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Targeting miR-34a/Pdgfra interactions partially
corrects alveologenesis in experimental
bronchopulmonary dysplasia
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Abstract

Bronchopulmonary dysplasia (BPD) is a common complication of
preterm birth characterized by arrested lung alveolarization,
which generates lungs that are incompetent for effective gas
exchange. We report here deregulated expression of miR-34a in a
hyperoxia-based mouse model of BPD, where miR-34a expression
was markedly increased in platelet-derived growth factor receptor
(PDGFR)a-expressing myofibroblasts, a cell type critical for proper
lung alveolarization. Global deletion of miR-34a; and inducible,
conditional deletion of miR-34a in PDGFRa+ cells afforded partial
protection to the developing lung against hyperoxia-induced
perturbations to lung architecture. Pdgfra mRNA was identified as
the relevant miR-34a target, and using a target site blocker in vivo,
the miR-34a/Pdgfra interaction was validated as a causal actor in
arrested lung development. An antimiR directed against miR-34a
partially restored PDGFRa+ myofibroblast abundance and improved
lung alveolarization in newborn mice in an experimental BPD
model. We present here the first identification of a pathology-rele-
vant microRNA/mRNA target interaction in aberrant lung alveolar-
ization and highlight the translational potential of targeting the
miR-34a/Pdgfra interaction to manage arrested lung development
associated with preterm birth.
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Introduction

Bronchopulmonary dysplasia (BPD), a serious complication of

preterm birth (Jobe, 2016), is characterized by arrested alveolariza-

tion of lungs of infants, arising from oxygen toxicity and mechanical

injury during oxygen supplementation to manage respiratory failure.

How these insults impair lung alveolarization is unclear (Surate

Solaligue et al, 2017; Morty, 2018).

Lung development includes progressive subdivision of airspaces

to expand alveoli number, thereby increasing gas-exchange surface

area; and progressive thinning of septa to minimize gas diffusion

distance (Pozarska et al, 2017). Alveolar myofibroblasts, which

express aSMA, facilitate alveolarization (Vaccaro & Brody, 1978;

Morrisey & Hogan, 2010; Hogan et al, 2014) by generating elastin

cables that drive formation of secondary septa, which divide exist-

ing airspaces by squeezing the pre-existing alveoli with an elastin

net, or pulling septal invaginations into airspaces (Branchfield et al,

2016). Myofibroblasts localize to alveolar entry rings during alveo-

larization (McGowan et al, 2008; Ntokou et al, 2015), exhibit

phenotypic plasticity (Endale et al, 2017; McGowan & McCoy, 2017)

and are marked by platelet-derived growth factor (PDGF) receptor

(PDGFR)a, a mediator of normal (Boström et al, 1996, 2002;

Gouveia et al, 2018) and aberrant (Oak et al, 2017) alveologenesis.

Reduced levels of PDGFRa have also been noted in mesenchymal

cells from human neonates that develop BPD (Popova et al, 2014).

How myofibroblast function is disturbed during aberrant alveo-

larization is not known, but a role for microRNA has been proposed,

since deregulation of microRNA has been noted in clinical and

experimental BPD (Nardiello & Morty, 2016), although no study has

validated a causal role for any microRNA/mRNA interaction in

alveolarization or BPD. We report here that the miR-34a/Pdgfra
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interaction is disease relevant, and can be therapeutically targeted

to partially restore lung alveolarization under pathological condi-

tions. These data highlight a new mediator, and druggable target, in

arrested alveolarization associated with preterm birth.

Results and Discussion

miR-34a is the most deregulated lung microRNA species in
experimental BPD

BPD is modeled by exposure of newborn mice to hyperoxia

(Nardiello et al, 2017a,b). Changes in microRNA expression during

hyperoxia (85% O2) exposure were detected by microarray (GEO

accession number GSE89666). The steady-state levels of 10 and four

microRNA species, respectively, were deregulated at post-natal day

(P)5 and P14 (Fig 1A). These time-points represent the peak and

near-completion phases, respectively, of bulk secondary septation in

normally developing lungs (Morrisey & Hogan, 2010; Warburton

et al, 2010). Levels of miR-34a-5p were the most consistently and

appreciably increased of all microRNA species, implicating miR-34a-

5p as a candidate mediator of arrested alveolarization. Independent

validation by real-time RT–PCR revealed that miR-34a-5p levels

were increased at P3, P5, and P14 in hyperoxia-exposed lungs

(Fig 1B), with little or no impact on miR-34b-5p or miR-34c-5p

(Fig 1B), or miR-34a-3p, miR-34b-3p, or miR-34c-3p (Fig 1C) levels

noted. Levels of miR-34a-5p were consistently elevated over the P3-

P14 hyperoxia-exposure time-course, in comparison with normoxia

(21% O2)-exposed lungs that exhibited normal alveolarization

(Fig 1B). Together, these data highlight miR-34a-5p as a candidate

mediator of arrested alveolarization.

Global loss of miR-34a partially restores lung alveolarization in
experimental BPD

Consistent with the arrested alveolarization that forms the hallmark of

the BPD animal model, a 71% decrease in total alveoli number (Fig 2A

and B; Appendix Table S1) and 10% increase in mean septal thickness

(Fig 2A and C; Appendix Table S1) were noted in hyperoxia-exposed

wild-type mouse lungs at P14, mimicking perturbations to lung struc-

ture noted in clinical BPD cases (Jobe, 2016; Nardiello et al, 2017b).

Ablation of miR-34a (miR-34a�/� mice) partially protected against the

impact of hyperoxia on alveolarization (Fig 2A; Appendix Table S1),

with alveoli numbers increased by 47% (Fig 2B); and septal thickness

decreased to even thinner than that noted in healthy mice (Fig 2C),

compared to wild-type hyperoxia-exposed controls. No compensatory

increase in miR-34b or miR-34c levels was noted in miR-34a�/� mice

(Appendix Fig S1A). In contrast, dual ablation of miR-34b/miR-34c

(miR-34bc�/� mice), without a compensatory increase in miR-34a

levels (Appendix Fig S1B), did not impact alveoli number during

hyperoxia-driven arrest of alveolarization (Fig 2D and E;

Appendix Table S2). However, protection against hyperoxia-driven

septal thickening in miR-34bc�/� mice was noted (Fig 2F), perhaps

related to the increased levels of the 3p strands of miR-34b and miR-

34c in the lungs of hyperoxia-exposed mice (Appendix Fig S1B). These

data implicate miR-34a as mediator of arrested alveolarization associ-

ated with hyperoxia, an idea reinforced by detection of miR-34a

expression with a lacZ-tagged miR-34a gene-trap in the septa of

developing lungs, with increased b-galactosidase staining evident after
hyperoxia exposure (Fig 2G; Appendix Fig S2).

miR-34a in PDGFRa+ cells contributes to aberrant
lung alveolarization

An in silico analysis identified two miR-34a-binding sites in the

Pdgfra 30-UTR (Fig 3A) (Silber et al, 2012; Garofalo et al, 2013).

