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A B S T R A C T

Aims: The chemokine stromal derived factor-1α (SDF-1α) is known to protect the heart acutely from ischaemia-
reperfusion injury via its cognate receptor, CXCR4. However, the timing and cellular location of this effect,
remains controversial.
Methods and results: Wild type male and female mice were subjected to 40min LAD territory ischaemia in vivo
and injected with either saline (control) or SDF-1α prior to 2 h reperfusion. Infarct size as a proportion of area at
risk was assessed histologically using Evans blue and triphenyltetrazolium chloride. Our results confirm the
cardioprotective effect of exogenous SDF-1α in mouse ischaemia-reperfusion injury and, for the first time, show
protection when SDF-1α is delivered just prior to reperfusion, which has important therapeutic implications. The
role of cell type was examined using the same in vivo ischaemia-reperfusion protocol in cardiomyocyte- and
endothelial-specific CXCR4-null mice, and by Western blot analysis of endothelial cells treated in vitro. These
experiments demonstrated that the acute infarct-sparing effect is mediated by endothelial cells, possibly via the
signalling kinases Erk1/2 and PI3K/Akt. Unexpectedly, cardiomyocyte-specific deletion of CXCR4 was found to
be cardioprotective per se. RNAseq analysis indicated altered expression of the mitochondrial protein co-enzyme
Q10b in these mice.
Conclusions: Administration of SDF-1α is cardioprotective when administered prior to reperfusion and may,
therefore, have clinical utility. SDF-1α-CXCR4-mediated cardioprotection from ischaemia-reperfusion injury is
contingent on the cellular location of CXCR4 activation. Specifically, cardioprotection is mediated by endothelial
signalling, while cardiomyocyte-specific deletion of CXCR4 has an infarct-sparing effect per se.

1. Introduction

Myocardial infarction (MI) is a significant cause or morbidity and
mortality. Early reperfusion by primary percutaneous coronary inter-
vention is the most effective strategy for reducing infarct size and im-
proving clinical outcome after ST-elevation myocardial infarction
(STEMI) [1,2]. This is significant because infarct size in patients is
known to correlate with long-term clinical outcome [3]. However, MI
remains a common cause of heart failure and mortality in such patients
is high [4,5]. Therefore, cardioprotective strategies to further mitigate
the injurious effects of STEMI are paramount. Despite several potential
approaches to cardioprotection having been studied, and positive out-
comes in several clinical trials, no approaches specifically targeting
reperfusion injury are currently used in routine clinical management
[6]. Most of these previously investigated approaches have targeted

cardiac myocytes directly. Novel approaches, such as those targeting
the endothelium, may be more effective, either alone or in combination
[7,8].

Stromal derived factor-1α (SDF-1α/CXCL12) is a CXC chemokine
that is up-regulated in experimental and clinical studies of MI and
regulates chemotaxis of inflammatory and progenitor cells to sites of
myocardial injury, thereby beneficially impacting angiogenesis and
ventricular remodelling [9–13]. It is a ligand for CXCR4, which is itself
upregulated in studies of myocardial infraction and has been used ex-
perimentally to target progenitor cells to sites of ischaemic injury [14].
For this reason, SDF-1α-CXCR4 is of considerable interest in ischaemic
cardiomyopathy and several studies have demonstrated that prolonged
SDF-1α delivery after experimental MI can improve cardiac function
[15–19]. Proposed mechanisms include Gα1 dependent activation of
phosphoinositide 3 kinase (PI3K), mitogen activated protein kinase
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(MAPK), and Janus kinase (JAK)-signal transducer and activator of
transcription (STAT) signalling, which are also implicated in acute
cardioprotection [14].

It is now well established that exogenous SDF-1α confers an acute
infarct sparing effect when added prior to ischaemia in pre-clinical
models [19]. For example, we recently demonstrated that pre-treatment
with exogenous SDF-1α is cardioprotective in both an ex vivo rat pa-
pillary muscle model as well as isolated human atrial trabeculae muscle
[20,21]. However, evidence from mouse models suggests that the
timing and cellular locations of SDF-1α-CXCR4 expression and signal-
ling governs its role in protection against and recovery from MI [19].
Using a model of in vivo ischaemia-reperfusion injury, we aimed to
establish the utility of stimulating SDF-1α-CXCR4 shortly prior to re-
perfusion, which is of greater therapeutic relevance than treating prior
to ischaemia, and to use transgenic mice with CXCR4 deletion restricted
to cardiomyocytes or the endothelium to clarify the cellular location of
CXCR4 relevant to cardioprotection.

