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Protein-altering variants associated with body mass index implicate pathways that 
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ABSTRACT 

Genome-wide association studies (GWAS) have identified >250 loci for body mass index (BMI), 

implicating pathways related to neuronal biology. Most GWAS loci represent clusters of common, non-

coding variants from which pinpointing causal genes remains challenging. Here, we combined data from 

718,734 individuals to discover rare and low-frequency (MAF<5%) coding variants associated with BMI. 

We identified 14 coding variants in 13 genes, of which eight in genes (ZBTB7B, ACHE, RAPGEF3, 

RAB21, ZFHX3, ENTPD6, ZFR2, ZNF169) newly implicated in human obesity, two (MC4R, KSR2) 

previously observed in extreme obesity, and two variants in GIPR. Effect sizes of rare variants are ~10 

times larger than of common variants, with the largest effect observed in carriers of an MC4R stop-codon 

(p.Tyr35Ter, MAF=0.01%), weighing ~7kg more than non-carriers. Pathway analyses confirmed 

enrichment of neuronal genes and provide new evidence for adipocyte and energy expenditure biology, 

widening the potential of genetically-supported therapeutic targets to treat obesity.   
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Obesity is a heritable disease and represents a major unmet public health problem with only a few safe 

and long-term effective therapies1 and intervention strategies2. To understand the genetic basis of obesity 

and identify potential targets for new therapies, genome-wide association studies (GWAS) for body mass 

index (BMI) and obesity risk have identified >250 common variants over the past decade3-7. Consistent 

with single-gene disorders of obesity8, tissue expression and gene-set enrichment analyses for genes in 

BMI-associated loci have shown that the central nervous system (CNS) plays a critical role in body 

weight regulation5. While the numerous GWAS loci have provided insight into broad biological 

mechanisms underlying body weight regulation, pinpointing the causal gene(s)/variant(s) remains a major 

challenge9, as GWAS-identified variants are typically non-coding and may affect genes at long distance. 

The association of intronic FTO variants with BMI illustrates the challenges of identifying causal 

regulatory effects. The proposed causal variant was found to regulate the expression of nearby RPGRIP1L 

in some studies10-12, whereas others found that it regulates distant IRX3/IRX5 genes in specific cell 

types13,14. 

To expedite mapping of obesity-related genes, we performed an exome-wide search for low-

frequency (LF, minor allele frequency [MAF]=1-5%) and rare (R, MAF<1%) single nucleotide variants 

(SNVs) associated with BMI using exome-targeted genotyping arrays. A total of 125 studies 

(Nindividuals=718,734) performed single-variant association between up to 246,328 SNVs and BMI. In 

addition, we performed gene-based meta-analyses to aggregate rare and LF (R/LF) coding SNVs across 

14,541 genes. Using genetic, functional and computational follow-up analyses, we gained insights into 

the function of BMI-implicated genes, and the biological pathways through which they may influence 

body weight.  

 

RESULTS 

Fourteen rare and low-frequency coding variants in 13 genes 

Our study comprises a discovery and a follow-up stage (Supplementary Figure 1, Supplementary 

Tables 1-3, Online Methods). In our primary analysis, the discovery stage includes data from 123 



Page 15 of 54 

studies (Nmax=526,508) across five ancestry groups, predominantly European (~85%). Each study 

performed single-variant association analyses of coding variants present on the exome array, including up 

to 13,786 common (MAF>5%) and 215,917 R/LF coding SNVs (exons and splicing sites). Summary 

statistics were combined using fixed-effect meta-analyses. SNV-associations of R/LF variants that 

reached suggestive significance (P<2.0x10-6) were taken forward for follow-up in two European cohorts, 

deCODE (Nmax=72,613) and UK Biobank (Nmax=119,613 [interim release]). Overall significance was 

assessed after combining results of discovery and follow-up studies into a final meta-analysis (all-

ancestries, sex-combined, additive model, Nmax=718,734), SNV-associations that reached P<2x10-7 were 

considered array-wide significant15,16 (Table 1, Supplementary Table 4, Supplementary Figures 2-4). 

In secondary analyses, we performed sex-specific analyses, analyses limited to individuals of European 

ancestry, and analyses using a recessive model.  