The PDGF-AA ligand and PDGFRa are key mediators of alveolariza-

tion (Boström et al, 1996, 2002), and reduced PDGFRa levels in

mesenchymal cells are reported in human neonates that develop

BPD (Popova et al, 2014). A synthetic miR-34a mimic reduced

PDGFRa protein levels in vitro in MLg cells, a mouse lung fibroblast

cell line, suggesting that a miR-34a/Pdgfra interaction occurs in

mouse lung fibroblasts (Fig 3B), where increased miR-34 family

microRNA transcripts (Fig 3C) and reduced Pdgfra mRNA tran-

scripts (Appendix Fig S3) were noted in hyperoxia-exposed MLg

cells. To explore this idea in vivo, exposure of newborn mice to

hyperoxia (85% O2) reduced lung PDGFRa protein levels at P5

(Fig 3D), which is the peak phase of bulk alveolarization (Morrisey

& Hogan, 2010; Warburton et al, 2010). Treatment of MLg cells

in vitro with antimiR-34a, which neutralizes miR-34a, partially

protected steady-state PDGFRa protein levels against the impact

of hyperoxia exposure, while an inert (“scrambled”) antimiR did

not (Fig 3E). These data support the contention that hyperoxia-

driven elevations in miR-34a levels negatively regulated PDGFRa
abundance. PDGFRa+ cells were isolated from P5 mouse lungs by

FACS (Appendix Fig S4A), where in vivo hyperoxia exposure had

driven a dramatic increase in miR-34a levels in PDGFRa+ cells

(Fig 3F, Appendix Fig S5), accompanied by reduced Pdgfra

(Appendix Fig S4B) and Acta2 (Appendix Fig S4C) mRNA levels.

The magnitude of the impact of hyperoxia on miR-34a levels in

PDGFRa+ cells was considerably larger than that observed in

lung homogenates, highlighting the PDGFRa+ cell as being partic-

ularly susceptible to hyperoxia-driven effects on miR-34a during

alveologenesis.

To address miR-34a function in PDGFRa+ cells, a mouse strain

carrying a conditional, tamoxifen-inducible deletion of miR-34a in

Pdgfra-expressing cells was generated (denoted miR-34aiDPC/iDPC;

Fig 3G) and was validated by demonstrating reduced miR-34a

expression in PDGFRa+ cells (Fig 3H). Ablation of miR-34a in

PDGFRa+ cells protected against hyperoxia-driven arrest of alveo-

larization (Fig 3I; Appendix Table S3), where approximately double

the number of alveoli was noted in hyperoxia-exposed mice in

which miR-34a expression was blocked in PDGFRa+ cells (Fig 3J).

Ablation of miR-34a expression in PDGFRa+ cells did not impact

hyperoxia-provoked perturbations to septal thickness (Fig 3K),

which we attribute to the tamoxifen solvent, Miglyol, a complex

fatty acid-derivative mixture, which we propose limited the impact

of hyperoxia on septal thickening analogous to that reported for

chemically related cottonseed oil (Nardiello et al, 2017b), since

Miglyol alone is known to attenuate normal lung development

(Fehl et al, 2019). Alternatively, it may be epithelial miR-34a that

regulates septal thickening, since miR-34a regulates lung epithelial

cell (notably, type II pneumocyte) apoptosis (Syed et al, 2017) in

experimental BPD. These data validate a role for miR-34a in

PDGFRa+ cells in mediating the inhibitory effects of hyperoxia on

alveolarization.
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Figure 1. miR-34a is the most impacted microRNA species in developing mouse lungs after hyperoxia exposure.

A Microarray analysis of microRNA expression changes in newborn mouse lungs exposed to 21% O2 versus 85% O2, at post-natal day (P)5 and P14. Microarray data are
available at the GEO database under accession number GSE89666.

B Quantitative RT–PCR detection of microRNA-34a/b/c-5p family members in the lung over the course of normal (21% O2) and aberrant (85% O2) alveolarization.
C Quantitative RT–PCR detection of microRNA-34a/b/c-3p family members in the lung over the course of normal (21% O2) and aberrant (85% O2) alveolarization.

Data information: For (A), a Welch’s approximate t-test was employed to determine P values (n = 4 animals for each experimental group), which were corrected using
the algorithm of Benjamini and Hochberg, as described in the Materials and Methods under the heading “Power and statistical analyses”. For (B) and (C), data represent
mean � SD (n = 6 animals for each experimental group). P values were determined by one-way ANOVA with Tukey’s post hoc modification, and all P values < 0.05 for
21% O2 versus 85% O2 comparisons at each developmental stage (P3, P15, and P14) are indicated.
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The miR-34a/Pdfgra interaction plays a causal role in aberrant
lung alveolarization

MicroRNA/mRNA interactions can be interrupted using target site

blocker (TSB) technology. We employed two synthetic TSBs (TSB1

and TSB2) to protect both of the miR-34a-binding sites in the Pdgfra

30-UTR (Fig 4A). Both TSBs protected PDGFRa expression from

miR-34a regulation in MLg cells in vitro (upper panels, Fig 4B and

C). Both TSBs exhibited specificity for the miR-34a/Pdgfra interac-

tion, since neither TSB interfered with the impact of a synthetic

miR-34a mimic on levels of c-Kit (middle panel, Fig 4B), a validated

miR-34a target (Siemens et al, 2013), or of SIRT1 (middle panel,

Fig 4C), another validated miR-34a target (Yamakuchi et al, 2008).

A TSB cocktail of an equimolar TSB1:TSB2 mixture effectively

protected PDGFRa expression from miR-34a regulation in MLg cells

(Appendix Fig S6). In vivo, TSBs afforded some protection against
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Figure 2. miR-34a-5p functionally contributes to arrested lung alveolarization in response to hyperoxia.

A Qualitative analysis of lung structure in Richardson-stained plastic-embedded lung sections from wild-type (WT) and miR-34a�/� mice during normal and aberrant
alveolarization (scale bar, 50 lm).

B Quantification of total number of alveoli by design-based stereology in wild-type (WT) and miR-34a�/� mice (34a�/�) during normal and aberrant alveolarization.
C Quantification of mean septal thickness by design-based stereology in wild-type (WT) and miR-34a�/� mice (34a�/�) during normal and aberrant alveolarization.
D Qualitative analysis of lung structure in Richardson-stained plastic-embedded lung sections from wild-type (WT) and miR-34bc�/� mice during normal and aberrant

alveolarization (scale bar, 50 lm).
E Quantification of total number of alveoli by design-based stereology in wild-type (WT) and miR-34bc�/� mice (34bc�/�) during normal and aberrant alveolarization.
F Quantification of mean septal thickness by design-based stereology in wild-type (WT) and miR-34bc�/� mice (34bc�/�) during normal and aberrant alveolarization.
G Localization of miR-34a expression by b-galactosidase activity staining in the developing lungs of P14 miR-34a::lacZ+/+ mice that were undergoing normal or aberrant

alveolarization (scale bar, 50 lm; larger and some additional images are presented in Appendix Fig S2).

Data information: Qualitative data (A, D, G) illustrated from one experiment are representative of the trend observed in four other (A, D) or two other (G) experiments. For
all quantitative data sets (B, C, E, F), five animals for each experimental group are illustrated, with each data point representing an individual animal, where data
represent mean � SD. P values for selected comparisons were determined by one-way ANOVA with Tukey’s post hoc modification.
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the impact of hyperoxia on lung alveolarization in experimental

BPD (Fig 4D; Appendix Table S4), where increased alveoli number

(Fig 4E) and decreased mean septal thickness (Fig 4F) were noted.

Application of the TSB1,2 cocktail increased the abundance of both

PDGFRa+ cells (Fig 4G; Appendix Fig S7) and PDGFRa+/aSMA+

myofibroblasts (Fig 4H) in hyperoxia-exposed mouse lungs. These

data validate a causal role for the miR-34a/Pdgfra interaction in

arrested lung development provoked by hyperoxia, most likely

through partial restoration of PDGFRa+/SMA+ myofibroblasts.

MicroRNA function may be modulated in vivo using locked

nucleic acid (LNA) antimiRs (Patrick et al, 2010). We theorized that

dampening functional miR-34a levels in experimental BPD would

improve alveolarization; therefore, an antimiR directed against miR-

34a was applied therapeutically (concomitantly with hyperoxia expo-

sure; Fig 5A), which decreased functional miR-34a levels in mouse

lungs by P5 (Appendix Fig S8A), with no impact on miR-34b, and a

moderate impact on miR-34c (Appendix Fig S8B and C). The effect of

antimiR-34a on miR-34a was maintained up to P14 (Fig 5B).

