water systems are composed of entities that have perfect information, are perfectly rational 

and would subscribe to the views of an omniscient central planner who makes investment and policy choices to 

maximize system benefit [J J Harou et al., 2009]. Although the optimal allocation of resources in shared water 

systems - as would be prescribed by hydro-economic optimization models - can maximize overall system benefit, it 

is not always possible due to various political and historical reasons [Bendor, 1988; Jeuland et al., 2014; Madani, 

2010; Read et al., 2014].  

Optimization algorithms that adopt reduced gradient method (e.g., CONOPT, MINOS) can solve large problems 

with nonlinear objective by reducing the number of variables and linearizing the nonlinear constraints [Drud, 1985]. 

The use of linear programming solvers, which are used extensively, requires significant simplification for large water 

resource systems. This is sometimes justified as simulating a water system with optimization methods allow 

bypassing the complex set of rules that would be required in simulation model of the systems.  
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2.1.1 Linked simulation optimization  

Water resource model functions are often characterized with discontinuity, non-convexity, non-linearity, and high 

dimensionality which makes them difficult to model with some optimization models [Labadie, 2004]. Approaches 

that link simulation models with heuristic global search methods such as evolutionary algorithms [Deb et al., 2002; 

Coello Coello et al., 2007] are well suited to handle non-linearity associated with operating rule design [Thorne et 

al., 2003; Sechi and Sulis, 2009; Vamvakeridou-Lyroudia et al., 2010; Hurford and Harou, 2014]. Multi-objective 

evolutionary algorithms [Nicklow et al., 2010; Maier et al., 2014a] evolve approximations to the Pareto optimal set 

through search processes that exploit global probabilistic search operators for mating, mutation, and selection. 

Evolutionary algorithms have been demonstrated to be effective for water resources optimization involving non-

convex and discontinuous functions  [Nicklow et al., 2010; Hadka and Reed, 2013; Maier et al., 2014a]. Anghileri 

et al. [2013], Arena et al.  [2010] and Giuliani et al. [2014] used multi-objective evolutionary algorithms to refine 

operating policies of reservoir systems. Relying on simulation models linked -with optimization [Sechi and Sulis, 

2007] avoids simplifying assumptions [Wurbs, 1993; Giuliani et al., 2014] and allows for the inclusion of complex 

risk-based performance metrics in the objective function  [Hashimoto et al., 1982].  

2.1.2 Many objective optimization and Visual Analytics 

An assumptions that water users sharing a basin will subscribe to the views of  omniscient central planner who makes 

investment and policy choices to maximize system benefit [J J Harou et al., 2009] can be unrealistic in many system 

as rational decision makers often prefer to maximize their individual benefit. These limitations in coordination should 

be represented in the design, valuation of benefits and cost of new system to evaluate alternative plans. Many 

objective optimization and visual analysis of trade-offs allows the tracking the individual benefits of multiple 

stakeholders and the benefit trade-offs for each group of stakeholders involved; including the benefit trade-offs of 

individual stakeholders with the system benefit.  

Single objective optimizations, which mostly consisted of minimizing the cost of providing services relied heavily 

on commensurating or monetizing different goals. By using single objective optimization, decision makers could 

inadvertently ignore important decision alternatives. Solutions suggested by low dimensional  problem formulations 

can also only reinforce their presumptions, preventing new insight [Chang et al., 1982]. Moreover, stakeholders may 

not know what is possible before seeing the full set of possibilities, considering many-objectives explicitly and 

simultaneously can help avoid this cognitive myopia [Hogarth, 1981].  

Many objective optimization and visual analytics for trade-offs analysis have gained popularity in recent years for 

assessing development options based on multiple criteria [Fu et al., 2013; Kasprzyk et al., 2013a; Geressu and 

Harou, 2015; Matrosov et al., 2015; Huskova et al., 2016].  However, while the many objective optimization and 

visual analytics approach is an improvement over single objective optimization [Brill et al., 1982; Coello Coello et 

al., 2007], decision making based on Pareto-optimality alone may not be possible in multi-stakeholder problems. 

This occurs when competing stakeholders objectives result in different stakeholders preferring different system 
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designs [Geressu and Harou, 2015]. Also, water resources management and design problems often involve political, 

societal, and other subjective goals that could be difficult to represent mathematically [Nicklow et al., 2010].  

Techniques in the literature that help identify potential solutions outside the optimality measure to find alternatives 

that may be sub-optimal but those that stakeholders may find acceptable include near-optimal analysis [e.g., 

Rosenberg, 2015], threshold detection [Brown et al., 2012] and agent based modelling [van Oel et al., 2010; e.g., 

Wang et al., 2013; Bristow et al., 2014].  

2.1.3 Multi-stakeholder Negotiation 

Given that risks associated with water resource planning require political considerations [Dore and Lebel, 2010], the 

search for a consensus solution in a  multi-party system requires explicitly considering subjective preferences of the 

different parties [Anderson et al., 2003]. Stakeholders could have conflicting preferences on the designs and use of 

water infrastructures. Where the necessary mechanisms to enforce coordination strategies are impractical, optimal 

designs may be unsatisfactory at local or system-wide scales [Madani and Hipel, 2011; Jeuland and Whittington, 

2014].  

Computer-based support for negotiation and conflict resolution in water resources management include Graph Model 

for Conflict Resolution [Kilgour et al., 1987, 1996; Hipel et al., 1997], Adjusted Winner [Massoud, 2000], and the 

works of [Nkomo and van der Zaag, 2004; Borowski and Hare, 2007, etc.]. Institutional mechanisms to manage 

shared resources and resolve disputes have achieved some success [Song and Whittington, 2004; Vieira Getirana et 

al., 2008; Abitbol and Schoenfeld, 2009; Andreu et al., 2009; Carmona et al., 2013]. However, despite wide 

acceptance of the need for rigorous, all-inclusive decision making [X M Cai et al., 2004; Herman et al., 2014; Hipel 

et al., 1993; Hummel et al., 2014] and economic benefit of cooperation [J J Harou et al., 2009; Howe et al., 1986; 

Lund et al., 2006], many water systems are planned and managed  in suboptimal coordination levels [Elhance, 1999; 

Jeuland et al., 2014].  

Many objective optimization and trade-off analysis [Vemuri, 1974; Brill et al., 1982; Mavrotas, 2009; Kasprzyk et 

al., 2013a] can assist in achieving designs approved by groups with varying interests by establishing a reduced set 

of efficient alternatives worthy of further deliberation. However, an optimal or Pareto-optimal solution for one set 

of users may not be perceived as such for other group of stakeholders [Reed and Kasprzyk, 2009]. Fitzgerald and 

Ross [2015] argue the traditional approach of multi-objective analysis cannot readily be used for multi-stakeholder 

tradespace exploration and suggest framing of the problem so that multi-stakeholder visualization can reduce fixation 

on the individual cost-benefit Pareto front.  
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2.2 Multi-reservoir system design 

2.2.1 Infrastructure screening 

Various methods have been used for designing (i.e., selecting among plausible reservoir sites, their capacities, and 

operating rules) cost-effective reservoir system interventions in the last decades. Klemes [1979], Lall and Miller 

[1988], Eastman and Revelle [1973]  contributed early methods for design of single-purpose standalone reservoirs. 

Often reservoirs are planned jointly in multi-reservoir system design. This task is difficult to handle with 

conventional simulation modeling because invariably too many possible combinations of assets and their coordinated 

operation rules need to be considered [Khaliquzzaman and Chander, 1997]. This led researchers early on to attempt 

using optimization to search for good multi-reservoir system designs [Houck and Cohon, 1978; Lall and Miller, 

1988; Sinha and Bischof, 1998]. Stedinger et al. [1983] review different early optimization-based reservoir screening 

models.   

2.2.2 Operating rules 

One important factor in reservoir system benefit and impact trade-off levels are the operating rules of reservoirs. 

Water researchers have considered the optimization of reservoir operating rules in an extensive literature. Operating 

rule parameters can be found from deterministic optimization models using fitting methods [Koutsoyiannis and 

Economou, 2003a]. Regression techniques have been used to infer reservoir release rules as functions of presently 

knowable conditions such as storage [Young, 1967; Bhaskar and Whitlatch, 1980] . Lund and Ferreira [1996] 

illustrate the limitations of applying deterministic optimization to development of strategic operating rules for large-

scale water resource systems 

In Direct Policy Search (DPS) [Giuliani et al., 2014], also called  parameterization-simulation-optimization 

approaches [Guariso et al., 1986; Oliveira and Loucks, 1997; Koutsoyiannis and Economou, 2003a; Celeste and 

Billib, 2009; Rani and Moreira, 2010], the operating policy is assigned a functional form (e.g., linear or piecewise 

linear) and then parameters are optimised to meet one or more objectives. The approach is helpful and estimated 

performace is verifiable (i.e., using simulation modeling) as operating rules can be expressed such that they are 

usable by operators who have limited foresight of the future [Li et al., 2014].  

 Development of optimal operational policies for large water resources systems is a complicated process because of 

the numerous objectives that may exist [Ko et al., 1992]. Operating rules generated by single objective and 

insufficiently constrained optimization may maximize total benefits, but they are likely to be impractical or 

unsatisfactory at local or system-wide scales. This is because single objective economic engineering optimization 

models tend to ignore non-commensurate objectives that cannot be monetized [Ko et al., 1992]. Many researchers 

have focused on how to operate hydropower reservoirs to meet multiple objectives including ecological ones, 

e.g.,[Petersson et al., 2007; Jager and Smith, 2008; Renofalt et al., 2010; Mirumachi and Torriti, 2012].  

2.2.3 Scheduling capacity expansion  
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Infrastructure capacity expansion planning involves identifying schedules of interventions (new assets or demand 

management efforts) in supply-demand systems that meet service provision goals and other criteria [Hall and Buras, 

1961; Mortazavi-Naeini et al., 2014]. While the scheduling of water supply system infrastructure investments has 

traditionally been driven by minimizing total discounted costs [Lund, 1987; Mousavi and Ramamurthy, 2000; Luss, 

2010; Padula et al., 2013], the importance of environmental and economic downstream impacts of reservoirs is 

increasingly recognised [The World Bank, 2009; Galaz et al., 2012; Beh et al., 2014; King et al., 2014; Sandoval-

Solis and McKinney, 2014; Sahin et al., 2016]. 

Additions of new reservoirs in an expanding system can significantly reduce performance temporarily (for several 

years) depending on the scale and relative position of assets. Hence, planning the expansion of multi-reservoir 

systems requirs attention to the impacts of alternative development and management options on the existing systems.  

Multi-reservoir system design should also consider the potential for coordinated operation of reservoirs to improve 

the overall system performance [Labadie, 2004]. Hence, rigorous analysis and re-assignment of operation rules to 

reservoirs in different physical system designs is essential to estimate potential benefits and downstream impacts of 

water resources expansion plans.  

2.3 Uncertainty 

Uncertainties associated with natural variability of river flows, climate change, economic and enegineering 

performance pose various levels of risk to water users [Milly et al., 2008; Velpuri and Senay, 2012; King and Block, 

2014]. These could lead to costly, inadequate or unsatisfactory decisions with unnacceptable negative impacts. 

Considering uncertainity help predict the likelihood of success and failure and select among alternative options based 

on the decision makers’ view of acceptable trade-offs between risk and opportunity. Hence, decision makers are 

required to consider various uncertainties due to hydrologic stochasticity, climate change, and future water demands 

[Block and Strzepek, 2010; Conway et al., 1996; A King and Block, 2014; Swain, 1997; 2011].  

2.3.1 Natural variability 

Two of the most popular approaches to deal with the natural variabilities in water resource problems are the explicit 

and implicit stochastic optimization approaches. Explicit stochastic optimization [Braga et al., 1991; Tejadaguibert 

et al., 1995] is designed to operate directly on probabilistic descriptions of random streamflow processes without the 

presumption of perfect foreknowledge of future events. Feasible combinations of state variables grow exponentially 

for large systems making the approach computational burdensome for many systems [Roefs and Bodin, 1970; 

Labadie, 2004; Giuliani et al., 2014]. 

Implicit stochastic models are convenient in model representation and computationally. When applied in gradient-

based optimization algorithms, the approach involves performing deterministic optimization on long historical or 

stochastically generated inflow sequences. Operating rules are then inferred from the optimal storage and release 

solutions by applying multiple regression analysis. However, it is difficult to know apriori whether or not these 
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inference processes will provide satisfactory operating rules requiring extensive trial and error processes. Moreover, 

the deterministic representation of variability makes optimization algorithms assume that decision-makers would 

have full knowledge of future inflows. Because this misrepresents real water managers (who have limited foresight) 

as being capable of making efficient choices that maximize the long-term benefits, implicit stochastic optimization 

lead to overestimation of benefits [Labadie, 2004; Philbrick and Kitanidis, 1999; Rani and Moreira, 2010; Satti et 

al., 2015].  

2.3.2 Deep Uncertainty 

The assumptions that future conditions can be extrapolated from the past has been central to water system analysis. 

However, depending on past observation in planning for future management can be risky due scarcity of hydrological 

data (which don’t allow us to look at the sufficiently long history of hydrological variability) and significant 

environmental changes in many places. Non-stationarity of environmental conditions [Galloway, 2011; Lins and 

Cohn, 2011] and conflicting climate-change impact projections also make it hard for different stakeholder groups to 

agree on the likelihood of future condition [Knight, 1921]. Deep uncertainty is where historical data cannot be used 

to quantify the likelihood of future scenarios and hence probability based assessment is inappropriate [Groves and 

Lempert, 2007; Milly et al., 2008].  Policies that can be adapted over time in response to how the uncertainties 

resolve have been suggested to improve performance in the presence of deep uncertainty [Lempert et al., 1996; 

Kwakkel et al., 2013; e.g., Werners et al., 2013].  Robust decision making (RDM) approach identifies and selects 

strategies that meet threshold performance criteria across plausible scenarios without presumption of  any one 

scenario being more likely than another [Lempert et al., 2006]. Info-gap theory identifies the solutions that meet 

threshold performance criteria for each uncertainty set by developing increasingly large multidimensional 

uncertainty sets [Ben-Haim, 2006]. Other recent studies, particularly under non-stationary conditions with deep 

uncertainty, propose an adaptive approach [Walker et al., 2010; Haasnoot et al., 2013] with optimisation formulations 

which are explicitly adaptive [Beh et al., 2015; Kwakkel et al., 2015; Zeff et al., 2016; Erfani et al., 2018]. Adaptive 

management works by taking into account changes in external factors in a proactive manner and adjusting a decision 

that is implemented in stages [Huntjens et al., 2011]. This requires problem formulations that are designed such that 

decisions evolve in response to new information” [Lempert et al., 2003]. 

Studies that address the trade-off between economies of scale (with large projects) and management of the uncertain 

future which may benefit from the flexible implementation of smaller ones staged over the planning period include  

the works of Braga et al. [1985], Mahmoud [2006], Chang and Chang [2009] .   

However, economic and financial uncertainty could be more relevant for stakeholders in some planning problems.  

Gaudard et al. [2016] show that greenhouse gas scenarios represent a low source of uncertainty compared to 

electricity prices for a hydropower case study in Switzerland.  
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2.3.3 Set based uncertainty 

Some uncertainty forms are set-based (i.e., they take any value from a set of possible parameter realizations) [Jin 

and Branke, 2005; Bertsimas et al., 2011; Fliege and Werner, 2014].  An example is discount rate used in investment 

planning. Discounting benefits over time takes into account the time value of money and the uncertainty about future 

societal demands and technologies [Fisher, 1930; Koopmans, 1960]. The discount rate used in cost-benefit analysis 

will influence the outcome of the investment options assessment [Van Liedekerke, 2004] yet setting it is a  subjective 

or political decision [Pearce et al., 2003; Hahn and Dudley, 2008]. Hence, evaluating or optimising infrastructure 

investment decisions with different benefit horizons, scales and purposes (e.g., energy generation, flood mitigation, 

irrigation water supply) under a single discount rate assumption could introduce a decision-bias which would limit 

the quality of decision-making [Lopez, 2008]. The sensitivity of decision-making assessment to discount rates has 

led some researchers to avoid its use altogether [e.g., Rubinstein and Ortolano, 1984; Dziegielewski et al., 1992; Cai 

et al., 2002; Yang et al., 2007; Mortazavi-Naeini et al., 2014]. An improvement would be to consider (or optimise 

in our case) investments under a range of discount rate values in the hope of identifying options who’s value are 

robust (relatively less sensitive) to the discount rate. In this case the decision to invest in a particular intervention 

would remain efficient over a range of discount rates, a sign of a robust rather than brittle decision.  

 Smalley et al. [2000] propose combining a noisy genetic algorithm (that uses sampling from parameter distributions 

to assess the performance of candidate designs) with a number of models to predict risk simultaneously and proposes 

cost-effective options for reducing risk. Gopalakrishnan et al. [2003] found the noisy genetic algorithm, that  uses a 

type of noisy fitness function, to be efficient compared to Monte Carlo simulation modeling.   

Ehrgott et al. [2014] extended the concept of minmax robustness Ben-Tal et al. [2009] to multi-objective 

optimization and called this extension robust efficiency for uncertain multi-objective optimization problems. Fliege 

& Werner [2014] introduce a robust counterpart to a multi-objective programming and demonstrate that robust, 

efficient frontiers can be found by standard methods of robust and multi-objective programming under commonly 

made assumptions on the uncertainty. The approach works for convex parametric multi-objective optimization 

problem under data uncertainty.  

In reality, multiple parameter uncertainties simultaneously affect performance. Considering uncertainty due to 

various factors independently may not reveal the overall impact and accumulated uncertainty [Gaudard et al., 2016]. 

Kasprzyk et al. [2009] use Monte Carlo sampling to evaluate objective function values for each solution in successive 

generations of evolutionary search to help find the robust solutions given uncertainty from estimates of the reservoir 

mass balance, amount of water available for consumers, fluctuations in lease pricing and volumetric water demand.  

In many situations, the computational requirement of robustness analysis could be foreboding. Because of this, 

robustness analysis over set based uncertainity such as uncertainity on the discount rate of future benefits, energy 

prices etc. is ignored in many water planning reports in the literature. 
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2.4 Knowledge gaps in the literature 

Given the large number of alternative infrastructure and management options in many water planning problems, 

optimization techniques can help identify best performing designs for further deliberation. However, due to limited 

resources to analyze complex river systems, simplifying assumptions in formulating planning problems are 

frequently made [Kim and Yeh, 1986; Takeda and Papalambros, 2012; Beh et al., 2014; Galelli et al., 2014]. Labadie 

[2004] and Rogers and Fiering [1986] cite lack of confidence in the assumptions and structure of many water 

resource optimization models for their relatively modest real-world use. Stalled negotiations in participatory 

decision-making processes are prevalent, during which stakeholders preferences cannot begin to converge toward 

an appropriate decision [Kaner et al., 2007].   

A review of literature for this study found the following gaps which will be addressed in this thesis. 

2.4.1 Sizing of Reservoirs 

Upstream reservoirs can change the variability of inflow to downstream reservoirs. Hence, the assumption of 

variability used for sizing of the downstream reservoirs could be violated when new dams come online. Given that 

the change in hydrological variability to the downstream reservoirs will depend both on the size, and operating rule 

of the upstream reservoir and that coordinated use of the reservoirs can improve their overall performance, the design 

(i.e., size and operating rule) of each reservoir in a multi-reservoir system on a river reach should consider the design 

of all other reservoirs in the system. However, multi-reservoir system designs in the literature ignore this complexity 

in lieu of a simplified assumption where an optimal size and operating rule of each as a standalone reservoir would 

be good enough for when the reservoir is operated in a multi-reservoir system.  This could lead to unnecessarily 

large reservoirs or systems performing below capacity. 

2.4.2 Sequencing of Reservoirs 

Related to the above, assessing the scheduling of reservoirs ignoring the flexibility of their operating rules to evolve 

as the reservoir system expands can underestimate reservoir system performance. However, in multi-reservoir 

system planning, the ability to change operating rules as the system expands is typically ignored.  Moreover, 

expansion decision points are often constrained (e.g., 5 years [Beh et al., 2014; Jeuland and Whittington, 2014], 7 

years [Block and Strzepek, 2010], decadal [Mortazavi-Naeini et al., 2014]). Fixing the time between interventions 

could bias recommendations as sequenced bundles that work well together (i.e., interfering least with each other's 

performance) are not considered. 

The filling periods of large reservoir are a key factor in their planning and can be contentious because of the 

diminished performance during this period, However, the   transient period performance, their trade-off and the link 

between infrastructure sequence choice with the flexibility to operate reservoirs to achieve more desirable balance 

of performance at different expansion stages is not reported in reservoir system scheduling literature. 
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2.4.3 Adaptivity of Reservoir operating rules  

Reservoir operators either abandon or deviate from standard operating guidelines when necessary to use various 

sources of information on different time scales [Hejazi et al., 2008]; with the values that these different sources of 

information have depending on the system objective [Tejadaguibert et al., 1995]. Reservoir operating rules generally 

associate lower releases to lower storage levels. Traditional operating rules to deal with droughts are potentially ill-

suited in this situation, since they are centred around water supply hedging which assumes a limited storage capacity 

should lead to further reductions in releases [Bayazit and Ünal, 1990; Lund and Ferreira, 1996; Tu et al., 2003; You 

and Cai, 2008]. The inability to mathematically formulate and optimise adaptive operating rules in assessing the 

impacts of alternative reservoir management strategies could lead to sub optimal results. 

2.4.4 Parameter Uncertainty 

Performance of systems is often affected by multiple parameter uncertainties simultaneously. Multi-stakeholder 

decision support could require representation of multiple uncertainty sources  such as variability, climate change but 

also the approperiate value for the discount rate of future benefits, possible construction cost overruns, and delay.  

Informed dialog and negotiations could be hindered by differences in opinion on these deeply uncertain factors 

because these could potentially influence design choices. Hence, water resources system expansion planning 

decision/ negotiation support involving multiple stakeholders could benefit from the representation of multiple 

scenarios for the uncertain parameters and the best plans for these scenarios. However, water systems are typically 

assessed assuming key parameter values such as costs, prices and discount rate of future cash flows deterministically. 

2.4.5 Inability to compare full set of alternative options 

Several modern Decision Making Under Uncertainty methods use many objective optimisation (MOO) [Vemuri, 

1974; Mavrotas, 2009; Kasprzyk et al., 2013b] to assist in many objective or multi stakeholder problems by 

establishing a reduced set of efficient alternatives where any objective cannot be further improved without 

simultaneously harming one or more other objectives [Arena et al., 2010; Kasprzyk et al., 2013a; Woodruff et al., 

2013]. Given the dependence of infrastructure performance on its operating policies (e.g., reservoir release rules), 

evaluating alternative infrastructure options requires exploring how each option would perform under a variety of 

operating policies. When using MOO methods, the Pareto-front does not discriminate between infrastructure and 

management choices, thus ignoring that assets are relatively unchangeable, while policies can be changed with 

relatively less political and financial cost). 

In practice most regions in need of development have a series of options that have been considered - sometimes for 

decades (e.g., on the Nile and Rufiji basins in Africa [Block and Strzepek, 2010; Duvail et al., 2014]) and may have 

been through site selection, pre-feasibility study and preliminary environmental impact assessment processes. This 

puts them in the public consciousness and means they should be at least represented within stakeholder driven design 
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processes. Moreover, some stakeholders might stand to gain from local development and may disagree to forfeit 

local benefits for designs that perform slightly better in aggregated regional or national assessments. Conventional 

trade-off analysis retains only high performing intervention options and drops those with lower performance 

objectives [Coello Coello, 2006; Reed et al., 2013]. This can be problematic where evaluation of certain development 

options with existing constituencies need to be included in planning exercises to allow their performance comparison 

and maintain stake-holder confidence in the decision support system.  

2.4.6 Negotiated system design and coordinated use of resources 

New reservoirs could negatively affect benefit of existing users; making system changes difficult to agree upon. 

Considering cost and benefit sharing strategies (e.g., payments or access to energy trade) could facilitate agreement 

as this could make system changes more acceptable to all parties.  

The literature identifies tying benefit sharing to the negotiation [Mumpower and Rohrbaugh, 1996; Wu and 

Whittington, 2006; Arjoon et al., 2016] as a possible enhancement to complex multi-party environmental resource 

system development problems. However, agreeing on project selection among many alternatives is challenging given 

the multitude of stakeholders and their diverse preferences. Many decision support tools (e.g., Tchebycheff 

algorithm, game theory) for participatory decision-making processes require all stakeholders to interact with the 

decision support tools for multiple iterations in order to narrow down the alternatives [Thiessen and Loucks, 1992; 

Cai et al., 2004; Keller et al., 2010]. Given that concessions are not always an attractive proposition, the inability to 

agree on one or few system designs to start negotiating on can stall negotiations [Mumpower and Rohrbaugh, 1996]. 

In addition to the possibility of stalled negotiations due to disagreements on valuation of impacts and benefits, 

problem formulation and priority for various system performance attributes, the sequencing of decisions on system 

design and benefit and cost sharing could lead to sub-optimal results. It is not clear from the literature how starting 

points for negotiation among multiple alternative designs will affect the ability of stakeholders a consensus solution.   

The gaps identified above in 2.4.1, 2.4.2, 2.4.3, and 2.4.6 the could overestimate the cost of compromises in 

negotiation, tempting stakeholders to opt for unilateral implementation of projects. These could exacerbate 

environmental impact and impact on downstream users and lead to under or inefficiently exploited potential. The 

gaps described in sections 2.4.4, 2.4.5, and 2.4.6 also hinder negotiated system design and implementation as 

stakeholder may have differing perceptions of risk and opportunity and may not agree on the assumptions used for 

finding the optimised system designs and their predicted performance. 

The study addresses these gaps using the Blue Nile case study described in the following section for demonstration.  
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3 Case study 

3.1 The Nile Basin 

The Nile basin is a culturally and socio-economically diverse river basin home to more than 250 million inhabitants 

in 11 riparian countries [Nile Basin Initiative, 2016].  The basin is characterized by large differences in income, 

uneven resource allocation between its riparian countries [Whittington and McClelland, 1992; Küng, 2003; Arsano 

and Tamrat, 2005],  poverty of its inhabitants and rapid watershed degradation [Hurni et al., 2005; Awulachew et 

al., 2010]. The growing population numbers, the associated increase in demand for agricultural, domestic and 

industrial water supply requires a reliable supply of water beyond which current storage arrangement on the Nile can 

deliver [Conway et al., 1996; Swain, 2011]. 

3.2 The Blue Nile 

The Blue Nile River is the largest of the four major tributaries of the Nile River; contributing more than half of the 

annual flow. The river emanates from the central highlands of Ethiopia and is joined by a number of large tributaries 

before it crosses into Sudan. The Blue Nile is one of the largest basins in Ethiopia, covering 35% of its landmass. 