In our primary analysis of R/LF variants, we identified five rare SNVs in three genes (KSR2, 2 in 

MC4R, 2 in GIPR) and nine LF SNVs in eight genes (ZBTB7B, 2 in ACHE, RAPGEF3, PRKAG1, RAB21, 

HIP1R, ZFHX3, ENTPD6) (Table 1, Box 1, Supplementary Table 5, Supplementary Figure 3a). In 

secondary analyses, we identified two additional LF SNVs, one in all-ancestry women-only (ZFR2) and 

one in European ancestry only analyses (ZNF169) (Table 1, Supplementary Tables 6-8, 

Supplementary Figures 3b, 3c). Of these 16 SNVs, located in 13 genes, the two SNVs in MC4R (r2=1, 

D’=1) and two in ACHE (r2=0.98, D’=0.99) were in high LD, whereas the two SNVs in GIPR (r2=0, 

D’=0.16) were independent of each other. Hence, the 16 SNVs represent 14 independent SNVs (4 rare, 10 

LF), of which eight locate in genes not previously implicated in BMI (ZBTB7B, ACHE, RAPGEF3, 

RAB21, ZFHX3, ENTPD6, ZFR2, ZNF169), and six are located in five loci that were previously identified 

by GWAS (PRKAG1/BCDIN3D, HIP1R/CLIP1, MC4R, GIPR/QPCTL)5 and/or through sequencing of 

severe early-onset obesity cases (MC4R, KSR2)17-19 (Supplementary Figure 5). Conditional analyses 

established that coding SNVs in PRKAG1, MC4R and GIPR are independent of the common lead variants 

in GWAS loci (rs7138803, rs17782313, rs2287019, respectively), whereas the SNV in HIP1R and 

GWAS locus near CLIP1 (rs11057405) represent the same signal (Online Methods, Supplementary 
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Tables 9, 10, Supplementary Figure 5).  

Next, we performed gene-based association tests (SKAT, VT, broad, strict) in up to 14,541 

genes20 to examine whether these aggregated analyses would yield new evidence for multiple R/LF 

coding SNVs in the same gene affecting BMI (Online Methods). Using broad SNV inclusion criteria, 

associations for 13 genes reached array-wide significance (P<2.5x10-6)15,16, four of which had not been 

highlighted in single-variant analyses (Table 2, Supplementary Table 11). Conditional analyses showed 

that only for GIPR was the gene-based association driven by multiple SNVs (Table 2, Supplementary 

Table 12). For all other genes, associations were driven by a single SNV only, but these SNVs had not 

reached array-wide significance in single-variant analyses. 

Taken together, we identified 14 R/LF coding SNVs in 13 genes that are independently 

associated with BMI, four rare SNVs in three genes, and 10 LF SNVs in 10 genes. One SNV (ZFR2) 

showed a sex-specific effect, whereas no ancestry-specific effects were observed (Supplementary Note, 

Supplementary Tables 6-8, Supplementary Figure 6). Eight (ACHE, ENTPD6, RAB21, RAPGEF3, 

ZBTB7B, ZFHX3, ZFR2, ZNF169) of these 13 genes have not been previously implicated in body weight 

regulation (Table 1). 

Novel common coding variants associated with BMI  

Although the main focus of our study was on R/LF coding SNVs, we also identified 92 common coding 

variants (P<2.0x10-7, Supplementary Tables 4, Supplementary Figures 4, 7), of which 41 were novel 

(Supplementary Table 9, Supplementary Note). These novel common loci had not been identified in 

previous GWAS efforts, because our current sample size is more than twice as large as the most recent 

GWAS meta-analysis5, and also because some SNVs were not tested before, as they were not present on 

the HapMap reference panel and/or were on the X-chromosome, which was not analyzed. Because of the 

increased samples size, effect sizes of the 41 novel common loci are smaller (on average 0.014 SD/allele, 

[range: 0.010–0.024]) than of previously established common loci (0.021 SD/allele, [0.010–0.050]) 

(Supplementary Figure 7).  
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Impact of R/LF SNVs on BMI and obesity risk  

The minor allele for half of the 14 R/LF SNVs is associated with lower BMI (Table 1, Figure 1). The 

effects of LF SNVs range between 0.024 and 0.066 SD/allele, equivalent to ~0.11 to 0.30 kg/m2 in BMI 

or ~0.315 to 0.864 kg in body weight for a 1.7m tall person. Effects of rare SNVs range between 0.06 and 

0.54 SD per allele, equivalent to 0.26 to 2.44 kg/m2 or 0.74 kg to 7.05 kg per allele (Table 1, Figure 1). 

By comparison, these rare SNV effect sizes are on average ten times larger than those for previously 

identified GWAS loci (effectmean=0.019 SD/allele, ~0.086 kg/m2 or ~0.247 kg/allele) of which the largest 

effect is seen for the FTO locus (0.08 SD/allele, ~0.35 kg/m2 or 1 kg/allele) and those for other GWAS 

loci range between 0.010 and 0.056 SD/allele (~0.045 to 0.25 kg/m2, or 0.130 to 0.728 kg)5. 