AntimiR-34a protected alveolarization from hyperoxia (Fig 5C;

Appendix Table S5), increasing alveoli number by 40% (Fig 5D), and

normalizing septal thickness (Fig 5E). Flow cytometric quantification

of PDGFRa+ cells and PDGFRa+/aSMA+ myofibroblasts (analysis

◀ Figure 3. miR-34a-5p acts in PDGFRa+ cells to block lung alveolarization.

A In silico identification of miR-34a binding sites in the Pdgfra 30-UTR.
B Immunoblot detection of PDGFRa levels in MLg cells after treatment with scrambled microRNA (SCR) or a miR-34a (MIM34a) mimic (n = 3 separate cell cultures for

each group).
C Quantitative RT–PCR detection of miR-34a/b/c-5p levels in MLg cells in vitro, maintained under 21% O2 or 85% O2 (n = 3 separate cell cultures for each group).
D Immunoblot detection of PDGFRa levels in the lungs of mouse pups (n = 6 animals for each group) at post-natal day (P)5, during normal (21% O2) and aberrant

(85% O2) alveolarization.
E Immunoblot detection of PDGFRa levels in MLg cells in vitro, maintained under 21% O2 or 85% O2, where cells had been transfected wither with a scrambled (SCR)

antimiR, or an antimiR directed against miR-34a (A34a) (n = 3 separate cell cultures for each group).
F Quantitative RT–PCR detection of miR-34a-5p levels in PDGFRa+ cells, sorted by FACS from the lungs of mouse pups (n = 4 animals for each group; data from an

independent repetition are provided in Appendix Fig S5) at P5, maintained under 21% O2 or 85% O2 from birth.
G Schematic illustration of the generation of a conditional, inducible deletion-ready mouse strain, where administration of tamoxifen (Tmxfn) abrogated miR-34a

expression in Pdgfra-expressing cells (denoted miR-34aiDPC/iDPC).
H Quantitative RT–PCR detection of miR-34a-5p levels in PDGFRa+ cells, sorted by FACS from the lungs of either wild-type (34awt/wt) mouse pups, or mouse pups in

which miR-34a expression in Pdgfra-expressing cells (34aiDPC/iDPC) at P5 (n = 4 animals for each group).
I Qualitative analysis of lung structure in Richardson-stained plastic-embedded lung sections from 34awt/wt or 34aiDPC/iDPC mouse pups at P14 during aberrant (85%

O2) alveolarization, compared with 34aiDPC/iDPC during normal (21% O2) alveolarization (scale bar, 50 lm). Data are representative of observations made in four other
experiments.

J Quantification of total number of alveoli by design-based stereology in 34awt/wt or 34aiDPC/iDPC mouse pups at P14, during normal and aberrant alveolarization (n = 5
animals for each group).

K Quantification of mean septal thickness by design-based stereology in 34awt/wt or 34aiDPC/iDPC mouse pups at P14, during normal and aberrant alveolarization (n = 5
animals for each group).

Data information: For immunoblots (B, D, E), protein loading equivalence was controlled by bactin levels. (C, F, H, J, K) Data represent mean � SD. In (C, F, and H),
P values for pair-wise comparisons were calculated by unpaired Student’s t-test. In (J and K), P values for selected comparisons were calculated by one-way ANOVA with
Tukey’s post hoc modification.
Source data are available online for this figure.

▸Figure 4. Disrupting the miR-34a/Pdgfra interaction restores myofibroblast abundance and limits hyperoxic damage to the developing alveolar architecture
in mouse lungs.

A Generation of two target site blocker (TSB) locked nucleic acid sequences: TSB1 and TSB2 (in blue), for the disruption of the miR-34a/Pdgfra interaction, indicating
binding sites in the Pdgfra 30-UTR, Kit 30-UTR, and the Sirt1 30-UTR (in black), alongside the miR-34a sequence (in red). The miR-34a seed sequence, and the seed-
sequence binding site in the target mRNA 30-UTR are indicated in bold, and brown, respectively.

B Evaluation of the specificity of TSB1 and TSB2 in MLg cells using scrambled miR (SCR) and miR-34a (MIM34a) mimics, and probing for PDGFRa and c-Kit as TSB-
dependent and TSB-independent target readouts, respectively. Protein loading equivalence was controlled by bactin levels. Note: PDGFRa, bactin, and c-Kit were all
probed on the same membrane; hence, a single bactin immunoblot is presented. Data are representative of three experiments.

C Evaluation of the specificity of TSB1 and TSB2 in MLg cells using scrambled miR (SCR) and miR-34a (MIM34a) mimics, and probing for PDGFRa and SIRT1 as TSB-
dependent and TSB-independent target readouts, respectively. Protein loading equivalence was controlled by bactin levels. Note: PDGFRa, bactin, and SIRT1 were all
probed on the same membrane; hence, a single bactin immunoblot is presented. Data are representative of three experiments.

D Qualitative analysis of lung structure in Richardson-stained plastic-embedded lung sections from wild-type mouse pups at post-natal day (P)14, treated with either
scrambled target site blocker (SCR) or a cocktail of both target site blockers (TSB1 and TSB2) during normal (21% O2) and aberrant (85% O2) alveolarization (scale bar,
50 lm). Data are representative of three or more experiments.

E Quantification of total number of alveoli by design-based stereology in wild-type mouse pups at P14, treated with scrambled target site blocker (SCR) or the TSB1,2
cocktail during aberrant alveolarization (n = 5 animals for each group).

F Quantification of mean septal thickness by design-based stereology in wild-type mouse pups at P14, treated with scrambled target site blocker (SCR) or the TSB1,2
cocktail during aberrant alveolarization (n = 5 animals for each group).

G Quantitative analysis of PDGFRa+ cells by flow cytometry, in lungs from wild-type mouse pups at P5, treated with scrambled target site blocker (SCR) or the TSB1,2
cocktail during aberrant alveolarization (n = 5 animals for each group).

H Quantitative analysis of PDGFRa+/aSMA+ cells by flow cytometry, in lungs from wild-type mouse pups at P5, treated with scrambled target site blocker (SCR) or the
TSB1,2 cocktail during aberrant alveolarization (n = 5 animals for each group).

Data information: Data represent mean � SD. P values were calculated by unpaired Student’s t-test.
Source data are available online for this figure.
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described in Appendix Fig S9A,B), revealed that the abundance of

both PDGFRa+ cells (Fig 5F; Appendix Fig S10A) and PDGFRa+/

aSMA+ myofibroblasts (Fig 5G; Appendix Fig S10B), both of which

were depleted by hyperoxia, was partially restored by antimiR-34a.

However, the abundance of aSMA+ cells per se was not changed

(Appendix Fig S9C and D). These data imply that antimiR-34a

partially restored myofibroblast numbers in injured, developing lungs

(schematically presented in Fig 5H). Consistent with this idea,

increased elastin foci and improved elastin fiber organization were

noted in antimiR-34a-treated mice (Appendix Fig S11).

To further explore the role of hyperoxia and miR-34a on

PDGFRa+ cell abundance, apoptosis was assessed in PDGFRa+ cells

from hyperoxia-treated mouse pups by flow cytometry (Appendix Fig

S12A), where increased apoptosis of PDGFRa+ cells was noted at P5
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(Appendix Fig S12B), but not at P14 (Appendix Fig S12C). Further-

more, the density of PDGFRa on PDGFRa+ cells was reduced by

hyperoxia (Appendix Fig S12D), suggesting abundance of PDGFRa in

PDGFRa+ cells from mouse lungs exposed to hyperoxia (proposed

here to be attributable to increased miR-34a levels within those cells).