The basin receives an average 1000 mm/year of rainfall in summer monsoon season, with highest totals in the June-

September months [Conway, 2000]. The river is highly seasonal and annually variable [Block and Rajagopalan, 

2007] with frequent flooding (affecting population centers near its origin around Lake Tana in Ethiopia and in the 

Sudan including it capital Khartoum) and occasional droughts.  

In Sudan, Roseires and Sennar dams enable irrigation of large sways of land along with small hydropower generation. 

In contrast, only a scant irrigable land has been developed in the Ethiopian part of the Blue Nile. The cooler climate 

and narrow gorges in upstream parts of the basin provide potential locations for new dams [Sadek et al., 2004; El-

Kady and Moustafa, 2005; Swain, 2011], with large potential for hydropower production in Ethiopia.  Physiographic 

characteristics of the Blue Nile in Sudan is not suited for large reservoirs for overyear storage capacity to supply 

irrigation and reduce the reoccurring flood damage. The deep and narrow gorges in the upper part of the Blue Nile 

presents a better choice for storage in addition to its  large  hydropower potential generating system-wide, 

multipurpose benefits [Blackmore and Whittington, 2009].   

Successive Ethiopian governments sought to construct and utilise the opportunity presented by the Blue Nile cascade 

dams which were first identified as far back as 1963 with the help of the United States Bureau of Reclamations 

(USBR) [Blackmore and Whittington, 2008]. The downstream countries Egypt and Sudan had been wary of new 

upstream infrastructure which could reduce the amount of water reaching them and give control of the water supply 

to Ethiopia [Cascao, 2008; Allan, 2009; Swain, 2011; Rahman, 2012; Tawfik, 2016; Yihdego et al., 2016].  

Ethiopia argues the energy is much needed domestically; in addition, the Blue Nile dam will benefit both Sudan and 

Egypt through increased availability of cheaper hydropower in the region [Habteyes et al., 2015].  Others also point 

to the benefit of upstream regulation by the GERD in enhancing low flows to improve downstream water security 
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[Blackmore and Whittington, 2008]. Unable to self-fund the mega projects or secure international funding for the 

construction of the dams, these resources had until recently laid untapped [Arsano and Tamrat, 2005; Hefny and El-

Din Amer, 2005; Cascao, 2008]. 

Ethiopia is currently constructing the Grand Ethiopian Renaissance Dam (GERD) which will create a large reservoir 

with 1.5 the annual flow of the Blue Nile near its border with Sudan. The GERD will inundate the site of the proposed 

Mandaya dam, forcing its relocation to an upstream site with an alternative design named 'Upper Mandaya.' A 

smaller GERD design with 620 masl full supply level (see Table 1) would allow the implementation of Mandaya 

dam. Farther upstream, the Beko Abo High can be implemented instead of the upstream-proposed dam site Karadobi 

and Beko Abo Low.  

The challenge to finance the projects and the wisdom in Ethiopia’s self-financing such a mega project (considering 

alternative uses of the large capital) is a subject of ongoing dialog [Arsano and Tamrat, 2005; Block and Strzepek, 

2010; Whittington et al., 2014]. Some argue against building the downstream most of the proposed Blue Nile dams 

first because of the impact that filling the rest of the proposed Blue Nile reservoirs would have on the GERD.  

  

Figure 2 Locations of proposed reservoirs in Ethiopia and existing dams in downstream Sudan 

 

Table 1 Proposed Blue Nile reservoirs 

Reservoir Mutually 

exclusive with 

Maximum 

storage 

(MCM) 

Installed 

Capacity 

(MW) 

Cost 

estimate 

(MUSD) 

Estimated 

construction 

length (years) 
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Beko Abo High 
Karadobi,  

Beko Abo Low 
31692 1940 3213 4 

Beko Abo Low 
Beko Abo 

High 
1751 935 1208 3 

GERD 

 (FSL 620 m) 

GERD 

(FSL640 m) 
34970 6000 3800 5 

GERD  

(FSL 640 m) 

GERD 

 (FSL620 m) 
72000 6000 4630 8 

Karadobi 
Beko Abo 

High 
40200 1600 2044 5 

Mandaya 

GERD  

(FSL640 m), 

Upper 

Mandaya 

48088 2000 3408 6 

Upper Mandaya Mandaya 27702 1700 2183 4 

 

The need for coordination for efficient use of resources on the Nile has long been recognised [Whittington and 

McClelland, 1992; Wichelns et al., 2003; Wu and Whittington, 2006]. Wu and Whittington [2006] examined the 

incentive structure of cooperative and non-cooperative strategies for different Nile riparian countries when assessing 

possible sub-coalitions of the Nile countries to maximise their individual benefits.  

Various studies investigated the feasibility of proposed reservoirs [Jeuland and Whittington, 2014], their 

transboundary impact on downstream use [Sreenath et al., 2002; El-Kady and Moustafa, 2005; Goor et al., 2010; 

Whittington et al., 2014], the socio-economic, political and ecological impacts [Amer et al., 2005; Cascão, 2009; 

Nicol and Cascao, 2011], and the opportunities for cooperation on basin scale [Whittington and McClelland, 1992; 

Wichelns et al., 2003; Wu and Whittington, 2006].  

Several water resources models have been developed to help understand basin wide implications of development 

alternatives on the Nile. Whittington and McClelland [1992] used an optimization model to estimate potential annual 

gross economic benefits of Nile under perfect collaboration. They estimated the value of collaboration on the Nile 

to be from 4-5 billion US dollars annually using hydro - economic optimization model. Block and Strzepek [2010] 

used a deterministic perfect foresight model of the upper Blue Nile basin to assess effects of reservoir filling, 

construction staggering and climate change on the benefits of the proposed Blue Nile dams. Goor et al. [2010] 

assessed planning and management options of Nile water resources using a stochastic dual dynamic programming 

formulation. They concluded coordinated reservoir operation would save water, increase annual energy generation 

and enable an increase in irrigated area in downstream Sudan. 

Jeuland and Whittington [2014] attempted the problem of Selection, Sizing and Sequencing of New Dams on the 

Blue Nile considering sensitivity of economic outcomes of investments to climate change. Optimal filling and 

operation rules which maximise the hydropower generation in both Mandaya and Roseires reservoirs was 

synthesized using simulation and multi-objective optimization [Hassaballah et al., 2012].  
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Driven by robust demographic growth, projected energy demand will make new infrastructure necessary to ensure 

the continued reliability of the water supply and energy services [Conway et al., 1996; Swain, 2011]. Increasing 

demand for energy coupled with high cost of fossil fuel makes the cheaper hydropower alternative from these 

potential investments attractive.  

The three Easter Nile riparian countries Egypt, Ethiopia, and the Sudan, signed an agreement in 2015 to develop the 

Nile water resources while avoiding significant harm to any of the countries. The agreement could allow joint 

development of the Blue Nile reservoir to meet agricultural water and energy supply for their fast-growing 

populations which are expected to double in the next 30 years. Various development options of the proposed Blue 

Nile dams and their management policies present different mixes of benefits, impacts, and vulnerabilities.  

The Eastern Nile countries have differing views on what equitable or fair water use could be and differing beliefs 

and perceptions on the legality of existing water use allocations [Amer et al., 2005; Dumont, 2009; Hamouda et al., 

2009; Zeitoun et al., 2010; Swain, 2011]. The historical background, differences in economic and development policy 

directions could also translate into how each will view the potential benefit and impacts of new developments. These 

challenges are confounded by imperfect knowledge of system function, and lack of sufficient dialogue and trust 

between the countries [Cascao, 2008]. However, despite these challenges, participatory assessment and planning 

could help identify potentially acceptable benefit distributions among the Nile riparian countries.  

3.3 The gaps in the literature  

The literature on the Nile fails to quantify the sectoral and multi-country benefit trade-off associated with new 

developments in the Blue Nile. Studies that assess multi-reservoirs system designs do not consider the flexibility of 

operating rules to evolve as the multi-reservoir system expands or how reservoir systems can be managed for multi-

purpose use. This gap is a missed opportunity to address concerns of impact from upstream dams and potential to 

improve downstream benefits. Moreover, this could dramatise the perceived impact of new developments on 

downstream system performance. The reliance on few deterministic assumptions which can be contested by 

stakeholders (e.g., energy price, discount rate, etc..) used in studies in the literature also affects stakeholders’ 

perceptions of system capacity, performance trade-off, and financial feasibility of development options. Hence, 

existing planning and assessment approaches on the Nile fail to facilitate negotiations on system design and 

coordinated resource use on this multi-country multi-issue planning problem. 

This work proposes a design, management, assessment, and negotiation framework that address the identified gaps 

in the Nile water resource management literature and allows the Nile basin countries to explore possible designs and 

resource coordination strategies (e.g., joint investments and power-sharing from the proposed reservoirs). 

3.4 Case study research questions 

How does impacts of the dam system (including some downstream impacts) depend on design parameters of the 

Ethiopian dams?. Does ignoring reliability metrics, as a number of studies on the Nile do, affect multi-reservoir 
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system composition recommendation by decision support systems? What are the optimal storage sizes of the Blue 

Nile reservoirs in a potential multi-reservoir system? 

What are the best options (choice or reservoirs, the timing of their activation, and their operating rules that adapt to 

system expansion) for various balances of benefit from new reservoirs and their downstream impacts.  

What are the robust infrastructure choices considering dam construction delay and cost overrun scenarios, and under 

various assumption of discount rates for future financial benefits (energy price). 

How does considering the coordinated use of resources (e.g., cost sharing and energy interconnection) affect the 

preference of Nile riparians for system designs? Does the pre-selection of system designs to negotiate on affect the 

satisfaction of stakeholders? How can the negotiation on system design selection (infrastructure and their operating 

rule management) be facilitated? 

The approach is applied to a proof of concept evaluation of proposed Blue Nile reservoirs in Ethiopia. Results of this 

study are intended to demonstrate the method but not to be taken as prescriptive recommendations. 
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4 Method 

The proposed approaches are applied to assess which infrastructure designs (i.e., combinations, sizes, etc.) and 

management (operating rules) and the multi-country shared uses of new Blue Nile reservoirs are most efficient and 

what the relevant trade-offs between system goals are. ‘Efficient’ is used in a Pareto-optimality sense (the set of 

solutions which cannot be further improved in any one metric without simultaneously reducing performance in 

others) rather than a monetised sense where multiple performance objectives would need to be commensurable.  

4.1 Many objective optimization 

A heuristic optimization approach is employed where a search algorithm [Kollat and Reed, 2006; Reed et al., 2013] 

is coupled with a simulation model of the water resources system via a wrapper code. The optimization is conducted 

using a many-objective evolutionary algorithm (MOEA) which have proved popular in water system applications 

[Labadie, 2004; Reed et al., 2013]. 

The Epsilon-Dominance Non-dominated Sorted Genetic Algorithm II (ε-NSGAII) [Kollat and Reed, 2006; Tang et 

al., 2006] generates its initial random population of decision variables by exploiting uniform random sampling within 

the user-specified ranges. These variables are then passed as input variables to the water resources simulator which 

evaluates the performance of the system. The performance information is passed back to the ε-NSGAII algorithm 

which evaluates the fitness of the decision variables to produce the next generation of decision variables. To ensure 

the final solutions are not influenced by the randomly generated initial populations, the algorithm is run a number of 

times depending on the problem formulation and its complexity with different seed values. The results from each 

run are then sorted together to provide the best overall reference set [Kollat et al., 2008].  

The multi-objective system design analysis provides Pareto-approximate sets of designs for which no objective can 

be further improved without deterioration in at least one other objective [Reed et al., 2013] (i.e., the ‘non-dominated’ 

set of infrastructure portfolios). Heuristic search results cannot be mathematically proven to be Pareto-optimal hence 

the term ‘Pareto-approximate’ [Datta et al., 2008]. Visual analytic trade-off plots [Vitiello et al., 2012; Reed and 

Kollat, 2013; Woodruff et al., 2013] are used to present the results.  
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Figure 3 Pareto optimal solution set (shown with filled circles) for a hypothetical design problem where the 

performance objectives are maximizing crop production from irrigation and maximizing hydropower generation 

only.  

Designs shown with hollow circles on Figure 3 are ignored as alternative options on the Pareto-front exist which 

score better in both energy and crop production objectives. The performance of any of the Pareto-optimal designs 

‘B’,’H’,’C’,’I’,’D’ cannot be improved in both energy and crop production simultaneously as a further improvement 

in one performance leads to a deterioration in the other. The pareto-optimal designs can be equally useful to inform 

decision and the best amongst them can be selected considering preference of the decision maker which could be 

subjective. 

The shape of the Pareto-front can vary depending on the decision problem. Visualizing the rate of sacrifice necessary 

in one performance objective to gain in another can help identify relatively more acceptable compromises. 
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Figure 4 Panel I show a small sacrifice in crop production can allow higher gain in energy generation when moving 

from design B to E. Panel II also shows a case where sacrifice in energy generation for a gain in a unit measure of 

the crop production is uniform throughout the Pareto-front. Panel III represents the revers where a large increase in 

crop production is possible with a small energy sacrifice (moving from designs D to design E. This opportunity is 

not available for other parts of the Pareto-front in Panel I or the other two Panels which represent different problems. 

4.2 Interactive River-Aquifer Simulation 2010  

The water system simulation model representing the Blue Nile includes 3 irrigation demand nodes, 9 reservoir nodes 

and 16 junction nodes and 13 links representing river reaches. The system model was built using the interactive 

river-aquifer simulation system 2010 (‘IRAS-2010’) described by Matrosov et al.,  [2011].  

IRAS 2010 is a generalised water resource system simulation model. The IRAS-2010 model represents a water 

management system as a network composed of various nodes and links. Nodes represent natural lakes, reservoirs, 

aquifers, and gauge sites with time-series of inflows, demand sites, consumption sites and confluence or divergence 

sites.  

The simulation model calculates surface and groundwater storage, flows, consumption and energy generation 

throughout water resource network. Input data necessary include hydrological inflows, evaporation rates, water 
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allocation and reservoir release rules, consumptive water demands and minimum environmental flows. Streamflow 

routing, regional groundwater flow, ecological flows, hydropower, pumping and other features can also be 

represented where necessary.  

The IRAS-2010 is selected for this study for its computational efficiency in running models that require multiple 

runs and its simple programming structure which enables easier changes to existing code. 

4.3 Visual presentations 

Many-objective optimization allows planners to visually assess important trade-offs where stakeholder preferences 

are evolving. Learning and exploring the benefits and negative impacts of new investments help different parties 

assess new designs, compromise on their benefit distribution and hopefully agree upon an acceptable way forward. 

The mapping of assets in performance space helps to summarise which asset combinations achieve what 

performance; providing valuable insights to system planners  [Fu et al., 2013; Reed and Kollat, 2013; Woodruff et 

al., 2013]. Interactive multi-criteria performance plots can play a valuable role in understanding the implications of 

development within complex systems [Kollat and Reed, 2007; Woodruff et al., 2013]. Visual interaction with results 

allows stakeholders to introduce minimum performance requirements (by filtering or ‘brushing’ results) [Reed and 

Kollat, 2013].  

A mix of the scatter and parallel plots is used in this study to efficiently communicate the Pareto-optimal designs. 

This section demonstrates how considering multiple goals and their trade-offs explicitly and simultaneously in 

system planning can provide valuable assistance in the decision-making process using a simple hypothetical basin 

as example (shown in Figure 5). 
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Figure 5 Alternative designs for a hypothetical basin. Panel A shows the status quo with minimal irrigation 

development, no reservoirs and pristine environment with tourism and undisturbed ecosystem. Panel B prioritises 

irrigation use for maximizing crop production. In this case the reservoirs could be used to maximise the reliability 

of water supply to downstream irrigation sites. Panel C shows intermediate development balancing irrigation and 

hydropower use. Panel B shows a design prioritizing energy development.  

Presentation techniques inspired by the Parallel axis plots [Inselberg, 2009; Steed et al., 2012] are also used to 

efficiently communicate the relationship (i.e., trade-offs or synergy) and also performance of each Pareto optimal 

design. Figure 6 shows how the use of scatter plots and parallel plots are related by showing the same 4 designs on 

the two different plots. 
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Figure 6 Crop production and energy performance of designs shown in figure in Scatter plot Panel I) and Parallel 

axis (Panel II) formats.  

The number of axes in a parallel axis plots can be extended to show the relationship of several performance objectives 

simultaneously. The points in Panel A could also replaced by shapes or characterised by different size or colours to 

show how the design represented by each point differes from the other and also to show the relationhip of particular 

system designs that are optimal for the performance shown. Similary, the line in the parallel plots can be caractersise 

by line type (‘-‘,’..’,’-.’, etc), colour, line width, etc.  
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Figure 7 The axis on the right shows the impact of the designs (A, B, C and D first shown on Figure 5) on ecosystem 

service in addition to the crop production and energy performance. 

 

 

 

 

  



47 

 

5 Screening reservoir system 

5.1 Introduction 

Multi-reservoir system design should consider the potential for coordinated operation of reservoirs.  Mortazavi et al. 

[2013] identify the failure to optimize operating rules jointly with infrastructure options as a limitation of existing 

design methods. Moreover, upstream reservoirs can change the variability of inflow to downstream reservoirs; 

violating the assumption of variability used for sizing of the downstream reservoirs (if the upstream dams come 

online later or if their hydrological effect not considered). Given that the change in hydrological variability to the 

downstream reservoirs will depend both on the size, and operating rule of the upstream reservoir and that coordinated 

use of the reservoirs can improve their overall performance, the design (i.e., size and operating rule) of each reservoir 

in a multi-reservoir system on a river reach should consider the design of all other reservoirs in the system. 

The approach proposed here screens designs by considering the interdependency of infrastructure and its operation. 

The asset selection, size (capacity) and reservoir operating rules are simultaneously optimized to balance multiple 

objectives. The method suggests the required increase in reservoir capacities for gaining an increase in benefits (i.e., 

energy, reliability, irrigation water supply). The approach fulfills decision-makers’ desire to see the critical factors 

that affect various performance objectives. In transboundary systems where full coordination may not be feasible, 

selecting designs that lead to acceptable downstream benefits while being operated to maximize upstream benefits 

is desirable.  

This section explores what combinations of new Ethiopian reservoirs, their storage sizes, and operating rules, would 

perform best considering several performance metrics. What new reservoir system designs, optimized for Ethiopian 

benefits, would most benefit Sudan irrigation and hydropower interests are also investigated.  

The proposed approach is applied to suggest which combinations of new Ethiopian Blue Nile reservoirs, are most 

efficient and what the relevant trade-offs between system goals are. ‘Efficient’ is used in a Pareto-optimality sense 

(the set of solutions which cannot be further improved in any one metric without simultaneously reducing 

performance in others) rather than a monetized sense where multiple performance objectives would need to be 

commensurable. 

5.2 Problem formulation 1  

The problem is formulated as a seven-objective optimization problem with 2 existing reservoirs and 7 proposed 

reservoir designs. The objectives are evaluated by simulating the system monthly using 50 years of monthly 

historical flow data. The objectives include minimizing the storage size of new infrastructures, maximizing firm 

monthly and average annual energy generation from the proposed dams and maximizing energy generation and 

minimizing water supply deficit for irrigation served from the existing 2 reservoir system. Minimizing the number 

of reservoirs is also included as an objective to consider possible preferences for a simpler system design. Decision 
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variables include the activation of new reservoirs, their storage capacity, and reservoir release rule parameters.  The 

multi-objective problem is formulated as:  

Minimize ( )SNofIDSfAASfAAEfFEEfScfxF Re,,,,, −−−−−=               (1) 

x  

),,,( jOpiOpiCapiYX =         (2) 

RESiYi = }1,0{  

Subject to tki mkiYY + ,2  

Where RES  is the set of all reservoirs given in Table 1, RESmt   are the sets of mutually exclusive designs given 

in rows in Table 1.    

Where  
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ji,    Notations refereeing to proposed and 

existing dams respectively 

iY    Decision to activate reservoir i  

iCap    Storage capacity of reservoir i  

ji OpOp ,    Operation rule parameters of proposed and 

existing reservoirs respectively 

ttt qhp =    
Energy generation at month t, with ttqh

referring to height and discharge and  a 

constant that considers length of time, 

gravity and efficiency.  

 

This section aims to answer the question, what combinations of assets perform well for the historical flow record. 

The storage capacity (Scap) varies between maximum storage (SMax) and storage corresponding to the minimum 

operating level of the hydropower generators (SMol). The study does not consider the future progression of time, and 

discounting is not used. The storage size is used as a rough proxy for capital costs.  

Because upstream reservoirs alter flow regimes, downstream reservoirs operating rules may need to change if dams 

are built upstream. With simultaneous design and operating rule optimization, the selection of reservoirs and their 

release rules are jointly considered by the search algorithm to increase performance. The proposed approach 

identifies high performing designs of multi-reservoir systems assuming optimally coordinated operations formulated 

as a piecewise linear curve for each reservoir (Figure 8).  Reservoir designs where the storage sizes are optimized 

are compared with those for which the storage sizes are assumed fixed to demonstrate the impact of concurrent 

optimization in achieving efficient investment portfolios. 
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Figure 8 Operating rule curve as represented in the water resource simulation model adapted from (Hurford et al., 

2014).  Rcri,, RMin, RMax: release values corresponding to the dead storage required for siltation (SDead), the storage 

level beyond which hedging is employed (SMin) and the storage capacity SCapacity  respectively. The storage capacity 

itself varies between maximum storage (SMax) and storage corresponding to the minimum operating level of the 

hydropower generators (SMol). Arrows indicate allowed directions of search for the optimized decision rules (the 

coordinates of points A, B and C). 

5.3 Results 

Analysis results consist of trade-off curves built of Pareto-approximate designs; each design consists of existing 

reservoirs and one or more new reservoirs, their storage capacities, and operating rules. The ‘efficient’ designs cannot 

be further improved in any dimension without deterioration of at least one other objective [Olenik and Haimes, 1979; 

Mavrotas and Florios, 2013].  

In the following sections, we present non-dominated designs of proposed individual new reservoirs (Section 5.3.1) 

and of multi-reservoir system designs (5.3.2) considering multiple performance metrics. Reservoir operating rules 

for the different Pareto-approximate reservoir configurations are discussed in Section 5.3.3. Finally, Section 5.3.4 

investigates the downstream impact of designs that are Pareto-approximate in upstream objectives.  

5.3.1 Single Dam Strategy 

This section presents performance of non-dominated designs of single new dams using different operational 

strategies, e.g., maximizing average annual energy or firm monthly energy generation.  
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Figure 9 Performance of efficient non-dominated strategies that build only one new reservoir as seen in the storage 

capacity vs. firm energy (panel A) and storage capacity vs. average annual energy (panel B) two-dimensional trade-

off spaces. Panel B also shows the performance of Pareto-optimal designs operated for maximizing firm energy 

(green) in comparison with Pareto-optimal designs for maximizing annual energy (red). Some designs such as 

Mandaya (‘M_f’ and ‘BAH_f’) , which are Pareto-approximate for maximizing firm energy (Panel A) are not Pareto-

approximate for maximizing annual energy. Optimizing storage size of designs (shown with hollow shapes) achieves 

better performance (e.g., ‘B_a2’) compared to where the storage size of reservoirs is assumed fixed (shown with 

dark fills e.g., ‘UM_a’).  

The points with darkened fills in Figure 9 show performance of proposed reservoirs without storage capacity 

optimization, i.e., iCapMaxiCap = . For a reservoir with a given storage capacity, operating rule parameters (which are 

decision variables) can be chosen to maximize the firm energy (panel A) at a cost of the average annual energy (red 

colored shapes in Figure 9 panel B) and vice-versa. 

Figure 9 Panel B shows that when operating rule parameters are chosen to maximize annual energy, the GERD 

works well over a wide range of capacities. Although a GERD design with intermediate storage capacity performs 

better when maximizing annual energy (in panel B), it is inferior to Mandaya and Beko Abo High dam designs (in 

panel A) if the objective is to maximize firm energy. Therefore, if firm energy is preferred and a storage capacity of 
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48 or 30 BCM are chosen for other reasons as the upper storage limit, Mandaya and Beko Abo High dam respectively 

would be better choices than the GERD. 

5.3.2 Multi-Reservoir Systems  

Figure 10 shows designs that include more than one reservoir on the firm energy vs. the total combined storage 

capacity (Panel A) and energy generation vs. total combined storage capacity trade-off (Panel B).  

 

 

Figure 10 Performance of non-dominated reservoir portfolios that maximize firm energy (panel A) and annual energy 

(panel B) and minimize aggregate storage (y-axis on both panels). Letter labels assigned to portfolios are the same 

in each panel. Panel B shows that designs for which storage capacity is optimized achieve better performance in 

minimizing aggregate storage size in some ranges of the trade-off space (between 8 and 35 TWh/year) compared to 

when the storage size of reservoirs is not optimized (Dark edged shapes). The plot reveals what system designs are 
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most efficient as total system storage capacity is decreased. Panel C show the reduction in annual energy (panel B) 

if firm energy is preferred by overlaying the annual energy performance of designs that are Pareto-approximate for 

maximizing firm energy (filled shapes) and minimizing aggregate storage size. Overall, this plot shows that for high 

energy producing systems (left hand side of each panel) that achieve a relatively small overall system storage, the 

portfolios with the Border and Mandaya (star shape e.g.,’n’ and ’k’) reservoirs are most efficient. 

A 4-reservoir system of GERD, UpperMandaya, Karadobi and Beko Abo Low (‘d’ in panel B) achieve the highest 

average annual energy generation capacity of more than 39 TWh/year, an alternative 4-reservoir system with Border 

dam, Mandaya, Karadobi and Beko Abo Low (‘e’) being the next best. Labels ‘c’ and ‘n’ in  Figure 10 show 

alternative designs recommended (for similar aggregate storage sizes) when maximizing firm energy (label ‘c’) and 

for maximizing annual energy (label ‘n’). Some portfolios (e.g. designs ‘u’ and ’v’) do well in both annual energy 

and firm energy whereas other designs (e.g. labelled ‘a’, ‘b, ‘c’) only do well in one of these.  

Stakeholders may prefer reservoir systems with smaller aggregate storage capacity as these would leave lower local 

environmental footprint and could translate to a lower cost. Fewer reservoirs could also be preferable (e.g. easier to 

implement, quicker onset of benefits). Pareto approximate portfolios that minimize the number of reservoirs are 

shown in Figure 11.  
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Figure 11 contains the same Pareto-optimal portfolios as Figure 10 Panel B but with an additional objective: 

minimising the number of new reservoirs. Panel A shows the performance reduction as the number of reservoirs 

(shown with inside fill color gradient) are minimized. Panel B shows the optimal size of the Border Dam (Circles) 

and GERD (squares) relative to their maximum storage (shown with color gradient). The plot shows that the Border 

dam with reduced storage size is Pareto-approximate in most combinations (lighter circles) that don’t limit the 

number of reservoirs.  