2. Methods

2.1. Transgenic mice

All use of animals was in accordance with the United Kingdom
(Scientific Procedures) Act 1986 (PPL 70/7140) and European Directive
2010/63/EU. A breeding pair of floxed CXCR4 transgenic mice, with
insertion of the loxP sites around endogenous CXCR4 exon 2 were
purchased from The Jackson Laboratory [22–25]. As transgenic
homozygote mice lacking CXCR4 die in utero [26], these mice were
crossed with cardiomyocyte-specific MYH6-MerCreMer mice (The
Jackson Laboratory) resulting in a tamoxifen-inducible, cardiomyocyte-
specific CXCR4 null bi-transgenic strain on a C57BL/6J background
(CM-CXCR4). Endothelial cell CXCR4 null mice (EC-CXCR4) were
generated by crossing CXCR4fl/fl transgenic mice with 4-hydro-
xytamoxifen-inducible endothelial-specific platelet-derived growth
factor subunit B (PDGFB)-iCreERT2 mice to generate a tamoxifen-in-
ducible endothelium-specific CXCR4fl/fl bi-transgenic strain. Mice were
bred to obtain hemizygous (Cre/+) mice and wild type (+/+) litter-
mates for experiments. CXCR4 deletion was induced in mice between 4
and 10weeks old by administration of tamoxifen as an intraperitoneal
bolus daily for 5 consecutive days at a dose of 20mg/kg [27–29]. Mice
were left for 3 weeks after completion of tamoxifen dosing prior to
experimentation to ensure loss of CXCR4 protein. Cell-specific Cre-
mediated excision of CXCR4 exon 2 following 5 days of tamoxifen ad-
ministration has been used and characterised previously in myocardial
repair experiments. Where appropriate, CXCR4fl/fl; Cre+/+ mice that
were injected with tamoxifen were used as controls and designated EC-
CXCR4WT or CM-CXCR4WT. CM-CXCR4+/+; Cre+/− mice injected with
tamoxifen were also used as controls to exclude effects of Cre expres-
sion in response to cardiac ischaemia-reperfusion injury. Abbreviations
used to describe genotypes are: wild type (WT, +/+); heterozygous
(HET, +/−); knockout or mutant (KO, −/−); and homozygous loxP
site insertion (fl/fl); the Cre transgene is maintained as heterozygous as
previously described.

2.2. In vivo ischaemia-reperfusion injury

Both male and female mice were used in all in vivo experiments for
clinical relevance. All in vivo data presented is from both sexes and
there were no statistically significant differences in the division of sexes
between groups. A standard method of in vivo IR injury was used [30].
Mice were anesthetised by intraperitoneal injection of 100mg/kg
pentobarbitone sodium, with additional dosage of 17mg/kg pro re nata.
Surgery was started once pedal and tail reflexes were abolished and
depth of anaesthesia was monitored throughout. Mice underwent oro-
tracheal intubation and positive pressure ventilation without supple-
mentary oxygen. Core body temperature was monitored via a rectal

temperature sensor and maintained at 36.5 ± 0.5 °C by adjustment of a
homeothermic heat mat (Kent Scientific). ECG was recorded
throughout using PowerLab 4/25 and Animal Bio Amp coupled to Chart
7 (AD Instruments). A left antero-lateral oblique skin incision was made
and the heart exposed via a thoracotomy. The LAD was under-run with
an 8–0 polypropylene non-absorbable monofilament suture and a snare
system used to reversibly occlude of the LAD. Ischaemia, as indicated
by ST-segment elevation, was maintained for 40min before reperfusion
was induced by disassembling the snare system. After 2 h of reperfu-
sion, the heart was removed. For in vivo experiments, the heart was
extracted by transecting the aorta. For ex vivo experiments, mice were
terminally anesthetised by intraperitoneal injection of 120mg/kg
pentobarbitone sodium at a concentration of 20mg/ml in 0.9% (w/v)
saline, and 50 IU heparin. Once pedal and tail reflexes were abolished,
hearts were extracted and the aorta was cannulated and manually
perfused with ice-cold phosphate buffered saline (PBS) until the ef-
fluent ran clear. 80 μg/kg or 200 μg/kg rhSDF-1α (R&D Systems) or
0.9% saline vehicle were administered via the jugular vein, with these
doses based on previous reports in the literature [31–33].

2.3. Evaluation of infarct size

The primary endpoint of this in vivo model was myocardial infarct
size. This is expressed as a percentage of the AAR (IS/AAR), that being
the myocardial territory subject to ischaemia during LAD occlusion. The
AAR was defined after cannulation of the aorta by re-tightening of the
LAD suture and perfusion of 200 μl Evans blue dye. Samples were
frozen for 20min at −80 °C, and stained with triphenyltetrazolium
chloride (TTC) for assessment of infarct size on the same day by slicing
the heart into five 1mm sections and incubating them for 20min in the
dark in 1% TTC in phosphate buffer. Following incubation, the sections
were fixed in 10% formalin for 24 h before being scanned for analysis
by planimetry using ImageJ (version 1.45s, NIH).

2.4. qRT-PCR

mRNA was extracted from a 20–30mg section of left ventricle (LV)
that had been simultaneously disrupted and homogenised by sonication
for 10 s using a dedicated kit according to the manufacturer's instruc-
tions (RNeasy, Qiagen). 100 ng purified mRNA was converted to first-
strand cDNA using the AffinityScript cDNA Synthesis kit (Agilent
Technologies), as per the manufacturer's instructions. The QPCR reac-
tion was prepared according to guidelines from Agilent Technologies.
Specifically, 12.5 μl of 2× Brilliant II SYBR® Green QPCR Master Mix
was mixed with 1 μl each of forward and reverse primer (see
Supplementary Fig. 1 for primer sequences), 5.5 μl nuclease-free water
and 5 μl template cDNA per reaction. Primers were purchased from
Eurofins Genomics. Results were normalised to two reference genes
(GAPDH and HPRT) as internal controls using double delta Ct analysis
(2−ΔΔCt) [34].

