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Abstract

The Astropy Project supports and fosters the development of open-source and openly developed Python
packages that provide commonly needed functionality to the astronomical community. A key element of the
Astropy Project is the core package astropy, which serves as the foundation for more specialized projects and
packages. In this article, we provide an overview of the organization of the Astropy project and summarize key
features in the core package, as of the recent major release, version 2.0. We then describe the project infrastructure
designed to facilitate and support development for a broader ecosystem of interoperable packages. We conclude
with a future outlook of planned new features and directions for the broader Astropy Project.

Key words: methods: data analysis – methods: miscellaneous – methods: statistical – reference systems

1. Introduction

All modern astronomical research makes use of software in
some way. Astronomy, as a field, has thus long supported the
development of software tools for astronomical tasks, such as
scripts that enable individual scientific research, software
packages for small collaborations, and data reduction pipelines
for survey operations. Some software packages are, or were,
supported by large institutions and intended for a wide range of
users. These packages therefore typically provide some level of
documentation and user support or training. Other packages are
developed by individual researchers or research groups, are
then typically used by smaller groups for more domain-specific
purposes, and may have less extensive user support. For both
packages meant for wider distribution and for scripts specific to
particular research projects, a library that addresses common
astronomical tasks simplifies the software development process
by encouraging the reuse of common functions. The users of
such a library then also benefit from a community and
ecosystem built around a shared foundation. The Astropy
project has grown to become such a community for Python
astronomy software, and the astropy core package has
become this shared foundation.

The development of the astropy core package began as a
largely community-driven effort to standardize core function-
ality for astronomical software in Python. In this way, its
genesis differs from, but builds upon, many substantial and
former astronomical software development efforts that were
commissioned or initiated through large institutional support,
such as IRAF (developed at NOAO; Tody 1993), MIDAS
(developed at ESO; Banse et al. 1988), or Starlink (originally
developed by a consortium of UK institutions and now
maintained by the East Asian Observatory; Disney & Wallace
1982; Currie et al. 2014). More recently, community-driven
efforts have seen significant success in the astronomical
sciences (e.g., Turk et al. 2011).

Python100 is an increasingly popular, general-purpose
programming language that is available under a permissive
open-source software license and is free of charge for all major
operating systems. This programming language has become
especially popular in the quantitative sciences, where researchers
must simultaneously conduct research, perform data analysis,
and develop software. A large part of this success owes itself to
the vibrant community of developers and a continuously
growing ecosystem of tools, web services, and stable, well-
developed packages that enable easier collaboration on software
development, easier writing and sharing of software documenta-
tion, and continuous testing and validation of software. While
dedicated libraries provide support for array representation and

arithmetic (numpy; Van der Walt et al. 2011), a wide variety of
functions for scientific computing (scipy; Jones et al. 2001),
and publication-quality plotting (matplotlib; Hunter 2007),
tens of thousands of other high-quality and easy-to-use packages
are available to help with tasks that are not specific to astronomy
but might be performed in the course of astronomical research,
e.g., interfacing with databases, or statistical inferences. More
recently, the development and mainstream adoption of package
managers such as Anaconda101 has significantly streamlined the
installation process for many libraries, lowering the barriers to
entry for new users.
The Astropy Project aims to provide an open-source and

open-development core package (astropy) and an ecosystem
of affiliated packages that support astronomical functionality in
the Python programming language. “Open development”
describes a process where anybody with an internet connection
can suggest changes to the source code and contribute their
opinion when new features, bug fixes or other code changes,
governance, or any other aspect of the development process is
discussed (see Sections 2.2 and 2.3 of how this is organized in
practice). The astropy core package is now a feature-rich
library of sufficiently general tools and classes that supports the
development of more specialized code. An example of such
functionality is reading and writing FITS files: it would be
time-consuming and impractical for multiple groups to
implement the FITS standard (Pence et al. 2010) and maintain
software for such a general-purpose need. Another example of
such a common task is in dealing with representations of and
transformations between astronomical coordinate systems.
The Astropy Project aims to develop and provide high-

quality code and documentation according to the best practices
in software development. The project makes use of different
tools and web services to reach those goals without central
institutional oversight. The first public release of the astropy
package is described in Astropy Collaboration et al. (2013).
Since then, the astropy package has been used in hundreds
of projects and the scope of the package has grown
considerably. At the same time, the scientific community
contributing to the project has grown tremendously and an
ecosystem of packages supporting or affiliated with the
astropy core has developed. In this paper, we describe the
current status of the Astropy community and the astropy
core package and discuss goals for future development.
We start by describing the way the Astropy Project functions

and is organized in Section 2. We then describe the main
software efforts developed by the Astropy Project itself: a core
package called astropy (Section 3) and several separate
packages that help maintain the infrastructure for testing and
documentation (Section 4). We end with a short vision for the

100 https://www.python.org/ 101 https://anaconda.org/
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future of Astropy and astronomical software in general in
Section 5. The full paper, including the code to produce the
figures, is available in a GitHub repository (Price-Whelan
et al. 2018).102

This article is not intended as an introduction to astropy,
nor does it replace the astropy documentation. Instead, it
describes the way the Astropy community is organized and the
current state of the astropy package.

2. Organization and Infrastructure

2.1. Coordination of Astropy

From its inception, Astropy has required coordination to
ensure the project as a whole and its coding efforts are
consistent and reasonably efficient. While many Python
projects adopt a “Benevolent Dictator For Life” (BDFL) model,
Astropy has instead opted for a coordination committee. This is
partly due to the nature of the project as a large-scale
collaboration between many contributors with many interests,
and partly due to the sheer amount of work that needs to get
done. For the latter reason, the project has expanded the
committee from three to four members starting in 2016.

For resolving disagreements about the astropy core
package or other Astropy-managed code, the coordination
committee primarily acts to work toward consensus, or when
consensus is difficult to achieve, generally acts as a “tie-
breaker.” The committee also oversees affiliated package
applications to ensure that they are in keeping with Astropy’s
vision and philosophy,103 as well as the associated procedures.
Additionally, the committee oversees the assignment of roles
(primarily driven by already-existing contributions), and
increasingly has acted as the “face” of the Project, providing
contact with organizations like NumFOCUS (the body that
holds any potential funding in trust for Astropy) and the
American Astronomical Society (AAS).

2.2. Astropy Development Model

Code is contributed to the astropy core package or
modified through “pull requests” (via GitHub104) that often
contain several git commits. Pull requests may fix bugs,

implement new features, or improve or modify the infrastructure
that supports the development and maintenance of the package.
Individual pull requests are generally limited to a single
conceptual addition or modification, to make code review
tractable. Pull requests that modify or add code to a specific
subpackage must be reviewed and approved by one of the
subpackage maintainers before they are merged into the core
codebase. Bugs and feature requests are reported via the
GitHub issue tracker and labeled with a set of possible labels
that help classify and organize the issues. The development
workflow is detailed in the astropy documentation.105

As of version 2.0, astropy contains 212,244 lines of
code106 contributed by 232 unique contributors over 19,270 git
commits. Figure 1, left, shows the distribution of total number of
commits per contributor as of early 2018. The relative flatness of
this distribution (as demonstrated by its log-log slope of −0.5)
shows that the astropy core package has been developed by a
broad contributor base. A leading group of six developers have
each added over 1000 commits to the repository, and ∼20 more
core contributors have contributed at least 100 commits.
However, the distribution of contribution level (number of
commits) continues from 100 down to a single commit. In this
sense, the development of the core package has been a true
community effort and is not dominated by a single individual. It
is also important to note that the number of commits is only a
rough metric of contribution, as any single commit could be a
critical fix in the package or merely a fix for a typographical
error. Figure 1, middle, shows the number of commits as a
function of time since the genesis of the astropy core
package. The package is still healthy: new commits are and have
been contributed at a steady rate throughout its existence.
Figure 1, right, shows that, ≈20–25 people contribute to the core
package each month. While we would like for this number to
grow, this demonstrates that the core package is still being
developed and maintained by a substantial group of contributors.