Figure 11 shows the relationship of the optimal sizes of the alternative Border and GERD dams (circles and squares 

respectively in panel B) with the overall energy generation capacity of the system. The plots show Border dam with 

reduced storage size is Pareto-approximate in most combinations (lighter circles) that don’t constrain the number of 

reservoirs. The optimal size of the Border dam depends on which upstream reservoirs are implemented, with 

reductions to its size improving overall performance (i.e., lighter colored circles approach the ideal solution, e.g. 'q', 

'x', 'y’). The GERD designs with current storage size (Figure 11 label ‘o’) is dominated by two (‘p’) or three reservoirs 

(‘q’) i.e., with less aggregate storage size and higher energy generation. However, the current design of the GERD 

(with 100% of its stated storage size) is Pareto-approximate for plans that aim to minimize number of reservoirs such 

as in one ('o'), two ('r'), three ('s') and four ('d') reservoir systems.  
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5.3.3 Operating Rules 

In this section we show how optimized reservoir operating rules change depending on system configurations using 

GERD as an example.   Figure 12 panel A displays storage and release relationships over the full simulation period 

for GERD reservoir.  

 

Figure 12 storage vs. release (Scatter plot panel A) and monthly energy generation exceedance probability (Panel B) 

from GERD. Exceedance probability (on the X axis of  the right panel) shows how often the energy generation (on 

the Y axis of the right panel) the monthly energy generation is exceeded in the simulation period. The plots compare 

optimal operating rules and monthly energy outputs for annual energy maximizing operations of a standalone GERD 

(blue squares) and in GERD operated in coordination with upstream dams (‘r’,’s’, and ‘d’ in Figure 11) 

Upstream regulation when reservoirs are added (e.g., Beko Abo High, Upper Mandaya) allows the GERD to function 

with less variation and a high storage level (green star, orang circle and magenta triangle) compared to the standalone 

GERD (blue square in Figure 12 Panel A).  

Figure 12 panel B shows monthly energy generation from GERD for annual energy maximizing operations as a 

standalone (blue squares) and in coordinated operation with upstream dams (‘r’, ’s’, and ‘d’ in Figure 11). Both the 

minimum energy that may be required to be guaranteed as firm energy (to be generated close to 95-100% of the 

time) and the highest monthly energy (available only 5 to 20% of the time) are improved with addition of upstream 

reservoirs. 

5.3.4 Downstream impact of proposed reservoirs  

In this section, the impact of upstream Pareto-approximate designs identified in Figure 9 on the Sudanese system are 

investigated. Figure 13 shows the highest achievable performance of the two existing Sudanese reservoirs with 
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designs (i.e., reservoirs, storage capacity and operating rules) that are Pareto-approximate for Ethiopian objectives 

of maximizing firm and annual energy at least storage capacity.  

 

 

Figure 13 key Sudanese system metrics for upstream Pareto-optimal designs limited to a single upstream dam (same 

designs considered in Figure 9). Shapes show which single dam achieves the performance; optimized storage 

capacities are given with labels as percentage of maximum storage capacity. Green coloured shapes show 

downstream system performance for upstream reservoirs operated to maximize firm energy; red coloured ones show 

designs where upstream annual energy was maximized. The plot shows Mandaya and  GERD (green upright triangle 

and square respectively near origin) with  large (%) of their maximum storage capacity operated for firm energy and 

Upper Mandaya operated to maximize annual energy (red triangle pointing downwards) are the most favorable 

designs when considering Sudanese irrigation and energy generation objectives. Note: Sudanese objectives displayed 

on the plot axes above were not optimized for in the model formulation described in this chapter. 

Figure 13 shows the average irrigation water supply deficit for a simulation period of 50 years. Downstream system 

performance (in Sudan) is affected by what single reservoir is built upstream (shown with shapes), its size (labels) 

and its operating strategy (color). For each portfolio plotted in Figure 13, the operating rules of the two Sudanese 

reservoirs, Roseires and Sennar, are optimized to adjust to the new hydrologic conditions each upstream system 

design implies. Although the downstream system performance is improved under most designs, a large storage 

(shown with % of maximums storage capacity), Mandaya and GERD operated for firm energy (green upright triangle 
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and square respectively near origin) and Upper Mandaya operated to maximize annual energy (red triangle pointing 

downwards near origin of Figure 13) are most favorable to Sudanese system performance.  

 

5.4 Discussion of the application 1 

5.4.1 Screening new reservoirs within the Blue Nile multi-reservoir system  

A multi-criteria approach to screening proposed new reservoirs within multi-reservoir systems is proposed and 

applied to the Blue Nile multi-reservoir portfolio design problem. The method reveals the trade-offs in management 

objectives that the most promising (Pareto-approximate) system designs (incorporating new and existing dams, their 

sizes and their operating rules) imply. High performing designs which achieve the most efficient trade-offs between 

conflicting objectives are revealed visually. The mapping of assets in performance space, e.g., figures 3, 4 and 5, 

summarize which asset combinations achieve what performance providing valuable insights to system planners.  

The results show the combinations of assets that work best together vary throughout the performance space.  Figure 

9 and Figure 10 were used to assess which subset of designs are Pareto-approximate revealing how certain assets do 

well under several sets of objectives (e.g. designs ‘u’ and ’v’ in Figure 10,) whilst others not as well (e.g. design ‘a’, 

‘b, ‘c in Figure 10).  

Reliability measures for hydropower systems can be difficult to commensurate with cost and benefit measures. 

Designs that have the highest average annual and firm monthly energy generating capacity are in general desirable. 

However, those efficient in maximizing annual energy do not necessarily perform best for maximizing firm energy 

output.  Incorporating energy reliability, a non-monetary metric of interest to system planners, shows how multi-

objective analysis helps reveal practical designs with complex combinations monetary and non-monetary benefits.  

Investment costs and costs associated with the downstream impact of projects often are accrued by different 

stakeholders. Due to ongoing disputes over Nile water use rights, selecting designs on the aggregated net benefits, 

i.e., total benefits estimated from energy generation, capital costs and costs incurred by downstream users (reduction 

in benefits due to upstream intervention) may be difficult. In reservoir systems required to meet a number of 

conflicting objectives held by upstream and downstream system owners, explicit consideration of all major 

stakeholder objectives help identify potential compromise designs and the trade-offs in benefits these designs imply. 

Visual assessment of trade-offs can facilitate stakeholder deliberations post optimization, meaning weights are not 

required as in ‘apriori’ multi-criteria analysis. Many-objective optimization as shown here allows planners to visually 

assess important trade-offs where stakeholder preferences are evolving. Learning and exploring about benefits and 

negative impacts of new investments help different parties assess new designs, compromise on their benefit 

distribution and hopefully agree upon an acceptable way forward. Considering multiple goals and their trade-offs 
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explicitly and simultaneously in system planning can provide valuable assistance in the decision making process 

[Kasprzyk et al., 2009]. 

Figure 10 shows jointly optimizing reservoir capacities and operating rules achieves better performing designs than 

only optimizing the coordination of rules. Figure 11 and Figure 12 demonstrated that optimal storage size and optimal 

operating rules for a reservoir depend on the portfolio of reservoirs included in any particular design. Plots like 

Figure 11 and Figure 13 that show the performance trade-offs of new dams as their storage capacity is reduced could 

be of interest to those arguing for larger or smaller reservoirs. Results show assessing new reservoirs considering 

their coordination with existing and other new assets enables effective screening of new reservoir designs.  

5.4.2 Implications for Blue Nile infrastructure development 

Given the current data and modelling assumptions, results argue that multiple reservoirs achieve better results at 

lower aggregate storage capacity. The current GERD design is not Pareto-approximate for maximizing energy 

generation for the least storage capacity possible (Figure 10 panel B) but it is Pareto-approximate with regard to 

maximizing energy generation while minimizing number of reservoirs (Figure 11 panel A). GERD only requires one 

dam to achieve the benefits rather than two or three as the nearby more efficient portfolios do. If several dams could 

be built at once, it would be advantageous to build a combination of reservoirs rather than a single reservoir with 

equivalent storage size, if not, GERD is an efficient alternative for the benefits considered in this study.  

Storage-size-optimized designs (hollow shapes in Figure 10) perform better in energy generation compared to those 

at maximum capacity for which only operating rules are optimized (shapes with dark outline in Figure 10) in some 

ranges of the trade-off space. Results show if constructing more than one dam was possible at the same time and 

Border dam were to be selected, less than its maximal storage would have been efficient up to 35 TWh/Yr (e.g., ‘k’ 

on panel B in Figure 10). Outside of this range, the maximum storage size designs of each reservoir are most efficient. 

Figure 11 panel B presents system designs for which storage size of the downstream most reservoirs GERD and 

Border dam are optimized (shown with color and shape). The maximum storage size of the GERD is efficient in all 

ranges where the number of reservoirs is purposely limited. Although reducing the storage size of GERD leads to 

Pareto-approximate designs (e.g., labels ‘b’, ’q’ in Figure 11 panel B) at lower ranges of energy generation capacity. 

This would limit future expansion potential  (e.g., ‘d’,’f’,’s’ in Figure 11)  and performance in designs aiming to 

minimize the number of reservoirs as it would involve, for example, constructing the GERD  and the Beko Abo High 

(‘p’) with reduced storage size.   

Figure 12 panels B shows that the reliability of energy output from the GERD  will  be improved with addition of 

upstream reservoirs.  Figure 13 showed downstream irrigation deficits and hydropower production in Sudan given 

different optimized standalone Ethiopian reservoirs. Sudan’s benefits depend on upstream reservoir storage 

capacities and operations (i.e., whether they maximize firm or total annual energy). Figure 13 showed the Mandaya 

design would perform better than all alternative single dam designs from the Sudanese perspective including  Border 



59 

 

dam if it was to be operated for firm energy. The current GERD design performs best if it is to be operated to 

maximize annual energy. The results also show reducing the storage size of the GERD reduces the irrigation water 

supply performance. Coordinated multi-purpose operation of Ethiopian reservoirs could potentially further improve 

performance of the downstream system. However, the potential collaborative use of the Ethiopian and Sudanese and 

other downstream reservoirs is out of scope for this study which limits itself to predicting the best performance 

achievable in Sudan when the Ethiopian system is operated to either maximize annual or firm energy. 

Study limitations are discussed below and in Chapter12 and they strongly impact the results this study can offer 

which aim mostly to describe a proposed approach to multi-reservoir system design. At it currently stands, the 

analysis results can be summarized as follows. A four-reservoir system, either with GERD or Border dam, can 

generate more than 39 TWh/year. If a total energy generation capacity of less than 35 TWh/yr is acceptable, Border 

dam is in the efficient asset mix in lieu of GERD. Although once it has been filled a two-reservoir system (e.g., 

GERD and Beko Abo High) achieves higher energy production with a lesser aggregate storage capacity than a 

standalone GERD, the current GERD-only design is the best possible one-reservoir system design given the 

objectives and assumptions considered in this study. Furthermore, if operated to maximize annual energy, the current 

GERD design (with 95 to 100% of the proposed storage capacity) enables the highest levels of downstream Sudanese 

benefits assuming Sudan would change its reservoir operations to adapt to the new upstream development. 

5.5 Limitations 

This chapter focused on a trade-off analysis of alternative designs and leaves the consideration of uncertainty of 

filling periods and the long-term impacts of climate change or other supply/demand changes for future work. The 

study is deterministic, the assets are evaluated over one hydrological time-series (the historical one) rather than 

multiple plausible future futures as is done by other authors using similar optimization methods [Arena et al., 2010; 

Anghileri et al., 2013; Hurford et al., 2014]. Also, as discussed in section 5.2, this chapter does not consider possible 

inter-country collaboration; all plots maximize benefits from the country where the dams are located (in this case 

Ethiopia). This study only modeled Blue Nile impacts. 

The study assesses the storage size requirements assuming fixed installed power capacities. An aggregate net benefit 

maximizing objective considering variation in cost and installed power capacities with storage size, peaking power 

demand and the cost of delay in onset of benefits could provide more decision relevant information. The study uses 

monthly time steps. The firm energy metric used in this study represents the seasonal and inter annual variation of 

monthly energy generated. Incorporating other short-term performance metrics such as energy supply reliability 

considering the daily and hourly demand distribution which are of interest to system planners could reveal more 

insights on the design problem. 

Only benefits along the Blue Nile and for few major irrigation sites in Sudan are considered. The impact/benefit of 

regulation on other important dams on the Main Nile (Merowe and Aswan) and impacts of Ethiopian dams on Egypt 
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are not assessed in this proof of concept study. The study also ignores possible changes of cropping patterns in 

Sudan, i.e., the change in magnitude and/or timing of seasonal irrigation demand with the availability of more 

regulated flow from Ethiopian dams. Finally in this study reservoirs use one operating policy, the standard linear 

operating policy. The operating rules are assumed to be fixed throughout the time horizon and do not vary when 

basin conditions change as they might with real operators. More complex rules that change with environmental 

conditions could likely attain better performance and hence might change the systems designs recommended within 

this study.  
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6 Scheduling reservoir investments 

6.1 Introduction 

Chapter 5 demonstrated performance increase when storage size and operating rule parameters are optimized 

simultaneously. For large structures, such as the proposed Blue Nile multi-reservoirs, system expansion may need 

to be staggered rather than concurrent to minimize continuous negative impact on downstream storage structures 

from reduced downstream flow resulting from filling the new reservoirs upstream. Given the impact of the new 

reservoirs on each other (i.e., filling of newer upstream reservoirs could affect performance of downstream reservoirs 

if those are built earlier), selecting components of the multi-reservoir system and sequencing their construction 

should consider the filling period performance of alternative investment schedules in addition to their overall long-

term performance.  

In water resources systems with interdependence such as multi-reservoir systems on a single stretch of a river (‘dams 

in series’), the performance reduction when new reservoirs are filling can be substantial. The filling of the new Blue 

Nile dams could be subject to minimum downstream release requirements to minimise downstream impact in Sudan 

and Egypt which are downstream. Slower filling to meet such requirements could delay benefits from the new dams 

and potentially affect their financial viability [Block and Strzepek, 2010].  

Figure 14shows a typical problem when a new multi-reservoir system is to be implemented upstream of an existing 

water system. The filling of new reservoirs affects the performance of both the existing system and planned one.  

 

Figure 14 sketch showing a demand projection, multi-reservoir system performance and impact levels at different 

stages of expansion. Meeting demand during periods ‘t2’ and ‘t4’ requires interventions at times ‘t1’ and ‘t3’ 

respectively.  Addition of a new dam upstream at ‘t3’ could reduce energy generation from the existing system 

(during period from ‘t3’ to ‘t4’).   

This chapter investigates how considering downstream release requirements and energy generation performance in 

filling periods could improve overall performance and system design recommendations and their scheduling over 

time. The chapter also examines the extent to which allowing for the evolution of operating rules in an optimised 
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multi-reservoir system design impacts the trade-offs of benefits obtained from reservoir systems and impacts their 

optimised schedules. We compare the results of the multi-reservoir scheduled designs under different degrees of 

evolving operating rules (different levels of responsiveness of operating changes to system expansion).  

The current chapter considers the trade-offs in energy generation and environmental benefits (maximizing releases 

to minimise downstream impacts during reservoir filling periods) with economic (discounted NPV) performance 

goals. The NPV metric measures the difference between time discounted future benefits (from energy production) 

and discounted capital costs. System designs are evaluated by the heuristic search algorithm using 30 realizations of 

a hydrologic series statistically resembling historically observed flows. The case-study shows the importance (impact 

on NPV and on system design and scheduling) of considering changing operating rules during the filling periods of 

new large dams in multi-reservoir system expansion planning. 

6.2 Problem formulation 2  

Here we describe the multi-reservoir system scheduling problem and the proposed approach.  

6.2.1 Many objective planning problem formulation 

In order to search for high value designs and their sequencing for this problem, we propose to use many objective 

optimization. Visual analysis of trade-offs helps with the discovery of alternative designs which present acceptable 

performance trade-offs [Kollat and Reed, 2007; Kasprzyk et al., 2009; Woodruff et al., 2013]. The general problem 

formulation is the minimization/maximization of multiple performance objectives (eq. 1) which guides the search 

algorithm to look through the decision space (eq. 2) subject to any constraints such as water balance, mutual 

exclusivity of dam options etc.: 

Minimise )( ifFx =                  (1) 

x                        (2)   

Fx   Target function 

if  
 

Performance metrics such as Net present value of investments, average 

energy, etc.  

The decision variables include choice of reservoir portfolios, the timing of their implementation and their 

management (e.g., coordinates of storage-based release rules). To investigate the impact of simplifying assumption 

on quality of the infrastructure investment decision, we compare the optimised performance of the multi-reservoir 

scheduled designs under different levels of operating rule responsiveness to system expansion. Operating rules 

responsiveness levels include (A) rules optimised for individual reservoirs then fixed in a second stage many 

objective optimization that sequences the pre-defined investments; (B) rules are optimised jointly with dam 
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selections but the rules are changed only once, and (C) rules of each reservoir are optimised for each unique system 

expansion stage. These levels of responsiveness in reservoir operation optimization, Schemes A, B and C, are 

displayed graphically in Figure 15using panel letters with the same letter.  

 

Figure 15 Three schemes with varying levels of responsiveness for the optimization of operating rules in multi-

reservoir system capacity expansion. Colour patches represent time periods when an optimised operating rule is 

applied for an individual dam. Stage 1 in Panel A shows the operating rules of each of the dam options is optimised 

(ignoring possible impact of other dam in the future). Stage 2 uses these operating rules while searching for the best 

combination and timing of new reservoirs. Panels B and C designate designs where the operating rule designs and 

infrastructure choices are optimised simultaneously.  Panel B assumes the operating rules of the dams change only 

once at the end of filling while Panel C considers changing operating rules for each of the reservoirs as the reservoir 

system expands. 

6.2.2 Operating rules 

Like Giuliani et al. [2014] we apply direct policy search, where the operating policy is first parameterised within a 

given family of functions and then the parameters optimised with respect to the operating objectives. We 

parameterise the control policies using gaussian radial basis function (RBF) [Giuliani et al., 2014]. Radial basis 

function have been used to map the reservoir storage and time index into release decisions [Giuliani et al., 2014; 

Zatarain Salazar et al., 2017] and take the form of  
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Following [Maier et al., 2014b; Zatarain Salazar et al., 2017], we use n =  4 RBFs where m is the number of input 

variables (two) - the storage in the reservoir and time of year are used as input to the release rule. The Inputs in Zt 

are uniformed on [0,1] while  the centres and radii take value in ]1,1[, −jic  ]1,0[, jib  ]1,0[, jiw   =
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Each of the multi reservoir expansion stage represented with distinct colour in Figure 15 require a separate operating 

rule. Each reservoir is allocated a unique release rule based on its own storage level and time of the year. We set the 

number of RBFs equal to one more than the sum of the number of inputs (2) and outputs (1). Each RBF has associated 

with it 4 weights and 4x2=8 centres and 4x2=8 radii that need to be optimized. A total of 21 variables need to be 

optimized considering the further one variable which will be multiplied with the result of RBF storage and time 

function (which is normalized on [0,1]) to give the actual release magnitude. The optimal value of this variable can 

take a value from 0 to maximum release capacity of the dam. Hence a Radial basis function based operating rule for 

a four-reservoir system that is expanding could require up to (21x20=420) decision variables (i.e., for the most 

detailed operating rule representation in Figure 15 Panel C). While, increased degrees of freedom for the operating 

rule of reservoirs could improve performance, it could lead to higher stochasticity of results in problems where 

decision variables are interdependent; resulting in high computational cost. The increase in computational 

requirements with increased responsiveness of the operating rule is compared. 

The storage targets of a large reservoir are typically varied during its filling period of several years length. The Radial 

basis function based operating rule considers varying storage targets at various points in the filling period time-span 

of each reservoir (which could be more than a year) in contrast to the after-filling period where an optimised 

operating rule specifies storage targets for a typical year.  

For the Blue Nile, the amount of reliable downstream flow are of concern as are the financial feasibility and energy 

generation capacity of new developments. The performance objectives considered in this study include maximizing 

the average and lower quartile net present value of future benefits ( 25, fNPVfAveNPV ), maximizing final (once 

reservoirs have filled) average annual, firm annual and firm monthly energy generation

fMinFMEfMinFAEfAveAE ,, respectively and the reliable 3-year cumulative downstream releases( RfMin3 ). The 

simulation period length is set at 80 years to accommodate the assumptions that each dam will have a project life of 

50 years.   

Maximise  )3,,,,,( 25 RfMinfMinFMEfMinFAEfAveAEfNPVfAveNPVFx =          (4) 

x  
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),,,,( ,, ssisiii FLFopOpTYx =                                 

   MiYi = 1,0        

Subject to kji mjiYY + ,2     

The decision variables include the activation of new reservoirs (Table 1), their implementation dates, their reservoir 

release rule parameters at various multi-reservoir system expansion stages (i.e., first, second, third, etc… filling and 

steady state operating periods).  

Where ‘m’ is the set of all possible reservoir options while Mmk   are the sets of mutually exclusive designs given 

as rows in the Table 1. The performance of water resources infrastructure is dependent on several uncertain factors 

including hydrologic variability, climate change, future water demands and evolving institutions [Conway et al., 

1996; Block and Strzepek, 2010; Swain, 2011]; in this application, only the first source of uncertainty is considered. 

Fx  
Target function 

=fAveNPV   5.0,),...,1( Npvquantile Fi  Average net present value of benefits,i.e., present worth of benefits 

from energy generation minus present worth of capital cost of 

reservoirs 

=25fNPV   25.0,),...,1( Npvquantile Fi  75% exceeded net present value of benefits,  

=fAveAE  
5.0,

{...,

,

),...,(),,...,1(

ji

EstLjFi

Eannl

quantile 
 

Average energy generation in regular operating periods after all 

dams are implemented and filled (i.e., ‘tL’ to the end of simulation 

‘Es’) 

=fMinFAE  

}95.0,

{...

,

),....,1(),,...,(

ji

FjEstLi

Eannl

quantile 
 

95% exceeded (near minimum) annual energy generation of the 

reservoir system in the last steady state (i.e. after all dams are 

implemented and the last filling periods.  

=fMinFME  

}99.0,

{...

,

),..,(),,...,1(

ji

EstLjFi

Em

quantile 
 

95% exceeded (near minimum) monthly energy generation of the 

reservoir system in the last steady state (i.e. after all dams are 

implemented and the last filling periods.  

=yrfMinR3  

}95.0,3

{

,

),...,1(),,...,1(

ji

FjTsi

R

quantile 
 

99% exceeded (near minimum) cumulative releases over a 3-year 

consecutive period. The maximization of cumulative release in 

consecutive years is considered as a proxy for Egyptian interests in 

reducing the impact of filling of Ethiopian reservoirs on the High 

Aswan reservoir.  
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=tE   ttqh  
Energy generation at month t; a function of head and 

discharge and a constant that depends on gravity and 

length of month 

=yEannl  ),( ytEsum t   The sum of monthly energy generations in the year 

‘y’ 
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Cumulative release of past 36 months at time t 
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Time discounted economic returns from energy 

generation 

=CostsNPV  
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1 1
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i
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i
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++
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Time discounted cost of infrastructure 

=NPV  CostsBenefits NPVNPV −  Time discounted net present value 

 

iLenCons   Length of construction of dam i 

iIMP   Implementation date of dam i 

ciT ,   Construction year (between 1 and max length of 

construction period of dam i (see Table 1) 

d   Discount rate (assumed at 10%) 

iCost   Capital cost of reservoir i  

i   Dam notation  

s   Expansion stage  

iY   Decision to activate Storage option i  

iT   Implementation date for reservoir number i  

siOp ,   Steady state operation rule coordinates of reservoir i  

in period s 

siFo ,   Filling period operation rule of reservoir i  in period 

s 

sFL   Length of filling period at stage s 

Eval   Value of energy per kWh 
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6.3  Results 

Next, and for our simplified system representation, we present the proposed Blue Nile reservoirs’ potential and the 

trade-offs among different performance objectives under operating rules increasingly adapted to the new system as 

it expands. Section 6.3.1 examines the trade-offs between the average net present value (NPV) and the reliable 

downstream flow from the Blue Nile at the Ethiopia-Sudan border for a one reservoir design. The NPV metric 

measures the difference between time discounted future benefits (from energy sales) and immediate and future (for 

reservoirs planned to be build in the future) capital costs. Section 6.3.2 compares estimated performance of the multi-

reservoir system as operating rules are increasingly refined to address each unique stage of system expansion. Section 

6.3.3 examines the Pareto-optimal dam investment schedules across multiple metrics of performance for operating 

rule Scheme C (Figure 1).   

6.3.1 Single reservoir design 

This section considers the performance trade-offs implied by a range of operating rules for the simplified case where 

only one reservoir is to be built. To quickly meet their design potential and generate benefits, new reservoirs are 

ideally filled quickly and operated at full energy generation capacity. However, rapid filling of reservoirs can 

adversely affect existing downstream water uses.  This trade-off between loss of new dam performance and 

downstream impact will depend on the location, size and filling strategy of the new dam. Figure 16 shows the trade-

off between the reliable (99% exceeded) 3-year cumulative releases and the average NPV for a single new reservoir 

operated with one optimised rule during filling and another after filling (i.e., as per stage 1 of  Figure 15 Panel A). 

Each marker represents an optimal filling and steady state operating strategy in addition to a dam selection choice. 
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Figure 16 Efficient trade-offs between the average net present value of benefits and 99% exceeded 3-year 

downstream flow at the Ethio-Sudan border for standalone reservoir options. The Pareto-fronts when each of the 

reservoirs is assessed separately is shown with similar markers e.g., designs between ‘a’ and ‘j’, and between ‘b’ and 

‘k’. 

 

6.3.2 Comparison of performance as operating rules adapt to new system designs   

This section considers the case of a two -reservoir system and assesses the gains in performance when using an 

operating rule set which is increasingly responsive to the system’s expansion. We compare the two responsive 

schemes (B and C of Figure 15) with ‘static’ rules that are not changed when the reservoir system expands, i.e., the 

operating rules are optimised for each dam regardless of other dams (i.e., ’a’, ..., ‘o’ ofFigure 16). 
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Figure 17 Pareto optimal reservoir system designs with optimised operating rules under differing levels of 

responsiveness to system expansion.  Investment schedules that seek to maximise financial benefit while assuming 

unresponsive operating rules disproportionately impact downstream system (e.g., ‘a’) compared to the responsive 

operating rule formulations (e.g. ‘e’, ’g’). Less responsive operating rules lead to lower performance (e.g., ‘j’, ‘k’ 

and ‘l’ presents lower net present value in billions of US dollars (BUSD) compared to ‘i’ for similar release 

requirements). 