2.5. HUVECs

5×104 human umbilical vein endothelial cells (HUVECs) were
seeded per well of a 6-well flat-bottomed plate in 2000 μl M199
medium (Sigma) supplemented with 2% foetal bovine serum (Lonza)
until confluence was achieved. rhSDF-1α (Miltenyi Biotec) was added
to M199 media to achieve the desired concentration, defined based on
previous reports in the literature, for 5min at 37 °C before lysis buffer
was added. Cells were pre-treated with 5mM of the specific CXCR4
antagonist, AMD3100 (Tocris Bioscience) for 10min prior to the ad-
dition of rhSDF-1α, where relevant. M199 media alone served as a
negative control. After treatment, cells were lysed and centrifuged for
10min at 10,000 rpm and 4 °C. All groups were performed in quad-
ruplicate.
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2.6. Western blotting

Samples were run using standard sodium dodecyl sulphate-poly-
acrylamide gel electrophoresis (SDS-PAGE) using 40 μg of protein per
sample diluted in lysis buffer. Western transfer was performed to an
Immobilon®-FL polyvinylidene difluoride (PVDF) transfer membrane
(Merck). Membranes were blocked by incubation in 5% BSA/PBS sup-
plemented with 0.05% Tween® 20 (BSA/PBS-T; ‘blocking buffer’) for
1 h at RT. This was then replaced with the relevant primary antibody
diluted 1:1000 5% BSA/PBS-T in blocking buffer (Phospho-p44/42
MAPK (Erk1/2) mouse mAb #9106, Phospho-Akt mouse mAb #4051,
from CST). Primary antibodies were incubated at 4 °C overnight. After
overnight incubation, non-specifically bound and unbound antibody
was removed with six 10min washes with 0.05% PBS-T followed by
addition of the appropriate IR-conjugated secondary antibody (anti-
rabbit 800CW or anti-mouse 680LT, Li-Cor) at 1:10,000 dilution in 5%
BSA/PBS-T for 1 h at RT. Finally, six 10min washes in PBS-T were
performed, followed by one wash in PBS. Membranes were imaged
using the Odyssey® Infrared Imaging System. Protein level was analysed
by densitometry using Image Studio™ version 5.0 for Windows (LI-
COR), with phosphorylated Akt and Erk being normalised to tubulin
loading control for each sample and expressed as arbitrary units (AU).
All values are presented as mean AU ± SEM.

2.7. Echocardiography

2D transthoracic echocardiography was performed on supine mice
using a Vivid i ultrasound system with i12S-RS 11MHz paediatric intra-
operative phased-array transducer (GE Healthcare). First, a 2 s cine loop
was acquired in the parasternal long-axis view before interrogating the
aortic root with pulsed wave (PW) Doppler in the same view. Next, a 2 s
cine loop was acquired at papillary muscle level in the parasternal
short-axis view and an Motion (M)-mode trace recorded using the pa-
pillary muscles as a reference point. After surgery to induce ischaemia-
reperfusion injury, a 6-0 braided silk non-absorbable suture (Ethicon)
was used to oppose the wound edges when necessary to facilitate
echocardiography. All measurements were made by a single observer
and were the average of six consecutive cardiac cycles. Analysis was
performed offline using EchoPAC (GE Healthcare) according to the
experiments' four-digit number to ensure operator blinding. LV end-
diastolic and end-systolic internal dimensions (LVIDd and LVIDs, re-
spectively) were measured in M-mode. Temporal resolution was further
improved using anatomical M-mode. LVIDd and LVIDs were used to
derive fractional shortening (FS) and LV end diastolic volume (EDV)
was derived from the long axis end-diastolic dimension and LVIDd.
Aortic root velocity-time integral (VTI) was measured using the PW
Doppler trace and used to determine stroke volume (SV; μl) [35].
Cardiac output (ml/min) was calculated as a product of SV and heart
rate.

2.8. RNAseq and analysis

CM-CXCR4WT and CM-CXCR4KO mice were euthanized, the hearts
were removed, the aorta cannulated and hearts flushed with PBS. The
RNA was extracted from 20 to 30mg of tissue using RNeasy kit
(Qiagen) according to the manufacturer's instructions. The KAPA
Stranded mRNA-Seq Kit (Roche) was used to extract mRNA from 100 ng
total RNA according to manufacturer's instructions. Strand-specific first
strand cDNA was generated using Reverse Transcriptase in the presence
of Actinomycin D. The second cDNA strand was synthesised using dUTP
in place of dTTP, to mark the second strand. The resultant cDNA was
then “A-tailed” at the 3′ end to prevent self-ligation and adapter di-
merisation. Truncated adaptors, containing a T overhang, were ligated
to the A-Tailed cDNA. Successfully ligated cDNA molecules were then
enriched with ~12 cycles of PCR. The primers used extend the adaptor
to full length and contain sequences that allow each library to be

uniquely identified by way of a sample-specific 6 bp index sequence.
Libraries to be multiplexed in the same run were pooled in equimolar
quantities, calculated from Qubit and Bioanalyser fragment analysis.
Samples were sequenced on the NextSeq 500 instrument (Illumina, San
Diego, US) using either a 43 bp or 81 bp paired end run.

Run data were demultiplexed and converted to fastq files using
Illumina's bcl2fastq Conversion Software v2.19. Fastq files are pre-
processed to remove adapter contamination and poor-quality sequences
(trimmomatic v0.36) before being mapped to a suitable reference
genome using the spliced aligner STAR (v2.5b). Mapped data was de-
duplicated using Picard Tools (v2.7.1), in order to remove reads that
are the result of PCR amplification, and remaining reads per transcript
were counted by FeatureCounts (v1.4.6p5). Normalisation, modelling
and differential expression analysis were then carried out using
SARTools (v1.3.2), an integrated QC and DESeq2 BioConductor
wrapper.