Effect sizes increase as MAF decreases, in particular for SNVs with a MAF<0.5% (~1 

heterozygote carrier in 100 people), consistent with the statistical power of our sample (Figure 1). For 

example, the nonsense p.Tyr35Ter MC4R SNV (rs13447324, MAF=0.01%) is present in ~1 in 5,000 

individuals and results in a ~7 kg higher body weight for a 1.7m tall person. The two GIPR SNVs 

contribute independently to a lower body weight, carriers (1 in ~455 individuals) of p.Arg190Gln 

(rs139215588) weigh ~1.92 kg (0.148 SD BMI) less than non-carriers and carriers (1 in ~385 individuals) 

of p.Glu288Gly (rs143430880) weigh ~1.99 kg (0.153 SD BMI) less. Among 115,611 individuals of the 

UK Biobank, one apparently healthy 61-year-old woman, with no reported illnesses, carried both rare 

GIPR alleles and weighed ~11.2 kg less (equivalent to -0.86 SD BMI or 3.87 kg/m2) than the average 

non-carrier of the same height (Supplementary Figure 8). The possible synergistic effect of the two 

GIPR alleles needs confirmation by additional individuals that carry both variants.  

Even though effect sizes of LF and, in particular, rare SNVs tend to be larger than those of 

common GWAS-identified loci5, the 14 SNVs combined explain <0.1% of BMI variation, because of 

their low population frequency (Table 1, Online Methods). Also, although the effects of the four rare 

SNVs (KSR2, MC4R, 2 in GIPR) are large by GWAS standards, penetrance for obesity is still expected to 

be low. Indeed, using data from the UK Biobank (Nmax=119,781), we compared the prevalence of normal-

weight (18.5 kg/m2 ≤ BMI < 25 kg/m2) and obesity (BMI ≥ 30 kg/m2) between carriers and non-carriers 
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(Supplementary Table 13, Online Methods). For GIPR (p.Arg190Gln, p.Glu288Gly), both BMI-

decreasing SNVs, carriers tended (P<0.05) to have a lower obesity prevalence (21.2%, 20.1%, 

respectively), compared to non-carriers (25.1%, 25%). For MC4R p.Tyr35Ter and KSR2 p.Arg525Gln, 

the prevalence of obesity between carriers (30%, 25.7%, resp.) and non-carriers (25.1%, 25.3%) was not 

significantly different. 

We examined whether R/LF SNVs affect obesity risk early on in life by combining data from 

three case-controls studies of childhood obesity (Ncases=4,395, Ncontrols=13,072) (Online Methods, 

Supplementary Table 14). Associations for 10 of 13 SNVs were directionally consistent with those 

observed for BMI in adults (77%, Pbinomial=0.046), three of which (ZBTB7B, PRKAG1, RAB21) reached 

nominal significance (P<0.05). While no carriers of the MC4R mutations were available for analyses, the 

role of MC4R in body weight regulation in childhood was established almost two decades ago17,19,21. 

Impact of R/LF SNVs on cardiometabolic and other traits 

To examine whether identified SNVs affect other traits, we obtained results from multiple large-scale 

genetic consortia (GIANT15, MAGIC, GoT2D/T2D-GENES16, GLGC, ICBP22, REPROGEN23) 

(Supplementary Table 15, Supplementary Figure 9), and performed phenome-wide association 

(PheWAS) analyses using electronic medical record (EMR) data from BioVu and UK Biobank (Online 

Methods, Supplementary Table 16). The BMI-increasing allele of ZBTB7B p.Pro190Ser is associated 

with greater height, and those of PRKAG1, ACHE, and RAPGEF3 SNVs are associated with shorter 

height, but association with other traits differ. Specifically, PRKAG1 p.Thr38Ser Ser-allele carriers appear 

heavier and shorter, have lower HDL-cholesterol levels, earlier age at menarche (reported before23) and 

higher systolic blood pressure, which is in agreement with PheWAS analyses showing an increased risk 

of “malignant essential hypertension” and “hypertension” (Supplementary Table 16). While carriers of 

the RAPGEF3 p.Leu300Pro Pro-allele are also heavier and shorter, they have a lower WHRadjBMI
24 and 

lower fasting insulin levels (Supplementary Table 15), consistent with PheWAS results that show lower 

odds of “secondary diabetes mellitus” (Supplementary Table 16). Thus, while all SNVs are associated 
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with BMI, their patterns of association with other traits suggest they may affect different physiological 

pathways.  