Figure 17 shows the difference in the average net present worth of investments estimated under the different rules 

(i.e., ‘a’, ‘e’, and ‘g’) is less than 5% when there is no downstream release requirement (low performance on the y-

axis). However, differences in net present value increase with higher requirements in downstream flow performance. 

For the two-reservoir system design, the average net present value for similar reliable releases requirements varies 

by more than $1 billion US dollars (BUSD) when the release requirement is high (e.g., comparing designs labelled 

’k’ and ‘i’); showing the value of considering the responsiveness of reservoir operating rules to dam system 

expansion. Figure 17 Panel B shows how recommended dam schedules (selection of reservoirs, and gap between 

their implementations) change (e.g., compare designs ‘h’, ’d’ and ‘f’) under differing levels of operating rule 

responsiveness to system expansion.  

Efficient designs in Figure 16 and Figure 17 showed the trade-off between two performance objectives. However, 

stakeholders are likely to track multiple objectives simultaneously. Results in Section 6.3.3will show how Pareto-

optimal designs can address other important criteria.  

6.3.3 Performance trade-offs across multi-reservoir expansion stages  
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In this section, only the designs optimised under the most responsive ‘Scheme C’ optimised operating rules (Figure 

15 Panel C) are considered. Parallel axis plots [Inselberg, 2009; Steed et al., 2012] are used here to show multiple 

objectives. The right-most panel ‘III’ allow to visually represent dam scheduling over time. 

Figure 18 shows the trade-offs between multiple performance goals and corresponding design parameters of Pareto-

optimal investment schedules. The figure includes 9 Panels, I through III from left to right and A-C from top to 

bottom. Panel I shows performance related to the net present value and annual energy generation capacity. The net 

present value tracks the difference between time discounted future benefits and costs. The energy metrics report 

performance in steady state (after filling of all dams). Panel II shows the 99% exceeded 3-year cumulative 

downstream release including in the filling period.  Panel III shows the optimal sequencing of reservoirs over time 

via the x-axis. 
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Figure 18  Parallel axis plot showing trade-offs between multiple performance metrics. Panel A shows result for a 

single reservoir formulation. Designs that achieve maximum performance in one of the performance objectives is 

shown with the same colour. Panels B and C correspond to unconstrained multi-reservoir scheduling. Panels A and 

B show designs which achieve highest performance in at least one of the objectives. Panel C includes (shown with 
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dashed lines) the designs that achieve the top 10% in at least one of the performance objectives for a multi-reservoir 

system. Panel III shows schedule of reservoir portfolios for the different balances of performance shown in Panels I 

(Ethiopian interests) and Panel II (Egyptian interest). 

Portfolios schedules with different numbers of reservoirs (represented by marker shapes) are recommended as 

optimal for differing balances of the conflicting performance objectives (i.e., downstream release, energy generation 

and net present value). The majority of designs that seek to maximise the financial benefit and minimise downstream 

impact (e.g., green and blue lines in Panels B and C) suggest implementing the first 3 designs in the first 20 years 

and delaying the fourth one. Up to 60 years could be needed to implement all the Blue Nile reservoirs with these 

optimised development programs.  

The Blue Nile multi-reservoir system has a potential to generate up to 39 Twh/Year of which 34.5 Twh/Year is the 

reliable energy (i.e., which can be meet 99 out of 100 years). Despite this relatively high potential for energy 

generation, the cost of the reservoirs and time taken to construct and fill the reservoir limits their financial potential 

(i.e., net present worth) to an average of less than 5 Billion USD.  Moreover, the reliability of financial success of 

the dams is low with trade-offs between the average net present worth and lower quartile net present value measure. 

The maximum average net present value (4.7 BUSD) can be achieved if 3 dams with GERD and Upper Manday and 

Beko Abo High are implemented within the first 20 years followed by the Karadobi dam after an additional 20 years 

(Green solid line in Figure 18). However, such decision also implies an acceptance of up-to 4.3 billion USD net 

present value in losses. While the average net present worth has a trade-off with the downstream flow performance 

objective, the lower quartile net present value performance measure and the downstream flow performance have 

synergy; indicating where Ethiopia and downstream country Egypt could potentially find a consensus solution. The 

designs that constitute low financial opportunity for Ethiopia and low risk to downstream countries include reservoir 

options with smaller sizes and which are located more upstream while designs that maximise the average net present 

value recommend the larger dams (e.g., Mandaya, GERD and Upper Mandaya) as the initial reservoirs. 

Comparing compromise designs (dashed lines in Figure 18 Panel C) shows different first reservoir options could 

achieve close performance levels. Demonstrating that the sequence of reservoir implementation is not the only factor, 

but that operating policies of reservoirs also determine the performance and benefit trade-offs to the Nile 

stakeholders. 

Reservoir designs with energy generation capacity of up to 25 Twh/Year (Beko Abo High, Upper Manday and GERD 

shown with solid Blue line in Figure 18) are possible while also meeting the highest possible downstream flow 

reliability. While the reliable downstream flow trades-off with the average net present value, it does not have a clear 

trade-off with the potential average annual energy generation. This is also shown by how relaxing the downstream 

release requirement from the maximum possible (solid line) to 90% does not improve the average annual energy 

generation performance. The results show regulation from Blue Nile dams can also improve the reliability of 

downstream flows. 



73 

 

Infrastructure decisions that are best to meet a certain balance of objective (e.g., maximizing average net present 

worth) for a single reservoir differ for a multi-reservoir system. The Beko Abo Low followed by Upper Mandaya 

and GERD would make the best scheduling for minimal downstream impact (Blue solid line in Figure 18) for a 3-

reservoir system. While the GERD can do well in minimizing downstream impact for a single reservoir system. 

Similarly, a Smaller GERD (GERD 620 meters above sea level) design followed by Mandaya and Beko Abo Low 

would be best to maximise the 75% exceeded net present value (dark green solid line) for a multi-reservoir system 

while the GERD is the best of the first dam designs if only one reservoir is to be implemented. Given the uncertainty 

about how many of the potential dams will be implemented, how they will be managed in their filling and steady 

states, and when the next dam will be implemented, it is not possible to assess the current decision by Ethiopia to 

select GERD as the first investment. The rate of filling and its management is still being negotiated among the thee 

Eastern Nile countries Egypt, Ethiopia and Sudan,  Figure 18 Panel A shows the GERD could be a compromise 

decision as it can meet a number of performance objectives (i.e., maximizing the average and reliable annual energy, 

red and dark red solid lines, and maximizing the minimum net present value) under various management strategies. 

6.4 Discussion 

A multi-criteria multi-reservoir capacity expansion scheduling approach is proposed and applied to the possible Blue 

Nile multi-reservoir system components. We use visual analytic techniques to present alternative Pareto optimal 

designs given many objectives (6). Results show the performance trade-offs and optimised schedule of infrastructure 

depend on the degree of responsiveness of operating policies to system changes (i.e. a change in the optimization 

formulation). The approach helps stakeholders visualise trade-offs between multiple performance goals and helps 

identify the best infrastructure and operating rule design choices under various social, environmental and 

downstream performance requirements. 

The Nile water allocation and how the filling of the Blue Nile reservoirs will be managed is yet to be negotiated 

among the Nile riparian countries. The modeling approach demonstrated in this study helps explore the trade-offs 

implied in alternative plans for Blue Nile reservoir development (including selection of reservoirs, scheduling, and 

filling & steady-state operating policies).  

A decision-making approach seeking to maximise a single measure of performance identifies one plan as best. 

Explicit consideration of competing goals helps identify potential compromise designs. Parallel axis plots such as 

Figure 18 are best used interactively allowing decision makers to internalise how designs choices lead to performance 

trade-offs.   

Results demonstrate that low dimensional optimization (i.e., one or few objectives) could over-estimate the benefit 

of some designs by ignoring large reductions in filling period benefits (e.g. Designs labelled ‘a’,’e’,’g’ inFigure 17). 

The results also show not considering responsiveness of operating rules to system expansion leads to overestimating 

the cost of compromises (e.g., from ‘a’ to ‘l’ instead of ‘e’ to ‘i’ in Figure 17 Panel A), thereby overemphasising the 

trade-offs and perpetrating the perception of the intractability of Nile development challenge. Hence excessively 
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simple assumptions on the number of reservoirs, their implementation gap and rigid operating rules in Nile 

development assessment can lead to excessively optimistic or pesimistic performance estimates (overstate trade-offs 

and bias estimates of performance) for various stakeholders. 

6.4.1 Limitations 

The study contains several limitations that could be addressed in future work. Firstly, the current study considers the 

flexibility of reservoir operating policies to change at different stages of system expansion, but operating rules are 

assumed fixed throughout the period for which they are optimised and do not vary based on hydrologic conditions. 

In practice, when dam operators find themselves in a particular hydrologic or demand conditions; they typically 

adapt rules to current conditions (e.g., change priorities between filling reservoirs and releasing in cases of prolonged 

droughts). Considering operating rules that change based on hydrologic conditions (e.g., in recent years) would likely 

attain more efficient trade-offs and change which investment schedules are deemed Pareto-optimal. Other limitations 

include that the study considers a limited number of performance objectives and ignores the financial potential of 

peak power energy sales. Finally, although the sizing of reservoirs can also be optimised within the proposed 

approach as in Geressu and Harou [2015], this was not done here to help simplify results. 

Including performance measures such as internal rate of return (IRR) or revenue self-sufficiency conditions in future 

studies could suggest designs with a more desirable cashflow (e.g., where the revenue from initial investments could 

cover part of the cost of subsequent dams); alternatively access to capital could be constrained in the search 

formulation 

In this study we focus on the benefits of dam investment planning that considers changing (adapting) operating 

policies as the reservoir system configuration changes. The method produces a scheduled sequence of optimised 

dam system upgrades. We do not consider the flexibility to change or abandon plans in future when more information 

is available. Other recent studies, particularly under non-stationary conditions with deep uncertainty, propose an 

adaptive approach [Walker et al., 2010; Haasnoot et al., 2013], some of which use optimisation formulations which 

are explicitly adaptive [Beh et al., 2015; Kwakkel et al., 2015; Zeff et al., 2016; Erfani et al., 2018]. These approaches 

are promising, but we consider them outside the scope of this particular study which, in a first instance, considers 

the case of stationary conditions without deep uncertainties in supply or demand.  Given climate change trends for 

Eastern Africa aren’t clearly wetting or drying [Conway, 2017], and that energy demands are largely unmet [Arsano 

and Tamrat, 2005; Block and Strzepek, 2012], this may be an acceptable initial simplifying planning assumption.  

By using 10 hydrologic realizations we are assuming this ensemble is sufficiently large to represent uniformly 

distributed peaks and droughts that do not bias the investment scheduling. Optimization over larger numbers of 

streamflow time-series could better represent the plausible hydrologic variability at different periods of the simulated 

period. The computational requirements of the simulation-optimization approach make it difficult to apply the multi-

objective optimization on a large number of streamflow realizations. Also, uncertainty due to climate change can be 

an important for long-term assets [Block and Strzepek, 2010; Jeuland and Whittington, 2014] but is not considered 
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in our study which assumes climate stationarity. Moreover, because information on methods used for filling gaps in 

the observed streamflow series and estimating flow in ungauged catchments is not accessible [Block and Strzepek, 

2010; Alan, 2012; NBI-ENTRO, 2015], results are only indicative and intended to demonstrate the methodology but 

should not to be taken as prescriptive recommendations. Given the uncertainties and shortcomings in the current 

study we recognise the limitations of the results and do not claim our results should directly impact current decision-

making.   

Despite the limitations of the computational infrastructure available for this study, we are able to show initial results 

to demonstrate the formulation works and has the potential to be solved satisfactorily for large problems.  
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7 Sensitivity analysis 

7.1 Introduction 

Financial feasibility of resource system investments is a salient consideration for many governments who struggle 

to meet increasing demand with scarce financial resources. Investment decisions in human developed natural 

resource systems are typically made despite various uncertainties and therefore robust options that perform 

acceptably over a range of plausible futures are desirable. However, evaluating robust portfolios of interventions is 

computationally challenging for resource systems where multiple sources of stochastic, deep and set-based 

uncertainty create a large future impact space. Chapter 6 showed how the recommended reservoir system 

composition and sequence changes for various balances of performance. However the results (i,e., net present value 

performance, and recommended best designs) are reliant on the assumptions of energy price, cost of infrastructure 

and discount rate.  The high initial capital investments, delayed benefits and economic uncertainties make large 

infrastructure development risky. Reliance on deterministic assumptions, which are actually uncertain and likely to 

be contested by stakeholders (e.g., energy price, discount rate, etc..) could affect the perception of Nile riparian 

countries on the system capacity, performance trade-off, financial feasibility. Also, given that attractiveness of 

cooperative developments or energy trade deals will depend on the relative price of hydropower energy from the 

Ethiopian dams when compared to the cost of traditional sources of energy for Egypt and Sudan (e.g., hydrocarbon), 

the financial feasibility assessment of different options should consider a range of energy prices.  

In this chapter we propose a use of an automated ‘robustness mapping’ process (using multi-objective robust 

optimization) that reveals efficient interventions and their performance over multi-dimensional set-based system 

parameter uncertainties; for which a probability distribution cannot be assumed but take a value in a given range. 

This chapter assesses the financial feasibility of the proposed Blue Nile reservoirs under a range of energy prices 

(0.07-0.11 USD/Kwh), and under various assumption (7-11%) of discount rates for future financial benefits. The 

many objective parametric optimization is demonstrated on a stylized problem: selecting one of the proposed new 

Blue Nile hydropower reservoirs. The method suggested here identifies robust infrastructure choices for a range of 

uncertain parameters and demonstrate the ability of many objective evolutionary algorithms to reveal system 

performance over multi-dimensional set-based uncertainties and the fitness of interventions.  Visual analytics 

[Vitiello et al., 2012; Fu et al., 2013; Reed and Kollat, 2013] is used to identify which of the infrastructure choices 

are robust for a range of the uncertain parameters. The results allows decision makers to visualise  the performance 

trade-off simultaneously with the sensitivity of the performance measures to uncertain parameters.  

7.2 Method 

To explain the application of the many objective parametric optimization approach to sensitivity analysis (i.e., when 

the exact system parameter is not known but its minimum and maximum range is known), consider putting the 

uncertain parameters as decision variables in a many objective evolutionary algorithms (MOEA). The MOEA result 
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will be biased as the final solution set will pick the most favorable value of the uncertain variable. To mitigate this 

problem, and allow dominated options (with unfavorable values of the uncertain parameter) to survive until the end 

of the evolution, the proposed approach is to add dummy performance metrics (that are not directly of interest for 

the decision-making process) that pulls the solution set in the opposite direction. This is possible by formulating the 

many-optimization problem (eq. 1) such that a conflicting functions of the uncertain input parameter (e.g., p) are 

included as performance metrics (e.g., f3(p)= p and f4(p)= -p ).  

This allows evaluation of the sensitivity of other objective functions (e.g., f1 in Eq. 1 which can for example be net 

present value metric) that depend on parameter p over the range [pmin , pmax ] at minimum intervals determined by 

the epsilon (fEps). The formulation can be extended to sensitivity analysis of solutions with multiple uncertain 

parameters. 

Minimise      ),,,( 4321 ffffFx =             (1) 

ppf =)(3        (2) 

xppf 1)(4 −=           (3) 

 

To prove the method works, we use a simple problem where a function (which can also be solved allergically) is 

required to be evaluated at a set of integer values. 

 

Figure 19 Solution of a two-objective optimization problem Minimize F (f1, f2), where f1 = x and f2 = -x and real 

value (Panel B) and integer value (Panel B) are allowed. Points with different colours in Panel A show solutions sets 

from multiple optimization runs. The difference emanates from random generation of variables used in genetic 

algorithms; resulting in stochasticity of the solutions set. However, each of the solution sets are pareto-optima for 

the considered objectives. 
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Figure 20 Solution of a two-objective optimization problem where real value are allowed. Panel A shows solutions 

for Minimize F (f1, f2), where f1 = x and f2 = (x-1.5)2+x3.  Panel B shows solutions for Minimize F (f1, f2 ),  with 

f1 = -x and f2 = (x-1.5)2+x3. Points with different colours show solutions sets from multiple optimization runs. 

 

Figure 21 Panel A and B show the values of f1 function for x taking a real number in the range -2 and 2 calculated 

using algebraic and many objective optimization respectively. Panel C and Panel D show the function values of f1, 
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f2 and f3 as evaluated by a many objective optimization for x taking integer values only. Points with different colours 

in Panel B show solutions sets from multiple optimization runs. The difference is due to random generation of 

variables used in genetic algorithms; resulting in stochasticity of the solutions set. 

7.2.1 Problem formulation 3  

To demonstrate the approach, the problem is formulated with objectives of maximizing the net present worth of 

investments and opposing function of the discount rate ‘d’ (i.e., f1 =d and f2= -d) 

For the Blue Nile, the amount of reliable downstream flow are of concern as are the financial feasibility and energy 

generation capacity of new developments. The performance objectives considered in this multi-objective planning 

exercise include maximizing the average net present value of future monetary benefits ( fAveNPV ), maximizing 

final (once reservoirs have filled) average annual energy generation fAveAE respectively and the reliable 3-year 

cumulative downstream releases( RfMin3 ).  

The sensitivity of performance to multiple factors (both exogenous uncertainties and decision-relevant parameters) 

are assessed by including them in the objective function.  

Maximize        ( )*],*,,[,,, fEvalfEvalfDisfDisfRfEnergyfNPB
x

F =      (3) 

x   

The Decision variable here will be limited to the filling and steady state reservoir release rule parameters of 

one reservoir. 

),,( ,, isisi FopOpYx =          

RiYi = }1,0{          

RiY
i

i 
=

2
7

1
 

The decision variables include the activation of a new reservoir (Table 1), its reservoir release rule parameters for 

filling and steady state operating periods. 

The term in the bracket in (eq. 3) is used to assess the sensitivity of the net worth of investments to discount rate of 

future benefits and energy price. The sensitivity analysis requires setting the ranges of the uncertain parameters over 
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which the search is conducted. The uncertain parameters in our application were assumed to have the range given in 

Table 2. 

Table 2 Uncertain parameter range in this case study 

Parameters Min Max 

Discount rate 7% 11% 

Price of energy 7 USD cents/Kwh 11 USD cents/Kwh 

The simulation period is set to 80 years so that it accommodates the construction period (a maximum of 8 years), a 

potentially long filling period (up to 20 years), and for the steady state operation of the reservoirs (considering a 

service life of 50 years).  

fAveNPV  
= 

}5.0,

{),...,1(

i

Fi

Npv

quantile
 

Average net present value of benefits, i.e., 

present worth of benefits from energy 

generation minus present worth of capital 

cost of reservoir 

fAveAE  
= 

}5.0,

{...

,

),...,1(),,...,1(

ji

FjTsi

Eannl

quantile 
 

Average energy generation in regular 

operating period 

yrfMinR3  = 

}95.0,3

{...

,

),...,1(),,...,1(

ji

FjTsi

R

quantile   
95% exceeded (near minimum) 

cumulative releases over a 3-year 

consecutive period. The maximization of 

cumulative release in consecutive years is 

considered as a proxy for Egyptian 

interests in reducing the impact of filling 

of Ethiopian reservoirs on the High Aswan 

reservoir.  

fEval  
= Eval   energy price maximizing and minimizing 

functions respectively 

*fEval  = Eval−   

fDis  
= d   Discount rate minimizing objectives 

respectively  

*fDis  = d−  Discount rate maximizing objectives 

respectively 

tE   
= 

ttqh  Energy generation at month t; a function 

of head and discharge and a constant that 

depends on gravity and length of month 



81 

 

yEannl  
= ),( ytEsum t   The sum of monthly energy generations 

in the year ‘y’ 

tR3  = 

−

t

t
tR

36

 
Cumulative release of past 36 months at 

time t 

BenefitsNPV  
= 

y

y
y

d

EannlEval

)1(

80

1

+

 
=

 

Time discounted economic returns from 

energy generation 

CostsNPV  
= 

),(
1

)1( ciIT
i

LenCons

i

dLenCons

Cost

+



 

Time discounted cost of infrastructure 

NPV  = 
CostsBenefits NPVNPV −  Time discounted net present value 

Notation 

i  

 

Dam notation 

t  Time (month) 

tR  
Release at time t 

iY  Decision to activate Storage option i  

iIMP  Implementation date of dam i 

iCost  Capital cost of reservoir i  

yEgen  Energy generated in year y 

iLenCons  Length of construction of dam i 

ciT ,  Construction year (between 1 and max length of construction period of dam 

i (see Table 1) 

iOp  Steady state operation rule coordinates of reservoir i   

iFo  Filling period operation rule of reservoir i   

sFL  Length of filling period  

Ts  Length of steady state use (total life minus length of filling period) 

F  Number of synthetic hydrologic realizations 
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7.3 Results 

This section presents the application of the proposed approach to the stylized Blue Nile case study. We first present 

the performance of the proposed reservoir designs whilst varying the discount rate and energy price. Figure 22 shows 

the sensitivity of the average net present value metric to energy price and discount rate variables when uncertainty 

in one parameter is considered at a time.  

 

Figure 22. Panels A and B show sensitivity of the average net present value metric when variation in one parameter 

is considered at a time.  Markers show the best infrastructure choice for the given energy price and discount rate.  

Only Mandaya and GERD 620 are shown here as they are the designs that achieve the highest average net present 

value for the given scenarios and performance criteria (i.e., no constraints on the minimum energy generation 

capacity and downstream flow). 

Figure 23 presents the sensitivity of the average net present value when uncertainty in the two parameters is 

considered simultaneously, as per the proposed approach. 
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Figure 23 The Net present value (shown with filling of markers) as it varies with discount rate and energy price 

without restriction in other performance requirements (Panel A) and with restrictions of at least 80% of the potential 

average annual energy and 80% of the maximum 99% exceeded 3-year cumulative flow at Ethio-Sudan border  

(Panel B and C respectively). Markers show the best infrastructure choice for the given energy price and discount 

rate.  

Figure 22 and Figure 23 Panel A show sensitivity of one performance metric (the net present value) ignoring energy 

generation capacity and downstream release performance requirements. Figure 23 Panels B and C show the best 

designs for meeting different performance criteria under a range of discount rate and energy price scenarios.  

In addition to the uncertainties, identifying plans that achieve an acceptable balance of conflicting benefits is aided 

by considering trade-offs between the many objectives. For a given set of energy price and discount rate settings, 

the efficient solution identified here is the one where any objective cannot be further improved without 

simultaneously harming one or more other objectives (e.g., in a scenarios of a discount rate of 9% and energy price 

of 11USDcents/Kwh, the green makers on Figure 24). 
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Figure 24 shows a shifting Pareto-front as uncertain parameters vary. The dark black Markers show the Pareto-front 

for discount rate and energy price values of 10% and 0.09 USD/kwh respectively. The red and the green show results 

at the extremes of the ranges considered while the grey markers show performance for intermediate system 

parameters. 

Figure 24 shows shifts in the Pareto-front between conflicting performance metrics of average net present value and 

reliable 3-year cumulative downstream flow as the two uncertain parameters (discount rates, energy prices) change. 

For combinations of the uncertain parameters (e.g., the 11% discount rate and 7 USDcents/Kwh shown with red 

colour), the points reveal what infrastructure selection were most efficient for different balances of average net 

present value and 99% exceeded 3-year cumulative release. 
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Figure 25 Panel A shows designs that achieve the highest average net present value, average annual energy and 99% 

exceeded 3-year cumulative downstream release under each combination of energy price and discount rate value. 

Panel B shows the combination of scenarios (discount rate and energy price) and performance requirements 

(downstream flow requirement that make some of the designs (shown with markers) financially infeasible (average 

net present value below zero). Colours have the same meaning as marker shapes and are included for ease of 

visualisation and do not provide new information. The tree structure part of the plots allows visualizing discrete 

scenarios while the parallel plot part on the right shows the relationship between multiple performance metrics. 

Figure 25 Panel A shows 4 of the potential 7 dam options could be the best options to maximize net present value in 

different energy price and discount rate scenarios. The smaller dam options of Beko Abo High and Karadobi achieve 

less average net present value while the larger GERD620 and Upper Mandaya score the highest net present value 

under the range of the uncertain parameters. Figure 25 Panel B shows only the GERD and GERD620 with high 99% 

exceeded downstream release requirement and some of the discount rate and energy price scenarios can become 

financially infeasible. The GERD becomes financially unviable under the entire range of energy prices for the high 

discount rate assumption (11%). The GERD620 option can also become financially unviable under 11% discount 

rate and low energy price (0.08 USD/Kwh). Other infrastructure options, while financially feasible under the 

considered range of discount rate and energy prices, result in lower average annual energy. 
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7.4 Discussion 

This chapter proposes and demonstrates a method for using multi-objective optimization to assist with infrastructure 

investment selection problems under multiple uncertainties.  The method reveals a robust set of alternatives, those 

that meet multiple performance criteria under various uncertainties, including in our study energy prices, discount 

rate and hydrological uncertainty.  The proposed formulation of many objective infrastructure selection problems 

for Robust optimization was demonstrated on the proposed dams of the Blue Nile multi-reservoir system for 8-11 

USD cents/Kwh energy price and 8-11% discount rate range at intervals of 1 USD/Kwh and 1% discount rate 

(considering a total of 4x4 discrete scenarios).  

Figure 23 showed which of the proposed Blue Nile reservoirs were most robust for energy prices 8 to 11 USD 

cents/Kwh, discount rates between 8 and 11% and energy and downstream release performance requirements. Some 

infrastructure options were demonstrated to be robust over multiple scenarios (e.g., Mandaya is robust over discount 

rates 8 and 9% under all considered energy futures (8-11 USD cents/Kwh) when there are no downstream release 

and minimum energy generation constraints. Larger dam options (e.g. GERD620, GERD) are best only when energy 

generation and downstream release requirements are introduced (Figure 23 Panel B and C) 

For the proposed Blue Nile dams considered here, the recommended efficient dam choice can change for as little as 

a 10% change in the assumed discount rate and energy price. The financial feasibility of the dams in our study 

however is only affected by a combination of the discount rate, energy price and downstream release requirement 

and not by any of these factors individually. This analysis revealed the GERD under construction in Ethiopia could 

be financially unattractive for assumptions of a 11% discount rate and a high 3-year release requirement.  