Flow cytometry did not permit an S-phase analysis of cell prolifera-

tion due to too few cells per run, as evident in the histogram in

Appendix Fig S13, which has insufficiently developed G0/G1 and

G2/M peaks. However, immunofluorescence staining of lung cryosec-

tions of P5 mice (Fig 6) revealed fewer proliferating PDGFRa+ cells

in the lungs of hyperoxia-exposed mice at P5 versus normoxia-

exposed mice. Together, these data indicate that hyperoxia does

reduce PDGFRa+ cell abundance and proliferation in vivo in mice. In

vitro, primary mouse lung fibroblasts exhibited reduced PDGFRa
levels after hyperoxia exposure (Appendix Fig S14A), and increased

miR-34a levels after application of a miR-34a mimic (Appendix Fig

S14B), consistent with what was noted in MLg cells in vitro (Fig 3E).

A miR-34a mimic had a moderate impact on baseline proliferation

(Appendix Fig S14C) and no impact on baseline apoptosis

(Appendix Fig S14D) in primary mouse lung fibroblasts in vitro.

Collectively, these data indicate that hyperoxia can decrease

proliferation (Fig 6B) and increase apoptosis (Appendix Fig S12B

and C) of PDGFRa+ cells in vivo in developing mouse lungs. Addi-

tionally, hyperoxia drives increased levels of miR-34a in PDGFRa+

cells that are resident in the developing mouse lung (Fig 3F), which

in turn decreases the abundance of PDGFRa in affected cells

(Appendix Fig S12D; ostensibly, PDGFRa+ myofibroblasts in the

developing septa). We propose that this results in defective elastin

production and remodeling (one of the functions of myofibroblasts

during alveolarization), which in turn impairs secondary septation,

leading to alveolar simplification characteristic of BPD (Fig 5H). By

neutralizing miR-34a (Fig 5) or disrupting the miR-34a/Pdgfra inter-

action (Fig 4), the abundance of PDGFRa+ myofibroblasts was

partially restored, leading to partial correction of this alveolarization

defect. This is noteworthy given the recent first-in-man report using

an antimiR to manage hepatitis C infection, by targeting miR-122

(Janssen et al, 2013). We further propose that interventions to block

miR-34a function or the miR-34a/Pdgfra interaction are candidates

for translational development.

A role for miR-34a in septal thickening as well?

BPD is also characterized by septal thickening (Jobe, 2016). As a

secondary observation in this study, we demonstrate here that miR-

34a/b/c impacted septal thinning during alveolarization. Thickened

septa arose in this model from multicellular stacking of cells, which

revert to the normally observed single cell layer after antimiR-34a

treatment (Fig 7). Almost all septal cells stained for aquaporin 5

(Aqp5), a type I pneumocyte marker—a cell type that exhibits

tremendous plasticity during alveologenesis (Yang et al, 2016)—in

both thickened and restored (thinner) septa (Fig 7). In the back-

ground of hyperoxia, antimiR-34a treatment did not impact the

number or apoptosis (Appendix Fig S15A–G) of type I pneumocytes;

or whole-lung gene expression assessed by mRNA microarray at P5

and P14 (Appendix Table S6; GEO accession number GSE89730;

validated in Appendix Fig S16). Thus, antimiR-34a most likely

affected gene expression in a rare cell population, such as PDGFRa+

myofibroblasts, and not broadly throughout the alveolar epithelium,

composed largely of type I pneumocytes. We suggest that changes

in septal complexity arose not from loss or gain of epithelial cells,

but rather from the spatial organization of the type I pneumocytes,

that is directed by PDGFRa+ myofibroblasts. This may be related to

the production of extracellular matrix (ECM) by PDGFRa+

myofibroblasts, where perhaps ECM laid down and remodeled

during alveologenesis provides migration cues to epithelial cells

organize themselves within the newly-generated septa. Such cues

might possibly include receptor-mediated interactions between the

epithelial cells and the ECM, or matrikine gradients, the latter

having been recently implicated in epithelial remodeling in asthma

(Patel et al, 2018). This general idea is consistent with the observa-

tion that PDGFRa+ lung fibroblasts decline in number during septal

thinning (McGowan & McCoy, 2011) and is in-line with current

thinking that epithelial–mesenchymal interactions drive lung devel-

opment (Hogan et al, 2014).

To date, pivotal roles for microRNA processing by Dicer (Harris

et al, 2006) and Argonaute (Lü et al, 2005) in lung branching

suggested microRNA control of early (embryonic) lung development

(Metzger et al, 2008), where functional roles for the miR-17 family

have been demonstrated (Carraro et al, 2014). In contrast, in late

◀ Figure 5. Antagonizing miR-34a function partially restores proper lung alveolarization.

A Schematic illustration of the antimiR administration protocol.
B Quantitative RT–PCR detection of miR-34a-5p levels in wild-type mouse pups at post-natal day (P)14 that had been treated either with a scrambled antimiR (S), or

antimiR-34a (A34a), during normal (21% O2) and aberrant (85% O2) alveolarization (n = 4 animals for each group).
C Qualitative analysis of lung structure in Richardson-stained plastic-embedded lung sections from wild-type mouse pups at post-natal day (P)14, treated with either

scrambled antimiR (S), or antimiR-34a (A34a), during normal and aberrant alveolarization (scale bar, 50 lm). Data are representative of three or more experiments.
D Quantification of total number of alveoli by design-based stereology in wild-type mouse pups at post-natal day (P)14, treated with either scrambled antimiR (S), or

antimiR-34a (A34a), during normal and aberrant lung alveolarization (n = 5 animals for each group).
E Quantification of mean septal thickness by design-based stereology in wild-type mouse pups at post-natal day (P)14, treated with either scrambled antimiR (S), or

antimiR-34a (A34a), during normal and aberrant alveolarization (n = 5 animals for each group).
F Quantitative analysis of PDGFRa+ cells by flow cytometry, in lungs from wild-type mouse pups at P5, treated with either scrambled antimiR (S), or antimiR-34a

(A34a), during normal and aberrant alveolarization (n = 5 animals for each group).
G Quantitative analysis of PDGFRa+/aSMA+ cells by flow cytometry, in lungs from wild-type mouse pups at P5, treated with either scrambled antimiR (S), or antimiR-

34a (A34a), during normal and aberrant alveolarization (n = 5 animals for each group).
H Schematic illustration of the role and translational scope of the miR-34a/Pdgfra interaction during arrested lung alveolarization. Hyperoxia drives miR-34a expression

in myofibroblasts, downregulating PDGFRa expression and reducing PDGFRa+ cell abundance, causing the perturbed elastin fiber production and blunted
alveolarization seen in bronchopulmonary dysplasia (BPD). The effects of hyperoxia are attenuated when miR-34a function is blocked with an antimiR (A34a) or
when the miR-34a/Pdgfra interaction is disturbed with a target site blocker (TSB).

Data information: Data represent mean � SD. P values were calculated by one-way ANOVA with Tukey’s post hoc modification.
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Figure 6. Assessment of proliferation status of PDGFRa+ cells in developing mouse lungs.

A Mice expressing nuclear-localized GFP under the control of the Pdgfra promoter were maintained under normoxic (21% O2) or hyperoxic (85% O2) conditions, and
lungs were harvested, processed, and immunostained for Ki67 to determine proliferation status. DAPI staining revealed nuclei of all cells present in the section. Low-
magnification images from individual channels are presented to the right of the merged (large) image first row of images. The area demarcated by the white box in
the merge image of the first row is magnified in the second and third rows to allow for visualization of greater magnification of the demarcated region of the merged
image, as well as visualization of a single Ki67+, GFP+ cell (white arrowhead) in all three channels separately. Scale bar: 100 lm.

