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Abstract. This year marks the consolidation of Julia (https://julialang.org/), a pro-
gramming language designed for scientific computing, as the first stable version (1.0)
has been released, in August 2018. Among its main features, expressiveness and high
execution speeds are the most prominent: the performance of Julia code is similar to
statically compiled languages, yet Julia provides a nice interactive shell and fully sup-
ports Jupyter; moreover, it can transparently call external codes written in C, Fortran,
and even Python and R without the need of wrappers. The usage of Julia in the as-
tronomical community is growing, and a GitHub organization named JuliaAstro takes
care of coordinating the development of packages. In this paper we present the fea-
tures and shortcomings of this language, and discuss its application in astronomy and
astrophysics.

1. Introduction

Julia (Bezanson et al. 2017) is a programming language that has recently reached its
first stable milestone: version 1.0 has been released in August 2018, and the language
specification has been freezed. Julia provides a number of features that makes it ex-
tremely interesting for astrophysics, astronomy, and scientific applications in general:

• Nice and simple syntax, similar to Matlab’s.
• The speed of Julia codes often matches the speed of other languages used for

High Performance Computing (HPC), namely C, C++, and Fortran, thanks to a
number of features: type inference, Just-In-Time compilation, use of LLVM to
produce optimized machine code;
• Native support for vectors, matrices, and tensors;
• Support for missing values (using the keyword missing), useful when dealing

with data acquired using real-world experiments;
• First-class support for many numeric types, apart from integers and floating-point

numbers: rationals, complex numbers, arbitrary-precision numbers.
• Symbolic computation (e.g., estimation of analytical derivatives) is easy to im-

plement;
• Easy to call functions defined in dynamic libraries, using the ccall function;
• Ability to import packages written in Python or R; several wrappers to well-

known Python libraries are available (e.g., PyPlot.jl wraps Matplotlib).
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2. Features of Julia

2.1. Compilation model

Julia compiles functions the first time they are executed. The compilation depends on
the type of the function parameters, as shown in this example:

f(x) = 2x + 1 # Define a function

f(1) # Compile f assuming an integer argument

f(1.0) # Compile again f assuming a float argument

f(3) # No compilation is necessary, as 3 is an int

2.2. Operations on arrays, matrices, and tensors

Julia’s arrays are similar to Fortran’s:

1. Indices start from 1;
2. Arrays are stored in column-major order;
3. The compiler is able to propagate operators and functions to arrays, performing

loop fusion.

The latter point is particularly important. If a, b, c, and result are arrays of the
same size, the statement result = a + b + c in Fortran corresponds to one do loop.
On the other side, the same code in Python applied on NumPy arrays is equivalent to
the application of three for-loop cycles, because NumPy is not able to perform1 loop

fusion, i.e., the combination of several for loops into one.

Loop fusion is an important feature for HPC languages. Julia provides loop fusion
through the so-called dotted operators: if # is a two-argument operator, .# applies the
operator to all the elements of the two arrays. Therefore, in Julia the code result
.= a .+ b .+ c is equivalent to the Fortran code result = a + b + c. Julia’s
approach is more general, as this applies to custom operators and functions as well:

++(a::Real, b::Real) = 2a + b # Custom operator

3 ++ 4 # Result: 10

[3, 4] .++ [4, 7] # Result: [10, 15]

f(x::Real) = 3x^2 # Custom function

f.([3, 6, 5]) # Result: [27, 108, 75]

2.3. Homoiconicity

Julia provides the syntax for manipulating its own code with the same syntax used to
manipulate variables. This feature, called homoiconicity (“same representation”), is
inspired by LISP-like languages, and it has several applications in the domain of sym-
bolic analysis (e.g., automatic computation of analytical derivatives). An interesting
applications of homoiconicity in Julia is provided by the Zygote package (Innes 2018),
which is able to perform automatic symbolic differentiation at compile time:

1This limitation can be circumvented by other libraries, like WeldNumPy (www.weld.rs/weldnumpy),
Numba (numba.pydata.org), or Cython (cython.org).
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julia> using Zygote

julia> f(x) = 2x + 1

julia> @code_llvm f’(0)