Given that up to 10 conflicting objective can be modelled in MOEA [Reed et al., 2013]. [Teytaud, 2007], up to 4 

uncertain variables can be considered simultaneously with the proposed approach (if evaluating one or two 

performance metrics when two dummy performance metrics need to be introduced for each uncertain system 

parameter).  The number of uncertainity variable can however be increased to 8 when one dummy performance 

objective is sufficient which is when the uncertainity parameters have a direct conflict with one of the performance 

objective and visualizing the performance associated with favourable scenarios is not necessary (e.g., in problems 

with objective of maximizing the net present and uncertainties on construction period, delay on implementation of 

the second reservoir in multi-reservoir system expansion scheduling) 

The use of evolutionary algorithms to optimise interventions in complex system can rapidly become computationally 

prohibitive if the system is large with many objectives and possible interventions. The minimum number of function 

evaluations and number of random-seed analysis that achieve the highest possible hypervolume metric [Knowles 

and Corne, 2002; Zitzler et al., 2003] should be sought as the use of many objective evolutionary algorithms is 

computationally intensive. In this section we compare the computational resources required for a conventional trade-

off analysis with the proposed robustness mapping under uncertainty.  
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Figure 26 evolution of hypervolume indicator with number of function evaluations (x-axis of each panel) Pareto-

sorted across a number of runs with randomly seeded initial points (y-axis in each panel) for solutions under range 

of combinations of energy price (row of Panels) and discount rate parameters (column of Panels).  

Figure 26 show the differing number of function evaluations and random seed analysis required to approximate the 

solution to the true (but unknown) many objective Pareto-front. The absence of improvement in the Hypervolume 
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metric and its robustness with additional generations and number of random seeded runs is taken as an optimization 

stopping criterion. 

To compare the computational requirement of the proposed re-formulation with a conventional MOEA approach 

where each discount rate and energy price combination would be optimized, we propose using the least number of 

random seeds and function evaluations needed to achieve the 95,99 and 100% of the maximum Hypervolume with 

99% confidence as an indicator. For the case study problem, the proposed re-formulation requires a maximum of 

70,400 function evaluations (FE) under 12 random seeds (RS) or 844,800 FE in total to achieve convergence (with 

the stated criteria above). A test deterministic MOEA run assuming 10% discount rate and 0.1 USD/Kwh energy 

price is conducted to measure it computational requirements. The test needed a maximum length of 49,920 FE and 

11 RS, a total of 549,120 FE to get similar convergence criteria. While this represents an increase of 35% in 

computational requirement when doing the robustness mapping over deterministic (single scenario) analysis,  the 

approach provides a reduction of 90% in computational time requirement considering using a conventional MOEA 

formulation for robustness analysis over the 16 scenarios would require a total of 8,785,920 FE and 176 RS.  

7.4.1  Limitations 

The number of uncertain parameters, and the resolution of the sensitivity investigation in this study was limited. 

Future studies could include uncertainty in construction cost, construction delays, inflation and others. This is a 

proof-of-concept study on a simplified form of a subset of relevant performance objectives for the Nile infrastructure 

investment assessment problem. We assume a problem formulation with only one dam being selected of the potential 

4 reservoir system. The formulation also includes only a few of the relevant performance metrics (e.g., it ignores 

peak power, and firm monthly and annual energy requirements and could include more downstream impact metrics). 

Decision-makers could be comparing between different technologies with different likelihoods of cost overruns. By 

using 30 hydrologic realizations of 80 years each we are assuming this ensemble is sufficiently large to represent 

historical variability of the Blue Nile river flow.   Uncertainty due to climate change can be an important for long-

term assets [Block and Strzepek, 2010; Jeuland and Whittington, 2014] but is not considered in our study which 

assumes climate stationarity. Moreover, because information on methods used for filling gaps in the observed 

streamflow series and estimating flow in ungauged catchments is not accessible [Block and Strzepek, 2010; Alan, 

2012; NBI-ENTRO, 2015], results of this case study are only indicative and intended to demonstrate the methodology 

but should not to be taken as prescriptive recommendations.  
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8 Mapping options on performance space 

8.1 Introduction 

This chapter considers problems where visualizing the Pareto-fronts of individual infrastructure options (i.e., even 

when dominated), in addition to the Pareto front that considers the entire feasible decision space, can be useful to 

decision support. This is relevant when the ability to change the balance of benefits via policy changes, or where the 

extent to which management changes could increase robustness to uncertainty is valued. Other problem contexts 

where the proposed application could be useful include when some infrastructure options are preferred for 

unmodeled reasons like equity or socio-political reasons, or where information on how management policies impacts 

the adaptability of different infrastructure options is useful. We propose a problem reformulation approach to 

demonstrate the ability of many objective evolutionary algorithms to tackle such problems efficiently. The approach 

is applied to evaluate the Grand Ethiopian Renaissance Dam (GERD) vs. other possible Blue Nile hydropower 

options given multiple performance criteria.  

 

8.2 Method 

This section explain the proposed many objective parametric optimization approach to reveal the performance (and 

allow the comparison of) of all  binary decisions (i.e., that can be represented with binary variable (1 for on 0 for 

off)).  

Consider an infrastructure selection problem with mutually exclusive options a,b,c,d where each option can be 

implemented with a management decision unique to the selected infrastructure option to maximize conflicting 

system performance objectives f1 and f2. Direct policy search (DPS) approach [Guariso et al., 1986; Koutsoyiannis 

and Economou, 2003b; Giuliani et al., 2014] where the operating policy is first parameterized within a given family 

of functions (e.g., linear, piecewise linear or Gaussian Radial Basis function) can be applied and then the parameters 

optimized with respect to the operating objectives to identify management options best for various balances of 

conflicting performance objectives. Say for example, a many objective optimization that considers all possible 

options simultaneously identifies a performance front (a1, c1, c2, c3 in Figure 27). The pareto fronts for infrastructure 

and management options for individual options a, b, and c which work with management options can be identified 

in separate optimization runs as (a1,a2,a3,a4),  (b1,b2,b3), (c1,c2,c3)  and (d1,d2 on Figure 27) respectively.  
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Figure 27 The propose mapping approach differentiates near-optimal solutions that vary as a result of discrete choice 

element of the decision space (e.g., infrastructure selection shown with red markers) from those that are different 

from the Pareto optimal solutions because of management decision (Grey coloured space show the overall dominated 

space when all options are considered simultaneously.). 

The proposed performance mapping approach generates more decision relevant information than visualizing only 

the Pareto-front provides on 1) the extent of performance possible under each option e.g., (a1,a2, a3 and a4) instead 

of only a1 and a2 2) possibility of alternative infrastructure and management designs with close performance as the 

Pareto optimal option e.g., a3 (instead of c1) which could be more preferable for unmodeled reasons such as security 

of its location, invigorating local economy of impoverished area or helping with equitable development of regions.  

3) the performance regrets when alternative performance criteria are adopted in the future once an irreversible or 

costly infrastructure decision is made and implemented. Assume f1 and f2 refer to performance under futures 1 and 

2 respectively, option ‘b’ which is inferior compared to ‘a’ in some performance ranges such as ‘a1’ to ‘a3’ might 

be preferable to avoid large regret of f1(c3)-f1(a4) in leu of a smaller regret f1(c3)-f1(b3)  in a  future 1 scenario if 

the regret of f2(a1)-f2(b1) is considered tolerable when future 2 materializes. 
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Many objective evolutionary algorithms (MOEA) generates its initial random population of decision variables by 

exploiting uniform random sampling within the user-specified ranges of decision variables. These variables are then 

passed as input variables to a function evaluator, in our case a water resources system simulator, which evaluates the 

performance. This information is passed back to the MOEA, which evaluates the fitness of decision variables to 

produce the next generation of decision variables. MOEAs work by evolving solution sets of system alternatives 

with high fitness functions and ‘forgetting’ solutions with low fitness score in search of better performing solutions 

for a given set of performance objectives [Coello Coello et al., 2007; Reed et al., 2013].  

Retaining dominated discrete options along with the non-dominated solutions requires a variation of the conventional 

many objective optimization and trade-off analysis approach reported in the literature [Geressu and Harou, 2015; 

Huskova et al., 2016]. For example, in Chapter 5, the decision variables representing the inclusion or exclusion of a 

reservoir option in a multi-reservoir system design are binary (take a value of either 0 or 1). Evaluation of binary 

options (e.g., whether a certain known dam proposal should go ahead or not) even when it is a dominated option 

means that these options are represented in the set of solutions at the end of evolution.  

Given that the evolutionary algorithms use uniform random generation, representing the distribution of the pre-

defined options in an evolving population set is possible using a single decision variable to track them. Consider a 

variable ‘n’ that takes integer values for indexing the a number of predefined options with integer numbers (e.g., a 

value of 0 represents first option, 1 for section option etc…). This means the first options will be on if the variable 

‘n’ is 0 while the other options will be off simultaneously; similarly, second option will be on if the variable ‘n’ is 

1, etc... 

Dummy performance objectives that drive the indexing variable in the opposite direction (e.g. fX3=n and fX4= -n) 

where MaxIndexN ,2,1,0= can then be used to keep the options in the evolving population of solutions.  

Minimise      ),,,( 4321 ffffFx =             (1) 

nnf =)(3        (2) 

xnnf 1)(4 −=        (3) 

The binary variables (that tell the simulator whether the options are on or off while simulating the system are then 

calculated based on the indexing variable ‘n’ and treated as a dependent variable (not directly represented in the 

optimizer but derived in the wrapper please see Figure 50). 

To demonstrate the method, we first use a simple hypothetical example.  The decision problem is an infrastructure 

selection among 5 options of which only one can be selected. Each option has two parameters (x and y) that are 

related to the two performance objectives F1(x,y) = x2+ 0.5y2 and F2(x,y) =   x + y3 which are required to be maximized. 

 



92 

 

Table 3 Parameters of the 5 options for the hypothetical infrastructure selection problem 

Option 

Parameters 

Index F1(x,y) F2(x,y) x y 

a 2 3 1 5.5 26 

b 4 5.5 2 18.75 164.875 

c 3 5 3 11.5 123 

d 3 6 4 12 213 

e 5 3 5 26.5 29 
 

 

Figure 28 Pareto optimal designs for the two objectives f1 and f2 which are desired to be high (in the direction of 

the arrows). Only 3 of the 5 options, which are Pareto optimal for the performance objective considered are shown 

in this conventional trade-off analysis. hence, comparing the performance of the dominated options is not possible. 
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Figure 29 Blue markers in Panel A show the Pareto optimal designs for the two objectives f1 and f2. Red markers 

on Panel A show the two dominated options, allowing their performance comparison with the Pareto-optimal 

choices. The dominated options survived the heuristic search because they are non-dominate for the additional 

performance objectives f3 and f4  (as shown in Panel B). 

 

8.2.1 Problem formulation 4  

Explicitly considering trade-offs between key objectives elucidates the interdependences between scheme selection 

and its benefits and can be helpful in defining acceptable compromise plans [Richter and Thomas, 2007; Kasprzyk 

et al., 2009; Woodruff et al., 2013; Hurford et al., 2014]. For the Blue Nile, the amount of reliable downstream flow 

are of concern as are the financial feasibility and energy generation capacity of new developments. The performance 

objectives considered in this study include maximizing the average and lower quartile net present value of future 

benefits ( 25, fNPVfAveNPV ), maximizing final (once reservoirs have filled) average annual, firm annual and firm 

monthly energy generation fMinFMEfMinFAEfAveAE ,,  respectively and the reliable 3-year cumulative 

downstream releases ( 3_fMinR ). 

The performance of all discrete intervention options is assessed by adding dummy performance objectives that force 

the many objective optimization to keep all options till the end of evolution. for this purpose, the many-objective 

problem is re-formulated as: 

Maximize        ( )*,,3,,,,, 25 foptfoptRfMinfMinFMEfMinFAEfAveAEfNPVAveNPV
x

F =   

   (2) 
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x   

The decision variables include the activation of one new reservoir (Table 1) and its filling and steady state reservoir 

release rule parameters. 

),,,( iiii FopOpTYX =          

}1,0{=iY   

RiYi = }1,0{ ,  2
7

1


=i

iY   assuming only one dam will be built 

                  

 

fAveNPV  =  5.0,),...,1( Npvquantile Fi  Average net present value of benefits, i.e., present 

worth of benefits from energy generation minus 

present worth of capital cost of reservoir 

25fNPV  =  5.0,),...,1( Npvquantile Fi  75% exceeded net present value of benefits 

fAveAE  = 

}5.0,

{...

,

),...,1(),,...,1(

ji

FiTsi

Eannl

quantile 
 

Average energy generation in regular operating 

period 

fMinFAE  = 

}5.0,

{...

,

),...,1(),,...,1(

ji

FjTsi

Eannl

quantile 
 

95% exceeded (near minimum) annual energy 

generation of the reservoir in steady state (i.e. 

after the filling period.  

fMinFME  = 

}95.0,

{...

,

),...,1(),12,...,1(

ji

FiTsi

Emon

quantile 
 

95% exceeded (near minimum) monthly energy 

generation in steady state. 

yrfMinR3  = 

}95.0,3

{...

,

),...,1(),,...,1(

ji

FjTsi

R

quantile 
 

95% exceeded (near minimum) cumulative 

releases over a 3-year consecutive period. The 

maximization of cumulative release in 

consecutive years is considered as a proxy for 

Egyptian interests in reducing the impact of filling 

of Ethiopian reservoirs on the High Aswan 

reservoir.  

 fopt  = n   dummy performance metrics 1 

*fopt  = n−  dummy performance metrics 2 
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tE   = 
ttqh  Energy generation at month t; a function of head 

and discharge and a constant that depends on 

gravity and length of month 

yEannl  = ),( ytEsum t   The sum of monthly energy generations in the 

year ‘y’ 

=tR3  = 

−

t

t
tR

36

 
Rolling 3-year cumulative flow 

BenefitsNPV  
= 

y

y
y

d

EannlEval

)1(

80

1

+

 
=

 

Time discounted economic returns from energy 

generation 

CostsNPV  
= 

),(
1

)1( ciT
i

LenCons

i

dLenCons

Cost

+



 

Time discounted cost of infrastructure 

NPV  = 
CostsBenefits NPVNPV −  Time discounted net present value 

 

i  
Dam notation 

t  Time (month) 

tR  
Release at time t 

iY  Decision to activate Storage option i  

iCost  Capital cost of reservoir i  

yEgen  Energy generated in year y 

iLenCons  Length of construction of dam i 

ciT ,  Construction year (between 1 and max length of construction period of 

dam i (see Table 1) 

iOp  Steady state operation rule coordinates of reservoir i   

iFo  Filling period operation rule of reservoir i   

iFL  Length of filling period  

Eval  Value of energy per kWh 

d  
Discount rate (assumed at 10%) 

Ts  Length of steady state use (total life minus length of filling period) 

F  Number of synthetic hydrologic realizations 
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The simulation period is set such as the operation of the reservoirs is modeled throughout their service life (50 years).  

8.3 Computational details 

The system model was built using the interactive river-aquifer simulation system 2010 (‘IRAS-2010’) described by 

[Matrosov et al., 2011]. The water system simulation model representing the Blue Nile includes 7 reservoir nodes 

and 10 junction nodes and 6 links representing river reaches. 

We follow Giuliani et al. [2014] in applying direct policy search, where the operating policy is first parameterized 

within a given family of functions (e.g., Radial basis function or piecewise linear) and then the parameters optimized 

with respect to the operating objectives. Water researchers have considered the optimization of reservoir operating 

rules in an extensive literature, for example using parameterization-simulation-optimization [Guariso et al., 1986; 

Oliveira and Loucks, 1997; Koutsoyiannis and Economou, 2003a] also known as Direct Policy Search (DPS) 

[Giuliani et al., 2014].  The decision space for most system designs contains few infrastructure choices and many 

management alternatives. We parameterize the control policies using radial basis function[Giuliani et al., 2014]. 

Radial basis function have been used to map the reservoir storage and time index into release decisions [Giuliani et 

al., 2014; Zatarain Salazar et al., 2017] and take the form of  

  
−

−=
= =

n

i

m

j ji

jijt
iti

b

cz
wz

1 1 ,
2

2
,,

)
)(

exp()(                        (12) 

Following [Maier et al., 2014b; Zatarain Salazar et al., 2017], we use n =  4 RBFs. The Inputs in Zt are uniformed 

on [0,1], while  ]1,1[, −jic  ]1,0[, jib  ]1,0[, jiw   =
=

n

i
iw

1

1Where m is the number of input variables which would 

be 2 (only reservoir storage and time of the year). Each RBF has associated with it 4 weights and 4x2=8 centres and 

4x2=8 radii that need to be optimized. A total of 21 variables need to be optimized considering the further one 

variable which will be multiplied with the result of RBF storage and time function (which is normalized on [0,1]) to 

give the release magnitude. The optimal value of this variable can take a value from 0 to maximum release capacity 

of the dam.  

The storage targets of a large reservoir are typically varied during its filling period of several years, the Radial basis 

function based operating rule (i.e., which take storage and time inputs) for filling period will consider varying storage 

targets at various points in the filling period in contrast to the after-filling period where an optimized operating rule 

specifies storage targets for a typical year (i.e., seasonally). The maximum annual filling rate for large reservoirs is 

assumed to be one-third of their maximum storage volume considering construction quality monitoring requirements.   

We employ a heuristic optimization approach where a search algorithm [Kollat and Reed, 2006; P. M. Reed et al., 

2012] is coupled with a simulation model of the water resources system. The objectives are evaluated by simulating 

the system monthly using 60 years of stochastically generated monthly flow data. We use implicit stochastic 
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optimization approach to assess the probabilities of benefits and impacts given the inflow variability. The system 

model is tested for a number of stream flow realizations statistically resembling historical conditions. 

The many objective optimization is counducted with up to 30 runs with different initial points (random seeds) where 

each is allowed to last for up to 100,000 function evaluations. The results from each run are then sorted together to 

provide the best overall reference set [Kollat et al., 2008]. Given the high computational cost associated with 

increasing either of the number of random seeds or the length of evolutions, balancing both with computational 

resources is required while ensuring fidelity of the results. We assess the computational performance of the 

conventional trade-off analysis and that of the proposed mapping problem formulations under various number of 

random seeds and lengths of evolutions by using Monte-Carlo combination of run with randomly seeded starting 

points. Heuristic search results cannot be mathematically proven to be Pareto-optimal hence the term ‘Pareto-

approximate’ [Datta et al., 2008] but we refer to them as Pareto-optimal hereafter to simplify communication.  

8.4 Results 

 This section presents the performance of the proposed Blue Nile reservoirs and discusses the information revealed 

when the many objective optimization is conducted for each infrastructure option separately in comparison to when 

all options are considered jointly.  

Red markers on Figure 30 show the pareto optimal designs when considering the conflicting performance objectives 

of maximizing the average net present value and the 99% exceeded downstream flow at the Ethio-Sudan border. The 

shape of markers presents the highest performance in the two performance metrics under each infrastructure option 

(i.e., with the best possible management rules not shown here).  
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Figure 30 Red markers shows the Pareto-optimal set of infrastructure options (with associated management rules not 

shown here) that do best for different balances of the average net present value and 99% exceeded 3-year cumulative 

flow performance. The shape of the markers shows the reservoir choices. Black markers (in Panel C) show the 

highest 2-dimensional performance under infrastructure options extracted from the Pareto optimal solutions set 

(shown with Grey makers in Panel A) of a 7-objective problem. Blue Markers shows performance extent of all 

infrastructure options when each infrastructure option is considered separately in the many objective optimization 

and performance information is visualised jointly. 

Grey markers in Figure 30 show designs that are Pareto optimal for the original seven objective problem but 

dominated for the two performance goals. The solution set for the seven objective problem is Pareto-sorted for the 

two performance goals to produce the pareto optimal solutions shown in red color.  
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Figure 30 Panel A shows the efficient trade-offs between the reliable (99% exceeded) 3-year cumulative downstream 

release at the Ethio-Sudan border and the average net present value. This approach could show only some of the 

potential options on the Pareto-front (e.g., GERD, GERD620 and Mandaya). Because of this, stakeholders who may 

be interested in other infrastructure options (say Karadobi) will not be able to see how the performance of their 

preferred infrastructure choice would compare with the ones shown as Pareto-optimal and other infrastructure 

options. Figure 30 Panel B shows how the infrastructure choices  compare (with the best management designs not 

shown in the figure) to maximize the two performance objectives. In conventional many objective optimization, this 

would require conducting the experiment for each infrastructure option separately and merging the solution set to 

performance.  

Figure 31 shows a comparison of designs identified through standard many objective optimisation analysis (red 

lines) and designs identified through the proposed mapping approach (green lines) considering larger number of 

performance goals. 

 

Figure 31 management designs for each of the infrastructure options (Panel name) identified through traditional 

many objective optimisations (red lines) overlaid over designs identified through the proposed approach of mapping 

management options (green lines). Green space in each panel show the performance space not explored by 

visualizing the solutions set generated through the conventional many objective optimization. Grey space is the entire 

performance space containing all infrastructure options and their possible management.  

While some performance goals (downstream release goals) can be achieved with multiple infrastructure options, a 

decision on some  infrastructure options could imply an irreversible loss in some performance goals (e.g., a decision 

to build GERD comes with a lost performance in possible net present value). Figure 32 summarizes the performance 

regret when committing for any one of the infrastructure options compared to what would have been possible under 

any of the other infrastructure options. 
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The GERD has zero regret in both firm annual, average annual and downstream flow metrics. However, it is 

associated with regret in the average and 75% exceeded net present value which would have been topped by a 

Mandaya dam choice (Maganta line). All designs show low regret in downstream flow metrics (i.e., 99% exceeded 

3-year flow and average annual flow) because the downstream impacts are least dependent on infrastructure choice. 

 

Figure 32 Highest performance possible under each of the infrastructure decision options (Shown with line colour) 

for the different performance metrics (columns). 

Figure 33 uses the regret information of Figure 32 to evaluate the ranking of infrastructure options considering 

flexibility in management decision (e.g., in a build first and negotiate management later decision making approach). 

Say the GERD design is selected for providing high average annual energy potential than any other infrastructure. 

Figure 33 Panel A shows the GERD management alternatives with annual energy level higher than what is possible 

with the next best infrastructure option (GERD 620) for average annual energy generation. Similarly, if Mandaya 

had been selected for its financial feasibility performance, the Maganta performance space (Figure 33 Panel B) shows 

the performance possible under Manday with net present value higher than net present value possible with the next 

best infrastructure option (Karadobi). The dashed lines (red for GERD and Green for Mandaya) show designs which 

would performance less than the next best infrastructure option for the stated performance goals (i.e., violating the 

rational for their selection). 
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Figure 33 exploring performance regrets attached with infrastructure options. Lines coloured Blue (GERD) and 

Maganta (Mandaya) show management decision space that provide performance criteria of average annual energy 

and net present value being above the next best infrastructure decision. Red and Green coloured lines show where 

the performance is below the next best infrastructure. justifying criteria 
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For contexts where either the GERD or Manadaya infrastructure decision have been committed to for providing 

highest average annual energy and highest average net present value respectively.  The Blue space shows the decision 

space left for negotiation with downstream countries which won’t violate its justifying criteria for building GERD. 

Other related management designs (e.g., Red and Green lines) while possible, would potentially disqualify the 

infrastructure decisions in retrospect. By committing to the GERD infrastructure option Ethiopia has lost the 

performance opportunity a (firm monthly energy), b (average net present value), c (average annual flow) and d (75% 

exceeded net present value) that would have been available through other single reservoir options. If it had 

constructed the Mandaya however, a different set of regret - inducing the ability to generate energy and regulating 

the 3-year cumulative flow would have resulted (e.g., e). 

8.5 Discussion 

In this chapter we propose a computationally efficient approach that uses many objective evolutionary algorithms to 

allow performance comparison of all/selected set of dominated infrastructure options (when considered with their 

best possible management) with non-dominated (Pareto-optimal design) options. The many objective optimization 

and performance mapping approach is demonstrated on the proposed Blue Nile multi-reservoir system. 

In many objective optimization, the best designs are shown as ‘efficient’ designs where any of the objectives cannot 

be further improved without deterioration on at least one other objective [Olenik and Haimes, 1979; Mavrotas and 

Florios, 2013; Reed et al., 2013; Woodruff et al., 2013]. Results show traditional trade-off analysis (e.g., Figure 30 

Panel A) could fail to show how important alternatives (that would be preferred by stakeholders for unmodeled 

reasons) compare with the Pareto-optimal designs; In this case the GERD which is already under construction in 

Ethiopia. Mapping the extent of performance possible under each infrastructure option also shows more decision 

relevant information such as how a dominated infrastructure could be more suited to extend capability of the system 

in one or more performance metrics. The GERD designs (‘f’ in Figure 30 Panel A) is dominated for downstream 

flow and average net present value maximizing objectives and can do only as much as the Upper Mandaya option to 

maximize the 99% exceeded 3-year cumulative flow, however it does better than the Mandaya, GERD620 and other 

dam options which can explained by how larger storage size allows more regulation of flows. 

The approach reveals the loss implied by selecting the next best dominated alternatives instead of the better 

performing non-dominated choices). Another use of the mapping approach is to visualise regrets involved with 

committing to infrastructure option while leaving their management (which could be dominant in affecting the 

balance of conflicting performance) to be negotiated later. For example, if maximizing the average net present value 

while ensuring at least 125 BCM was the decision criteria then design ‘c’ in Figure 30 would be the preferred choice 

of the Pareto optimal options. However, if the downstream release requirement is relaxed after the infrastructure is 

implemented then the regret will be npv(a)-npv(k) and not npv(b)-npv(c) as would be perceived from a conventional 

trade-offs analysis. 
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By implementing the GERD, Ethiopia availed itself flexibly to maximize several of the conflicting objectives 

including the average and firm annual energy and the 3-year cumulative downstream flow compared to what was 

possible with the other infrastructure options. However, opportunities to maximize the firm monthly energy the 

average net present value, average annual flow, and the 75% exceeded net present value that would have been 

available through other single reservoir options are lost. The downstream impact are strongly related to its 

management while the large capital cost and hence the financial benefits are results of an infrastructure choice which 

is already made. 

Visualizing the performance dominated is possible because the dominated options are non-dominated for the dummy 

performance metrics (fopt,nfopt) that are modelled but not shown in the two-dimensional trade-off curve. The Pareto 

optimal solutions for the nine objective problem is first sorted for the four objectives (fAveNPV, fMinR_3, fopt, 

nfopt) then the resulting subset of Pareto-optimal designs visualised in 2 dimensions (net present value and 

downstream release in filling periods).   

 

Many-objective optimization visual analytics facilitates a continual learning process wherein decision-makers come 

to understand a problem while seeking its solution and emphasizes learning through problem reformulation [e.g., 

Woodruff et al., 2013]. By availing better representation of alternative infrastructure options to the ones identiefied 

as Pareto-optimal and their proximity to the the Pareto front, the mapping approach could avoid the potential bias 

that could result from  decision making under a narrow definition of optimality. Moreover, failure to include popular 

interventions in systematic design assessments could affect stakeholder’s confidence in the planning processes [Lund 

and Palmer, 1997; Langsdale et al., 2013] and ultimately the success of multi-stakeholder group decision making. 