B The number of PDGFRa+ cells in four microscopic fields was assessed for co-staining with an anti-Ki67 antibody to reveal proliferating cells. P values were calculated
by unpaired Student’s t-test (n = 4 fields for each group, trends are representative of those observed in two other experiments). Data represent mean � SD.

C The Ki67 staining and GFP fluorescence was controlled for by examining lungs from wild-type mice that were treated with an isotype-matched control IgG used for
the Ki67 staining experiments. Sections were examined for GFP fluorescence as well as in the red channel used to detect the Ki67 staining. Scale bar: 100 lm. DAPI,
40 ,6-diamidino-2-phenylindole; GFP, green fluorescent protein.
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lung development, which is relevant to BPD, several microRNA

candidates have been proposed as pathogenic players, including

miR-150 (Narasaraju et al, 2015), miR-489 (Olave et al, 2016), miR-

29b (Durrani-Kolarik et al, 2017), the miR-19/72 cluster (Rogers

et al, 2015; Robbins et al, 2016), and epithelial miR-34a (Syed et al,

2017), but transgenic mouse studies have only validated a causal

role for epithelial miR-34a (most likely by targeting angiopoietin) in

arrested alveolarization, where miR-34a levels were also docu-

mented to be elevated in the lungs of BPD patients (Syed et al,

2017). Ours is the first report of a causal role being validated for any

microRNA/mRNA target interaction in aberrant lung alveolariza-

tion, as well as the first-in-mouse use of a TSB in vivo in an animal
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Figure 7. The primary cell type in the normally and aberrantly developing septa are type I alveolar epithelial cells.

The impact of administration of scrambled antimiR (S) or an antimiR directed against miR-34a (A34a) on the abundance of type I alveolar epithelial cells (marked by
aquaporin 5, Aqp5) and type II alveolar epithelial cells (marked by pro-surfactant protein C, Sftpc) was assessed in 3-lm sections of paraffin-embedded lung tissue from P5
mice undergoing normal (21% O2) or aberrant (85% O2) lung alveolarization. DAPI, 40 ,6-diamidino-2-phenylindole. In the DAPI images, white lines delineate tissue from
airspaces, and in the 85% O2 groups demarcate septa. Antibody specificity was validated by rabbit IgG isotype control primary antibodies. The control experiments for the
Aqp5 and Sftpc staining runs are illustrated here. Scale bars, 50 lm.
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model of human disease. Notably, translation of these findings into

the use of antimiR treatment of mice in the BPD model documented

marked benefit in this preclinical model. We, therefore, highlight a

potentially druggable pathway to manage arrested alveolarization

following preterm birth.

Materials and Methods

Regulatory authority compliance and legal approvals

Animal experiments reported in this study were approved by the

Regierungspräsidium Darmstadt, under approval numbers B2/277,

B2/1002, and B2/1060.

Mice

Wild-typeMus musculus C57Bl/6J mice were obtained from The Jack-

son Laboratory. The generation and characterization of a tamoxifen-

inducible Pdgfra-Cre driver mouse strain [Tg(Pdgfra-cre/ERT2)1Wdr;

MGI:3832569] referred to herein as Pdgfra-CreERT2, on a C57BL/6J

background has been described previously (Rivers et al, 2008; Ntokou

et al, 2015). A lacZ-tagged miR-34a gene-trap strain (Mir34atm1.1Lhe;

MGI:5308792) (Choi et al, 2011), herein referred to as miR-34a::lacZ

or miR-34a�/� (on a C57BL/6J background) was always employed in

the homozygous state and was used interchangeably as a miR-34a

global knockout and a miR-34 lacZ reporter, was obtained from the

Jackson Laboratory. A miR-34bc global knockout strain (Mir-

c21tm1.1Lhe; MGI:5308794) (Concepcion et al, 2012) on a C57BL/6J

background was always employed in a homozygous state, is referred

to herein as miR-34bc�/�, and was obtained from the Jackson Labora-

tory. A mouse strain expressing a human histone 2B-enhanced green

fluorescent protein fusion protein under the control of the Pdgfra

promoter (B6.129S4-Pdgfratm11(EGFP)Sor/J; MGI:3766768) (Hamilton

et al, 2003) was obtained from the Jackson Laboratory, and was

always employed in the heterozygous state, and allowed the detection

of Pdgfra-expressing cells through nuclear-localized GFP fluorescence.

A strain carrying a floxed miR-34a allele (Mir34atm1.2Aven; MGI:

5320795) (Concepcion et al, 2012) on a C57BL/6J background was

always employed in the homozygous state, is referred to herein as

miR-34afl/fl, and was obtained from the Jackson laboratory. A condi-

tional, inducible deletion-ready strain, where administration of tamox-

ifen can abrogate miR-34a expression exclusively in Pdgfra-expressing

cells (denoted miR-34aiDPC/iDPC), was created by crossing the Pdgfra-

CreERT2 driver strain with a miR-34afl/fl strain. This strain was always

employed on a C57BL/6J background with the Pdgfra-CreERT2 allele

in the heterozygous state, and the floxed miR-34a allele in the

homozygous state. Studies employing the miR-34aiDPC/iDPC strain were

controlled for with a strain heterozygous for Pdgfra-CreERT2 but carry-

ing two wild-type miR-34a alleles. For induction of tamoxifen-respon-

sive genes, a protocol has been developed and validated that allows

for the tamoxifen treatment of newborn pups under hyperoxic condi-

tions, where tamoxifen is poorly tolerated (Ruiz-Camp et al, 2017):

Newborn pups received a single intraperitoneal injection on the day of

birth [post-natal day(P)1)] of 0.2 mg tamoxifen/pup in 10 ll Miglyol

812. All mice were maintained on a 1320 formula maintenance diet

for rats and mice (Altromin), available ad libitum together with drink-

ing water, with as 12 h:12 h day/night cycle.

The hyperoxia-based mouse model of
bronchopulmonary dysplasia

Bronchopulmonary dysplasia was modeled in mice in a protocol

well established in our laboratory (Nardiello et al, 2017b) where

newborn mouse pups, randomized to litters of equal numbers of

pups per nursing dam, are exposed to 85% O2 from P1 to P14, while

control mouse pups with normal lung development are exposed in

parallel to 21% O2. In the case of tamoxifen-induced gene expres-

sion where mice received tamoxifen on P1, hyperoxia exposure was

initiated on P2. Both male and female animals were used, since no

sex bias has been noted in studies on perturbations to lung develop-

ment of C57Bl/6J mice in response to hyperoxia (Nardiello et al,

2017b). Nursing dams were rotated between normoxia and hyper-

oxia at 24-h intervals, to limit oxygen toxicity. At either P3 (prior to

bulk lung alveolarization), at P5 (the peak period of bulk lung alve-

olarization), or at P14 (after completing of the bulk alveolarization

phase), mice were killed by pentobarbital overdose (500 mg/kg,

intraperitoneal) and lungs were removed en bloc for further analy-

sis. The investigators were not blinded to group allocation, but were

blinded to outcome assessment.

Microarray analyses

For an unbiased analysis of microRNA expression over the course of

normal and aberrant lung development, microRNA was isolated

with a miRNeasy Mini kit (Qiagen), and microRNA expression was

assessed using an Agilent-035430 mouse miRNA array platform

(miRBase release 17 miRNA ID version; Mouse_8x60K-v17). For an

unbiased analysis of mRNA expression over the course of normal

and aberrant lung development after antimiR administration, mRNA

was isolated with a peqGOLD total RNA kit (Peqlab), and mRNA

expression was assessed using an Agilent-028005 SurePrint G3

Mouse GE 8 × 60K Microarray platform. Microarray analyses were

undertaken by IMGM Laboratories (Munich).