Gene set enrichment analyses  

To test whether the R/LF variants implicate biological pathways, we performed gene set enrichment 

analyses. Similar to our previous analysis of GWAS for BMI5, we analyzed coding variants that reached 

P<5x10-4, using a DEPICT version adapted for exome-array analysis15 (Online Methods, 

Supplementary Note). We used 50 R/LF coding variants as input (all P<5x10-4, Online Methods) and 

observed significant enrichment (Figure 2, Supplementary Table 17, Supplementary Figure 10a). 

Many of these relate to neuronal processes, such as neurotransmitter release and synaptic function (e.g. 

glutamate receptor activity, regulation of neurotransmitter levels, synapse part), consistent with previous 

findings from GWAS5. When we excluded variants near (+/- 1Mb) previously identified GWAS loci, we 

still observed 29 significantly enriched gene sets (in 12 meta-gene sets) (Supplementary Table 18, 

Supplementary Figure 10b), thereby providing an independent confirmation of the GWAS gene set 

enrichment results. In addition to neuronal-related gene sets, the analyses with R/LF coding variants 

newly identified a cluster of metabolic pathways related to insulin action and adipocyte/lipid metabolism 

(e.g. enhanced lipolysis, abnormal lipid homeostasis, increased circulating insulin level, Figure 2). 

Finally, we observed that R/LF BMI-associated coding variants are more effective at identifying enriched 

gene sets compared to common coding variants. Specifically, adding 192 common coding SNVs (all 

P<5x10-4) to the analysis decreased the number of enriched gene sets from 471 (106 meta-gene sets) seen 

with R/LF coding SNVs to 62 (24 meta-gene sets) (Supplementary Table 19, Supplementary Figure 

10c). We observed fewer significant genes sets with the combined common and R/LF analysis, despite 

including more total coding variants and a higher fraction of array-wide significant coding variants. One 

possible explanation is that R/LF coding variants may fall in the causal gene more often than do common 

coding variants, which suggests that the R/LF variants are more likely to be causal, rather than simply in 

LD with causal variants.  
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We also used gene set enrichment analysis to prioritize candidate genes. Among the genes with 

R/LF coding variants associated with BMI at P<5x10-4, a subset is prominently represented in the CNS-

related enriched gene sets (Figure 2) and is proposed to influence neurotransmission and/or synaptic 

organization, function and plasticity. These include genes in regions with suggestive evidence of 

association from GWAS (e.g. CARTPT, MAP1A, ERC2) and genes in regions not previously implicated 

by GWAS (e.g. CALY, ACHE, PTPRD, GRIN2A). The non-neuronal metabolic gene sets implicate two 

genes (CIDEA, ADH1B) that are markers of brown or “beige” adipose tissue25,26, providing new 

supporting evidence for a causal role of this aspect of adipocyte biology.  

Drosophila fly results  

To test for potential adiposity-driving effects of gene regulation, we performed tissue-specific RNAi-

knockdown experiments in Drosophila. We generated adipose-tissue (cg-Gal4) and neuronal (elav-Gal4) 

specific RNAi-knockdown crosses for nine of the 13 candidate genes for which fly orthologues exist 

(Supplementary Table 20) and performed whole body triglyceride analysis in young adult male flies. 

Triglycerides, the major lipid storage form in animals, were chosen as a direct measure of fly adiposity. 

Both neuronal and fat-body knockdown of zfh2, the orthologue of ZFHX3, resulted in significantly 

increased triglyceride levels. Adipose-tissue specific, but not neuronal, knockdown of epac (RAPGEF3) 

was lethal. Tissue-specific loss-of-function of the other seven genes tested did not affect triglyceride 

levels. 