2.9. Immunohistochemistry

Hearts were extracted and perfused as described above, prior to
being dehydrated using sequential ethanol steps (25%, 50%, 75%,
100%) and embedded in paraffin. Hearts were sectioned in 5 μm
thicknesses and mounted on glass slides. Prior to staining, paraffin-
embedded tissues were dewaxed in xylene and rehydrated using
ethanol (100%, 75%, 50%, 25%). Samples were steamed in citrate
buffer for 10min and allowed to cool for 20min at RT. After 3 washes
in PBS, sections were incubated with 3% hydrogen peroxide for 10min
to block endogenous peroxidase activity. After a further wash step,
sections were incubated with 10% normal rabbit or horse serum diluted
in PBS for 1 h (Vector ABC Elite kit; Vector Laboratories), depending on
the secondary antibody, and then incubated with the primary antibody
at 4 °C overnight with gentle rocking: CD68 mouse mAb (Santa Cruz
#sc-70,761), CD45 rat mAb (BD Pharmingen #550539) and Ly6G rat
mAb (BD Pharmingen #551459). Secondary only and unstained con-
trols were included. After further washes, the sections were stained
using an avidin-biotin-peroxidase complex method (Elite ABC HRP kit,
Vector Laboratories). Mast cells were stained for 2–3min using 0.1%
toluidine blue O in 1% NaCl, pH 2.3 (Sigma) The sections were coun-
terstained with hematoxylin for 5 s, washed in running tap water until
clear, dehydrated using sequential ethanol steps (as above), cleaned
with xylene, and mounted using DPX (Sigma). Images were taken with
a 40× objective and a standard light microscope equipped with a di-
gital camera.

2.10. Statistics

Sample size was calculated using a two-sided test for the compar-
ison of two means. Based on our previous data, a 20% estimate of effect
size, a control infarct size of 40%, an SD of 10%, a significance level of
5% (α=0.05) and 80% power (β=0.2) were assumed. This required a
minimum sample size of four animals per group.

Results of animal experiments were compared using the Student t-
test for 2 groups of continuous variables and analysis of variance
(ANOVA) and Tukey's Multiple Comparison Test for 3 or more groups.
For cell experiments, where the same preparation of cells was used for
each treatment, randomized block ANOVA was used as recommended
where the values between the groups are correlated [36]. Data is pre-
sented as mean ± SEM. Statistical significance was reported if
P < 0.05 using the following nomenclature: *P < 0.05, **P < 0.01
and ***P < 0.001. Analyses were performed with GraphPad Prism®

version 5.00 for Windows.
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3. Results

3.1. Creation of cell-specific CXCR4KO transgenic mice

Mice with tamoxifen-inducible, endothelial-specific deletion of
CXCR4 (EC-CXCR4KO), were made by breeding mice harbouring floxed
alleles of CXCR4 with mice containing a construct expressing inducible
Cre recombinase (iCre) under the control of the PDGFB promoter. Mice
with tamoxifen-inducible, cardiomyocyte-specific deletion of CXCR4
(CM-CXCR4KO), were made by breeding floxed CXCR4 mice with
MerCreMer mice.

cDNA was isolated from CM-CXCR4WT and CM-CXCR4KO mice. By
quantitative RT-PCR analysis, CXCR4 expression in CM-CXCR4KO mice
was found to be reduced to 37 ± 11% (N=4; P < 0.05). In a similar
analysis of mice with inducible, endothelial-restricted expression of Cre
recombinase, CXCR4 expression was reduced to 38 ± 16% in EC-
CXCR4KO mice (N=3; P < 0.05). In cells in which gene expression
had been eliminated, residual CXCR4 protein expression is expected to
have been eliminated by 3weeks after the completion of tamoxifen
administration.

3.2. Exogenous SDF-1α is acutely cardioprotective when administered
immediately prior to reperfusion

To evaluate the cardioprotective utility of SDF-1α, mice underwent
40min of (index) LAD ischaemia and 2 h of reperfusion. As controls,
CXCR4fl/fl; Cre+/+ mice that had not been injected with tamoxifen (i.e.
phenotypically wild type) were administered with either saline (con-
trol), 80 μg/kg SDF-1α or 200 μg/kg SDF-1α by i.v. injection 10min
prior to reperfusion. Infarct size was measured as a proportion of AAR.

CXCR4fl/fl mice were not protected from ischaemia-reperfusion in-
jury. However, SDF-1α significantly reduced infarct size as a proportion
of AAR compared to saline vehicle control (P < 0.001, Fig. 1) in a
dose-dependent manner. This demonstrated that SDF-1α, delivered
prior to reperfusion, is acutely cardioprotective in a mouse in vivo
model of myocardial ischaemia-reperfusion injury. Importantly, it is the
first time SDF-1α has been shown to protect when administered im-
mediately prior to reperfusion, thereby illustrating its translational
potential. There were no differences in infarct size as a proportion of

area at risk according to sex in any of the experiments described (data
not shown).

3.3. SDF-1α-mediated cardioprotection occurs via endothelial CXCR4
signalling

SDF-1α-CXCR4-mediated cardioprotection has been demonstrated
in isolated myocytes [33], however since CXCR4 is also present on
endothelial cells we investigated if this is important for cardioprotec-
tion in a de novo experiment. Despite smaller infarct sizes as a pro-
portion of AAR in control (EC-CXCR4KO) mice, no difference was ob-
served between EC-CXCR4KO and EC-CXCR4WT groups (Fig. 2),
indicating that endothelial CXCR4 deletion is not protective per se.
Treatment with either 80 μg/kg or 200 μg/kg SDF-1α i.v. 10min prior
to reperfusion did not reduce infarct size in EC-CXCR4KO mice (Fig. 2).
This finding demonstrates that protection by exogenous SDF-1α is
contingent on endothelial cell CXCR4 activation by SDF-1α.