Gene and protein expression analysis

Changes in gene expression were assessed by SYBR green-based real-

time RT–PCR (using Rnu6 and Polr2a as a reference for microRNA

and mRNA, respectively) as described previously, after miRNA isola-

tion with a miRNeasy Mini kit (Qiagen) (Hönig et al, 2018) or mRNA

isolation with a peqGOLD total RNA kit (Peqlab) (Alejandre-Alcázar

et al, 2007). For microRNA analysis, primer mixtures were purchased

from Qiagen: miR-34a-3p (MS00025697), miR-34a-5p (MS00001428),

miR-34b-3p (MS00011900), miR-34b-5p (MS00007910), miR-34c-3p

(MS00011907), and miR-34c-5p (MS00001442). The primers used

for RT–PCR and genotyping PCR analyses are described in

Appendix Tables S7 and S8, respectively. The real-time RT–PCR data

are presented as the difference in cycle threshold (CT), DCT, which

reflects the CT(reference gene)–CT(gene of interest). Changes in protein

expression were assessed by immunoblot (using bactin or GAPDH

to demonstrate loading equivalence), after protein isolation from

lung tissue in a Precellys 24-Dual homogenizer (Peqlab) as

described previously (Mi�zı́ková et al, 2015), or protein isolation of

cultured cells in Nonidet P-40-containing lysis buffer, as described

previously (Madurga et al, 2014). The primary antibodies used for

immunoblotting are described in Appendix Table S9, and blots
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were developed either with a donkey anti-goat HRP-conjugated

(Santa Cruz, sc-2020; 1:2,500) or goat anti-rabbit (Thermofisher,

31460; 1:3,000) secondary antibody.

Stereological analysis of lung structure

Lung structure was assessed by design-based stereology with

systemic uniform random sampling, on mouse lungs that were pres-

sure fixed at 20 cm H2O, and treated with arsenic, osmium and

uranium, and embedded in plastic (Technovit 7100) resin, sectioned

at 2 lm, stained with Richardson’s stain, and image captured in a

Nanozoomer-XR C12000 (Hamamatsu), exactly as described previ-

ously (Madurga et al, 2014; Mi�zı́ková et al, 2015; Nardiello et al,

2017b). Lung volume was determined by the Cavalieri principle

(Madurga et al, 2014). Stereological analyses were undertaken using

the NewCast PLUS version VIS4.5.3. computer-assisted stereology

system (Visiopharm) and facilitated the determination of inter alia

total number of alveoli in the lung, the mean septal thickness, and

total gas-exchange surface area.

In situ b-galactosidase activity detection

Cryosections (10 lm) from developing mouse lungs attached to

glass microscope slides were fixed in 0.5% (m/v) glutaraldehyde in

PBS (10 min, 4°C), washed (by immersion in 1 mM MgCl2 in PBS,

2 × 15 min, RT), and pre-incubated in 5-bromo-4-chloro-3-indolyl-

b-D-galactopyranoside (X-Gal) buffer [5 mM potassium ferrocyanide

(II), 5 mM potassium ferricyanide (III), 1 mM MgCl2 in PBS, pH 7.0;

10 s, RT] followed by incubation overnight with 1 mg/ml X-Gal in

X-Gal buffer at 37°C in the dark. Slides were then washed with

1 mM MgCl2 in PBS (15 min, RT), followed by fixation in 4% (m/v)

paraformaldehyde in PBS (4 min); and dehydrated in a graduated

ethanol series [100% (v/v), 96% (v/v), 70% (v/v); 5 min each,

RT], washed by immersion in PBS (5 min, RT), followed by eosin

counterstaining 1% (m/v) in dH2O:ethanol 20:80 (30 s, RT). Slides

were washed by immersion in dH2O (2 s, RT) and mounted with

PERTEX (Histolab). Sections were examined using a Leica DM6000B

light microscope (Leica).

Cell isolation and cell culture

Primary mouse lung fibroblasts were isolated from C57Bl/6J mice.

Briefly, lungs were instilled with approximately 500 ll of preheated
(37°C) collagenase type I (2 mg/ml; Sigma-Aldrich), and subse-

quently excised en bloc from adult female C57BL/6J mice that were

killed by isoflurane inhalation. Lungs were placed in 50-ml Falcon

tubes containing 25 ml of preheated (37°C) collagenase type I and

incubated on a Unimax1010 orbital rotator with gentle agitation at

70 r.p.m, for 1 h at 37°C. Lungs were minced with sterile scissors,

and the tissue suspension was dispersed by repeated gentle passage

through a 20G syringe needle. The cell suspension was then passed

through a 40-lm filter into a new 50-ml Falcon tube. The cell

suspension was centrifuged at 120 × g for 8 min at 4°C. The super-

natant was discarded, and the cell pellet was resuspended in 5 ml of

pre-warmed (37°C) high-glucose DMEM containing 10% (v/v)

FCS, 100 U/ml penicillin (ThermoFisher), 100 lg/ml streptomycin

(ThermoFisher), and seeded into a T-75 cell culture flask (1 flask

per lung) and passaged in low-glucose DMEM containing 10%

(v/v) FCS, 100 U/ml penicillin (ThermoFisher), 100 lg/ml strepto-

mycin (ThermoFisher). Primary mouse lung fibroblasts were

employed throughout this study, with the exception of in vitro

hyperoxia exposure and when Lipofectamine� 2000 was used as

transfection reagent. In the latter two cases, the MLg mouse lung

fibroblast cell line (ATCC� CCL-206TM) was employed, and was

obtained from the American Type Culture Collection, and main-

tained in EMEM supplemented with 10% (v/v) FBS. Cultures of

primary cells and cell lines were routinely (monthly) screened for

mycoplasma contamination.

MicroRNA mimic, antimiR, and target site blocker interventions
in vitro and in vivo

A synthetic scrambled miR mimic and a miR-34a mimic (catalog

numbers SI03650318 and MSY0000542, respectively; Qiagen) were

transfected into primary mouse lung fibroblasts with HiPerFect (Qia-

gen) or MLg cells with Lipofectamine� 2000 or 3000, as per manu-

facturer’s instructions. Locked nucleic acid (LNA) oligonucleotides

(purchased from Exiqon) included a scrambled (inert) sequence (50-
ACGTCTATACGCCCA-30); an antimiR directed against miR-34a (50-
AGCTAAGACACTGCC-30) and miRCURY LNATM microRNA Target

Site Blockers (herein referred to as target site blockers) directed to

target the interaction between the two miR-34a binding sites in the

mouse Pdgfra 30-UTR and miR-34a: 50-TTGGCAGTATTCTCCA-30

(TSB1) and 50-AGGCAGTGATACAGCT-30 (TSB2) (see Fig 3A). In

vitro, synthetic oligonucleotides were transfected into MLg cells with

Lipofectamine� 2000. When combined, synthetic microRNA mimics

and LNA target site blockers were applied together as a cocktail, at

a final cumulative concentration of 160 nM (Fig 4B). In vivo, both

target site blockers (applied as a cocktail of a 1:1 mixture of TSB1

and TSB2) and a scrambled or miR-34a-specific antimiR were all

applied by intraperitoneal injection at a dose of 10 mg/kg at P1 and

P3, in ddH2O.

Flow cytometry and FACS

All flow cytometry protocols and gating strategies are indicated in

the relevant supplementary figures in the Appendix. Antibody

conjugates, dilutions, and commercial sources are detailed in

Appendix Table S9. Flow cytometry was performed to estimate

apoptosis (by annexin V staining) and to quantify cell populations

in developing mouse lungs, using the antibodies listed in

Appendix Table S9. Flow cytometry and FACS were performed with

an LSR Fortressa or an FACSAria III cell sorter, respectively, oper-

ated with DIVA software (BD Bioscience). Single-cell suspensions

were prepared from mouse pup lungs by instilling approximately

300 ll of Dispase (50 U/ml; BD Bioscience) followed by incubation

for 30 min at 37°C. Lungs were dissociated in a gentleMACSTM

Dissociator (Miltenyi) in 5 ml (per lung) DMEM supplemented with

10% (v/v) FCS, 100 U/ml penicillin (ThermoFisher), 100 lg/ml

streptomycin (ThermoFisher), and 320 U/ml bovine pancreatic

DNAse 1 (Serva). To remove cell debris and blood clots, whole-lung

cell suspensions were filtered through 100 lm and 40-lm filters.