2.3. APEs—Astropy Proposals for Enhancement

The Astropy project has a formal mechanism to propose
significant changes to the core package (e.g., re-writing the

Figure 1. Left panel: distribution of number of commits per committer. Middle panel: cumulative number of commits to the astropy core package over time. Right
panel: number of unique committers per month to the astropy core package.

102 Codebase:https://github.com/astropy/astropy-v2.0-paper.
103 http://docs.astropy.org/en/stable/development/vision.html
104 https://github.com/astropy/astropy/

105 How to make a code contribution,http://docs.astropy.org/en/latest/
development/workflow/development_workflow.html.
106 This line count includes comments, as these are often as important for
maintainability as the code itself. Without comments there are 142,197 lines
of code.
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coordinates subpackage; Tollerud et al. 2014), to plan out
major new features (e.g., a new file format; Aldcroft 2015), or
to institute new organization-wide policies (e.g., adopting a
code of conduct; Cruz et al. 2015). This mechanism is called
“Astropy Proposal for Enhancement” (APE) and is modeled
after the “Python Enhancement Proposals” (PEP) that guide the
development of the Python programming language. In an
APE, one or more authors describe in detail the proposed
changes or additions, including a rationale for the changes, how
these changes will be implemented, and in the case of code,
what the interface will be (Greenfield 2013). The APEs are
discussed and refined by the community before much work is
invested into a detailed implementation; anyone is welcome to
contribute to these discussions during the open consideration
period. APEs are proposed via pull requests on a dedicated
GitHub repository107; therefore, anyone can read the proposed
APEs and leave in-line comments. When a community
consensus emerges, the APEs are accepted and become the
basis for future work. In cases where consensus cannot be
reached, the Astropy coordination committee may decide to
close the discussion and make an executive decision based on
the community input on the APE in question.

2.4. Concept of Affiliated Packages

A major part of the Astropy Project is the concept of
“Affiliated Packages.” An affiliated package is an astronomy-
related Python package that is not part of the astropy core
package, but has requested to be included as part of the Astropy
Project’s community. These packages support the goals and
vision of Astropy of improving code re-use, interoperability,
and embracing good coding practices such as testing and
thorough documentation.

Affiliated packages contain functionality that is more
specialized, have license incompatibilities, or have external
dependencies (e.g., GUI libraries) that make these packages
more suitable to be separate from the astropy core package.
Affiliated packages may also be used to develop substantial
new functionality that will eventually be incorporated into the
astropy core package (e.g., astropy.visualization.wcsaxes).
New functionality benefits from having a rapid development
and release cycle that is not tied to that of the astropy core
(Section 2.5). These projects may also have less stringent
requirements for style, testing, or development as compared to
the core package.

Affiliated packages are listed on the main Astropy website
and advertised to the community through Astropy mailing lists;
a list of current affiliated packages is included in Table 1.
Becoming an affiliated package is a good way for new and
existing packages to gain exposure while promoting Astropy’s
high standard for code and documentation quality. This process
of listing and promoting affiliated packages is one way in
which the Astropy Project tries to increase code re-use in the
astronomical community.

Packages can become affiliated with Astropy by applying for
this status on a public mailing list. The coordination committee
(Section 2.1) reviews such requests and issues recommenda-
tions for the improvement of a package, where applicable.

2.5. Release Cycle and Long-term Support

The astropy package has a regular release schedule
consisting of new significant releases every six months, with
bugfix releases as needed (Tollerud 2013). The major releases
contain new features or any significant changes, whereas the
bugfix releases only contain fixes to code or documentation but
no new features. Some versions are additionally designated as
“Long-term support” (LTS) releases, which continue to receive
bug fixes for two years following the release with no changes to
the API. The LTS versions are ideal for pipelines and other
applications in which API stability is essential. The latest LTS
release (version 2.0) is also the last one that supports Python 2;
it will receive bug fixes until the end of 2019 (Robitaille 2017).
The version numbering of the astropy core package

reflects this release scheme: the core package version number
uses the form x.y.z, where “x” is advanced for LTS releases,
“y” for non-LTS feature releases, and “z” for bugfix releases.
This is similar to Semantic Versioning.108

The released versions of the astropy core package are
available from several of the Python distributions for
scientific computing (e.g.,Anaconda) and from the Python
Package Index (PyPI).109 Effort has been made to make
astropy available and easily installable across all platforms;
the package is constantly tested on different platforms as part of
a suite of continuous integration tests.

2.6. Support of Astropy

The Astropy Project, as of the version 2.0 release, does not
receive any direct financial support for the development of
astropy. Development of the software, all supporting
materials, and community support are provided by individuals
who work on the Astropy Project in their own personal time, by
individuals or groups contributing to Astropy as part of a
research project, or contributions from institutions that allocate
people to work on Astropy. A list of organizations that have
contributed to Astropy in this manner can be found in the
Acknowledgments.
Different funding models have been proposed for support of

Astropy (e.g., Muna et al. 2016), but a long-term plan for
sustainability has not yet been established. The Astropy Project
has the ability to accept financial contributions from institutions
or individuals through the NumFOCUS110 organization.
NumFOCUS has, to date, covered the direct costs incurred
by the Astropy Project.

2.7. Reuse of the Scientific Python Ecosystem

The Astropy Project is built on a philosophy of building
from the existing Python scientific ecosystem wherever
possible. Many of the enabling technologies like numpy,
scipy, matplotlib, or cython, are necessary as the core
underpinnings of Astropy packages. Often, this means using
these packages as “building blocks” (e.g., the ubiquitous use of
numpy arrays throughout astropy). In other cases, this
means wrappers around more general algorithms that make
them more convenient for astronomy use cases (e.g., the
model-fitting in the astropy.modeling subpackage

107 https://github.com/astropy/astropy-APEs

108 https://semver.org
109 See the installation documentation for more information:http://docs.
astropy.org/en/stable/install.html.
110 NumFOCUS is a 501(c)(3) nonprofit that supports and promotes world-
class, innovative, open-source scientific computing.

5

The Astronomical Journal, 156:123 (19pp), 2018 September Price-Whelan et al.

http://docs.astropy.org/en/stable/visualization/wcsaxes/index.html
http://anaconda.org
https://github.com/astropy/astropy-APEs
https://semver.org
http://docs.astropy.org/en/stable/install.html
http://docs.astropy.org/en/stable/install.html


discussed in Section 3.7). Sometimes these simple wrappers
evolve into more complex implementations that address
astronomically relevant use cases the general tool does not
support (e.g., astropy.convolution, see Section 3.8). As
a broad rule, the Project explicitly encourages re-use of code
where possible.

However, the boundaries of when this re-use is called for is
often ambiguous. Some of the examples above only evolved
after significant debate in the community over whether these
algorithms were sufficient. Other times, even apparently
general functionality did not exist in the wider ecosystem that
met the Astropy community’s needs, and hence the function-
ality had to be developed wholly from the developer resources
available in the community (e.g., astropy.units, or
astropy.table when it began). At the same time, however,
the Astropy Project has provided the wider community with
myriad bug fixes to the enabling technologies listed above, as
well as the testing and documentation architecture. Function-
ality is only “extracted” from Astropy to other packages after
careful consideration that includes considering the impact on
the maintenance and support of Astropy.