The results show the method to be computationally efficient for mapping performance of infrastructure options 

compared to the alternative where the many-objective optimization would need to be computed individually for all 

mutually exclusive discrete interventions options of interest.  

The literature provides a rich set of examples where Pareto-optimality may not be sufficient for decision support. 

The need for ‘soft systems paradigm analysis’ approach for wicked, ill-structured or difficult to define problems to 

find solutions that are not necessarily optimal, but which are acceptable on separate dimensions without requiring 

explicit trade-offs has been recognised for several decades now [see Mendoza and Martins, 2006].  

This includes problems with socio-economic or political facets that stakeholders may not be able to quantify and 

include in the multi-criteria assessment [Nicklow et al., 2010; Jeuland and Whittington, 2014; Rosenberg, 2015]. 

Hence, focusing only on Pareto-optimal solutions may miss potentially important near optimal alternatives that may 

be attractive to stakeholders [Madani et al., 2014; Rosenberg, 2015]. Techniques to identify potential solutions 

outside of the optimality measure include modelling to generate alternatives (MGA) which identifies promising 

solutions that perform within a specified tolerance of the optimal solution [Brill et al., 1982; Chang et al., 1982; 

Gunalay et al., 2012]; and threshold detection to identify the range or points where changes in solutions matter 
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[Brown et al., 2012]. Rosenberg [2015] proposes blended tools to generate, visualise, and interactively explore the 

near-optimal region of an optimised design problem.  The approach involves first generating one or numerous 

alternatives, then the user guides further generation and visualization until reaching an acceptable end point. Some 

of the limitations in near-optimal approaches in the literature include the need to use iterative procedures which can 

be computationally intensive, and the need for human input which can be difficult in problems with large number of 

infrastructure options. Unlike the conventional near-optimal solution discovery methods, the approach differentiates 

discrete choice element of the decision space (e.g., infrastructure selection) from the management decision space; 

constraining the generated near optimal designs to decision relevant ones such as those that lead to a different 

infrastructure choice and hence potentially affect unmodeled socio-economic and political factors.  

Other application of the method, which generates information on the extent to which management options can be 

adopted under each of the infrastructure options, could be in problem contexts where  1) minimizing regrets when 

alternative performance criteria are adopted in the future once an irreversible or costly infrastructure decision is 

made and implemented is important and 2) ensuring flexibility to deal with deeply uncertain future supply, demand 

and performance balance requirement.  

Decisions are typically made despite various uncertainties; requiring robust plans which perform acceptably over a 

range of plausible futures. The recognition of deep uncertainty in planning for the future has given rise to a range of 

methods for decision-making, such as Robust-Decision Making and Dynamic Adaptive Policy Pathways that share 

emphasizing the multi objective nature of all water investments among their principles to encourage decisions that 

performs acceptably well under a wide range of plausible future conditions [Matrosov et al., 2013; Moody and 

Brown, 2013; Herman et al., 2014a]. Future studies should investigate how the application of the mapping approach 

to Many Objective Robust Decision Making [Kasprzyk et al., 2013a] and Adaptive Decision Making approaches 

[Walker et al., 2010; Haasnoot et al., 2013] which use Many objective evolutionary search to generate alternatives 

for complex planning problems.  

Recent studies indicate greater likelihood of increased Nile flow accompanied by higher variability, there is no 

concensus on how climate chage will affect the water availability and performance of exiting and proposed 

infrastructures.  While the impact of filling of the new reservoirs is an immediate concern to downstream countries 

especially Egypt, given the growing population number and hence demand, no or insufficient storage infrastructure 

will leave the region vulnurable to impacts of variability without the option of adopting upstream reservoirs to 

augment downstream water availability in critical conditions. Future studies applying the mapping of management 

flexibility under each infrastructure portfolio approach could provide insight on the extent to which upstream dams 

can be adopted within the rational decision space. 

MOEA search seeks to generate Pareto-optimal sets that both converge to the true Pareto front and are diverse (i.e., 

capture the geometry and extent of tradeoffs). The formulation for the mapping approach requires addition of at least 

two dummy performance objectives that could increase the computational requirement. Below we compare the 

computational requirements of the suggested mapping approach compared to the conventional many objective 
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optimization approach. We use hypervolume [Knowles and Corne, 2002; Zitzler et al., 2003] a metric that captures 

both diversity and proximity, to track how well the proposed problem formulation captures the performance of 

alternative options in a single MOEA search.  

 

Figure 34 The cumulative distribution function of the hypervolume achieved under each run (as a fraction of 

highest Hypervolume) for conventional trade-off analysis (red colour) and under the proposed Mapping 

formulation (green). Here the hypervolume metric is tracking the overall dominated space in both the conventional 

and mapping formulation. 

Figure 34 shows the cumulative  probability distribution of the relative hypervolume scores of the performance 

frontier under the Mapping method approach (green) and that of the conventional trade-off analysis method (red) as 

the number of runs increases.  

The performance of MOEA algorithms (i.e., whether a run approximates the true Pareto-front) can be affected by 

the initial conditions. Hence, Pareto-sorting of solutions from different random seeded runs is required to better 

approximate the true-Pareto front and provide the best overall reference set [Kollat et al., 2008]. Given the high 

computational requirement of MOEA optimizations, the minimum number of function evaluations and number of 

random-seed analysis is usually sought that achieve highest possible hypervolume metric. The absence of 

improvement in the Hypervolume metric with additional generations and number of random seeds is taken as a proof 

of convergence. 

Figure 35 presents a comparison of the computational requirement of the proposed mapping formulation and that of 

optimizing for each infrastructure options separately; which generate similar information.  
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Figure 35 Each Panel show the hypervolume progression for the proposed the Blue Nile reservoirs under 

conventional MOEAs search and under the proposed Mapping formulation. Differing number of function evaluations 

(generations length) and random seed analysis is required to approximate the solution to the true (but unknown) 

many objective Pareto-front in the conventional MOEA formulation. The solution set achieve a monotonic 

improvement in convergence and diversity metric (the hypervolume) under the mapping formulation than in the 

conventional MOEA search for all dams.  

Figure 35 shows the number of function evaluations (generations length) and random seed analysis required to 

approximate the solution to the true (but unknown) many objective Pareto-front in conventional trade-offs analysis 

and the proposed mapping approach. The solution set converges with fewer number of function evaluation and 

random seed analysis for some of the options (e.g., GERD, Mandaya, GERD 620 and Beko abo High) compared to 

the rest of the options. This indicates the number of function evaluation and random seed analysis required to achieve 

convergence to the true Pareto front and diversity among solutions (high hypervolume metric) vary depending on 

the input to a particular problem (i.e., reservoir characteristics, hydrologic variability) even under similar problem 

formulation.  

To compare the computational requirement of the proposed re-formulation with a conventional MOEA approach 

where a separate optimization for each dam would be computed, we use the least number of random seeds and 

generations needed to achieve 100% of the maximum Hypervolume with 99% confidence as an indicator. For the 

case study, a maximum of 81 generations with upto 15 random seeds was required for the 7 dams. In contrast the 

proposed mapping approach provides the equivalent information with a maximum of 51 generations and 9 random 

seeds. Hence the approach provides a reduction of up to ((91x7)-51)/ (91x7) = 92% in number of generation and 

((15x7)-9)/ (15x7) = 91% in number of random seeds needed. The computational requirement of the Mapping 



107 

 

approach could be reduced by up to (91-51)/ 91 = 44% in number of generations and increase by (9-7)/ 9 = 22% in 

random seeds compared to that of the conventional trade-off analysis.  

8.5.1 Limitations 

In this study, we focus on reservoir operators’ flexibility to change operating policies only for the purpose of reservoir 

fillings. Considering operating rules that change based on hydrologic conditions (e.g., in recent years) would likely 

attain more efficient trade-offs and change which investment schedules are deemed Pareto-optimal. Other limitations 

include that the study considers limited number performance objectives and ignores peak power, and firm monthly 

and annual energy requirements. Considering uncertainty associated with inflation and variation of installed power 

capacities with storage size could provide more decision relevant information.  
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9 Adaptive operating rule 

9.1 Introduction 

Release rules help manage reservoirs under variable inflows and should represent the ability of reservoir operators 

to incorporate information from various sources. However, simplicity of use and computational convenience are 

often the overriding factors for the type of reservoir operating rules adopted. Chapter 5 and Chapter 6 demonstrated 

the performance increase when flexibility of reservoir operating rules are considered in the search for best 

composition of multi-reservoir system and their investment scheduling analysis. However, the change in operating 

rule are assumed to be affected only by a change in the infrastructure state of the system. Recent literature on 

reservoir operating rule advocate using adaptive rules to mitigate the negative impacts of changing environmental 

conditions. Feng et al. [2017] derive adaptive operating rules as explicit functions of changing hydrologic factors. 

They use a deterministic optimization model to obtain optimal water releases, which are then used as input in the 

reservoir simulation model. Herman and Giuliani [2018] propose a framework where policies are formulated as 

binary trees, using a simulation-optimization approach. In their study candidate operating rules are generated across 

an ensemble of climate scenarios, incorporating indicator variables describing longer-term climate shifts to 

investigate opportunities for adaptation. These applications attempt to forecast future states of the water system.  

This chapter proposes to use pluri-annual information on recent reservoir management to design adaptive multi-year 

reservoir operating rules that balance the benefits of a large reservoir with its downstream impacts. The approach is 

illustrated with the Grand Ethiopian Renaissance Dam (GERD). The problem is formulated as a many objective 

problem whose decision variables are the design of the alternative rules and the conditions (triggers) under which 

they should be used. Downstream impacts are evaluated via the reliable (99% exceeded) 1-, 2- and 3-year cumulative 

releases. Upstream performance measures are the average and 99% exceeded statistical measures of annual and 

monthly hydropower production. Performance and computational implications of the adaptive versions of the Radial 

basis function and piece-wise linear operating rule are discussed.  

This chapter investigates the potential of multi-year adaptive operating rules for balancing the primary purposes of 

a large reservoir (or reservoir system) with the interests of downstream users. In addition to traditional information 

sources on the state of a reservoir system (i.e., storage level, inflow and time of the year), the suggested approach 

integrates explicit information on recent releases going back several years to base current release requirements.  

Given the implication of operating rule forms on performance and computational tractability, the viability of two 

widely used operating rule structures (i.e., Radial Basis function and Piece-wise linear) for adaptive management 

formulation are teste.  
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9.2 Multi-year adaptive operating rules 

9.2.1 Definition 

An operating rule is a map of release decisions as a function of available information. In formal terms, reservoir 

operations are generally modeled in discrete time steps, so the release decision tR corresponds to the total quantity 

of water required to flow downstream during that time step. tR  is expressed as a function of the vector  of 

variables that contain information that is relevant to the decision: 

)(fR tt =                   (1) 

where the function (.)tf  is in fact the release rule. It could differ throughout a year depending on the seasonal 

variability of inflows, release demands, and storage capacity.  

To adapt operating rules to events from the past few years, we adopt the adaptation glossary proposed by Haasnoot 

et al. [2013] . Signposts are the variables to watch in order to decide which course of action to take, and triggers are 

the threshold values of these variables beyond (or below) which adaptive action must be undertaken. In the context 

of multi-year adaptive rules in large reservoirs or cascades of reservoirs, signposts refer to variables that reflect 

inflows and operations from the last few years; in the case of a single reservoir for instance, cumulative release from 

the past year carries information on both inflows and reservoir operations. 

Therefore, a multi-year adaptive release rule is defined by M signposts Mm
m
t 1)(  and many associated 

triggers (𝛾𝑡
𝑚)1≤𝑚≤𝑀: 

  ), ,...,,, ,...,,(fR 11
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M
t

m
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M
t

m
tt =                    (2) 

9.2.2 Example 

Consider a simple piece-wise linear operating rules (Figure 36) of the form: 

,  min)(
minmax

minmax
RStorage

SS

RR
RSt +

−

−
=         (3) 

Such rules have been used in past studies where operation rules are determined by evolutionary algorithms [Oliveira 

and Loucks, 1994; Otero et al., 1995; Arena et al., 2010; Hurford and Harou, 2014; Geressu and Harou, 2015].  

Decision variables are the coordinates of the extremities of the segments that define the release rules (e.g. A, B, C 

inFigure 36, totalling 6 variables). 
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Figure 36 Static storage based release rule (Panel I) and Adaptive operating rule (Panel II) with a single signpost. If 

the variable is below a trigger (threshold value), then the adaptive rule (dashed line) is used instead of the original 

rule (continuous line). 

Let us assume that release is determined adaptively using total release over the previous calendar year as a signpost. 

Then noting  January of the current year, signpost t reads as follows, assuming a monthly time step: 

  
−

−=
=+

1

12
],11,[




 Rt t     (4) 

and the associated trigger is a threshold value on the signpost. For instance, if release is below the threshold T on 

Figure 1, then an alternative release rule is triggered. Designing multi-year adaptive rules is more complex than 

standard rules, because one has to design a new rule (6 decision variables on Figure 1) if a threshold (an additional 

decision variable) is crossed.  Other examples of signpost include total release over the past two calendar years, or 

any other indicator aggregating past releases.  

 

9.2.3 Many-objective search for adaptive rules 

 

Multi-year adaptive operating rules are designed to balance reservoir objectives with downstream needs. Formulating 

this design problem as a many-objective search problem enables managers to understand the trade-offs between 

potentially conflicting objectives – if they exist. 

A many-objective problem consists in finding a vector x of decision variables that maximises a vector of n 

objectives )(xF , and that satisfies to equality and inequality constraints (e.g., Kaspryczk et al., 2013):  
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where  is the decision space k  are the individual objectives, and q and r are the numbers of equality and 

inequality constraints, respectively. When it comes to specifying operating rules, x is a vector of parameters that 

enable the determination of the release rules at different times during a year (see Section  9.2). 

Such problems are classically solved using multi-objective search techniques where an MOEA [Kollat and Reed, 

2006; Reed et al., 2012] is coupled with a simulation model of the water resources system, e.g., [Matrosov et al., 

2011]. Visual analytic trade-off plots can then be used to present analysis results [Reed and Kollat, 2013; Vitiello et 

al., 2012]. Heuristic search results cannot be mathematically proven to be Pareto-optimal hence the term ‘Pareto-

approximate’ [Datta et al., 2008].  

9.3 Problem formulation 5  

The problem is formulated as a 7-objective optimization problem aimed at finding the parameters x defining the 

operating rule.  

  ),,,,,,( 321 MinMinMinx fEmfEfEavefEavefRfRfRFMaximize =             

  (6) 

x   

Where xF  is the target function, and these objectives are: 

1fR  =  99.0,1 ,),...,1(),,...,1( jiFjTsi Rquantile   99% exceeded annual release  

2fR  =  99.0,2 ,),...,1(),,...,1( jiFjTsi Rquantile   99% exceeded 2-year cumulative flow  

3fR  =  99.0,3 ,),...,1(),...,1( jiFjTsi Rquantile   99% exceeded 3-year cumulative flow  

AvefE  =  5.0,,),...,1(),...,1( jiFjTsi Eannlquantile    Average annual energy generation  

MinfEAve  = 

 
}99.0

),...5.0,(

{...

,),...,1(

),...,1(

jiTsj

Fi

Eannlquantile

quantile





 

 99% exceeded average annual energy 

generation of the dam in its life time 

from across the 30 hydrologic traces 

MinfE  =  99.0,,),...,1(),,...,1( jiTsjFi Eannlquantile    99% exceeded annual energy 

generation  

MinfEm  =  99.0,,),...,1(),,...,1( jiTsjFi Emquantile    99% exceeded monthly energy 

generation  
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tE   
= 

ttqh  
Energy generation at month t; a 

function of head and discharge and a 

constant that depends on gravity and 

length of month 

yEannl  
= ),( ytEsum t   The sum of monthly energy 

generations in the year ‘y’ 

tR1  = 

−

t

t
tR

12

 
Cumulative release of past 12 months 

at time t 

tR2  = 

−

t

t
tR

24

 
Cumulative release of past 24 months 

at time t 

tR3  = 

−

t

t
tR

36

 
Cumulative release of past 36 months 

at time t 

    

    

F  Number of synthetic hydrologic realizations 

Performance metrics are computed over 30 hydrologic traces of inflow time series and in a time window that is 10 

years to 80 years from the start of the simulation. This is to ensure the performance are not affected by the filling 

period performance of the dam; which this study does not deal with. Decision variables are the design parameters of 

the operating policy (static or adaptive); they have been enumerated in the previous section. 

 

9.4 Results 

The goal of this chapter is to propose and demonstrate a multi-year reservoir operating strategy that is explicitly 

responsive to recent hydrologic conditions.  

We assess the reservoir performance under seasonal operating rules that are invariant from year to year in 

comparision to multi-year reservoir operating strategies with responsiveness to recent hydrologic conditions. This 

section first presents performance comparison between static and adaptive Radial Basis function (RBFS, RBFA 

respectively) and static and adaptive Piece-wise linear (PWLS, PWLA respectively) storage based operating rules 

(Section 9.4.1). The best operating rule designs under each formulation are shown as ‘efficient’ designs where any 

of the objectives cannot be further improved without deterioration on at least one other objective [Olenik and Haimes, 

1979; Nicklow et al., 2010; Mavrotas and Florios, 2013]. This will be followed by storage time-series details of the 

static operating rules and the proposed adaptive operating rule (Section 9.4.2). Section 9.4.3 presents the 

computational requirements of the MOEA searches. 

9.4.1 Performance comparison under standard and adaptive operating strategies 
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Figure 37 shows comparison of performance under the four operating rule formulations when one of the multiple 

performance objectives is to be prioretised.   

 

Figure 37 The adaptive piece-wise linear operating strategy can maximise all the energy generation metrics (Panel 

B).  An adaptive radial basis function based operating rule (-) are best for maximizing the reliable  three year 

downstream flow. The non-adaptive piece-wise linear version  can perform higher in maximizing the reliable one 

and two year flows.  

Figure 37 compares performance of the GERD under different operating rule formulations where one performance 

goal is prioritised over the others. In both the static and adaptive operating strategies, the performance objectives of 

interest to Egypt (Figure 37 Panel A) and Ethiopia (Panel B) are conflicting; with an increase to one resulting in a 

reduction of the other. Of the performance objectives of interest to Ethiopia (Panel B), management options that 

maximise the firm monthly (‘d’), and firm annual energy generation (‘g’) enhance downstream benefits (i.e., the 

reliable 1,2 and 3-year cumulative releases) the most compared to the ones that maximises the average annual energy 

generation. Maximizing the average annual energy leads to only minimal improvements of one and two-year 

cumulative releases and also reduces the reliability of the annual and monthly energy generation.  

An adaptive radial basis function based operating strategy achieves the highest reliable cumulative 3-year release 

the energy performance (design ‘e’ on Figure 37) compared to a static radial basis function and both static and 

adaptive piece-wise linear operating rule forms. However, this will be accompanied by low upstream benefits; with 

the reliable annual energy generation being affected the most. 
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Figure 38 show the implication of the operating rule formulation on the benefit trade-offs when compromise between 

selected two performance objectives at a time is sought. 

 

Figure 38 efficient trade-offs when two performance objectives are considered at a time. For both Radial basis 

function based and piece-wise linear operating rules performance improvement of adaptive operating strategy over 

the static operating rules is less than 1%. The piece-wise linear operating rules (both static and adaptive) can improve 

the minimum downstream release with less sacrifice in energy generation than would be imposed by the radial basis 

function based operating strategy. 

9.4.2 Storage requirement implied by operating rule forms 
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Figure 39 Projected storage under various management strategies and traces of inflow hydrology in the steady state 

operation (20 years after filling period of dams). Adaptive operating strategies (shown in Panel A) allow the storage 

level to be maintained higher compared to static operating strategies (Panel B). conventional static operating 

strategies could result in high fluctuation of the GERD storage level while adaptive operating rules suggest (enable) 

maintaining a high storage level. 

9.4.3 Comparison of computation requirements 
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Performance of many objective evolutionary algorithms is stochastic, with no guarantee that the true (but unknown) 

Pareto front will be achieved [Zatarain Salazar et al., 2017]. Multiple runs with randomly seeded initial points are 

required to ensure solutions are not affected by their initial populations. The hypervolume metric has been popular 

for assessing the convergence and diversity of populations in many objective optimizations runs. The absence of 

improvement in the Hypervolume metric with additional generations and number of random seeds is taken as a proof 

of convergence. 

Section 9.4.1 showed how the solutions sets under different operating rule formulations achieve differing levels of 

performance. The diversity of solutions also depends on the operating rule formulation and could be uncorrelated to 

the performance. For example, the adaptive piece-wise linear operating rule designs ( ‘a’ to ‘c’ on Panel E on Figure 

38)  achieve higher performance but low diversity compared to the radial basis function based operating rule (‘b’ to 

‘d’ Panel E on Figure 38). Hence comparing of the hypervolume score of different formulation is not sufficient to 

select the best among them. 

Figure 40 shows the runtime hypervolume dynamics for each of the operating rule formulations. The adaptive 

operating rules using Radial basis function, which has larger number of decision variables and inter-dependence 

between decision variables, require more function evaluations and Pareto-sorting among a larger number of random-

seeded runs to achieve convergence.  The static Piece-wise linear operating rule and adaptive Radial basis function 

show a monotonic improvement of hypervolume with number of generations and higher reliability of runs achieving 

the ideal high hypervolume. The absence of improvement (Blue boxes in Figure 40) in the hypervolume indicator is 

taken as a proof of convergence.  
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Figure 40 Runtime hypervolume dynamics for each of the operating rule formulations. The minimum function 

evaluations and number of random-seed analysis (shown in blue boxes) that achieve highest possible (shown with 

size of green boxes) and lowest (shown with red colour) hypervolume metric are taken as a stopping criterion. 

9.5 Discussion 
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We investigate the application of adaptivity (the inclusion of explicit information on recent past performance) on the 

two widely used operating rule structures in the reservoir operating rules literature (i.e., Radial Basis function and 

Piece-wise linear) and discuss the implication on performance and their computational tractability.  

The results show the GERD can produce an average of 14.9 Twh/year (‘f’ in Figure 37). The side benefit of regulation 

by the reservoir (if design that prioritises firm monthly energy ‘d’ in Figure 37 is selected) will be an increase in 

annual, two and three-year cumulative releases by 8, 3 and 2BCM respectively. The results show, compared to radial 

basis function based operating rules, piece-wise linear (standard operating rules) allow better performance if 

reliability of downstream flow is prioritised. The piece-wise linear operating rules are also more parsimonious (i.e., 

require less parameters) and hence require less computational resources to optimise. 

Figure 37 and Figure 38 shows the trade-off between maximizing the average annual energy and maximizing the 

reliable monthly energy; with monthly energy generation under a management design that seeks to maximise the 

average annual energy (design ‘f’ in Figure 37) having low monthly energy reliability. Seeking high reliable monthly 

generation and in the process improving the reliable downstream cumulative flows of one to three years requires a 

sacrifice in the average annual energy generation of 500 Gwh/year from the maximum possible of 14900 Gwh/year 

(a change from ‘f’ to ‘d’). Figure 37 and Figure 38 shows the standard piece-wise linear operating strategy can 

improve the energy generation and downstream release performance simultaneously compared to performance under 

Radial basis function based operating rules. If the dam was to be operated with maximizing downstream benefits as 

a priority,  the one, two and three year reliable flows could be enhanced by 8, 10 and 16 BCM, which will come with 

the sacrifice of 5% in average annual and  25% in firm annual energy generations.  

Figure 39 showed the storage level under various management designs; with some designs maintaining high storage 

levels throughout the year and others allowing it to fluctuate. These differences are important as the steady state 

storage requirement impacts the amount of water needed to fill the reservoir; and could be substantial. This chapter 

assesses the relevance of adaptive operating rules that use explicit information of recent past performance as an 

indicator of the continuing hydrological state of the water system.  

The results show the Radial basis based adaptive operating rules are computationally intensive compared to all other 

forms of operating rules. The recommended operating forms will depend on the balance of performance sought after 

consultation with stakeholder and available computational resources. Comparison of the Radial basis function and 

piece-wise linear storage based operating rule imply the need to consider alternative operating rule formulations for 

reservoir system but do not recommend any one over the other as the dominance of once over the other could be 

problem specific.  

9.5.1 Limitations 

This work focused on steady-state reservoir management for inter-annual variability. Climate change impact and 

economic uncertainty could be factors for adaptive reservoir system expansion and management [Eriksson and 

Weber, 2008; Giuliani et al., 2016]. Future work could include considering the adaptivity in reservoir operating rules 



119 

 

when screening among alternative storage designs and their schedule of implementation. The impact of various 

management strategies of the GERD on existing reservoirs in the downstream system such as the High Aswan Dam 

will depend re-operations of the reservoir in Sudan and Egypt and demand management strategies adopted in the 

countries[Wheeler et al., 2016]. A number of downstream decision levers such as reduction of the irrigation 

abstraction and a change in seasonal pattern of irrigation demand in Sudan and Egypt will also need to be 

investigated. The performance metrics (i.e., energy generation and cumulative downstream releases for one, two and 

three years) used here relate to stakeholders who have conflicting interests and dispute each-others water share 

claims. Hence, while these can be informative of likely compromises. The study does not purport to recommend a 

particular design as best.   
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10 Negotiation 

10.1 Introduction 

Chapters 5 , 6, and 9 demonstrated the performance increase when the reservoir system design (e.g., multi-reservoir 

composition, sizing), investment scheduling and management are considered simultaneously; and the efficient trade-

offs for multi country performance metrics. Chapter 5 showed the use of many objective optimization and visual 

analytics in finding the efficient trade-off between multiple conflicting objectives and filtering the best designs that 

achieve various balances among the many objectives. All plots in Chapter 5 maximise benefits from the country 

where the dams are located (in this case Ethiopia). Here we consider the whole decision space for inter-country 

collaboration (i.e., with dams in once country being possibly designed and managed to maximise performance in 

another country). These can help stakeholders to understand the trade-offs between various performance objectives, 

and also to work out a compromise amongst themselves [Kasprzyk et al., 2013a; Hurford et al., 2014; Geressu and 

Harou, 2015].  

However, negotiations on water systems shared by various groups may not be limited to compromises in the physical 

parameters (e.g., type, location and size of reservoirs) or management of the system (e.g., Chapter 9) but may need 

to consider coordinated use of resources (e.g., cost or power sharing) in finding a compromise solutions. Such multi-

stakeholder negotiations could require cost and benefit sharing and hence identifying the relative cost and benefit of 

various options to the different countries.  

However, agreeing on the relative value of water and its services to different countries could be difficult. A more 

practical approach could be to allow each country to independently evaluate the benefit and impacts of system 

designs and coordination strategies as they see fit. The other challenge is the fact that a negotiation on coordinated 

use or resources has to rely on a pre-selected system design. Because the selection of a system design to start 

negotiation on will affect or is perceived to affect the benefit distribution for the negotiating parties, agreeing on a 

particular system design to start negotiation on can be difficult. In these contexts, a negotiation support mechanism 

that could incorporate multiple performance metrics of interest and the relative country preferences for these could 

help identify consensus solutions. 