After centrifugation at 266 × g for 10 min at 4°C, cell pellets were

resuspended in Flow Cytometry Staining Buffer (eBioscience; 00-

4222-26), blocked with 1:100 Mouse BD Fc BlockTM (BD Bios-

ciences), and incubated with the appropriate primary antibodies or
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isotype controls diluted in Flow Cytometry Staining Buffer for

20 min at 4°C in the dark. After washing with Flow Cytometry

Staining Buffer, whole-lung cell suspensions were incubated with

secondary antibodies diluted in Flow Cytometry Staining Buffer for

20 min at 4°C in the dark. In the case of intracellular staining for

myofibroblasts, cells were fixed in 0.15% (m/v) paraformaldehyde

in PBS for 10 min at 4°C and permeabilized with 0.2% (m/v)

saponin (Calbiochem) diluted in PBS for 15 min at 4°C prior to

addition of antibodies. For assessment of epithelial cell apoptosis,

stainings were carried out on fresh non-permeabilized cells, where

cells were washed and resuspended in annexin V buffer (BD Bios-

ciences) prior to annexin V-Alexa Fluor 647 conjugate (Thermo-

Fisher A23204; 1:100) incubation in annexin V buffer for 20 min at

4°C in the dark. Where a fluorophore-conjugated secondary anti-

body was not employed, cells that had been labeled with an

unconjugated primary antibody were treated with a biotin-conju-

gated secondary antibody, followed by a Streptavidin-phycoery-

thrin conjugate (Biolegend 405204; 1:300). For S-phase analysis,

live-cell determinations were made by incubation of cell suspen-

sions Hoechst 33342 (Sigma B2261, 5 lg/ml) in PBS for 45 min at

37°C in the dark. For assessment of PDGFRa+ cell apoptosis, live

cell single-cell suspensions were prepared as described above, up

to and including the step employing Mouse BD Fc BlockTM, after

apoptosis was detected in cell suspensions with an Annexin V kit

(Biolegend, 640906).

For isolation of PDGFRa+ cells by cell sorting, the anti-PDGFRa-
APC conjugate was coupled to microbeads using 30 ll of anti-APC
MicroBeads (Miltenyi 130-097-143) for 20 min at 4°C in the dark,

and separated in a AutoMacs separator (Miltenyi) prior to cell sort-

ing. The RNAqueous-Micro kit (Thermo Fisher) was employed to

isolate mRNA from PDGFRa+ cells, which are present in low

number. To exclude dead cells and debris, 1 ll of 5 mg/ml DAPI or

5 ll of 50 lg/ml 7-ADD (Biolegend) was pipetted into the whole-

lung cell suspensions just before the cell analysis.

Histochemistry and immunofluorescence

Histochemical staining for elastin was undertaken on 3-lm sections

from P14 mice, exactly as described previously (Mi�zı́ková et al,

2015). Immunofluorescence analysis of aquaporin 5 (for type I alve-

olar epithelial cells), pro-SP-C (for type II alveolar epithelial cells),

and 40,6-diamidino-2-phenylindole (DAPI; to detect cell nuclei)

staining was undertaken as described previously (Ntokou et al,

2015), using the primary antibodies listed in Appendix Table S9,

and Alexa Fluor 647-conjugated goat anti-rabbit IgG (Thermofisher,

A21245; 1:500) secondary antibody. Briefly, prior to antibody appli-

cation, paraffin-embedded sections mounted on glass slides were

dehydrated by immersion in Roti�-histol (Roth) (3 × 10 min),

followed by a graduated alcohol series [100% (m/v) ethanol for

2 × 5 min; 96% (m/v) ethanol for 1 × 5 min; 70% (m/v) ethanol

for 1 × 5 min; PBS for 3 × 5 min], after which antigen retrieval was

performed with 10 mM citrate buffer, pH 6, containing 0.05% (v/v)

Tween-20, by boiling for 10 min followed by cooling at room

temperature over 30 min. Sections were washed (2 × 5 min) in

PBS, followed by blocking in 50% (v/v) goat serum in primary anti-

body buffer [0.5% (v/v) Triton X-100, 0.1% (m/v) bovine serum

albumin in PBS]. Primary and secondary antibodies were applied in

primary antibody buffer, overnight (at 4°C) or for 1 h (at RT),

respectively. Prior to mounting in Mowiol� 4-88 (Sigma), sections

were incubated with 0.005 mg/ml DAPI for 10 min at RT. Images

were captured in Z-stacks using a LSM-710 confocal microscope

(Zeiss).

For the assessment of cell proliferation by immunofluorescence,

cryosections were prepared from P5 mouse lungs, where lungs were

exposed by midline thoracotomy, perfused transcardially with 1×

PBS, and inflated with 1:1 PBS: Tissue-Tek� O.C.T. (Sakura, 4583),

removed en bloc from the thorax, and frozen at �20°C. Frozen

tissue was sectioned at 10 lm with a cryostat; sections were

mounted on glass slides and stored at �20°C before fixation. Frozen

sections were fixed with cold (�20°C) 4% (m/v) paraformaldehyde

(15 min, room temperature) and blocked with normal goat serum

diluted 1:1 with 3% (m/v) BSA dissolved in 1× PBS containing

0.3% (v/v) Triton X-100 (1 h at room temperature). Sections were

permeabilized with 1% (m/v) saponin in 1× PBS (20 min at room

temperature). Ki67 was detected using an anti-Ki67 primary anti-

body (Appendix Table S9), and an Alexa Fluor 647-conjugated goat

anti-rat (Invitrogen, A21247; 1:500) secondary antibody followed by

incubation in 40,6-diamidino-2-phenylindole (DAPI; 1:1,000 dilution

of a 1 mg/ml stock solution in PBS). Z-stack images of the sections

were acquired using a Zeiss LSM710 Laser Scanning Confocal

Microscope. For enumeration of Ki67+ cells, the number of Ki67+

cells and GFP+ cells was assessed in a total of 500 DAPI+ cells, per

microscopic field; and four fields were assessed per experimental

condition.

Assessment of apoptosis and cell proliferation in vitro

Primary mouse lung fibroblasts were seeded at 4,000 cells (in

100 ll) per well of a 96-well tissue culture plate (Greiner, 655180,

for proliferation; Greiner, 655098, for apoptosis), incubated over-

night, and starved in serum-free OptimMEM (Gibco, 31985-062) for

1 h.

For assessment of proliferation, cells were transfected either with

a scrambled microRNA mimic or a miR-34a-5p mimic (80 nM final

concentration, as described above), and proliferation was monitored

by BrdU incorporation using a colorimetric Cell Proliferation ELISA

kit (Roche, 11647229001) after a 1-h serum starvation period in

DMEM GlutaMAX (Gibco, 21885-025), followed by 24 h in DMEM

GlutaMAX supplemented with 10% (v/v) FCS and 1% Penicillin-

Streptomycin solution. Signal was allowed to develop over

5–30 min, as was read in an Infinite M200 Pro spectrophotometer

(Tecan).