3. Astropy Core Package Version 2.0

The Astropy Project aims to provide Python-based
packages for all tasks that are commonly needed in a large
subset of the astronomical community. At the foundation is the
astropy core package, which provides general functionality
(e.g., coordinate transformations, reading and writing astro-
nomical files, and units) or base classes for other packages to
utilize for a common interface (e.g.,NDData). In this section,
we highlight new features introduced or substantially improved
since version 0.2 (previously described in Astropy Collabora-
tion et al. 2013). The astropy package provides a full log of
changes111 over the course of the entire project and more
details about individual subpackages are available in the
documentation.112 Beyond what is mentioned below, most
subpackages have seen improved performance since the release
of the version 0.2 package.

3.1. Units

The astropy.units subpackage adds support for representing
units and numbers with associated units—“quantities”—in
code. Historically, quantities in code have often been
represented simply as numbers, with units implied or noted
via comments in the code because of considerations about
speed: having units associated with numbers inherently adds
overhead to numerical operations. In astropy.units, Quantity
objects extend numpy array objects and have been designed
with speed in mind.

As of astropy version 2.0, units and quantities, prevalent
in most of its subpackages, have become a key concept for
using the package as a whole. Units are intimately entwined in
the definition of astronomical coordinates; thus, nearly all
functionality in the astropy.coordinates subpackage (see
Section 3.3) depends on them. Most astropy subpackages
have been made compatible with Quantity objects, although
they are not always required.

The motivation and key concepts behind this subpackage
were described in detail in the previous paper (Astropy
Collaboration et al. 2013). Therefore, we primarily highlight
new features and improvements here.

3.1.1. Interaction with numpy Arrays

Quantity objects extend numpy.ndarray objects and
therefore work well with many of the functions in numpy that
support array operations. For example, Quantity objects with
angular units can be directly passed in to the trigonometric
functions implemented in numpy. The units are internally
converted to radians, which is what the numpy trigonometric
functions expect, before being passed to numpy.

3.1.2. Logarithmic Units and Magnitudes

By default, taking the logarithm of a Quantity object with non-
dimensionless units intentionally fails. However, some well-known
units are actually logarithmic quantities, where the logarithm of the
value is taken with respect to some reference value. Examples
include astronomical magnitudes, which are logarithmic fluxes,
and decibels, which are more generic logarithmic ratios of
quantities. Logarithmic, relative units are now supported in
astropy.units.

3.1.3. Defining Functions that Require Quantities

When writing code or functions that expect Quantity objects,
we often want to enforce that the input units have the correct
physical type. For example, we may want to require only
length-type Quantity objects. astropy.units provides a tool
calledquantity_input() that can perform this verification
automatically to avoid repetitive code.

3.2. Constants

The astropy.constants subpackage provides a selection of
physical and astronomical constants as Quantity objects (see
Section 3.1). A brief description of this package was given in
Astropy Collaboration et al. (2013). In version 2.0, the built-in
constants have been organized into modules for specific
versions of the constant values. For example, physical
constants have codata2014 (Mohr et al. 2016) and
codata2010 versions. Astronomical constants are organized
into iau2015 and iau2012 modules to indicate their sources
(resolutions from the International Astronomical Union, IAU).
The codata2014 and iau2015 versions are combined into
the default constant value version: astropyconst20. For
compatibility with astropy version 1.3, astropyconst13
is available and provides access to the adopted versions of the
constants from earlier versions of astropy. To use previous
versions of the constants as units (e.g., solar masses), the values
have to be imported directly; with version 2.0, astropy.units
uses the astropyconst20 versions.
Astronomers using astropy.constants should take particular

note of the constants provided for Earth, Jupiter, and the Sun.
Following IAU 2015 Resolution B3 (Mamajek et al. 2015),
nominal values are now given for mass parameters and radii.
The nominal values will not change even as “current best
estimates” are updated.

111 https://github.com/astropy/astropy/blob/stable/CHANGES.rst
112 http://docs.astropy.org/en/stable/
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3.3. Coordinates

The astropy.coordinates subpackage is designed to support
representing and transforming celestial coordinates and—new
in version 2.0—velocities. The framework heavily relies on the
astropy.units subpackage, and most inputs to objects in this
subpackage are expected to be Quantity objects. Some of the
machinery also relies on the Essential Routines of Fundamental
Astronomy (ERFA) C library for some of the critical under-
lying transformation machinery (Tollerud et al. 2017), which is
based on the Standards Of Fundamental Astronomy (SOFA)
effort (Hohenkerk 2011).

A key concept behind the design of this subpackage is that
coordinate representations and reference systems/frames are
independent of one another. For example, a set of coordinates
in the International Celestial Reference System (ICRS)
reference frame could be represented as spherical (right
ascension, declination, and distance from solar system
barycenter) or Cartesian coordinates (x, y, z with the origin at
barycenter). They can therefore change representations inde-
pendent of being transformed to other reference frames (e.g.,
the Galactic coordinate frame).

The classes that handle coordinate representations (the
Representation classes) act like three-dimensional vectors
and thus support vector arithmetic. The classes that represent
reference systems and frames (the Frame classes) internally
use Representation objects to store the coordinate data—
that is, the Frame classes accept coordinate data, either as a
specified Representation object, or using short-hand
keyword arguments to specify the components of the
coordinates. These preferred representation and short-hand
component names differ between various astronomical refer-
ence systems. For example, in the ICRS frame, the spherical

angles are right ascension (ra) and declination (dec), whereas
in the Galactic frame, the spherical angles are Galactic
longitude (l) and latitude (b). Each Frame class defines its
own component names and preferred Representation
class. The frame-specific component names map to corresp-
onding components on the underlying Representation
object that internally stores the coordinate data. For most
frames, the preferred representation is spherical, although this
is determined primarily by their common use in the
astronomical community.
Many of the Frame classes also have attributes specific to

the corresponding reference system that allow the user to
specify the frame. For example, the Fifth Fundamental
Catalogue (FK5) reference system requires specifying an
equinox to determine the reference frame. If required, these
additional frame attributes must be specified, along with the
coordinate data, when a Frame object is created. Figure 2
shows the network of possible reference frame transformations
as currently implemented in astropy.coordinates. Custom user-
implemented Frame classes that define transformations to any
reference frame in this graph can then be transformed to any of
the other connected frames.
The typical user does not usually have to interact directly

with the Frame or Representation classes. Instead,
astropy.coordinates provides a high-level interface to represent-
ing astronomical coordinates through the SkyCoord class,
which was designed to provide a single class that accepts a
wide range of possible inputs. It supports coordinate data in any
coordinate frame in any representation by internally using the
Frame and Representation classes.
In what follows, we briefly highlight key new features in

astropy.coordinates.

Figure 2. The full graph of possible reference frame transformations implemented in astropy.coordinates. Arrows indicate transformations from one frame to another.
Arrows that point back to the same frame indicate self-transformations that involve a change of reference frame parameters (e.g., equinox).

7

The Astronomical Journal, 156:123 (19pp), 2018 September Price-Whelan et al.

http://docs.astropy.org/en/stable/coordinates/index.html
http://docs.astropy.org/en/stable/units/index.html
http://docs.astropy.org/en/stable/api/astropy.units.Quantity.html
http://docs.astropy.org/en/stable/coordinates/index.html
http://docs.astropy.org/en/stable/coordinates/index.html
http://docs.astropy.org/en/stable/api/astropy.coordinates.SkyCoord.html
http://docs.astropy.org/en/stable/coordinates/index.html
http://docs.astropy.org/en/stable/coordinates/index.html


3.3.1. Local Earth Coordinate Frames

In addition to representing celestial coordinates, astropy
now supports specifying positions on the Earth in a number of
different geocentric systems with the EarthLocation class.
With this, astropy now supports Earth-location-specific
coordinate systems such as the altitude-azimuth (AltAz) or
horizontal system. Transformations between AltAz and any
Barycentric coordinate frame also requires specifying a time
using the Time class from astropy.time. With this new
functionality, many of the common tasks associated with
observation planning can now be completed with astropy or
the Astropy-affiliated package astroplan (Morris et al. 2018).