R/LF coding SNVs in monogenic and syndromic genes  

We identified 39 genes in the literature that have been convincingly implicated in monogenic obesity or 

syndromes of which obesity is one of the main features (Supplementary Table 21, 22, Supplementary 

Figure 11). Of the 652 R/LF SNVs in these 39 monogenic and/or syndromic genes, five R/LF SNVs were 

significantly associated with BMI (Bonferroni-corrected P-value = 7.7x10-5 (=0.05/652)). Beside SNVs in 

MC4R (p.Tyr35Ter, Asp37Val) and KSR2 (Arg525Gln), already highlighted in the single-variant 

analyses, we identified an additional SNV in MC4R (p.Ile251Leu) and one in BDNF (p.Glu6Lys). MC4R 
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p.Ile251Leu has been previously shown to protect against obesity27, whereas BDNF p.Glu6Lys, 

independent of previously GWAS-identified SNVs (r2=0.01, D’=1.0)5, has not been implicated in body 

weight regulation before. We examined whether the 652 R/LF SNVs showed enrichment for association 

with BMI compared to R/LF coding SNVs in all other genes, but found no evidence to support this. 

 

DISCUSSION  

In this meta-analysis of exome-targeted genotyping data, we identified 14 R/LF coding variants in 13 

genes associated with BMI. Eight of these genes (ACHE, ENTPD6, RAB21, RAPGEF3, ZBTB7B, 

ZFHX3, ZFR2, ZNF169) have not been previously implicated in human obesity, but evidence from 

animal studies provides support for a role in energy metabolism for some of these, such as ACHE28,29, 

RAPGEF330-33, and PRKAG134-39. Others fall into established BMI GWAS loci (PRKAG1/BCDIN3D, 

HIP1R/CLIP1, MC4R, GIPR/QPCTL)5 and/or were previously implicated in severe early-onset obesity 

(MC4R, KSR2)17-19 and using this exome-targeted approach, we pinpoint R/LF variants in these loci that 

play a role in obesity in the general population. Pathway analyses confirm a key role for neuronal 

processes, and newly implicate adipocyte and energy expenditure biology.  

 Consistent with other polygenic traits15,23,40-43, we show that large sample sizes are needed to 

identify R/LF variants. Observed effect sizes reflect the statistical power of our sample size, and are 

particularly large for SNVs with a MAF < 0.05%. The existence of rare alleles with larger effects on 

BMI than have been observed for common alleles might reflect negative or stabilizing selection 

on the extremes of BMI. However, rare variants with smaller effects almost certainly exist, larger 

samples will be needed to uncover these. Our study was limited to coding variants on the exome-array, 

large-scale sequencing studies will be needed to test for variants not covered by exome-arrays. 

The strongest association was observed for a stop-codon (p.Tyr35Ter, rs13447324, MAF= 

0.01%) in MC4R, with carriers weighing on average 7kg more than non-carriers. MC4R is widely 

expressed in the CNS and is an established key player in energy balance regulation44,45. Mouse and human 
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studies showed already two decades ago that MC4R-deficiency results in extreme obesity, mainly through 

increased food intake46-49. p.Tyr35Ter, which results in MC4R-deficiency51, was one of the first MC4R 

mutations discovered in monogenic cases of obesity17,19, in whom the mutation is >20x more prevalent 

than in the general population17,50,52,53. Here, we show that p.Tyr35Ter plays a role outside the setting of 

early-onset and extreme obesity. Despite its large effect, penetrance is low, and does not fit the model of a 

fully penetrant Mendelian variant.  

While significant R/LF coding variants are strong candidates for being causal, the strongest 

implication of causal genes is provided by association with multiple independent coding variants, as we 

demonstrate for GIPR. We identified two rare variants in GIPR (p.Arg190Gln, rs139215588, 

MAF=0.11%, p.Glu288Gly, rs143430880, MAF=0.13%) independently associated with lower BMI, 

carriers of either variant weigh ~2 kg less than non-carriers. Common variants in/near GIPR have been 

found to associate with lower BMI55 and delayed glucose and insulin response to an oral glucose 

challenge54. However, the two rare variants influence BMI independently of these common ones and are 

not associated with type 2 diabetes or glycemic traits tested. Rodent models have provided strong 

evidence for a role of GIPR in body weight regulation. Gipr-deficient mice are protected from diet-

induced obesity56 and have an increased resting metabolic rate57. Blocking GIP-signaling using a 

vaccination approach in mice on a high-fat diet reduces weight gain, mainly through reduced fat 

accumulation, mediated through increased energy expenditure58. Manipulation of incretins (GIP, GLP1) 

and their receptors has complex effects on obesity and insulin secretion/action that may differ between 

human and mice59. The human genetic data suggest that inhibition of GIPR-signaling might present a 

therapeutic target for the treatment of obesity60.  