To address these challenges, this chapter proposes a negotiation support framework for new infrastructure 

investments in shared river basins by combining the many objective optimization and visual analytic approach with 

the multi-criteria selection. A post optimization weighing of performance objectives is used to represent 

stakeholders’ value judgments in subsequent automated searches. This is done after the initial many objective 

optimization that establishes the efficient trade-offs and identifies the Pareto-optimal designs. 

Stakeholder preferences are represented in the automated searches as a remedy to the challenge of stakeholder fatigue 

with iterative procedures in negotiations that consider many alternative system designs and coordination strategies. 
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The proposed negotiation framework allows stakeholders to provide their own criteria weights for performance 

objectives, without having to agree on weights a priori with competing negotiators. 

Given the challenge in capturing the exact preference information (value judgment of stakeholders), and sensitivity 

of multi-criteria analysis results to criteria weights, the suggested approach includes robustness analyses. This 

chapter builds on the results of Chapter 5 (as it is simpler to use compared to subsequent chapters) in a proof-of 

concept demonstration of the relatively complex method. This chapter demonstrates the usability of common many-

objective optimization and visual analysis techniques to help with various stages of the negotiation process (i.e., 

preference elicitation, automated search for acceptable solution and robustness analysis) in addition to the knowledge 

generation aspects demonstrated in previous chapters.  

10.2 Method 

The approach follows 5 steps qualified as 1. Problem formulation 2. Search & deliberation, 3. Preference elicitation, 

4. Search & negotiation and 5. sensitivity analysis; we summarise them in section 2.1 and in more detail in 

subsequent sections. 

10.2.1 Proposed 5-step infrastructure negotiation framework 

1. The first step consists formulating the problem (e.g., identifying performance metrics relevant to stakeholders’, 

system constraints, alternative interventions and exogenous scenarios). Agreeing on a single problem formulation 

could be difficult in multi-stakeholder problems [e.g., Di Matteo et al., 2017]. Problem formulation affects the 

predictions of the consequences of alternative solutions and consequently which solutions are considered ‘optimal’ 

[Roy, 1991; Kasprzyk et al., 2009]. Quinn et al.  [2017] suggest a ‘rival-framings’ framework that helps mitigate 

inherent biases of alternative problem formulations by interrogating multiple competing hypotheses of how complex 

water management problems should be formulated. [Piscopo et al., 2015] suggest an iterative optimization approach 

where problem formulation is updated based on the results of prior rounds of optimization. Wu et al. [2016] 

introduced a framework for including stakeholder input in multi-objective water resource optimization problems.  

2. A stakeholder-trusted system impact simulation model help evaluate system outcomes of any particular system 

design. The impact model is linked to a many objective search algorithm [Reed et al., 2013] to help find efficient 

designs given multiple criteria. The first many-objective optimization generates approximately Pareto-optimal 

designs for performance measures of interest to stakeholders (Section 10.3.1). The generated efficient designs are 

displayed in interactive visual analytic plots that show the performance and their trade-offs implied by alternative 

designs. At this stage, stakeholders would be able to see possible coordination options and what infrastructure and 

management designs would allow that. However, it's unlikely for different groups to select the same asset bundles 

for development, the framework has 3 further steps. 

3. Next, each of the stakeholders is asked to articulate their priorities between objectives (i.e., weigh the performance 

metrics) including those made possible only through coordination with other stakeholders. The purpose of eliciting 
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preference information is to document stakeholders value judgments coherently so that it can be used to represent 

their preferences in automated searches in later stages; avoiding user fatigue.  

Two approaches can be used for this purpose. The first is to elicit a number array representing how the stakeholders 

weight the performance objectives directly. Information on how each of the stakeholders prioritises (weigh) the 

performance objectives can be used to generate an aggregate multi-criteria score for each system design allowing 

them to rank the system designs. The weight elicitation process can be supported by visual analytics tools using the 

performance trade-off information generated in Step 2 so that stakeholders could iteratively select criteria weights 

which reflect how they would rank the system designs (Section 10.3.2).   Optionally, each stakeholder groups may 

be asked to rank all or a subset of Pareto-optimal options (infrastructure designs and their management options 

identified in step 2) along with another subset of the Pareto-optimal options bundled with coordination options. The 

criteria weights can be inferred (e.g., through regression) from the ranking information. The constructed set should 

be diverse enough to reflect the system performance trade-off and allow the decrypting of the value judgment of 

stakeholders once they indicate how they would rank the elements of the set. How stakeholders rank alternative 

system design-coordination options or alternatively weight the performance metrics indicate their priorities and the 

performance trade-off they are willing to accept.  

In a competitive setting, agreement can be reached only if all stakeholders consider at least one combination of 

infrastructure-management and coordination bundle achieve at least as much performance (e.g., multi-criteria score) 

as the next best alternative. By the end of Step 3, the information on how the stakeholders would rank (multi-criteria 

score) the possible system designs and coordination bundles will be available. 

4. In the absence of a single system design ranked best by all, a second many-objective search (Section 10.3.3) aims 

to find a particular system design (an infrastructure and management option combination identified in Step 2) which 

will have the highest multi-criteria scores for each negotiating group by allocating sharable performance attributes 

(e.g., cost, energy, etc.) among them. System designs combined with coordination strategies are the alternative 

investment portfolios referred to hereafter as ‘bundles’.  

5. Sensitivity analysis of solutions will be used to 1, check the criteria weights represent stakeholders value 

judgments and 2, the robustness of solutions around the criteria weights 3, to identify which one of the stakeholders’ 

preferences prevents finding a consensus solution. 
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Figure 41. Visual representation of the proposed framework for supporting infrastructure system design negotiation. 

Panels A and B in each step describe alternative implementations based on problem context. In Step 1 stakeholders 

formulate the decision problem (i.e., identify performance requirements, constraints and possible decision 

alternatives). Regardless of stakeholder ability to agree on a single problem formulation,  system simulation and 

many-objective optimization is used in Step 2 to assess the performance trade-offs of different system interventions. 

In the case that stakeholders were not able to agree on a single problem formulation, the Pareto-optimal designs are 

evaluated for performance metrics for which they were not optimised for (i.e., tracked metrics). Mapping the 

identified system designs from multiple formulations (Step 2) on the performance space allows stakeholders learn 

how interventions impact performance. In Step 3 each stakeholder group iteratively chooses weights for performance 

metrics such that the different intervention options and a representative and diverse set of plausible bundles of 

infrastructure, management and coordination alternative can be ranked from their perspective. In Step 4 a second 

many objective search is conducted to maximise the aggregate performance measure of system designs, now referred 
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to as intervention bundles (including both new infrastructure investments plus associated coordination mechanisms). 

Step 5 assesses the robustness of results to stakeholder provided preference information (from Step 3).   

 

10.2.2 Many objective optimization of infrastructure system designs 

For the Step 2 optimization, we link a search algorithm to a simulation model of the infrastructure system. The 

optimization is conducted using many-objective search which have proved popular in water system applications 

[Labadie, 2004; Reed et al., 2013]. The many objective evolutionary algorithm (MOEA) is linked to the water system 

impact model. Repeated simulations are made until the search algorithm can no longer improve performance in one 

metric without simultaneously having to reduce performance in one or more other metrics. 

Maximise  ,...)ffFx 21,(=                             (1) 

 

Where f1, f2…fn  n= 1,2,3… represent performance metrics of interest   

The approximately Pareto-optimal set produced with multi-objective optimization consists of a range of designs i.e., 

combinations of physical system parameters and operating rules.  Like Giuliani et al. [2014] we apply direct policy 

search. 

 

The decision variables include the activation of new reservoirs and their reservoir release rule parameters (see Figure 

8 in Appendix). The operating policy is first parameterised within a given family of functions (piecewise linear) and 

then the parameters optimised with respect to the operating objectives. The operating rules are formulated as annual 

piecewise linear storage vs. release curves for each reservoir [Geressu and Harou, 2015]. The location and size of 

reservoirs and their release rules are jointly considered to identify high performing reservoir system designs. 

),( ,sii OpYX =                                     (2) 

   MiYi = 1,0                         (3) 

10.2.3 Multi-criteria scoring of alternatives 

Distance measure techniques (e.g., Compromise Programming, Topsis, etc…)  [Merigo, 2013; Zhou et al., 2013; 

Merigó et al., 2017]  can be used to compare the alternatives with some ideal results;  With the alternative closest to 

the ideal result being the best one [Merigó and Casanovas, 2010].  

We adopt the Weighted sum model (WSM) [Peter C. Fishburn, 1967] for its simple conceptual structure and with 

good performance comparable with more sophisticated methods [Chang and Yeh, 2001]. The reader is referred to 

[Kabir et al., 2014]for literature on various type of multi-criteria decision analysis techniques and their 

appropriateness for different problems settings.  
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The multi-criteria scoring [Kornbluth and Steuer, 1981; Hipel et al., 1993; Goedhart and Spronk, 1995; Despotis, 

1996; Mendoza and Martins, 2006; Wallenius et al., 2008; Ke et al., 2012] of the Pareto-approximate designs (i.e., 

generated in Section10.2.2) is done using a post-optimization multi-criteria analysis using (eq. 7).  
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Where ff,i, Ff,i, Wf,c are performance scores, partial failure values of system performance and preference criteria 

weights respectively. The partial failure function is calculated depending on the direction of optimization with (eq.8) 

for performance scores that are maximised and (eq.9) for minimization. 

Aggi,c in (eq. 7) represents the aggregate score of each bundle i based on preference information  Wf,c for each 

performance attributes f and stakeholder group c. Aggi,c  measures the weighted distance of a bundle’s performance 

from its performance target.   

10.2.4 Evaluating system alternatives under coordinated use 

In the absence of a single system design ranked best by all, stakeholders could be expected to pick one design 

alternative and negotiate on sharing benefits.  

In a typical negotiation, stakeholder would pick one of the system design alternative and then apply coordination 

(eq., 10 and 11). The value of coordinated performance for the uncoordinated alternative is calculated by using a 

factor of 1 or 0 for each stakeholder (i.e., 1 for the other in a two stakeholder negotiation if the first got 0 and vise 

versa), while the coordinated performance for coordinated alternative is calculated using a fraction ‘t’ between 0 and 

1. This can then be evaluated with the rest of the alternatives to which no coordination is applied.  

11 PerftCoordPerf =            (10) 

1)1(2 PerftCoordPerf −=            (11) 

For a case where stakeholders are negotiating to divide a resources, the partial failure function of a coordinated 

performance is calculated in relation to the range of performance. For example if the coordinated performance is 

derived from performance metric 1 the partial failure function of the coordinated alternative is calculated as in (eq. 

12).  
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10.2.5 Optimizing coordination 

Both the performance of the system design to be implemented and how its cost and benefits are distributed among 

stakeholders impact the satisfaction of negotiators [Winter, 1997; Inderst, 2000]. The Step 4 optimization aims to 

find a design-coordination strategy combination with the maximum aggregate multi-criteria score from the 

perspective of each negotiating party.  The optimization consists of at least as many objectives as the number of 

stakeholders, where the objective optimised is the multi-criteria score of the design-coordination strategy for each 

stakeholder. Ideally, the selected system design alternative and coordination would be scored the highest from the 

perspective of each of the negotiators ( 0)( , =−= cdcd MCAMCAMaxMCA ). 

Minimise   Cc)MCA(F cSelectedx = ,                  (13) 

Where c represents each stakeholder in the group of stakeholders C 

Decision variables include the infrastructure system design and coordination levels (e.g., cost-sharing, power/energy 

sharing).  

10.2.6 Preference elicitation 

Techniques for choosing weights include direct rating, indifference trade-off and the analytical hierarchy process 

[Hobbs et al., 1992]. These methods require posing a complex set of questions to the stakeholders to elicit their 

relative preferences [Larichev, 1992]. Here we show how many-objective optimization and visual analytics can be 

used to iteratively generate weights that reflect stakeholders’ ranking of alternatives (see Step 3 panel of Figure 1). 

We follow the conjoint procedures (Green and Srinivasan, 1990) that involve decision maker ranking or rating 

alternatives followed by the derivation of weights that best fit the alternatives' evaluations. The metrics (i..e,

RankDisf ) is used as distance measure between stakeholder ranking of alternatives and the ranks of alternatives 

implied by weights.  

 

Minimise  )fF RankDisx (=                        (4) 
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Fx   Target function 

RankDisf   A distance measure between user assigned ranks of alternatives and their 

rank as calculated using weights 

wiui RankRank ,, ,  
 Ranks of alternative ‘I’ provided by a stakeholder and implied by weight 

respectively 
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The result is an array of numbers jW  with the range of [0, 100] which can then be converted to an array of weights 

(eq. 6) that closely imitate the stakeholder’s ranking of alternatives. The range  [0, 100]  is selected as it allows 

weights from 0 to 1 (i.e., when an attribute’s relative preference is given close 100 while other attributes is kept close 

to 0) to be generated while being a reasonably small space to explore using heuristic algorithms. The exercise should 

be iterative to ensure consistency of the ranking of alternatives. 
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      (6) 

 

10.2.7 Robustness of weights  

The many objective optimization formulation (eq. 13) can be adopted as (eq. 14) to see how the solution (Pareto-

front of the multi-criteria score) could shift for marginal changes in the relative value of stakeholders’ weights. This 

formulation shows both how the solution set changes, and to which of the performance preference weights ‘j’ the 

solution is most sensitive to.   

Minimise   Cc)WMCA(F cjcSelectedx = ,, ,              (14) 

Where c represents each stakeholder in the group of stakeholders C 

Decision variables include the infrastructure system design, coordination levels (e.g., cost-sharing, power/energy 

sharing), the change in the value of a relative weight, and which of the performance ‘j’ and stakeholder ‘c’ the weight 

would be changed for.  

 

10.3 Results 

This section summarises the results of the proposed approach applied to our case-study. Non-dominated designs of 

proposed reservoirs are presented in Section10.3.1. These include alternative designs (i.e., selection of a reservoir, 

its storage capacity, and operating policy) that most efficiently balance the different system goals. The multi-criteria 

weight elicitation from different stakeholder’s perspectives is demonstrated in Section 10.3.2. Section10.3.2presents 

the optimised coordination levels that could allow the countries to agree on a single design in our synthetic 

negotiation example. Sections 10.3.4present validation of the proposed approach and Section 10.3.5 deals with a 

demonstration of the sensitivity analysis of results to preference information uncertainty.  

10.3.1 Performance of designs 



128 

 

This section presents the many objective assessment of efficient infrastructure options. Results consist of trade-off 

curves built of Pareto-approximate designs; each design consists of existing reservoirs and one new reservoir, its 

storage capacity, and operating rules of the new and existing reservoirs.   

 

Figure 42. Results of the first many-objective optimization (Step 1 in Figure 1). The plots show performance of 

designs that are Pareto-optimal for Ethiopia (red) or Sudan (blue markers). Grey colored markers are not Pareto-

optimal when considering the Ethiopian and Sudanese objectives separately but are non-dominated when all 

objectives are optimised together. The figure shows how efficient designs for one group of stakeholders (e.g., designs 

‘b’,’c’ on  Panel A) could be sub-optimal for others (e.g., for Sudan as shown on Panel B). 

Figure 3 Panel A shows how the reservoir designs map onto the optimised annual energy/cost trade-off space 

compared to the ideal performance of highest energy and lowest cost for Ethiopia. Panel B shows the performance 

of designs from the Sudanese perspective. Red and Blue colored markers show designs (i.e., reservoirs, storage 

capacity and operating rules) that are non-dominated when considering Ethiopian and Sudanese objectives 

respectively. Downstream system performance (in Sudan) is affected by which single reservoir is built upstream 

(shown with shapes), its size (fill color) and its operating strategy. For each performance shown in Figure 42, the 

operating rules of the two Sudanese reservoirs, Roseires and Sennar, are optimised to adjust to the new hydrologic 

conditions brought about by the new upstream dam [Geressu and Harou, 2015].  



129 

 

Infrastructure designs and operating policies that achieve best energy generation and irrigation water supply in Sudan 

shown with Blue Markers (e.g., point ‘d’, ’e’, ’f’) near the ideal solution in Panel B are far from ideal from the 

Ethiopian perspective (seeking the highest annual energy generation at least cost) as shown in Panel A (where 

markers ‘a’, ‘b’, ‘c’ show an example of a desirable design). The performance of Blue markers (i.e., show the highest 

achievable performance of the two existing Sudanese reservoirs) assumes upstream reservoirs are designed and 

operated primarily to maximise downstream objectives.   

Grey markers show designs that are not Pareto-optimal for either of the countries Ethiopia or Sudan but are Pareto-

optimal when all objectives are included simultaneously in the optimization. Figure 3 show the performance trade-

offs implied by each non-dominated design. Each of the designs is non-inferior hence the plots cannot recommend 

any one of the designs as ‘best’. Designs such as ‘a’,’b’ and ‘c’ represent different balances of conflicting objectives 

which will be perceived differently by decision makers. It is likely negotiating country representatives would choose 

different designs (blue or red) rather than compromise (grey), so this motivates moving to the rest of the Steps of the 

proposed approach. 

10.3.2 Preference elicitation 

In Step 3 of the proposed framework, stakeholders are asked for their preference through weighing performance 

criteria. The purpose of eliciting preference information is to document users value judgments. In this section, we 

demonstrate how the efficient trade-offs identified (e.g., shown in Figure 3) can be used for preference elicitation 

from stakeholders in an interactive setting which shows them how criteria weight they chose affect the ranking of 

the Pareto-optimal designs identified in Step 2 (please see Table 4 and Figure 43).   

 

Table 4 Example preference information (criteria weights) used for proof of concept demonstration 
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1 Ethiopia 0.166667 0.333333 0 0 0.333333 0 0.166667 0 

Sudan 0 0 0.4 0.2 0 0.2 0 0.2 

2 Ethiopia 0.333333 0.166667 0 0 0.333333 0 0.166667 0 

Sudan 0 0 0.4 0.2 0 0.2 0 0.2 

3 Ethiopia 0.5 0.1 0 0 0.1 0 0.3 0 

Sudan 0 0 0.1 0.4 0 0.4 0 0.1 
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Figure 43 Trial and error weight elicitation from stakeholders guided by visual analytics. Users will see how the 

relation between the array of criteria weight they provide (e.g., Table 2) and how the highest ranked designs map on 

the performance space per the weights. 

Color of markers in Figure 43 shows the ranking of designs (according to multi-criteria scoring for Ethiopia). Square 

markers show the location of best ranked designs on the performance trade-off plot for user specified criteria weights. 

Observing how the best ranked system designs map on the performance space indicates what trade-offs the 

stakeholders are willing to accept. Each of the stakeholder groups can separately use the weight elicitation technique 

which is demoed here only for Ethiopia as an example. 

The weight elicitation is iterative where each stakeholder group provides a set of criteria weights and visualises the 

implication of the provided criteria weight on performance trade-off until the user is satisfied that the criteria weight 

reflects their value judgments. Criteria weights should reflect the willingness of the stakeholders to exchange parts 

of these various system benefit forms some of which could be shared (e.g., cost of implementing a system designs, 

energy generated from dams owned by one stakeholder can be shared across borders).  Hence, the trial and error 

approach demonstrated in Table 4 and Figure 43 for criteria weight elicitation would not be sufficient to elicit 

information on stakeholder’s preference of coordination options. This is because the performance metrics that are 

optimised for in the first many objective optimization in Step 2, and for which the trade-off information is available 

by this stage, only track water system benefit and not how it should be allocated among negotiators according to 

their preferences. 

The criteria weights can be inferred from how each of the stakeholders would rank a set of alternative system-design 

and coordination options. Evolutionary algorithm can be used to find a set of criteria weights that would result in the 
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same ranking as the stakeholders’ through regression (see eq. 4). Below we use an example set of possible 

coordination strategies to demonstrate the approach.  

Table 5  Example performance mixes with assumed ranking by one of stakeholders (Ethiopia).  The set of criteria 

weights that express its preference for various performance attributes can be inferred from the ranking of the mix of 

options. 

Stakeholder 
given rank ( 

Annual 
energy 
generatio
n from 
new dams 

Cost of 
project 

Energy 
from 
existing 
reservoir
s in 
Sudan 

Annual 
irrigatio
n deficit 
in Blue 
Nile 
Sudan 

Energy 
for 
Ethiopia
n 
domestic 
use 

Energy 
shared 
to Sudan 
from 
Ethiopia
n dams 

Cost to 
be 
covered 
by 
Ethiopia  

Cost to 
be 
covered 
by Sudan 

1 13583 4630 2297 39768.3 7991 5592 2179.85 2450.15 

2 13583 4630 2297 39768.3 10787 2796 
3404.92

5 
1225.07

5 

3 5284 
3392.1

2 2274 39735.6 5284 2707 3392.12 1212.27 

4 5284 
3392.1

2 2274 39735.6 6637.5 1353.5 
2785.98

5 606.135 

 

Table 6 An optimization result to find a set of weights that best fit user specified ranking of bundles.  
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1 Ethiopia 0.915 0.000 0.000 0.000 0.000 0.000 0.084 0.000 

 

The multi-criteria ranking of designs implied by the weights derived from the optimization (e.g., Table 6) can be 

visualised as in  Figure 43 to ensure stakeholders are satisfied by the ranking.  This makes it possible for stakeholders 

to see if they would rank the performance mix differently after learning the implication of their previous choice of 

performance criteria weights on the ranking of alternative designs. The weight elicitation should be iterative where 

each stakeholder group provides an array of best ranked design and coordination bundles, derives weights, compare 

their ranking of bundles and weights-implied ranking of bundles until they are satisfied with how the criteria weights 

reflect the ranking of the bundles from their individual perspective.  

At this stage, each stakeholder would be able to identify their most preferred system design and coordination option 

which will be the alternative with highest multi-criteria score. The ultimate goal in the negotiation is to get one 
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common best-ranked design (a bundle of infrastructure and management choice and coordination level) for all 

stakeholders. However, given that each of the stakeholders would choose the infrastructure and management options 

that maximise their individual benefits, there could be a stalemate.  

This negotiation framework aims to help stakeholders find more acceptable system design and coordination bundles 

such that one or more of the stakeholder groups would feel sufficiently compensated (with benefits from 

coordination) to agree to an alternative system design to their choice. For demonstration of the approach, we will 

test the approach for two preference scenarios (i.e., preference sets ‘2’ and ‘3’  given in Table 4 as arrays of weights) 

. In a real application this would be replaced with result of step 3.  

10.3.3 Optimal coordination strategies 

In the fourth Step, an optimised selection of a system design and coordination levels is sought to simultaneously 

improve the satisfaction level of stakeholders. Note the satisfaction level is represented by the multi-criteria score 

that each stakeholder group assigns to the optimised selection of the system designs-coordination bundle. Ideally, 

the optimization would reveal a single best bundle that all stakeholders could agree on because each of them cannot 

find any other alternative bundles with a higher MC score. However, this is dependent on the problem context (i.e., 

preference structure of the stakeholders as it relates to the system performance); where in some problems no or only 

partial improvement in resolving the conflict is possible.  An example is where the approach finds a bundle that 

provide simultaneously higher multi-criteria score to competing stakeholders compared to intervention options 

without any coordination but where for a given solution at least one of the stakeholders could find an alternative 

bundle with higher MC score. 

Each possible system design and coordination bundle is evaluated by comparing its multi-criteria score with the set 

of the system designs without coordination (i.e., Pareto optimal set of infrastructure and management designs 

identified in Step 2). A measure of the distance of an individual system design-coordination bundle (b) score for a 

stakeholder group (c) from a the maximum score in the whole set (i.e,, the bundle and the rest of system designs with 

no coordination) is designated by  cbMCA , .  



133 

 

 

 

Figure 44 Comparison of systems designs without coordination (Cyan colors) and system designs with optimised 

coordination (black colors). Panels 1 and 2 correspond to results where stakeholder preferences are given by 

criteria weights in row 1 and row 3 in  Table 4 respectively. The results in Panel 1 show, for the given set of 

preference information, while coordinated use of selected designs (e.g., designs ‘c’, ‘g’, and ‘e’) can improve 

performance for competing stakeholders simultaneously, no single design-coordination bundle can simultaneously 

satisfy both stakeholders more than would be with at least one of the system designs without coordination. Panel 2 

shows a single design ‘o’ - with a range of coordination strategies (e.g., o1,o2, and o3 in Panel B) could be found 
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as best by both countries. In both cases system design and coordination bundles achieve higher satisfaction 

measures for stakeholder compared to designs without coordination. 

Figure 44 Panel 1 shows that optimal coordination (i.e., energy use and cost sharing) can improve the satisfaction of 

users (when the preference information for the two counties is as in row 1 Table 4). However, the best solutions for 

Ethiopia and Sudan, both in unilateral and coordinated use, are ranked low by the other; implying compromise will 

have to be reached. A preference of the two counties as in row 3 of Table 4 would allow finding a single system 

design  and coordination bundle that results in the countries agreeing on at least one system design and coordination 

bundle (one of ‘o1,’o2’,’o3’ in Figure 44 Panel 2) as these designs are ranked better than all system designs without 

coordination. Figure 45 allows visualizing additional information for stakeholders to further evaluate the system 

design coordination bundles. 

 

Figure 45 Multi-criteria scores of designs in coordinated use of resources. system design-coordination bundles that 

are simultaneously better than a no coordination option for both countries where stakeholder preferences are given 

by criteria weights in row 3 in Table 4. 
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10.3.4 Validation  

This section investigates how the  selection of a system design to start negotiation on will affect the search for a 

consensus solution (i.e., one that all stakeholders would find with higher multi-criteria score). From a particular 

stakeholder’s perspective, a reasonable starting point for negotiating on coordinated use of resources is the design 

that does best for them without negotiation (i.e., designs ‘t’ and ‘p’ for Ethiopia and Sudan respectively).  

 

Figure 46. Comparison of results under different search approaches for coordinated use. Optimization where the 

selection of design and coordination levels are done jointly (i.e. Magenta coloured bundles such as ‘e’ and ’g’) 

achieve better measures of satisfaction performance compared to search results where the designs best ranked 

without coordination for Ethiopia (‘t’) and Sudan (‘c’) respectively are fixed while optimizing for coordination (e.g., 

t1, t2, c1, c2). ‘Cyan’ (light blue) markers show results of search where each design is assessed with null coordination 

levels. 

The figure shows how the simultaneous search for design choices and coordination levels can enhance the 

satisfaction (higher multi-criteria score)  of competing negotiators compared to where the designs choice is pre-

fixed while searching for coordination.  