; Function #68

; Location: /somewhere/interface.jl:49

define i64 @"julia_#68_37159"(i64) {

top:

ret i64 2 # Return 2 immediately (the derivative is a constant)

}

3. Julia in Astronomy

3.1. JuliaAstro

The JuliaAstro GitHub organization (github.com/JuliaAstro) collects all the packages
related to astronomy developed for Julia. At the time of writing (November 2018), the
packages are the following:

• AstroImages.jl: Visualization of astronomical images;
• AstroLib.jl: Bundle of small astronomical and astrophysical routines;
• AstroTime.jl: Astronomical time keeping;
• Cosmology.jl: Library of cosmological functions;
• DustExtinction.jl: Models for the interstellar extinction due to dust;
• ERFA.jl: Wrapper to liberfa2;
• EarthOrientation.jl: Earth orientation parameters from IERS tables;
• FITSIO.jl: Flexible Image Transport System (FITS) file support;
• LombScargle.jl: Compute Lomb-Scargle periodogram;
• SPICE.jl: Julia wrapper for NASA NAIF’s SPICE toolkit;
• SkyCoords.jl: Support for astronomical coordinate systems;
• UnitfulAstro.jl: An extension of Unitful.jl (a package to attach measure

units to variables) for astronomers;
• WCS.jl: Astronomical World Coordinate Systems library.

3.2. Simulating a CMB space mission

One of us (MT) has had the opportunity to use Julia in a few studies involving the de-
sign of a CMB space mission (CORE, PICO, and LiteBIRD). These studies involved
the simulation of the operations needed to observe the sky, and they required the gen-
eration of simulated noisy data timelines acquired by instruments mounted onboard the
spacecraft. The quantity of data was of the order of hundreds of GB, and the exploratory
nature of the study made existing codes (developed in C++ for the Planck experiment)
cumbersome to use, as they were conceived as large monolithic programs meant to
be ran end-to-end. A rewrite of some modules in Julia provided similar performance
(within 10%) with the existing C++ codes; moreover, the Julia codes were runnable in
Jupyter notebooks, thus allowing to interactively explore the parameter space and ease
data analysis.

2github.com/liberfa/erfa. This is a BSD-licensed replica of the SOFA library (www.iausofa.org).
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4. Conclusions

Julia has several features that make it an interesting solution for astronomical and as-
trophysical projects. It can achieve performance similar to compiled languages, like C
and Fortran, but it is considerably more expressive and easy to use.

Nothwistanding the long list of interesting features, we believe it would not be fair
to omit some of Julia’s most important shortcomings:

• Compilation times can be significant. Since compilation happens at runtime,
a Julia script that calls several short functions can be noticeably slower than a
similar script written in other compiled or interpreted languages.
• The language is new, and there are not as many libraries as for other languages.

Python, R, C, and Fortran library are easy to import; however, if a code heavily
relies only on a few libraries, it is usually easier to just use the language for which
these libraries were developed than wrapping everything in Julia.
• It is still not possible to produce stand-alone executables. This makes code de-

ployment more difficult.
• As any new language, it is necessary to grasp a number of concepts before be-

ing fully productive with it. For instance, a programmer experienced in NumPy
might find surprising that explicit for loop can be more performant than ex-
pressions involving broadcasting. (The repository github.com/ziotom78/python-
julia-c- provides an example.)

In the opinion of the authors, there are two contexts in astrophysical data analysis
where Julia can provide a significant advantage over existing solutions:

• Analysis of large amounts of data, where no existing codes are available and the
amount of calculations is significant. In this case, Julia codes can be as perfor-
mant as other codes written using multiple libraries and languages: the typical
case uses Python for most of the code and some optimized library (Numba, For-
tran codes wrapped using f2py) for the most performance-critical routines. As
an application of this use case we mention the Celeste project, which was able to
load and process 178 TB of data from the SDSS catalogue in 14.6 minutes across
8192 nodes (Regier et al. 2018).
• Existing codes are monolithic and difficult to use interactively, and the expense

of rewriting code in Julia can be rewarded by the possibility to run the code
interactively, either in Julia’s command line or in Jupyter notebooks.
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