A fourth rare variant, in KSR2, (p.Arg525Gln, rs56214831, MAF=0.82%) increases body weight 

by ~740g/allele. KSR2 is another gene previously implicated in energy metabolism and obesity18,61,62. In a 

recent study, mutation carriers were hyperphagic, had a reduced basal metabolic rate and severe insulin 

resistance18. Consistent with human data, Ksr2-/- mice were obese, hyperphagic, and had a reduced energy 

expenditure18,61-63. KSR2 is almost exclusively expressed in the brain and interacts with multiple 
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proteins64, including AMP-activated protein kinase (AMPK), a key regulator of energy homeostasis61,62. 

Interestingly, KSR2 is one of the first genes implicated in severe, early-onset obesity in which mutations 

not only affect food intake but also basal metabolic rate, and is thought to act via neuronal effects18 

(Figure 2).  

Despite convincing associations of these four rare variants in MC4R, GIPR and KSR2, their 

penetrance for obesity is low (Supplementary Table 13). This is consistent with the polygenic and 

multifactorial nature of obesity, where variants across a range of frequencies and effect sizes contribute to 

the phenotype in any one person. Despite low predictive power, it remains possible that the identities of 

particular variants in any one person may contribute to different balances of underlying physiologies and 

hence, different responses to treatments. This was illustrated in two patients with monogenic obesity due 

to POMC mutations, these patients lack the main activator of MC4R and were effectively treated with an 

MC4R-agonist65.  

Of the coding variants in newly identified genes, some have well-known connections to obesity. 

For example, PRKAG1 encodes the 1-subunit of AMPK, a critical cellular energy sensor34. In the 

hypothalamus, AMPK integrates hormonal and nutritional signals with neuronal networks to regulate 

food intake and whole-body energy metabolism35-37. Furthermore, hypothalamic AMPK is a key regulator 

of brown adipose tissue in mice36,38,39. The BMI-decreasing allele at the associated PRKAG1 variant 

(p.Thr38Ser, rs1126930, MAF=3.22%) has additional beneficial effects on blood pressure, providing 

additional genetic support for modulation of AMPK as an ongoing therapeutic avenue for treatment.  

ACHE, in which p.His353Asn (rs1799805, MAF=3.9%) is associated with increased BMI, is 

another candidate gene related to neuronal biology, involved in the signaling of acetylcholine at 

neuromuscular junction and brain cholinergic synapses67,68. Inhibitors of ACHE, used to treat moderate-

to-severe Alzheimer’s Disease69, results in weight loss in humans and Ache-deficient mice have delayed 

weight gain28,29. However, these may be indirect consequences of adverse gastrointestinal and 

neuromuscular effects, respectively28,29,70,71.  

Another LF coding variant (p.Leu300Pro, rs145878042, MAF=1.1%) is located in RAPGEF3, 
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and has strong effects on multiple other phenotypes. The BMI-increasing 300Pro-allele is associated with 

shorter height, lower WHRadjBMI and lower insulin levels, suggesting that this variant has multiple 

physiologic consequences. Data from animal models also suggest complex effects of RAPGEF3 on 

adipocyte biology, energy balance and glucose metabolism30-33. For example, in one study, global deletion 

of Rapgef3 in mice on a high-fat diet are resistant to obesity due to reduced food intake and have an 

increased glucose tolerance31. However, in a similar study, Rapgef3-/- mice develop severe obesity, 

increased respiratory exchange ratio and impaired glucose tolerance33. Adipose tissue-specific Rapgef3 

knockout mice on a high-fat diet are also more prone to obesity, show increased food intake, reduced 

energy expenditure, impaired glucose tolerance, and reduced circulating leptin levels72. More research is 

needed to understand the consequences of RAPGEF3 manipulation. 

The remaining genes with significant associations, ENTPD6, HIP1R, RAB21, ZFR2, ZBTB7, and 

ZFHX3, have no clear prior evidence for a role in energy homeostasis, and in-depth functional follow up 

is needed to gain insight in how they affect body weight. Here, we performed gene set enrichment 

analyses to better understand the biology implicated by our genetic data, and confirm the importance of 

neuronal processes, in particular synaptic function and neurotransmitter release, providing an independent 

validation of previous GWAS findings5. The combination of gene set enrichment and association analyses 

of coding variants also enables us to highlight candidate genes that are both within these gene sets and 

show association with BMI at R/LF coding variants. These include genes reaching array-wide 

significance (e.g. ACHE, ZFR2), and others with clear prior evidence for a role in body weight regulation 

(e.g. CARTPT73), but that had not been highlighted in our single-variant or gene-based association 

analyses. Of note, the enrichment signals were stronger with R/LF coding variants only than with all 

coding variants, suggesting that R/LF variants are more likely to be causal and may more often point 

directly to relevant genes, whereas common coding variants may more often be proxies for common 

noncoding variants that affect nearby genes. 