3.3.2. Proper Motion and Velocity Transformations

In addition to positional coordinate data, the Frame classes
now also support velocity data. As the default representation
for most frames is spherical, most of the Frame classes expect
proper motion and radial velocity components to specify the
velocity information. The names of the proper motion
components all start with pm and adopt the same longitude
and latitude names as the positional components. Transforming
coordinates with velocity data is also supported, but in some
cases the transformed velocity components have limited
accuracy because the transformations are done numerically
instead of analytically. The low-level interface for specifying
and transforming velocity data is currently experimental. As
such, in version 2.0, only the Frame classes (and not the
SkyCoord class) support handling velocities.

3.3.3. Solar System Ephemerides

Also new is support for computing ephemerides of major
solar system bodies and outputting the resulting positions as
coordinate objects. These ephemerides can be computed either
using analytic approximations from ERFA or from downloaded
JPL ephemerides (the latter requires the jplephem113

optional dependency and an internet connection).

3.3.4. Accuracy of Coordinate Transformations

In order to check the accuracy of the coordinate transforma-
tions in astropy.coordinates, we have created a set of bench-
marks that we use to compare transformations between a set of
coordinate frames for a number of packages.114 Because no
package can be guaranteed to implement all transformations to
arbitrary precision and some transformations are sometimes
subject to interpretation of standards (particularly in the case of
Galactic coordinates), we do not designate any of the existing
packages as the “ground truth” but instead compare each tool to
all other tools. The benchmarks are thus useful beyond the
Astropy Project because they allow all of the tools to be
compared to all other tools. The tools included in the
benchmark at the moment include the astropy core package,
Kapteyn (Terlouw & Vogelaar 2015), NOVAS (Barron et al.
2011), PALpy (Jenness & Berry 2013), PyAST (a wrapper for
AST, described in Berry et al. 2016), PyTPM,115 PyEphem
(Rhodes 2011), and pySLALIB (a Python wrapper for
SLALIB, described in Wallace 1994).

The benchmarks are meant to evolve over time and include
an increasing variety of cases. At the moment, the benchmarks
are set up as follows—we have generated a standard set of
1000 pairs of random longitudes/latitudes that we use in all
benchmarks. Each benchmark is then defined using an input
and output coordinate frame, using all combinations of FK4,
FK5, Galactic, ICRS, and Ecliptic frames. For now, we set the
epoch of observation to J2000. We also set the frame to J2000
(for FK5 and Ecliptic) and B1950 (for FK4). In the future, we
plan to include a larger variety of epochs and equinoxes, as
well as tests of conversion to/from Altitude/Azimuth. For each
benchmark, we convert the 1000 longitudes/latitudes from the
input/output frame with all tools and quantify the comparison
by looking at the median, mean, maximum, and standard
deviation of the absolute separation of the output coordinates
from each pair of tools.
Figure 3 visualizes the relative accuracy of the conversion

from FK4 to Galactic coordinates for all pairs of tools that
implement this transformation. In this figure, the color of the
cell indicates the maximum difference (in arcseconds) between
the two tools over the 1000 longitude-latitude pairs tested. This
figure shows, for example, that astropy, Kapteyn, and
PyTPM agree with sub-milliarcsecond differences (light colors,
small differences), while PALpy, pySLALIB, and PyAST also
agree among themselves. However, there is an offset of around
0 2 between the two groups. Finally, PyEphem disagrees with
all other packages by 0 4–0 8 (darker colors, large differ-
ences). These values are only meant to be illustrative and will
change over time as the benchmarks are refined and the
packages updated.

3.4. Time

The astropy.time subpackage focuses on supporting time-
scales (e.g., UTC, TAI, UT1) and time formats (e.g., Julian
date, modified Julian date) that are commonly used in
astronomy. This functionality is needed, for example, to
calculate barycentric corrections or sidereal times. astropy.
time is currently built on the ERFA (Tollerud et al. 2017) C
library, which replicates the Standards of Fundamental
Astronomy (SOFA; Hohenkerk 2011) but is licensed under a
three-clause BSD license. The package was described in detail
in Astropy Collaboration et al. (2013) and has remained stable
for the last several versions of astropy. Thus, in what
follows, we only highlight significant changes or new features
since the previous Astropy paper.

3.4.1. Barycentric and Heliocentric Corrections

Detailed eclipse or transit timing requires accounting for
light traveltime differences from the source to the observatory
because of the Earth’s motion. It is therefore common to
instead convert times to the solar system barycenter or
heliocenter where the relative timing of photons is standar-
dized. With the location of a source on the sky (i.e., a
SkyCoord object), the location of an observatory on Earth (i.e.,
anEarthLocation object), and time values as Time objects, the
time corrections to shift to the solar system barycenter or
heliocenter can now be computed with astropy.time using the
light_travel_time method of a Time object.

113 https://github.com/brandon-rhodes/python-jplephem
114 http://www.astropy.org/coordinates-benchmark/summary.html
115 https://github.com/phn/pytpm
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3.5. Data Containers

3.5.1. nddata

The astropy.nddata subpackage provides three types of
functionality: an abstract interface for representing generic
arbitrary-dimensional data sets intended primarily for subclassing
by developers of other packages, concrete classes building on this
interface, and utilities for manipulating these kind of data sets.

The NDDataBase class provides the abstract interface for
gridded data with attributes for accessing metadata, the world
coordinate system (WCS), uncertainty arrays matched to the
shape of the data, and other traits. Building on this interface, the
NDData class provides a minimal working implementation for
storing numpy arrays. These classes serve as useful base classes
for package authors wishing to develop their own classes for
specific use cases and as containers for exchanging gridded data.

The classes NDDataRef, NDDataArray, and CCDData
extend the base storage functionality with options to do basic
arithmetic (addition, subtraction, multiplication, and division),
including error propagation in limited cases, and slicing of the
data set based on grid coordinates that appropriately handles
masking, errors, and units (if present). Additionally, the
CCDData class also provides reading and writing from and
to FITS files, and uses data structures from astropy, like
WCS, to represent the file contents abstractly.

The http://docs.astropy.org/en/stable/nddata/utils.html
astropy.nddata.utils module provides utilities that
can operate on either plain numpy arrays or any of the
classes in the astropy.nddata subpackage. It features a class
for representing two-dimensional image cutouts, allowing
one to easily link pixels in the cutout to those in the original
image or vice versa, to convert between world and pixel
coordinates in the cutout, and to overlay the cutout on
images. Functions to enlarge or reduce an image by doing
block replication or reduction are also provided.

3.5.2. Tables

The astropy.table subpackage provides functionality for
representing and manipulating heterogeneous data. In some
respects, this is similar to numpy record arrays (Van der Walt
et al. 2011) or pandas DataFrame objects (McKinney 2010),
but with modifications for astronomical data. Most notably,
tables from astropy.table allow for table or column metadata and
can handle vectors/arrays or arbitrary objects (with suitable
column-like characteristics) as table entries. The subpackage was
described in detail in Astropy Collaboration et al. (2013). Thus,
in what follows, we only summarize key new features or updates
to astropy.table since the previous Astropy paper. These are

Figure 3. Comparison matrix of the maximum difference between longitude-latitude values in a set of 1000 random points transformed from FK4 to Galactic with the
different packages. Darker colors (larger differences) are more significant disagreements.
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support for grouped table operations, table concatenation, and
using array-valued astropy objects as table columns.