Treatment of HUVECs with SDF-1α increased phosphorylation of
Akt and Erk1/2 in a dose-dependent manner (Fig. 3). Pre-treatment
with 5mM of the specific CXCR4-receptor antagonist AMD3100 abro-
gated the increased phosphorylation of Erk1/2, although it did not
significantly reduce Akt phosphorylation at the tested dose of 25 nM.
The reperfusion injury salvage kinase (“RISK”) pathway, including Akt
and Erk1/2 [37–41], has been proposed as the mechanism of cardio-
protection and is usually assumed to act in cardiomyocytes, but we
show here that it can also be activated in endothelial cells, at least in
vitro.

3.4. CM-CXCR4KO transgenic mice are innately resistant against ischaemia-
reperfusion injury

Infarct size was measured in CM-CXCR4KO and CM-CXCR4WT mice
that were subject to in vivo myocardial ischaemia-reperfusion injury.
Analysis of the areas at risk revealed no significant differences (Fig. 4).
Surprisingly, analysis of infarct size demonstrated that, even without
administration of SDF-1α, CM-CXCR4KO were innately protected
against ischaemia-reperfusion injury, exhibiting a marked reduction in
infarct size as a proportion of AAR (P < 0.001, Fig. 4). This result
precluded further investigation of whether SDF-1α administration

Fig. 1. Effect of SDF-1α administration
prior to reperfusion on infarct size after in
vivo ischaemia-reperfusion injury.
Phenotypically wild-type mice (CXCR4fl/fl

without Cre or tamoxifen) were anaes-
thetised and the indicated quantities of ve-
hicle or SDF-1α injected prior to 40min
ischaemia and 2 h reperfusion in vivo; (A)
Analysis of their respective AAR revealed
no statistically significant differences; (B)
Infarct size (IS) as a proportion of AAR was
analysed using Evans Blue and TTC
staining. Statistical significance was as-
sessed using one-way ANOVA and Tukey's
multiple comparison test, n=6–14,
***P < 0.001 vs. 80 μg/kg and control.
Data presented as individual hearts with
mean ± SEM; (C) Representative scanned
transverse heart sections demonstrating
Evans Blue area (blue), area at risk (non-
blue) and infarct (white). (For interpreta-
tion of the references to colour in this figure
legend, the reader is referred to the web
version of this article.)
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could protect these mice against ischaemia-reperfusion injury.
To exclude the possibility that this was a result of the cardiomyo-

cyte-restricted expression of Cre recombinase (which has been shown in
some cases to adversely affect cardiac function, myocardial Ca2+

handling and energy production [42]), we injected tamoxifen into
phenotypically WT mice expressing CM-Cre (CXCR4fl/+; Cre+/−), and
confirmed that they are not protected against ischaemia-reperfusion
injury (P]NS vs. CM-CXCR4WT, Fig. 4).

Fig. 2. Effect of SDF-1α administration
prior to reperfusion on infarct size after in
vivo ischaemia-reperfusion injury in EC-
CXCR4KO mice. EC-CXCR4WT (i.e.: CXCR4fl/
fl; Cre+/+) and EC-CXCR4KO (i.e.: CXCR4fl/
fl; Cre+/−) mice were injected with ta-
moxifen as an intraperitoneal bolus daily
for 5 consecutive days at a dose of 20mg/
kg. Mice were left for 3 weeks after com-
pletion of tamoxifen. Mice were treated
with either vehicle or SDF-1α by jugular
vein injection and subject to 40min
ischaemia and 2 h reperfusion in vivo; (A)
Analysis of their respective AAR revealed
no statistically significant differences; (B)
Infarct size as a proportion of AAR was
analysed using Evans Blue and TTC staining
and demonstrated no statistically sig-
nificant differences, n=6–8. Statistical
significance was assessed using one-way
ANOVA and Tukey's multiple comparison
test. Data presented as individual hearts
with mean ± SEM; (C) Representative
heart sections as per Fig. 1. (For inter-
pretation of the references to colour in this
figure legend, the reader is referred to the
web version of this article.)

Fig. 3. Effect of SDF-1α administration on Phospho-Erk and Phospho-Akt in HUVECs. HUVECs in M199 conditioning media were treated with rhSDF-1α. Further
groups were pre-treated 5mM AMD3100 prior to rhSDF-1α or M199 media alone. After 10min, cells were washed and analysed by Western blot. Treatment with
SDF-1α increased Phospho-Erk relative to tubulin, which was abrogated by pre-treatment with AMD3100. Phospho-Erk and Phospho-Akt were run on the same
membrane and normalised to tubulin loading control. Size of standard marker proteins is indicated (kDa). Statistical significance was assessed using repeated
measures one-way ANOVA and Tukey's multiple comparison test, n=4, *P < 0.05, **P < 0.01, *** P < 0.001 vs. control; & P < 0.05 vs. 25 nM SDF-1α. Data
presented as mean ± SEM.
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Fig. 4. Effect of cardiomyocyte-specific CXCR4 deletion on
infarct size prior to in vivo ischaemia-reperfusion injury. CM-
CXCR4WT (i.e.: CXCR4fl/fl; Cre+/+), CXCR4fl/+; Cre+/− and
CM-CXCR4KO (i.e.: CXCR4fl/fl; Cre+/−) mice were injected
with tamoxifen as an intraperitoneal bolus daily for 5 con-
secutive days at a dose of 20mg/kg. Mice were left for
3 weeks after completion of tamoxifen. Mice were anaes-
thetised and subject to 40min ischaemia and 2 h reperfusion
in vivo; (A) Analysis of their respective AAR revealed no sta-
tistically significant differences; (B) Infarct size as a propor-
tion of AAR was analysed using Evans Blue and TTC staining
and was significantly smaller in CM-CXCR4KO compared to
CM-CXCR4WT mice (12.2 ± 2.6% vs. 35.8 ± 4.3%).
Statistical significance was assessed using one-way ANOVA
and Tukey's multiple comparison test, n=6, **P < 0.01 vs.
CM-CXCR4WT. Data presented as mean ± SEM; (C)
Representative heart sections as per Fig. 1. (For interpretation
of the references to colour in this figure legend, the reader is
referred to the web version of this article.)