 In addition, our gene set enrichment analyses now provide supporting evidence for a role of non-

neuronal mechanisms as well. Specifically, CIDEA and ADH1B are both strongly predicted to be 
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members of enriched gene sets related to insulin action and adipocyte biology, and both are markers that 

distinguish brown from white fat depots in mice25 and humans26. CIDEA is predominantly expressed in 

adipose tissue and known as a key regulator of energy metabolism25. Cidea-deficient mice are resistance 

to diet-induced obesity with increased lipolysis and mitochondrial uncoupling25. The connection of 

ADH1B to obesity is less clear, but the gene is highly expressed in human adipocytes, has been implicated 

by gene expression analyses in obesity and insulin resistance, and functions early in a potentially relevant 

metabolic pathway (retinoid biosynthesis)25,26,74,75. Similar pathways were implicated by recent work 

dissecting the signal near FTO13. However, because SNV-association signals at ADH1B and CIDEA did 

not reache array-wide significance, additional genetic analysis of their role in obesity would be warranted.  

In summary, we performed association analyses between R/LF variants and BMI in >700,000 

individuals, and identified 14 variants in 13 genes, in 5 known and 8 novel genes. While each variant 

contributes little to BMI variation in the general population, they may have substantial impact on body 

weight at an individual level. Furthermore, prior literature for these genes and unbiased gene set 

enrichment analysis indicate a strong role for neuronal biology and also provide new support for a causal 

role of aspects of adipocyte biology. The identified genes provide potential targets that may lead to new 

and more precise approaches for the treatment of obesity, which has seen minimal innovation in the past 

30 years1. 
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URLs 

CDC 2000 Growth Charts: http://www.cdc.gov/growthcharts/cdc_charts.htm 

CHOP cohort: http://www.metabolic-programming.org/obesity/ 

EC-DEPICT code: https://github.com/RebeccaFine/obesity-ec-depict  

ENSEMBL: www.ensembl.org 

EasyQC: www.genepi-regensburg.de/easyqc 

EasyStrata: www.genepi-regensburg.de/easystrata 

ExAC: http://exac.broadinstitute.org/ 

GCTA: http://cnsgenomics.com/software/gcta/ 

GTEx: http://www.gtexportal.org/home/ 

GTOOL: http://www.well.ox.ac.uk/~cfreeman/software/gwas/gtool.html 

Impute2: https://mathgen.stats.ox.ac.uk/impute/impute_v2.html 

INTERVAL Study: http://www.intervalstudy.org.uk/ 

PLINK v1.90: https://www.cog-genomics.org/plink2 

QCTOOL: http://www.well.ox.ac.uk/~gav/qctool/#overview 

RAREMETALWORKER: http://genome.sph.umich.edu/wiki/RAREMETALWORKER 

RareMETALS: http://genome.sph.umich.edu/wiki/RareMETALS 

RVTEST: https://github.com/zhanxw/rvtests 

Shapeit2: https://mathgen.stats.ox.ac.uk/genetics_software/shapeit/shapeit.html 

UKHLS: https://www.understandingsociety.ac.uk/ 

UK10K Obesity Sample Sets - SCOOP: http://www.uk10k.org/studies/obesity.html 

1000 Genomes Phase 1: http://www.1000genomes.org/category/phase-1/ 
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FIGURE LEGENDS 

Figure 1. Effect sizes (y-axis) of the 14 BMI-associated R/LF coding variants by their minor allele 

frequency. Effect sizes are expressed in body weight (kg) per allele, assuming a SD of 4.5 kg and an 

average-sized person of 1.7m tall. Solid markers indicate that the minor allele is associated with higher 

BMI, and clear markers indicate that the minor allele is associated with lower BMI. Variants were 

identified in all-ancestry analyses (light blue diamonds), the European ancestry analyses (dark blue 

square) and women-only analyses (pink diamond). Effect sizes for previously identified GWAS loci are 

shown in navy blue diamonds. The dotted line represents 80% power, assuming  = 2x10-7 and N= 

525,000 (discovery sample size). 