10.3.5 Sensitivity analysis  

Sensitivity analyses of solutions to assumed criteria weights is needed to explore the robustness of the obtained 

results. Where a single best solution cannot be picked by the stakeholders, sensitivity analysis can reveal which of 

the criteria’s is detrimental to achieving a “perfect” solution, (i.e., where all stakeholders choose a single design-

coordination bundle), the analysis reveals the likely best solutions if criteria weights were marginally different to 

what is specified. Figure 47 shows sensitivity of results assuming only one of set of performance criteria can be 

misrepresented at a time. The method can be extended to finding the sensitivity of results to a combination of criteria 
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weights by changing (eq. 13 in Section 10.2.4  to eq. 14 in Section 10.2.7). The sensitivity analysis approach can 

also be used to assess the robustness of an ideal solution (i.e., where a single infrastructure, management and 

coordination level is scored as best by all stakeholders) to criteria weights.   

 

 

Figure 47 Sensitivity analysis of solutions to uncertainty in relative weight given to performance by two stakeholders 

to two different criteria. (Panel A) shows a region of uncertainty where the true value of two performance criteria 

may be located. Green, Cyan and Grey markers show solutions if the actual  criteria weights were within 1, 10 and 

50% margin of the ones provided by stakeholders respectively. 

Figure 47 shows the many-objective optimization generated solutions that approximate a multi-dimensional space 

formed by one or more uncertain parameters. 

 

     

Table 7 Example sensitivity analysis results ('x' and 'y' in Figure 47). 

Solution Stakeholder Changed 

weight 

Change 

factor (

W  

Original 

weight 

New 

Relative 

New weight 

=
=

t

j
jjj WWw

1
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weight (

W ) 

‘x’ in 

Figure 47 

1 2 0.732 0.333 0.122 0.128 

2 3 1.1936 0.400 0.244 0.47744 

‘y’ in 

Figure 47 

1 7 1.194 0.400 0.244 0.477 

2 3 0.511 0.000 0.000 0.000 

   

 

Table 8 example re-calculation of  criteria weights for the case of solution  (‘x’ inFigure 47) for stakeholder 1. 

 

S.n
o 

remark Annual 
energy 

generatio
n from 

new 
dams 

Cost of 
project 

Energy 
from 

existing 
reservoir

s 

Annual 
irrigatio
n deficit 
in Blue 

Nile 
Sudan 

Energy 
for 

Ethiopia
n 

domestic 
use 

Energy 
shared 

to Sudan 
from 

Ethiopia
n dams 

Cost to 
be 

covered 
by 

Ethiopia 

Cost to 
be 

covere
d by 

Sudan 

Sum 

1 origina
l 

0.167 0.333 0.000 0.000 0.333 0.000 0.167 0.000 1.000 

2 W 0.167 0.24378
9 

0 0 0.333 0 0.167 0 0.91078
9 

3  w 0.183357 0.26766
8 

0 0 0.36561
7 

0 0.18335
7 

0 1 

 

10.4 Discussion of application 6 

A framework for designing and negotiating the multipurpose development of infrastructure systems among diverse 

stakeholders is proposed. The search process and its formulation is similar to the one in  Geressu and Harou  [2015] 

but here we consider the process of negotiating trade-offs between complex competing interests and the role of 

coordination strategies (e.g. cost and power sharing) in selecting system designs. The framework enables considering 

the explicit preference information of users and use of multi-criteria scoring (through weighing method) for tracking 

the satisfaction of stakeholders. An application to a simplified Blue Nile dam development problem helped us 

demonstrate the approach and the type of insights and processes it could facilitate. 

10.4.1 Discussion of results 
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Results showed that, in the absence of coordination mechanisms to incentivise consensus building in the Blue Nile 

problem, one country’s Pareto optimal designs are inferior when considering the other country’s interests. Figure 42 

showed the country implications of changes in reservoir design, i.e., changing the size, operating rules or location of 

a dam [Geressu and Harou, 2015]. Figure 43 showed how the most efficient designs would be ranked (colors of 

markers) for a stakeholder’s different criteria weights (proposed in Table 4). The ‘best design’ for each of the 

countries individually performs poorly for the other.  Benefit trade-offs that the proposed hydropower systems imply 

(as implied by a fictitious preference information) for upstream and downstream users were presented in Figure 44 

using aggregate multi-criteria scores. Multi-criteria scoring of designs was done based on their weighted distance 

from target performance levels. 

The evolutionary algorithms explore the range of each decision variable using random generation of values in 

uniform distribution. To minimise number of evolution needed, we optimise for intermediate decision variables 

which have a range [0, 100] which are then converted to an array of weights using eq. 6 (please see section 10.2.6). 

Normalizing by the sum of the array ensures they always add up to unity. This avoids the need to discard set of 

criteria weights that do not add up to unity. The range [0, 100] for the intermediate variables is considered sufficient 

to approximate the lowest and highest possible value that each weight can have (i.e., 0 to 1). 

A large number of sets of intermediate decision variables could result in one set of normalised criteria weights that 

can emulate the ranking of alternatives. While this is not a problem by itself, this could result in longer run times for 

the evolutionary algorithm as it will end up exploring larger decision space than necessary. Fixing the value of one 

or few of the elements of the array reduces the decision space as the optimiser will concentrate in finding the value 

of the rest of criteria weights that work well with the fixed value.  

Negotiators could try to maximise their individual and collective satisfaction by adding ‘coordination strategies’ (in 

our case exchanges of funds and energy) to the deal. The Pareto-optimal designs in Figure 42 or the best ranked 

designs for the stakeholder countries from Figure 43 are not ideal system designs to start negotiations because they 

always benefit one country over the other.  

Section 10.3.3 presented the results of a second search showing the best design-coordination bundles (i.e., with 

highest multi-criteria score) for example preferences of stakeholders as expressed by criteria weights (rows 1 and 3 

in Table 4). Figure 44 showed how coordination strategies improve benefits (measured by the aggregate multi-

criteria score of designs) compared to without coordination (see for example how design ‘e’ beat ‘t’ in Panel 1.A).  

An ideal solution is a design-coordination bundle that would be ranked better than the unilateral best designs for 

each of the stakeholders simultaneously (Figure 44 Panel 2). Finding such solutions by trial and error could be 

arduous. Even if one did find some, there could be many solutions that meet this requirement and one would need a 

systematic way of evaluating them. The is achieved by the Step 4 search of the proposed process.  

Results show the satisfaction that stakeholders could get from each alternative water system design under unilateral 

implementation could be surpassed by several system designs when including coordination. Figure 46shows the 



139 

 

implications of alternative starting points (system design choices) of negotiation. The results validate the need for 

simultaneous optimization of system design and coordination levels to find better performing system design and 

coordination bundles.  

10.4.2 Visual analytics and the interactive negotiation process 

Interactive multi-criteria performance plots can play a valuable role in understanding the implications of 

development within complex systems [Reed and Kollat, 2013; Woodruff et al., 2013]. The use of visual analytics 

[Kollat and Reed, 2007; Keim et al., 2008] is an integral part of the proposed negotiation framework for four reasons. 

First, given that choosing multi-criteria weights for different performance goals is a difficult task [Mimi and Sawalhi, 

2003; Mendoza and Martins, 2006], visual analytics facilitates weights (preference) elicitation from stakeholders. 

This can be done through interactive learning, i.e., stakeholders progressively assimilate the implication of weighing 

their goals by instant visual inspection (Figure 43) of its impacts on system performance, trade-offs, and (if allowed) 

on infrastructure portfolio composition. This iterative prioritization exercise using a linked weight elicitation and 

visualization tool would continue until stakeholders are satisfied with their criteria weights. Secondly, visual 

interaction with results allows stakeholders to introduce minimum performance requirements (by filtering or 

‘brushing’ results) [Reed and Kollat, 2013]. In this way parts of the performance space can be excluded post the first 

many objective optimization when eliciting preferences from stakeholders. Such flexibility and customization could 

help increase stakeholders’ trust in the control they have over the negotiation process. Thirdly, visual analytics helps 

communicate through intuitive visual summaries and record and document results of the assessment and negotiation 

process. Finally, by adopting a generate-first-choose-later approach [Herman et al., 2014b] enabled by visual 

analytics, a large decision space is considered at all stages of decision making with full insight on the performance 

trade-offs. Hence, the results are not limited by the stakeholders’ and analyst’s assumption of acceptable coordination 

levels among the negotiators. This could be helpful in politically sensitive negotiations where participants are reticent 

to reveal (admit) concessions they might make [Fearon, 1998]. 

10.5 Limitations 

The approach demonstrated on the Blue Nile problem in this chapter relies on the assumptions that any loss in 

performance from one objective can be compensated by an increase in another or others. This could be invalid for 

some real-life application where, for example, stakeholder don not feel that a financial gain may not compensate 

reduced energy service levels. Such relations may not be accurately represented with the use of weights for 

preference elicitation.  

This study does not aim to answer the question “what the acceptable downstream benefits are or what performance 

objectives can be traded-off by which country?”. These can and should only be answered by stakeholders through 

negotiation coupled with extensive studies on system goals and needs in each country. A real-world application 

would involve iterative deliberation among multi-disciplinary groups within and among the countries about the 

performance objectives to consider and the preference information that describe how stakeholders value each 
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performance target in relation to other targets. The objectives and assumptions presented here are changeable. The 

criteria weights used in this study are hypothetical and are meant for demonstration purposes.  

This is a proof-of-concept study on a simplified form of a subset of the Nile problem. The method is demonstrated 

using few objectives and limit the geographical scope to the Blue Nile (excluding Egyptian interests). The suggested 

framework could accommodate other players in the basin such as Egypt and development partners which could 

contribute financing in exchange for coordinated development (e.g., managing filling of reservoirs and energy trade). 

Future work could benefit from considering the impacts of filling of new dams and including more Nile countries. 
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11 Summary 

Meeting growing food and energy demands in many regions will require the expansion of water resources 

infrastructure [Spiertz and Ewert, 2009; Bieker et al., 2010; Qu et al., 2013]. Given that water system developments 

can help alleviate poverty and spur growth in regions such as the Nile, new reservoirs will be built within existing 

multi-reservoir systems. Interventions change the distribution of system benefits to stakeholders with differences in 

preferences; which explains why the multi-reservoir planning problem is a difficult one to solve.  

Accommodating different parties’ needs is necessary in a transboundary context to avoid major conflicts [Swain, 

2011; Anghileri et al., 2013; Sadoff et al., 2013]. Evaluating future designs based on aggregating all system benefits 

will not be helpful in situations where the intervention impacts different sectors and geographical areas. It is more 

helpful for planners to quantify stakeholder defined goals thereby tracking the implications of various infrastructure 

investments on these. However, this task is difficult due to the limited cognitive capacity of humans to understand 

complex systems and the tendency of stakeholders to maximise their individual benefits in group decision making.  

The water resources planning and management literature has advanced the design and management of complex water 

systems in the last several decades. This work identified some gaps in the literature and sought to address them. The 

suggested approaches for reservoir system sizing, scheduling, and management considering multiple objectives and 

multi-stakeholder negotiation work by linking a water resource system simulator to a multi-criteria heuristic search 

optimization algorithm. The approach works for any number of objectives that are ideally defined through 

consultation with stakeholders and decision-makers to ensure appropriate performance criteria are used. Outputs 

include the set of approximately Pareto-optimal systems designs which can be viewed in customised plots showing 

how different objectives trade-off for the most efficient designs (e.g.. sizes, sequence, implementation dates, and 

operating rules of reservoirs at various expansion stages). Customised plots are used for creating communicative 

displays.  

The approaches are designed such that they can serve a single organization’s planning or potentially aid negotiations 

on future reservoir development between different stakeholder groups (e.g., upstream and downstream).  

In Chapter 5, a screening method is proposed that simultaneously optimises the operation and sizing of reservoirs 

when searching for promising multi-reservoir system configurations. Proposed system designs were obtained via 

minimizing aggregate storage capacity while maximizing monthly firm energy and total energy production. The 

method was used to identify those Ethiopian reservoirs and their capacities that achieve the greatest firm or total 

annual energy production at least aggregate system storage.   

The proposed approach for screening efficient system designs allows the analyst to present decision makers with a 

wide range of designs and the trade-offs they imply to inform deliberation on many environmental and societal goals 

in addition to economic and financial objectives without having to first agree on their monetization. The study in 

Chapter 6 proposed a many-objective optimization and visual analytics approach to help decision makers consider 
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multiple objectives when deliberating reservoir system expansion scheduling. The approach screens designs by 

considering the optimally coordinated operation of infrastructures and flexibility of reservoir operation at different 

expansion stages. Results show that assessing the scheduling of reservoirs assuming their operating rules as fixed 

overestimates the compromises required in negotiations between stakeholders that argue for or against quicker dam 

filling. The proposed scheduling approach enables planning without having to depend on initial assumptions about 

filling rate, operating rules, sequence of implementations and future priorities (how reservoirs may be operated in 

future). Optimizing operating rules for each reservoir and for each unique system expansion stage ensures that 

impacts of scheduling designs are de-linked from the infrastructure choices; revealing the best compromise designs 

(i.e., whether a change in physical or operating rule design is needed to minimise impact and maximise benefits).  

In this first-order analysis, not considering new reservoir operating policies for the different system expansion stages 

is shown to underestimate the net worth of the Blue Nile reservoirs by up to 6 BUSD. Coordinated use of multiple 

reservoirs achieves higher performance. Failure to consider these, not only under-estimates benefits but could also 

lead to sub-optimal designs being recommended. 

Decision makers often consider equity and other political considerations that might be difficult to model and that are 

subjective, the comparison of performance between all development (e.g., dams, irrigation schemes, etc.) options 

could be important in decision support in general and group decision support in particular. The many objective 

optimization and visual analysis approaches used in Chapter 5 and 6 show only the non-dominated solutions for 

considered performance objectives. This results in the performance of some infrastructure options (i.e., that are 

dominated) not being able to be compared with the non-dominated ones. For some stakeholders, who may have 

vested interest in some options, this might be unsatisfactory and even unacceptable; potentially discouraging them 

from participatory analysis and negotiations. Also, given that the performance metrics are dependent on deterministic 

assumption of some parameters that could be disputed, the set of Pareto-optimal options could be unsatisfactory.  

Chapter 7 proposed a many-objective optimization and visual analytics approach to help decision makers consider 

multiple sources of uncertainty in deliberations for water resource system planning. The results produce a database 

of efficient designs which decision makers can query through various what-if scenarios they feel are likely. By 

adopting robust optimization, the technique reveals more decision-relevant information than post-optimization 

sensitivity analysis; showing possible robust plans that may work satisfactorily in a wide range of future conditions. 

Given that stakeholder could find agreeing on the likelihood of future economic conditions and risks difficult this 

could help facilitate negotiations by allowing stakeholders with differing attitudes towards risk and opportunity argue 

for a consensus solution based on their separate assessments.  

The approach proposed in Chapter 8 allows stakeholders to visualise the performance of both the efficient and 

dominated intervention options (e.g., dam sites, irrigation schemes, water transfer, power interconnection options). 
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Chapter 9 demonstrates adaptive operating policies can improve long period performance (e.g., annual or multi-year 

minimum release goal) by considering past performance (i.e., previous month’s releases).  The approach relies on 

monitoring/accounting of the recent past conditions to prioritise among multiple management goals. This enables a 

realistic assessment of reservoir system performance, as it is not reliant on forecast skills, while also meeting a range 

of release requirements to minimise impact/ increase downstream benefit. The results show adaptive operating 

strategies can minimise the trade-offs in benefit between the Nile riparian countries. By minimizing the trade-offs 

between multiple, conflicting performance goals of different lengths, the proposed adaptive operating strategy 

reveals low-risk-high-benefit management options compared to traditional operating strategies which are static.  

Finally, Chapter 10 proposed a 5-step approach allowing for the benefit of coordination and explicit preference 

information of users to be considered in the negotiated design of infrastructure and their management. The study 

identifies, for a given set of performance metrics and multiple stakeholders’ preference information, the 

infrastructure, operating rules and coordination strategies that offer viable and attractive balances of benefits. 
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12 Limitations and future work 

The problem formulations proposed in this thesis and applied to the Nile dam planning problem show that a many 

objective optimization approach can be used to study a range of transboundary water resources issues. While it is 

crucial to ensure adequate representation of stakeholder in planning water systems, opportunities for official 

stakeholder interaction in our studies were limited due to the diplomatic tensions between the Nile countries 

concerning the Grand Ethiopian Renaissance Dam (GERD).  

This thesis contains proof of concept studies on the Blue Nile including only some of the possible performance 

metrics that could be relevant to Nile stakeholders. The limitations of the case study recommendations in this thesis 

emanates from the fact that each chapter deals with a subset of the complex Blue Nile problem and is intended to be 

a proof-of-concept application. This was essential to demonstrate the proposed methods succinctly and to avoid 

excessive detail. Real world decision support for this NIle would need to incorporate and combine the approaches 

demonstrated and performance metrics used in chapter 5 through chapter 10 and additional proposed studies 

described at the end of this section and shown in Figure 48. 

The problem formulations ignore the demand dynamics; this is justified given the shortage of electricity in the region 

and the possibility of power trade among several countries in the region which is already being explored. The fact 

that unmet electricity demand is higher than the supply capacity of the proposed dams is why the demand dynamics 

or uncertainty is not considered in this study. 

Several other points (e.g., displaced population, floods, etc.) matter for decision making. However, this chapter 

focuses on the downstream impact of the proposed Blue Nile reservoirs, especially during their filling period. The 

impact of filling the large dams on downstream water use is a major concern and could be the biggest hindrance to 

rapid development even in the presence of agreement. Other studies on Nile development [e.g., Whittington et al., 

2005; Blackmore and Whittington, 2008; Block et al., 2008; Goor et al., 2010; Jeuland and Whittington, 2014] 

consider the filling period performance and its trade-off with financial feasibility of the investments as a pressing 

issue for Nile development.  

Block and Strzepek [2012] find while a changing climate may pose a challenge to meeting expected targets from the 

Blue Nile dams, energy development utilizing hydropower appears economically reasonable (but benefit cost ratio 

as low as 1.1) . They opine that “this development is desperately needed, independent of future climate change 

trends, with the hope of appreciably reducing vulnerability to variability". More recently van der Zwaan et al.[2018] 

suggest while a changing climate may impose costs of US$2–4 billion compared with a no climate change scenario, 

energy development utilizing hydropower is economically reasonable. 

A decision support for a negotiated multi-reservoir design would involve multiple stakeholder countries with 

conflicting performance objective and hence various designs would likely be considered. The Nile riparian countries, 
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through the Nile Basin Initiative have been engaged in building a shared vision model to aid with decision support 

for a consensus development plans.  

It would be difficult to optimise all the decision levers that can be applied in the management of the Nile (in 

downstream countries) without making controversial assumptions of what the downstream countries would find 

unacceptable. Moreover, realistically estimating the costs and benefits for all Nile countries is difficult as there is no 

single source of such information in the Nile. Moreover, the countries are unlikely to agree on the cost and benefits 

of alternative management options (e.g., the price of energy, the cost of energy reduction to each of the countries’ 

economy, the appropriate discount rate, etc…). Including different parts of the system would have complicated the 

study considerably. 

The study adopted a parsimonious approach - simulating as little of the whole system as necessary to make a case 

for the methodological contribution presented here. The formulation includes explicit accounting of the downstream 

releases in different filling periods to represent downstream countries’ interests, such as Egypt’s. The downstream 

releases are considered as an effective proxy for a range of more specific performance measures that downstream 

countries could be interested in. It allows downstream stakeholders to estimate the impact of a particular 

infrastructure and management decision. For example, it would be conceptually straightforward for an interested 

party to investigate the implications of the policies developed in this chapter on the High Aswan dam. 

The GERD620 dam design is not actively being considered [Jeuland and Whittington, 2014] but it is included here 

to demonstrate the proposed approaches. An aggregate net benefit maximizing objective considering variation in 

cost and installed power capacities with storage size, and peaking power demand could provide more decision-

relevant information. The firm energy metric used in this study represents the seasonal and interannual variation of 

monthly energy generated. Incorporating other short-term performance metrics such as energy supply reliability 

considering the daily and hourly demand distribution which are of interest to system planners could reveal more 

insights on the design problem. 

The study also ignores possible changes of cropping patterns in Sudan, i.e., the change in magnitude and timing of 

seasonal irrigation demand with the availability of more regulated flow from Ethiopian dams.  

Uncertainty due to climate change can be an important consideration for long-term assets but is not considered in 

this work which assumes climate stationarity. Recent papers explore climate change impacts on the economic 

feasibility of the projects and the impact on the downstream system that filling and operating of these reservoirs 

entails [Block and Strzepek, 2010; Jeuland and Whittington, 2014].  

The work in chapter 9 is on reservoir system management for inter-annual variability. Climate change impact and 

economic uncertainty could potentially be addressed for adaptive reservoir system expansion and management 

[Eriksson and Weber, 2008; Giuliani et al., 2016]. The study focused on the steady-state management of the GERD 



146 

 

reservoir. Future work could include considering the adaptivity in reservoir operating rules when screening among 

alternative storage designs and their schedule of implementation.  

Water resource assessment approaches traditionally assumed future actions as static while in fact they are typically 

reviewed based on recurrently updated information. A typical assumption in the assessment of system interventions 

is that the interaction of decision-makers and the system plan is a one-off. The multi-reservoir scheduling approach 

in chapter 6 includes this limitation. This under-estimates decision makers’ abilities to incorporate information from 

across the basin and over time (e.g., adapting operating rules and delaying or abandoning investments). For many 

decision problems, failure to adequately represent (model) the inter-dependency of the natural, infrastructure and 

human systems perpetuate the perception of intractability by overdramatizing the trade-offs between conflicting 

objectives and among stakeholders’ benefits. 

In addition to potential benefits of regulation, upstream reservoirs can increase foresight (predicting future flows) if 

monitoring of storage levels is possible. For example, in highly seasonal basins, where the dry season flow is low 

compared to the wet season flows, the water availability downstream of a reservoir throughout the year can be 

predicted with information on the end of flood season storage level if the operating policy of the reservoir is known. 

However, most simulation modelling applications assume demands and supply (inflows) as independent. This 

assumption could be misleading where water demand is at least partially dependent on its supply [Faber and 

Frenken, 2009; Jeuland, 2010]. An adaptive agricultural decision making that resembles seasonal flow forecasts, but 

that which, instead of prediction being solely based on observed correlations between precipitation or river flows 

and various weather variables in global climate system [Seleshi and Demaree, 1995; Berhane et al., 2014], considers 

spatially and temporally varied artificial interventions in water systems to predict water availability could be useful 

and necessary to understand the true impacts of new upstream storage structures.  

Given the uncertainties and shortcomings in the current study as listed in the previous paragraphs, the author 

recognises the limitations of the results and does not claim the results should impact current Nile decision-making 

directly.  Results are indicative and intended to demonstrate the methodology but should not to be taken as 

prescriptive recommendations. 

From the lessons learned in this study, and to address some of the limitations described above, future research 

directions (Figure 48) are suggested to provide more decision-relevant information on the Blue Nile reservoirs. 
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Figure 48 Proposed future research 
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13 Appendix 

13.1 Appendix A:  

 

Figure 49 Seasonal distribution of irrigation water demand for sites served by Sennar and Roseires reservoirs in Blue 

Nile Sudan. 

13.2 Appendix B:  

 

 

Figure 50 Computational framework 

 

13.3 Appendix C:  
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Figure 51 Time series of storage (averaged over 10 hydrological traces) for example designs (f’ and ‘o’ in Figure 

16, i.e., when the GERD dam is operated to maximise the 99% exceeded 3-year cumulative downstream flow and 

net present value respectively). The figure shows that maximizing reliable downstream releases requires filling the 

reservoir over a longer period compared to operating designs that maximise the net present worth.   

13.4 Appendix D:  

This section compares computational requirements as the operating rules of the multi-reservoir system scheduling 

problem is formulated with increasing degrees of responsiveness in Chapter 6.  

Performance of many objective evolutionary algorithms is stochastic, with no guarantee that a particular single 

optimization run will achieve close performance levels as the true (but unknown) Pareto-front. Whether a run 

approximates the true Pareto-front can be affected by the initial conditions. Solutions from different optimization 

runs can also occupy (or approximate) various parts of the true Pareto-front. Hence, Pareto-sorting of solutions from 

different random seeded runs could better approximate the extent of the true-Pareto front. often, multiple runs with 

randomly seeded initial populations are required to approximate the Pareto-front [Zatarain Salazar et al., 2017].  

Figure 52 provides an illustrative example of how hypervolume is computed for a 2-objective problem [Zatarain 

Salazar et al., 2017]. A reference point is chosen based on the bounds of the approximation set plus an additional 

delta; the delta ensures the boundary points contribute positive volume to the overall hypervolume. 

A large hypervolume will correspond to approximation sets that dominate more space, indicating high quality 

approximation sets (i.e., proximity and diversity). The most dominant alternatives score higher hypervolume. 
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Figure 52 Schematic of the hypervolume indicator in a 2D projection. The bounds of the reference approximation 

set are used to calculate the reference point; this calculation typically adds a delta (δ), so that the boundary points 

contribute positive hypervolume. 

The many objective optimization is counducted with up to 30 runs with different initial points (random seeds) where 

each is allowed to last for up to 100,000 function evaluations. The results from each run are then sorted together to 

provide the best overall reference set [Kollat et al., 2008].  

Given the high computational cost associated with increasing either the number of random seeds or the length of 

evolutions (which is correlated with higher performance), balancing both with computational resources is required 

while ensuring fidelity of the results. We present the computational performance of the different problem 

formulations under various number of randomly seeded runs and lengths of evolutions. The absence of improvement 

in the Hypervolume metric (i.e., an indicator for convergence and diversity of solutions) [Kollat and Reed, 2006; 

Beume, 2009] with additional function evaluations and number of random seeds is understood as evidence of 

convergence. 
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Figure 53 The minimum function evaluations and number of random-seed analysis (shown in red boxes) that 

achieve highest possible hypervolume metric (shown with size of boxes) and robustness (shown with colour). 

Panels (A-G) show the hypervolume progression for each of the proposed Blue Nile reservoirs (53 decision 

variables). Panels M and N show a multi-reservoir scheduling formulation that assumes a fixed pre-optimised 

operating rule for each reservoir (11 decision variables). Panels X and Y correspond to a two-reservoir investment 

scheduling with semi-responsive and highly responsive operating rule designs (95 and 137 number of decision 

variables) respectively. Panel Z shows the hypervolume progress for a four-reservoir problem with highly 

responsive operating rules (a total of 431 decision variables). 

Problem formulations with larger number of decision variables and inter-dependence between decision variables 

(e.g. Panels X, Y and Z) require Pareto-sorting among a larger number of random-seeded runs to achieve 

convergence compared to simpler ones (i.e., Panel M and Panel N).  
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