Fig. 5. Baseline echocardiographic para-
meters in CM-CXCR4WT and CM-CXCR4KO

mice. CM-CXCR4WT (CXCR4fl/fl; Cre+/+)
and CM-CXCR4KO (CXCR4fl/fl; Cre+/−)
mice were injected with tamoxifen as an
intraperitoneal bolus daily for 5 consecutive
days at a dose of 20mg/kg. Mice were left
for 3 weeks after completion of tamoxifen.
There were no statistically significant dif-
ferences between CM-CXCR4WT and CM-
CXCR4KO groups with respect to (A) frac-
tional shortening, (B) stroke volume, (C)
cardiac output or (D) LV dimensions at
baseline. Statistical significance was as-
sessed using unpaired t-test for A-C and
two-way ANOVA with Bonferroni correc-
tion for multiple comparisons in D; n=5–6,
P]NS.
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A second possibility that we considered was that CXCR4 deletion
itself altered basal cardiac phenotype, which can affect the response to
ischaemia-reperfusion injury. While most cardiomyocyte-specific
CXCR4 loss-of-function and gain-of-function studies report a normal
cardiac phenotype at baseline [43,44], it has been reported that car-
diomyocyte-specific CXCR4 deletion can impair contractility and LV
ejection fraction [45,46]. To test the hypothesis that baseline differ-
ences in cardiac function may have altered the susceptibility of CM-
CXCR4KO mice to myocardial injury, baseline echocardiographic para-
meters were compared between CM-CXCR4WT and CM-CXCR4KO mice.
No differences between CM-CXCR4WT and CM-CXCR4KO mice were
identified (Fig. 5). In addition, there was no evidence of cardiac hy-
pertrophy as a result of cardiomyocyte-specific CXCR4 deletion, with no
differences in interventricular septum (IVSd), LV internal diameter
(LVIDd) and posterior wall (LVPWd) dimensions evident in diastole
between groups.

Western blot analysis did not reveal any compensatory alteration in
cardiomyocyte expression of the alternative SDF-1α receptor CXCR7,
and there was no change in levels of the cardioprotective Phospho-Akt /
Total-Akt at baseline (Supplementary Fig. 2A–B). Furthermore, there
was no difference in SDF-1α mRNA expression in the heart
(Supplementary Fig. 2C).

Finally, we examined the possibility that cardiomyocyte-specific
CXCR4 deletion alters inflammatory cell content in the unchallenged
heart, based on several previous studies that implicated inflammation
in the mechanism of cardioprotection seen with manipulation of the
SDF-1α-CXCR4 axis [44,47,48]. However, no significant differences
were seen between CXCR4WT and CXCR4KO hearts in the numbers of
mast cells (toluidine blue staining), leukocytes (CD45+), monocytes/
macrophages (CD68+) or granulocytes (Ly6G+) (Supplementary
Fig. 3).

3.5. mRNA expression analysis of CM-CXCR4KO mice implicates
mitochondrial protein coenzyme Q10b in the mechanism of protection

To investigate possible alteration/s in gene expression that might
account for the cardioprotective phenotype of the CM-CXCR4KO mice,
we performed RNAseq analysis of mRNA expression and compared their
expression profile with CM-CXCR4WT mice. This revealed globally very
similar expression profiles, but significantly altered expression of 36
mRNAs, 18 of which had increased expression and 18 decreased.
(Fig. 6A–B). Several mRNAs with the most consistent expression dif-
ferences or with published evidence that might be able to account for
the protected phenotype were selected for qRT-PCR confirmation of
their expression differences. These mRNAs were: Vascular Endothelial
Growth Factor A (VEGFA), Phosphoinositide-3-Kinase Interacting Pro-
tein 1 (Pik3ip1), Coenzyme Q10B (Coq10b), 8430431K14Rik (a
lncRNA) and APOBEC1 Complementation Factor (A1cf). This analysis
confirmed a significant increase in the expression only of Coq10b in
CM-CXCR4KO hearts (Fig. 6C, P=0.03).

4. Discussion

The experiments here were designed firstly to determine whether
SDF-1α is cardioprotective when administered acutely at the ther-
apeutically relevant time-point of reperfusion, and secondly to in-
vestigate whether protection is mediated by signalling via CXCR4 in the
endothelium or cardiomyocytes. We confirmed that protection was
achievable when 200 μg/kg, but not 80 μg/kg, SDF-1α was adminis-
tered prior to reperfusion. Cardioprotection by SDF-1α was completely
abrogated by the absence of CXCR4 expression in the endothelium.
Unexpectedly, when CXCR4 was deleted in cardiomyocytes the mice
were rendered innately resistant to ischaemia-reperfusion injury. This
may be mediated by the mitochondrial protein co-enzyme Q10b, the
mRNA of which was significantly increased in CM-CXCR4KO hearts.