For assessment of apoptosis, cells were transfected with a scram-

bled microRNA mimic or a miR-34a-5p mimic as described for

proliferation, above, and caspase 3 and caspase 7 activity was

detected as a surrogate for apoptosis, using a Caspase-Glo� 3/7

Assay System (Promega, G8091) after 24 h. For a positive control,

medium was supplemented with staurosporine (Cayman Chemical,

62996-74-1; 0.5 lM) for the last 6 h of the 24-h period. Lumines-

cence was determined for 60 min, in an Infinite M200 Pro lumi-

nometer (Tecan).

Power and statistical analyses

A prospective power analysis was undertaken for all animal studies,

to assess the sample size required. Samples sizes were calculated
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using G*Power 3.1.9.2 (Faul et al, 2007). For changes in microRNA

and mRNA expression assessed by real-time RT–PCR in mouse lung

homogenates, a DCt of |0.5| was considered relevant, resulting in an

effect size of d = 2.70 (using miR-34a-5p expression as reference

values), where d is Cohen’s effect size, and using a = 0.5 (where a
is the Type I error), and a power (1-b) of 0.8, where b is the type II

error; required a sample size of n = 4 animals per group. For cells

sorted by FACS from mouse lungs and processed for microRNA or

mRNA analyses, where a pronounced change in gene expression

was anticipated, a DCt of |1.0| was considered relevant, resulting in

an effect size of d = 2.79 (using miR-34a-5p levels in FACS-sorted

PDGFRa+ cells as reference values), and using a = 0.5 and a power

(1-b) of 0.8, required a sample size of n = 4 animals per group. For

changes in rare cell populations in single-cell suspensions from

whole lungs of mice, assessed by flow cytometry, a doubling of the

cell population (100% increase) was considered relevant, resulting

in an effect size of d = 2.88 (using PDGFRa+ cell abundance in

whole-lung suspensions as reference values), and using a = 0.5 and

a power (1-b) of 0.8, required a sample size of n = 4 animals per

group. Assessment of lung structure included two parameters (total

number of alveoli in the lung and mean septal thickness), both

assessed by design-based stereology in the same lungs from the

same animals. For assessment of total number of alveoli, a 50%

increase in the total number of alveoli was considered relevant,

resulting in an effect size of d = 4.13 (using the hyperoxia-treated

wild-type mouse lungs as reference values), and using a = 0.5 and a

power (1-b) of 0.8, required a sample size of n = 3 animals per

group. For assessment of mean septal thickness, an increase of

2 lm in mean septal thickness was considered relevant, resulting in

an effect size of d = 11.11 (using the hyperoxia-treated wild-type

mouse lungs as reference values), and using a = 0.5 and a power

(1-b) of 0.8, required a sample size of n = 2 animals per group.

Since both the total number of alveoli in the lung and the mean

septal thickness are measured in the same animals, a sample size of

n = 3 animals per group was required, which was extended to four

animals per group, in the event of an outlier arising from technical

issues related to tissue processing during embedding for stereologi-

cal analysis.

Data are presented as mean � SD. Differences between groups

were evaluated by one-way ANOVA with Tukey’s post hoc test for

multiple (more than two) comparisons, while two-group compar-

isons were performed with an unpaired Student’s t-test. All statisti-

cal analyses were performed with GraphPad Prism 6.0. For

microarray studies, a Welch’s approximate t-test was used to deter-

mine P values which were corrected using the algorithm of Benja-

mini and Hochberg, to generate the corrected P-value, P(corr)

(Benjamini & Hochberg, 1995). The presence of statistical outliers

was tested by Grubbs’ test, and no outliers were found. In general,

data sets were too small to test normal distribution, and normality

was assumed.

Data Availability

Microarray data comparing microRNA steady-state levels in lungs of

mouse pups exposed to 21% O2 versus 85% O2 are available at the

GEO database under accession number GSE89666 (https://www.

ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE89666).

Microarray data comparing mRNA steady-state levels in lungs of

antimiR-treated mouse pups exposed hyperoxia are available at the

GEO database under accession number GSE89730 (https://www.

ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE89730).

Expanded View for this article is available online.

Acknowledgements
The authors acknowledge the assistance of Ewa Bieneck (University of Giessen

School of Medicine) with histological preparations, Luciana C. Mazzocchi

(University of Giessen School of Medicine) for expert advice, and Ann Atzberger

(Max Planck Institute for Heart and Lung Research) for expert assistance with

flow cytometry. This study was supported by the Max Planck Society; Rhön

Klinikum AG grant FI_66; University Hospital Giessen and Marburg grant

UKGM62589135; the Federal Ministry of Higher Education, Research and the

Arts of the State of Hessen “LOEWE Programme”, the German Center for Lung

Research (Deutsches Zentrum für Lungenforschung), and by the German

Research Foundation (Deutsche Forschungsgemeinschaft) through Excellence

Cluster EXC147, Collaborative Research Center SFB1213/1 (project A03), Clinical

Research Unit KFO309/1 (projects P2, P5, P6, P8, and Z1), and individual

research grant Mo 1789/1.

Author contributions
JR-C performed transgenic animal, and in vivo target site blocker, mimic,

and antimiR studies. JR-C, EL, and CN performed in vitro hyperoxia, target

site blocker, mimic, and antimiR studies. JR-C, EL, and CN performed the

stereology analyses. JR-C, JQ, FP, and SH performed flow cytometry studies.

EL and ES performed and analyzed the microarray studies and performed

bioinformatics analyses. DESS performed cryosection immunofluorescence

studies. PFA performed selected cell-culture experiments. IM, IV, JAR-C, and

KA assisted with transgenic animal, target site blocker, and antimiR animal

experiments. JR-C, JQ, ES, CN, IV, JAR-C, WDR, KA, SH, WS, and REM

conceived experiments, analyzed data, supervised experiments, and

The paper explained

Problem
Bronchopulmonary dysplasia (BPD) is a common and severe complica-
tion of preterm birth, where the lungs of preterm born infants do not
properly develop. Notably, the formation of the alveoli—the principal
gas-exchange units of the lung—is stunted, which has important
consequences for the long-term respiratory health of BPD survivors.
While oxygen support of infants with acute respiratory failure causes
BPD, the disease mechanisms that underlie the stunted lung develop-
ment are unknown.

Results
Our report identifies the interaction between microRNA-34a and the
mRNA encoding platelet-derived growth factor receptor (PDGFR)a as a
disease-relevant interaction in stunted lung developed associated with
BPD that was experimentally modeled in mice. Our report also docu-
ments that this interaction is “druggable”, and can be manipulated
in vivo to protect the development of alveoli from the damaging
effects of oxygen support.

Impact
Our report highlights a new pathological pathway that can also be
pharmacologically targeted to attenuate experimental disease pathol-
ogy. Targeting this specific microRNA-34a/mRNA interaction may form
the basis of a new approach to the medical management of BPD.
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(i) The American Lung Association (English Language) information page on

bronchopulmonary dysplasia: https://www.lung.org/lung-health-and-

diseases/lung-disease-lookup/bronchopulmonary-dysplasia/

(ii) The British Lung Foundation (English Language) information page on

bronchopulmonary dysplasia: https://www.blf.org.uk/support-for-you/

support-for-you/bronchopulmonary-dysplasia-bpd/what-is-it

(iii) The KidsHealth patient (English Language) information page for parents

of infants with bronchopulmonary dysplasia: https://kidshealth.org/en/pa

rents/bpd.html

(iv) The (German Language) information page of the Federal Association

“The Preterm Infant”: https://www.fruehgeborene.de/

(v) The microRNA database: http://www.mirbase.org/

(vi) The Mouse Genome Informatics international database resource for the

laboratory mouse: http://www.informatics.jax.org/

(vii) GenBank human miR-34a entry: https://www.ncbi.nlm.nih.gov/gene/

407040

(viii) Genbank mouse miR-34a entry : https://www.ncbi.nlm.nih.gov/gene/

723848
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