A table can contain data that naturally form groups; for
example, it may contain multiple observations of a few sources
at different points in time and in different bands. We may want
to split the table into groups based on the combination of
source observed and the band, after which we combine the
results for each combination of source and band in some way
(e.g., finding the mean or standard deviation of the fluxes or
magnitudes over time) or filter the groups based on user-
defined criteria. These kinds of grouping and aggregation
operations are now fully supported by Table objects.

Table objects can now be combined in several different
ways. If two tables have the same columns, we may want to
stack them “vertically” to create a new table with the same
columns but all rows. If two tables are row-matched but have
distinct columns, we may want to stack them “horizontally” to
create a new table with the same rows but all columns. For
other situations, more generic table concatenation or joining are
also possible when two tables share some columns.

The Table object now allows array-valued Quantity, celestial
coordinate (SkyCoord), and date/time (Time) objects to be used
as columns. It also provides a general way for other user-defined
array-like objects to be used as columns. This makes it possible,
for instance, to easily represent catalogs of sources or time series
in Astropy, while having both the benefits of the Table object
(e.g., accessing specific rows/columns or groups of them and
combining tables) as well as, for example, the SkyCoord or the
Time classes (e.g., converting the coordinates to a different
frame or accessing the date/time in the desired timescale).

Additionally, there is now interoperability between Table
and pandas DataFrame objects using the Table.
to_pandas() and Table.from_pandas() methods.
Table.to_pandas() is, however, limited to a subset of
possible Table objects, because several of the features
outlined above cannot be represented as pandas data frames.
While these features might be contributed to or combined with
pandas at a later date, the architectural differences that enable
these areas are significant, so this would be a major undertaking
that would require substantial investment from the core
maintainers and communities of both packages.

3.6. io

The astropy.io subpackages provide support for reading
and writing data to a variety of ASCII and binary file formats,
such as a wide range of ASCII data table formats, FITS, HDF5,
and VOTable. It also provides a unified interface for reading
and writing data with these different formats using the astropy.
table subpackage. For many common cases, this simplifies the
process of file input and output (I/O) and reduces the need to
master the separate details of all the I/O packages within
astropy. The file interface allows transparent compression of
the gzip, bzip2, and lzma (.xz) formats; the latter two
require the Python installation to have been compiled with
support the respective libraries.

3.6.1. ASCII

One of the problems when storing a table in an ASCII format
is preserving table metadata such as comments, keywords and
column data types, units, and descriptions. The newly defined
Enhanced Character Separated Values (ECSV, Aldcroft 2015)

format makes it possible to write a table to an ASCII-format file
and read it back with no loss of information. The ECSV format
has been designed to be both human-readable and compatible
with most simple CSV readers.
The astropy.io.ascii subpackage now includes a significantly

faster Cython/C engine for reading and writing ASCII files.
This is available for most of the common formats. It also offers
some additional features like parsing of different exponential
notation styles, such as commonly produced by Fortran
programs. On average, the new engine is about four to five
times faster than the corresponding pure-Python implementa-
tion and is often comparable to the speed of the pandas
(McKinney 2010) ASCII file interface. The fast reader has a
parallel processing option that allows harnessing multiple cores
for input parsing to achieve even greater speed gains. By
default, read() and write() will attempt to use the fast
Cython/C engine when dealing with compatible formats.
Certain features of the full read / write interface are unavailable
in the fast version, in which case the reader will by default fall
back automatically to the pure-Python version.
The astropy.io.ascii subpackage now provides the capability

to read a table within an HTML file or web URL into an
astropy Table object. A Table object can now also be
written out as an HTML table.

3.6.2. FITS

The astropy.io.fits subpackage started as a direct port of the
PyFITS project (Barrett & Bridgman 1999). Therefore, it is pretty
stable, with mostly bug fixes but also a few new features and
performance improvements. The API remains mostly compatible
with PyFITS, which is now deprecated in favor of astropy.
Command-line scripts are now available for printing a

summary of the HDUs in FITS file(s) (fitsinfo) and for printing
the header information to the screen in a human-readable
format (fitsheader).
FITS files are now loaded lazily by default, i.e., an object

representing the list of HDUs is created but the data are not
loaded into memory until requested. This approach should
provide substantial speed-ups when using the convenience
functions (e.g.,getheader() orgetdata()) to get an HDU that is
near the beginning in a file with many HDUs.

3.6.3. HDF5

The astropy.io.misc.hdf5 subpackage provides
support for binary read and write access to files in the
Hierarchical Data Format (HDF5), if the h5py package is
installed. Astropy table I/O is offered transparently through
Table.read() and Table.write(), analogously to the
other auto-detected formats. The keyword path=’group/
subgroup/data set’ specifies the path to the data inside
the file’s hierarchical structure.

3.7. Modeling

The astropy.modeling subpackage provides a framework for
representing analytical models and performing model evalua-
tion and parameter fitting. The main motivation for this
functionality was to create a framework that allows arbitrary
combination of models to support the Generalized World
Coordinate System (GWCS) package.116 The current FITS

116 https://github.com/spacetelescope/gwcs
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WCS specification lacks the flexibility to represent arbitrary
distortions and does not meet the needs of many types of
current instrumentation. The fact that the astropy modeling
framework now supports propagating units also makes it a
useful tool for representing and fitting astrophysical models
within data analysis tools.

Models and fitters are independent of each other: a model
can be fit with different fitters and new fitters can be added
without changing existing models. The framework is designed
to be flexible and easily extensible. The goal is to have a rich
set of models, but also facilitate creating new ones, if
necessary.

3.7.1. Single Model Definition and Evaluation

Models are defined by their parameters and initialized by
providing values for them. The names of the parameters are
stored in a list, Model.param_names. Parameters are
complex objects. They store additional information—default
value, default unit, and parameter constraints. Parameter values
and constraints can be updated by assignment. Supported
constraints include fixed and tied parameters, as well as
bounds on parameter values. The framework also supports
models for which the number of parameters and their names are
defined by another argument. A typical example is a
polynomial model defined by its degree. A model is evaluated
by calling it as a function.

If an analytical inverse of a model exists, it can be accessed
by calling Model.inverse. In addition, Model.inverse
can be assigned another model that represents a computed
inverse.

Another useful settable property of models is Model.
bounding_box. This attribute sets the domain over which
the model is defined. This greatly improves the efficiency of
evaluation when the input range is much larger than the
characteristic width of the model itself.

3.7.2. Model Sets

Using astropy.modeling provides an efficient way to set up the
same type of model with many different sets of parameter
values. This creates a model set that can be efficiently evaluated.
For example, in PSF (point-spread function) photometry, all
objects in an image will have a PSF of the same functional form,
but with different positions and amplitudes.

3.7.3. Compound Models

Models can be combined using arithmetic expressions. The
result is also a model, which can further be combined with
other models. Modeling supports arithmetic (+, −, *, /, and **),
join (&), and composition (|) operators. The rules for
combining models involve matching their inputs and outputs.
For example, the composition operator, |, requires the number
of outputs of the left model to be equal to the number of inputs
of the right one. For the join operator, the total number of
inputs must equal the sum of number of inputs of both the left
and the right models. For all arithmetic operators, the left and
the right models must have the same number of inputs and
outputs. An example of a compound model could be a
spectrum with interstellar absorption. The stellar spectrum and
the interstellar extinction are represented by separate models,
but the observed spectrum is fitted with a compound model that
combines both.