4.1. Exogenous SDF-1α is acutely cardioprotective when administered
immediately prior to reperfusion

Better functional recovery has been demonstrated after the admin-
istration of SDF-1α prior to the onset of ischaemia in an isolated mouse
heart model of simulated ischaemia-reperfusion injury [49]. This has
similarly been shown in an isolated rat heart model when infused from
10min prior to reperfusion to 30min afterwards, in a dose-dependent
manner [50]. In the only other in vivo model investigating the potential
cardioprotective efficacy of SDF-1α, infarct size was significantly re-
duced when SDF-1α was infused into the LV cavity of C57BL/6 mice
prior to subjecting the mice to myocardial ischaemia-reperfusion injury
[33]. Importantly, all of these experiments demonstrated a loss of effect
of SDF-1α when its cognate receptor, CXCR4, was inhibited with
AMD3100. However, no previous studies have administered SDF-1α at
the clinically-relevant time point of immediately prior to reperfusion in
an in vivo model. This timing is significant due to the unpredictable
nature of plaque rupture and myocardial infarction in humans. Fur-
thermore, SDF-1α has an estimated plasma half-life of 26 ± 5min due
to proteolysis by various peptidases, including DPP4 [51,52], and it is
important to ensure the presence of full-length SDF-1α at the time of
reperfusion as it is thought to confer protection by activating protective
signalling pathways at this point.

4.2. SDF-1α-mediated cardioprotection occurs via endothelial CXCR4
signalling

Lethal cardiomyocyte damage is a major cause of cardiac damage
after ischaemia-reperfusion injury. The majority of cardioprotection
studies to date have therefore focused on developing strategies to di-
rectly protect the cardiomyocytes from such injury. These include most
receptor ligands which activate the pro-survival kinase signalling
pathways including the RISK pathway (PI3K/Akt and Erk1/2), SAFE
pathway (TNFα/JAK/STAT), and PKG pathway in cardiomyocytes
[53]. Similarly, SDF-1α-mediated, acute cardioprotection is con-
ventionally thought to be contingent on cardiomyocyte signalling [33].
However, we demonstrate a complete loss of cardioprotection by SDF-
1α in mice lacking endothelial CXCR4 (although this deletion was de-
monstrated in left ventricular tissue rather than isolated endothelial
cells). This may be because activation of cardioprotective signalling
pathways in the endothelium is subsequently transmitted to the cardi-
omyocytes. A possible candidate for this intercellular transmission is
nitric oxide from nitric oxide synthase, which SDF-1α has been shown
to stimulate the production of in cultured endothelial cells [54]. In-
terestingly, overexpression of SDF-1α in rats has been shown to in-
crease NO production as well as improving arterial patency and in-
hibiting microsurgical thrombosis in a femoral artery crush model in
rats [55]. Similarly, administration of SDF-1α has been seen to increase
eNOS activity in other organs such as the kidney, and this was able to
preserve microvascular integrity and renal function in chronic kidney
disease [56]. Further work is required to determine whether SDF-1α
administration increases NO production in the heart.

The specific intracellular mechanism by which SDF-1α induces
cardioprotection is not fully defined, but is thought to relate to the
activation of the cardioprotective kinases mentioned above [57]. For
example, PI3K/Akt and Erk1/2 are implicated both in vivo and in direct
protection in isolated cardiomyocytes [33,50]. Huang et al. reported
that cardioprotection by SDF-1α involved the activation of STAT3, and
saw no loss of protection with the PI3K inhibitor LY294002 [49]. Im-
portantly, however, the inhibitors were given prior to ischaemia and
not prior to reperfusion (the time-point at which the RISK kinases are
defined to act [58]), and hence PI3K/Akt may be integral to mitigating
injury specifically at reperfusion. Our data suggest that activation of
endothelial signalling is necessary for protection in vivo. This possibly
occurs via the signalling kinases Erk1/2 and PI3K/Akt, although it is a
limitation that these are not normalised to total Erk and Akt, and others

D.I. Bromage, et al. Journal of Molecular and Cellular Cardiology 128 (2019) 187–197

193



have similarly shown activation of p-Akt in MVECs treated with SDF-1α
[15]. The intracellular mechanism of SDF-1α-mediated cardioprotec-
tion is not specifically investigated here as we did not co-treat cells with
kinase inhibitors and such inhibitors would affect all cell types in the
intact heart, making delineation of the relative contribution of cardio-
myocytes and endothelial cells an outstanding question. However, our
observation that SDF-1α increases Akt and Erk1/2 expression in

endothelial cells, albeit HUVECs rather than primary rodent cells, taken
together with studies suggesting that SDF-1α is protective by aug-
menting endogenous autocrine/paracrine signalling through cardio-
myocyte CXCR4 [33], indicates a role for both cardiomyocyte and en-
dothelial SDF-1α-CXCR4 signalling in SDF-1α-mediated
cardioprotection.

Fig. 6. RNAseq analysis comparing mRNA expression in CM-CXCR4WT and CM-CXCR4KO mouse hearts. A) Of ~12K mRNAs detected (green dots), only 37 exhibited
a significant difference in expression level (red dots). B) A heat map of genes expressed at significantly different levels. Clustering based on expression patterns
demonstrates a clear separation between the CM-CXCR4WT and CM-CXCR4KO hearts (N=6). C) qRT-PCR confirmed an increase in expression of Coq10b in CM-
CXCR4KO hearts, resulting in a lower 2-ΔΔCT, (n=4, P < 0.05 by t-test, lower number indicates greater transcript numbers). (For interpretation of the references to
colour in this figure legend, the reader is referred to the web version of this article.)
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4.3. CM-CXCR4KO transgenic mice are innately resistant against ischaemia-
reperfusion injury

The finding of protection in CM-CXCR4KO mice is surprising in view
of the literature demonstrating a beneficial role for CXCR4, albeit
generally in models of ventricular remodelling. However, many of these
studies artificially recruited the SDF-1α-CXCR4 axis, by various means,
without necessarily implicating it in the intrinsic response to injury,
about which less is known [43,45,59].