3.7.4. Fitting Models to Data

The astropy.modeling subpackage also provides several
fitters that are wrappers around some of the numpy and
scipy.optimize functions and provide support for speci-
fying parameter constraints. The fitters take a model and data as
input and return a copy of the model with the optimized
parameter values set. The goal is to make it easy to extend the
fitting framework to create new fitters. The optimizers available
in astropy version 2.0 are Levenberg–Marquardt (scipy.
optimize.leastsq), Simplex (scipy.optimize.
fmin), SLSQP (scipy.optimize.slsqp), and Linear-
LSQFitter (numpy.linalg.lstsq which provides exact
solutions for linear models).
Modeling also supports a plugin system for fitters, which

allows using the astropy models with external fitters. An
example of this is SABA,117 which is a bridge between Sherpa
(Doe et al. 2007), and astropy.modeling, to bring the Sherpa
fitters into astropy.

3.7.5. Creating New Models

If arithmetic combinations of existing models are not
sufficient, new model classes can be defined in different ways.
The astropy.modeling package provides tools to turn a simple
function into a full-featured model, but it also allows extending
the built-in model class with arbitrary code.

3.7.6. Unit Support

The astropy.modeling subpackage now supports the repre-
sentation, evaluation, and fitting of models using Quantity
objects, which attach units to scalar values or arrays of values.
In practice, this means that one can, for example, fit a model to
data with units and get parameters that also have units out, or
initialize a model with parameters with units and evaluate it
using input values with different but equivalent units. For
example, the blackbody model (BlackBody1D) can be used to
fit observed flux densities in a variety of units and as a function
of different units of spectral coordinates (e.g., wavelength or
frequency).

3.8. Convolution

The astropy.convolution subpackage implements normalized
convolution (e.g., Knutsson & Westin 1993), an image
reconstruction technique in which missing data are ignored
during the convolution and replaced with values interpolated
using the kernel. An example is given in Figure 4. In astropy
versions �1.3, the direct convolution and Fast Fourier
Transform (FFT) convolution approaches were inconsistent,
with only the latter implementing normalized convolution. As
of version 2.0, the two methods now agree and include a suite
of consistency checks.

3.9. Visualization

The astropy.visualization subpackage provides functionality
that can be helpful when visualizing data. This includes a
framework (previously the standalone astropy.visualization.
wcsaxes package) for plotting astronomical images with
coordinates via matplotlib, functionality related to image
normalization (including both scaling and stretching), smart

117 https://github.com/astropy/saba
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histogram plotting, red-green-blue (RGB) color image creation
from separate images, and custom plotting styles for
matplotlib.

3.9.1. Image Stretching and Normalization

Using astropy.visualization provides a framework for trans-
forming values in images (and more generally, any arrays),
typically for the purpose of visualization. The two main types of
transformations are normalization and stretching of image values.

Normalization transforms the image values to the range [0, 1]
using lower and upper limits (vmin, vmax),

y
x v

v v
, 1min

max min
=

-
-

( )

where x represents the values in the original image.

Stretching transforms the image values in the range
[0, 1] again to the range [0, 1], using a linear or nonlinear
function:

z f y . 2= ( ) ( )

Several classes are provided for automatically determining
intervals (e.g., using image percentiles) and for normalizing
values in this interval to the [0, 1] range.
Using matplotlib allows a custom normalization and

stretch to be used when displaying data by passing in a
normalization object. The astropy.visualization package also
provides a normalization class that wraps the interval and
stretches objects into a normalization object that matplotlib
understands.

Figure 4. An example showing different modes of convolution available in the Python ecosystem. Each red x signifies a pixel that is set to NaN in the original data
(top left). If the data are convolved with a Gaussian kernel on a 9×9 grid using scipy’s direct convolution (top right), any pixel within range of the original NaN
pixels is also set to NaN. The bottom left panel shows what happens if the NaNs are set to zero first: the original NaN regions are depressed relative to their
surroundings. Finally, the bottom right panel shows astropy’s convolution behavior, where the missing pixels are replaced with values interpolated from their
surroundings using the convolution kernel.
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3.9.2. Plotting Image Data with World Coordinates

Astronomers dealing with observational imaging commonly
need to make figures with images that include the correct
coordinates and optionally display a coordinate grid. The
challenge, however, is that the conceptual coordinate axes
(such as longitude/latitude) need not be lined up with the pixel
axes of the image. The astropy.visualization.wcsaxes subpack-
age implements a generalized way of making figures from an
image array and a WCS object that provides the transformation
between pixel and world coordinates.

World coordinates can be, for example, right ascension and
declination, but can also include, for example, velocity,
wavelength, frequency, or time. The main features from this
subpackage include the ability to control which axes to show
which coordinate on (e.g., showing longitude ticks on the top
and bottom axes and latitude on the left and right axes),
controlling the spacing of the ticks either by specifying the
positions to use or providing a tick spacing or an average
number of ticks that should be present on each axis, setting the
format for the tick labels to ones commonly used by
astronomers, controlling the visibility of the grid/graticule,
and overlaying ticks, labels, and/or grid lines from different
coordinate systems. In addition, it is possible to pass data with
more than two dimensions and slice on-the-fly. Last but not
least, it is also able to define non-rectangular frames such as,
for example, Aitoff projections.

This subpackage differs from APLpy (Robitaille & Bressert
2012), in that the latter focuses on providing a very high-level
interface to plotting that requires very few lines of code to get a
good result, whereas astropy.visualization.wcsaxes defines an

interface that is much closer to that of matplotlib (Hunter
2007). This enables significantly more advanced visualizations.
An example of a visualization made with astropy.

visualization.wcsaxes is shown in Figure 5. This example
illustrates the ability to overlay multiple coordinate systems and
customize which ticks/labels are shown on which axes around
the image. This also uses the image stretching functionality
from Section 3.9.1 to show the image in a square-root stretch
(automatically updating the tick positions in the colorbar).

3.9.3. Choosing Histogram Bins

The astropy.visualization subpackage also provides a
histogram function, which is a generalization of matplo-
tlib’s histogram function, to allow for a more flexible
specification of histogram bins. The function provides several
methods of automatically tuning the histogram bin size. It has a
syntax identical to matplotlibʼs histogram function, with
the exception of the bins parameter, which allows specifica-
tion of one of four different methods for automatic bin
selection: “blocks,” “knuth,” “scott,” or “freedman.”

3.9.4. Creating Color RGB Images

Lupton et al. (2004) describe an “optimal” algorithm for
producing RGB composite images from three separate high-
dynamic range arrays. The astropy.visualization subpackage
provides a convenience function to create such a color image. It
also includes an associated set of classes to provide alternate
scalings. This functionality was contributed by developers from
the Large Synoptic Survey Telescope (LSST) and serves as an

Figure 5. An example of a figure made using the astropy.visualization.wcsaxes subpackage, using Spitzer/IRAC 8.0μm data from the Cygnus-X Spitzer Legacy
survey (Beerer et al. 2010).
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example of a contribution to Astropy from a more traditional
engineering organization (Jenness et al. 2016).

The Sloan Digital Sky Survey (SDSS) SkyServer color
images were made using a variation on this technique. As an
example, in Figure 6, we show an RGB color image of the
Hickson 88 group, centered near NGC6977.118 This image
was generated from SDSS images using the astropy.
visualization tools.

3.10. Cosmology

The astropy.cosmology subpackage contains classes for
representing different cosmologies and functions for calculat-
ing commonly used quantities such as look-back time and
distance. The subpackage was described in detail in Astropy
Collaboration et al. (2013). The default cosmology in
astropy version 2.0 is given by the values in Planck
Collaboration et al. (2016).