Given this finding, it could be hypothesized that SDF-1α adminis-
tration might increase infarct size in the EC-CXCR4KO mouse, where the
protective effects of endothelial CXCR4 signalling are removed.
Interestingly, we did see a consistently higher infarct size in the EC-
CXCR4KO mice given SDF-1α compared to EC-CXCR4KO controls
(Fig. 2B). However, it is difficult to draw conclusions from this since
this difference did not reach significance.

In support of our results, adenovirus-mediated over-expression of
CXCR4 in rat hearts before myocardial ischaemia-reperfusion has been
shown to significantly increase infarct size 24 h later, accompanied by
cardiomyocyte apoptosis and worse cardiac function. However, as the
analysis was performed at 24 h, there was significant inflammatory cell
infiltrate, which may have accounted for the observation [47]. Con-
versely, Liehn et al. have shown a smaller infarct size in global CXCR4
heterozygous mice (that displayed significantly lower CXCR4 protein
expression) subject to permanent LAD ligation compared to WT at
4 weeks, which was also attributed to an attenuated inflammatory re-
sponse [44]. Our results at 2 h reperfusion suggests that hearts lacking
CXCR4 are innately resistant to ischaemia-reperfusion injury, which
appears to be independent of baseline inflammatory phenotype, al-
though evaluation of infarct size at further time points is warranted to
determine if the changes observed at 2 h are maintained and whether
this relates to inflammation. Similarly, a recent study of mice with ei-
ther inducible or congenital absence of cardiomyocyte-specific CXCR4
subjected to permanent LAD ligation showed no difference in measures
of cardiac function or adverse ventricular remodelling compared to CM-
CXCR4WT mice at 28 d, suggesting that CXCR4 has no endogenous role
in these processes, but infarct size was not specifically measured in this
study [60].

It might be inferred that, in view of the protective effect of cardi-
omyocyte CXCR4 deletion, its activation acutely after MI would be
detrimental. However, acute CXCR4 cardiomyocyte activation has been
shown not to be detrimental to the cell (and is indeed protective via
RISK pathways) [33]. Furthermore, studies in isolated rat hearts sub-
jected to regional ischaemia-reperfusion found that AMD3100 was not
protective acutely [20,61], nor does it improve cell viability or LDH
release from cultured cardiomyocytes subject to hypoxia-reoxygenation
in vitro [33]. Finally, our group have tested AMD3100 in both human
atrial trabeculae and rat papillary muscle and consistently found that
acute antagonism of CXCR4 with AMD3100 is not protective [20,21].
This is in contrast to longer term experiments during which AMD3100
may mobilize stem and progenitor cells from the bone marrow that may
modify cardiac repair processes [62–64]. Taken together, these data
suggest that the observed protection may relate to a cardiac adaptation
to loss of CM-CXCR4.

4.4. mRNA expression analysis of CM-CXCR4KO mice implicates
mitochondrial protein coenzyme Q10b in the mechanism of protection

CoQ10B encodes the mitochondrial protein Coenzyme Q-binding
protein COQ10 homolog B which is required for the proper function of
coenzyme Q10 in the respiratory chain. Its precise role is not known, but
it may serve as a chaperone or may be involved in the transport of Q6

from its site of synthesis to the catalytic sites of the respiratory com-
plexes [65]. Coenzyme Q10 has been suggested to have a dual role in
redox signalling and inhibition of death signalling based on experi-
ments in which the enzyme complex was added to rat heart

mitochondria [66]. As such, it is possible that altered CoQ10B expres-
sion improved mitochondrial function in the transgenic hearts. How-
ever, RNAseq data is only hypothesis-generating and confirmation of
changes in protein levels, as well as investigating the mechanistic link
between CXCR4 deletion and altered CoQ10B expression (including
knocking out CoQ10B in mice with cardiomyocyte-specific CXCR4 de-
letion), is required.

5. Conclusions

In conclusion, this study demonstrates that SDF-1α is acutely car-
dioprotective when administered prior to reperfusion, which occurs via
endothelial cell signalling. Unexpectedly, CM-CXCR4KO mice were in-
nately resistant to ischaemia-reperfusion injury. Cardiomyocyte CXCR4
expression has previously been implicated in preventing adverse ven-
tricular remodelling and in the development of heart failure after
ischaemia-reperfusion injury. It is therefore difficult to understand why
CXCR4 deletion results in acute protection in view of the cardiopro-
tective effect of exogenously administered SDF-1α and the evidence for
an autocrine/paracrine axis involving the cardiomyocyte. It is likely,
given the pleiotropic and opposing effects of the SDF-1α-CXCR4 axis in
different aspects of myocardial ischaemia-reperfusion injury that in-
clude both acute infarct sparing and longer-scale processes such as
angiogenesis and ventricular remodelling, that the timing and cellular
location of SDF-1α-CXCR4 activation is key to its effects.

Supplementary data to this article can be found online at https://
doi.org/10.1016/j.yjmcc.2019.02.002.
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