3.11. Statistics

The astropy.stats package provides statistical tools that are
useful for astronomy and are either not found in or extend the
available functionality of other Python statistics packages,
such as scipy (Jones et al. 2001) or statsmodels (Seabold
& Perktold 2010). The astropy.stats package also contains a
range of functionality used by many different disciplines in
astronomy. It is not a complete set of statistical tools, but rather
a still growing collection of useful features.

3.11.1. Robust Statistical Estimators

Robust statistics provide reliable estimates of basic statistics
for complex distributions that largely mitigate the effects of
outliers. The astropy.stats package includes several robust
statistical functions that are commonly used in astronomy, such
as sigma clipping methods for rejecting outliers, median
absolute deviation functions, and biweight estimators, which
have been used to calculate the velocity dispersion of galaxy
clusters (Beers et al. 1990).

3.11.2. Circular Statistics

Astronomers often need to compute statistics of quantities
evaluated on a circle, such as sky direction or polarization
angle. A set of circular statistical estimators based on
Jammalamadaka & Sengupta (2001) are implemented in
astropy.stats. These functions provide measurements of the
circular mean, variance, and moment. All of these functions
work with both numpy.ndarrays (assumed to be in radians)
and Quantity objects. In addition, the subpackage includes tests
for Rayleigh Test, vtest, and a function to compute the
maximum likelihood estimator for the parameters of the von
Mises distribution.

3.11.3. Lomb–Scargle Periodograms

Periodic analysis of unevenly spaced time series is common
across many subfields of astronomy. The astropy.stats package
now includes several efficient implementations of the Lomb–
Scargle periodogram (Lomb 1976; Scargle 1982) and several
generalizations, including floating mean models (Zechmeister &
Kürster 2009), truncated Fourier models (Bretthorst 2003), and
appropriate handling of heteroscedastic uncertainties. Impor-
tantly, the implementations make use of several fast and scalable
computational approaches (e.g., Press & Rybicki 1989; Palmer
2009), and thus can be applied to much larger data sets than
Lomb–Scargle algorithms available in, e.g., scipy.stats
(Jones et al. 2001). Much of the Lomb–Scargle code in
astropy has been adapted from previously published open-
source code (VanderPlas et al. 2012; VanderPlas & Ivezic 2015).
Users should be aware that correct interpretation of periodogram
results involves some subtleties; for a thorough discussion of this
issue, see (VanderPlas 2018, in press).

3.11.4. Bayesian Blocks and Histogram Binning

The astropy.stats package also includes an implementation of
Bayesian Blocks (Scargle et al. 2013), an algorithm for analysis of
breakpoints in nonperiodic astronomical time-series. One inter-
esting application of Bayesian Blocks is its use in determining
optimal histogram binnings, particularly binnings with unequal
bin sizes. This code was adapted, with several improvements,
from the astroML package (VanderPlas et al. 2012). An

Figure 6. An RGB color image of the region near the Hickson 88 group constructed from SDSS images and the astropy.visualization tools. This example uses
astropy.visualization.wcsaxes to display the sky coordinate grid, and thehttp://docs.astropy.org/en/stable/api/astropy.visualization.make_lupton_rgb.html
make_lupton_rgb() function to produce the RGB image from three SDSS filter images (g, r, i). The image on the left shows the image with the default
parameters, whereas the image on the right has parameters set to show a greater dynamical range.

118 http://skyserver.sdss.org/dr13/en/tools/chart/navi.aspx?ra=313.
12381&dec=-5.74611
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example of a histogram fit using the Bayesian Blocks algorithm is
shown in the right panel of Figure 7.

4. Infrastructure for Astropy Affiliated Packages

In addition to astronomy-specific packages and libraries, the
Astropy Project also maintains and distributes several general-
purpose infrastructure packages that assist with the maintenance
and upkeep of the astropy core package and other affiliated
packages. The following sections describe the most widely used
infrastructure packages developed by the Astropy Project.

4.1. Package Template

Astropy provides a package template—as a separate GitHub
repository, astropy/package-template119—that aims to
simplify setting up packaging, testing, and documentation builds
for developers of affiliated packages or astropy-dependent
packages. Any Python package can make use of this ready-to-
go package layout, setup, installation, and Sphinx documenta-
tion build infrastructure that was originally developed for the
astropy core package and affiliated packages maintained by
the Astropy Project. The package template also provides a
testing framework, template configurations for continuous
integration services, and Cython build support.

4.2. Continuous Integration Helpers

Astropy also provides a set of scripts for setting up and
configuring continuous integration (CI) services as a GitHub
repository, astropy/ci-helpers.120 These tools aim to
enable package maintainers to control their testing setup and
installation process for various CI services through a set of
environment variables. While the current development is
mostly driven by the needs of the Astropy ecosystem, the
actual usage of this package is extremely widespread.121 The
current tools support configuration for Travis CI122 and
Appveyor CI.123

4.3. Sphinx Extensions

The documentation for many Python packages, including all
the packages in the Astropy ecosystem, is written using the
Sphinx documentation build system. Sphinx supports writing
documentation using plain text files that follow a markup
language called reStructuredText (RST). These files are
then transformed into HTML, PDF, or LATEX documents
during the documentation build process. For the Astropy Project,
we have developed several Sphinx extensions that facilitate
automatically generating API documentation for large projects,
like the astropy core package. The main extension we have
developed is sphinx-automodapi,124 which provides a
convenient single RST command to generate a set of
documentation pages, listing all of the available classes,
functions, and attributes in a given Python module.

5. The Future of the Astropy Project

Following the release of version 2.0, development on the
next major version of the astropy core package (version 3.0)
began. On top of planned changes and additions to the core
package, we also plan to overhaul the Astropy educational/
learning materials and further generalize the infrastructure
utilities originally developed for the core package for the
benefit of the community.

5.1. Future Versions of the Astropy Core and Affiliated
Packages

One of the most significant changes coming in this next
major release will be removing the support for Python 2
(Robitaille 2017): future versions of astropy will only
support Python 3.5 or higher. Removing Python 2 support
will allow the use of new features exclusive to Python 3,
simplify the code base, and reduce the testing overhead for the
package. Version 3.0 was released in February 2018.
In the next major release after version 3.0, scheduled for

mid-2018, the focus will be on algorithm optimization and
documentation improvement. To prepare for this release, we
are subjecting the core package to testing, evaluation, and
performance monitoring. As a result, less new functionality
may be introduced, as a trade-off for better performance.
Beyond the core code, the Astropy Project is also further

developing the Astropy-managed affiliated packages. While
these may not be integrated into the astropy core package,

Figure 7. Three approaches to a 1D histogram. Left: a standard histogram using matplotlib’s default of 10 bins. Center: a histogram with the number of equal-width
bins determined automatically using numpy’s bins=’auto’. Right: a histogram created by astropy, with irregularly spaced bins computed via the Bayesian
Blocks algorithm. Compared to regularly spaced bins, the irregular bin widths give a more accurate visual representation of features in the data set at various scales.

119 https://github.com/astropy/package-template/
120 https://github.com/astropy/ci-helpers
121 Approximately 30% of the ci-helpers contributors come from outside the
astropy community, and there are currently 292 repositories on github that have
ci-helpers in their travis configuration file.
122 https://travis-ci.org/
123 https://www.appveyor.com/ 124 http://sphinx-automodapi.readthedocs.io
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these projects provide code that is useful to the astronomical
community and meet the testing and documentation standards
of Astropy. Some of these new efforts include an initiative to
develop tools for spectroscopy (Crawford et al. 2017, spec-
utils, specreduc, specviz), integration of LSST soft-
ware, and support for HEALPIX projection.

5.2. Learn Astropy

The documentation of the astropy core package contains
narrative descriptions of the package’s functionality, along with
detailed usage notes for functions, classes, and modules. While
useful as a reference for more experienced Python users, it is
not the proper point of entry for other users or learning
environments. In the near future, we will launch a new resource
for learning to use both the astropy core package and the
many packages in the broader Astropy ecosystem, under the
name Learn Astropy.

The new Learn Astropy site will present several different
ways to engage with the Astropy ecosystem:

Documentation: The astropy and affiliated package
documentation contains the complete description of a
package with all requisite details, including usage, depen-
dencies, and examples. The pages will largely remain as-is,
but will be focused toward more intermediate users and as a
reference resource.
Examples: These are stand-alone code snippets that live in
the astropy documentation that demonstrate a specific
functionality within a subpackage. The astropy core
package documentation will then gain a new “index of
examples” that links to all of the code or demonstrative
examples within any documentation page.
Tutorials: The Astropy tutorials are step-by-step demonstra-
tions of common tasks that incorporate several packages or
subpackages. Tutorials are more extended and comprehen-
sive than examples, may contain exercises for the users, and
are generally geared towards workshops or teaching. Several
tutorials already exist125 and are being actively expanded.
Guides: These are long-form narrative, comprehensive, and
conceptually focused documents (roughly one book chapter in
length), providing stand-alone introductions to core packages
in addition to the underlying astronomical concepts. These are
less specific and more conceptual than tutorials: for example,
“using astropy and ccdproc to reduce imaging data.”

We encourage any users who wish to see specific material to
either contribute or comment on these efforts via the Astropy
mailing list or astropy/astropy-tutorials GitHub
repository.126

6. Conclusion

The astropy package is improving in stability, breadth, and
reliability while the the Astropy project is still significantly
growing. As the astropy core package becomes more mature,
several subpackages have reached stability with a rich set of
features that help astronomers worldwide to perform many daily
tasks, such as planning observations, analyzing data or
simulation results, and writing publications. The strong emphasis
that the Astropy Project puts on reliability and high coding

standards helps users to trust the calculations performed with
astropy and to publish reproducible results. At the same time,
the Astropy ecosystem and core package are both growing: new
functionality is still being contributed and new affiliated
packages are being developed to support more specialized needs.
The Astropy Project is also spreading awareness of best

practices in community-driven software development. This is
important because most practicing astronomers were not
explicitly taught computer science and software development,
despite the fact that a substantial fraction of many astronomers’
workload today is related to software use and development. The
astropy package leads by example, showing all interested
astronomers how modern tools like git version control or CI
testing can increase the quality, accessibility, and discoverability
of astronomical software without overly complicating the
development cycle. Within Astropy, all submitted code is
reviewed by at least one (but typically more than one) member
of the Astropy community. Reviewers provide feedback to
contributors, which helps to improve contributors’ software
development skills. As a community, Astropy follows an explicit
code of conduct (Cruz et al. 2015) and treats all contributors and
users with respect, provides a harassment-free environment, and
encourages and welcomes new contributions from all. Thus,
while the Astropy Project provides and develops software and
tools essential to modern astronomical research, it also helps to
prepare the current and next generation of researchers with the
knowledge to adequately use, develop, and contribute to those
tools within a conscientious and welcoming community.
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Furthermore, the astropy packages would not exist in their
current form without a number of web services for code
hosting, continuous integration, and documentation; in part-
icular, astropy heavily relies on GitHub, Travis CI, Appveyor,
CircleCI, and Read the Docs.
Astropy interfaces with the SIMBAD database, operated at

CDS, Strasbourg, France. It also makes use of the ERFA library
(Tollerud et al. 2017), which in turn derives from the IAU SOFA
Collection127 developed by the International Astronomical
Union Standards of Fundamental Astronomy (Hohenkerk 2011).
Software:astropy (Astropy Collaboration et al. 2013),

numpy (Van der Walt et al. 2011), scipy (Jones et al.
2001), matplotlib (Hunter 2007), Cython (Behnel
et al. 2011), SOFA (Hohenkerk 2011), ERFA (Tollerud
et al. 2017).

Appendix
List of Affiliated Packages

The Appendix comprises Table 1.

Table 1
Registry of Affiliated Packages

Package Name Stable PyPI Name Maintainer Citation

APLpy Yes APLpy Thomas Robitaille and Eli Bressert Robitaille & Bressert (2012)
Astro-SCRAPPY Yes astroscrappy Curtis McCully van Dokkum (2001)
astroML Yes astroML Jake Vanderplas Vanderplas et al. (2012), Ivezić

et al. (2014)
astroplan No astroplan Brett Morris Morris et al. (2018)
astroquery Yes astroquery Adam Ginsburg and Brigitta Sipocz Ginsburg et al. (2017b)
ccdproc Yes ccdproc Steven Crawford, Matt Craig, and Michael Seifert Craig et al. (2015)
cluster-lensing No cluster-lensing Jes Ford Ford (2016)
gala Yes astro-gala Adrian Price-Whelan Price-Whelan (2017)
galpy Yes galpy Jo Bovy Bovy (2015)
gammapy No gammapy Christoph Deil Deil et al. (2017)
ginga Yes ginga Eric Jeschke and Pey-Lian Lim ejeschke et al. (2017)
Glue Yes glueviz Chris Beaumont and Thomas Robitaille Beaumont et al. (2014)
gwcs No gwcs Nadia Dencheva Dencheva et al. (2017)
Halotools Yes halotools Andrew Hearin Hearin et al. (2017)
HENDRICS Yes hendrics Matteo Bachetti Bachetti (2015)
hips No hips Christoph Deil and Thomas Boch hips developers (2018)
imexam No imexam Megan Sosey Sosey (2017)
linetools Yes linetools J. Xavier Prochaska, Nicolas Tejos, and Neil Crighton Prochaska et al. (2017)
marxs Yes marxs Hans Moritz Günther Günther et al. (2017)
naima Yes naima Victor Zabalza Zabalza (2015)
omnifit Yes omnifit Aleksi Suutarinen Suutarinen (2015)
photutils No photutils Larry Bradley and Brigitta Sipocz Bradley et al. (2017)
poliastro No poliastro Juan Luis Cano Rodríguez Rodríguez et al. (2017)
PyDL No pydl Benjamin Alan Weaver Weaver et al. (2017)
pyregion Yes pyregion Jae-Joon Lee and Christoph Deil pyregions developers (2018)
pyspeckit Yes pyspeckit Adam Ginsburg Ginsburg & Mirocha (2011)
python-cpl No python-cpl Ole Streicher Streicher & Weilbacher (2012)
PyVO No pyvo Stefan Becker Graham et al. (2014)
regions No regions Christoph Deil and Johannes King pyregions developers (2018)
reproject Yes reproject Thomas Robitaille Robitaille (2018)
sncosmo Yes sncosmo Kyle Barbary Barbary (2014)
spectral-cube Yes spectral-cube Adam Ginsburg Ginsburg et al. (2017a)
specutils No specutils Nicholas Earl, Adam Ginsburg, Steve Crawford, and Erik Tollerud specutils developers (2018)
spherical_geometry No spherical-geometry Bernie Simon
stingray No stingray Daniela Huppenkothen, Matteo Bachetti, Abigail Stevens, Simone

Migliari, and Paul Balm
Huppenkothen et al. (2016)

synphot Yes synphot Pey Lian Lim Lim (2016)

127 http://www.iausofa.org
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