 

Figure 2. Heatmap showing DEPICT gene set enrichment results for suggestive and significant rare 

and low-frequency coding SNVs. For any given square, the color indicates how strongly the 

corresponding gene (x-axis) is predicted to belong to the reconstituted gene set (y-axis), based on the 

gene’s Z-score for gene set inclusion in DEPICT’s reconstituted gene sets (red indicates a higher, blue a 

lower Z-score). To visually reduce redundancy and increase clarity, we chose one representative "meta-

gene set" for each group of highly correlated gene sets based on affinity propagation clustering (Online 

Methods, Supplementary Note). Heatmap intensity and DEPICT P-values (Supplementary Table 17) 

correspond to the most significantly enriched gene set within the meta-gene set. Annotations for genes 

indicate (1) whether it has an OMIM annotation as underlying a monogenic obesity disorder (black/grey), 

(2) the MAF of the significant ExomeChip (EC) variant (blue), (3) whether the variant’s P-value reached 

array-wide significance (<2x10-7) or suggestive significance (<5x10-4) (purple), (4) whether the variant 

was novel, overlapping “relaxed” GWAS signals from Locke et al.5 (GWAS P<5x10-4), or overlapping 

“stringent” GWAS hits (GWAS P<5x10-8) (pink), and (5) whether the gene was included in the gene set 

enrichment analysis or excluded by filters (orange/brown) (Online Methods, Supplementary Note). 

Annotations for gene sets indicate if the meta-gene set was significant (green, FDR <0.01, <0.05, or not 

significant) in the DEPICT analysis of GWAS results5. Here, two regions of particularly strong gene set 
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membership are shown (see full heat map in Supplementary Figure 10a). 
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TABLES 

Table 1 Rare and low-frequency coding variants significantly associated with BMI 

Chr:position Variant Coding 
locus 

Allele Amino acid 
change 

EAF 
(%) 

β  

(SD/allele) 
SE P-value N Explained 

variance 
(%) 

   Effect Other        

All-ancestries additive           

1:154987704 rs141845046 ZBTB7B* T C p.Pro190Ser 2.44% 0.048 0.006 7.73E-18 718,628 0.011% 

7:100490797 rs1799805 ACHE* T G p.His353Asn 3.90% 0.029 0.005 2.82E-10 707,448 0.006% 

12:48143315 rs145878042 RAPGEF3* G A p.Leu300Pro 1.10% 0.066 0.008 1.56E-15 700,852 0.010% 

12:49399132 rs1126930 PRKAG1 C G p.Thr38Ser 3.22% 0.034 0.005 3.98E-12 712,354 0.007% 

12:72179446 rs61754230 RAB21* T C p.Ser224Phe 1.74% 0.040 0.007 1.33E-09 693,373 0.005% 

12:117977550 rs56214831 KSR2 T C p.Arg525Gln 0.82% 0.057 0.010 1.08E-08 655,049 0.005% 

12:123345509 rs34149579 HIP1R T G p.Cys938Phe 4.54% -0.032 0.004 2.00E-14 716,253 0.009% 

16:72830539 rs62051555 ZFHX3* G C p.Gln1100His 4.34% -0.024 0.004 4.01E-08 690,637 0.005% 

18:58039478 rs13447324 MC4R T G p.Tyr35Ter 0.01% 0.542 0.086 2.26E-10 631,683 0.006% 

19:46178020 rs139215588 GIPR A G p.Arg190Gln 0.11% -0.148 0.028 1.25E-07 695,800 0.005% 

19:46180976 rs143430880 GIPR G A p.Glu288Gly 0.13% -0.153 0.028 2.96E-08 599,574 0.006% 

20:25195509 rs6050446 ENTPD6* A G p.Lys185Glu 2.71% -0.034 0.005 2.40E-10 717,084 0.006% 

All-ancestries sex-specific additive (women only)         
19:3813906 rs45465594 ZFR2* C A p.Ile718Met 2.55% -0.040 0.008 1.94E-07 373,848 0.008% 

European Ancestry additive            
9:97062981 rs12236219 ZNF169* T C p.Arg381Cys 4.23% -0.029 0.005 8.78E-10 612,396 0.007% 

Array-wide significant is defined as P < 2x10-7.            
Variant positions are reported according to Build 37 and their alleles are coded based on the positive strand.  
Alleles (effect/other), effect allele frequency (EAF), beta (b), standard error (SE) and P values are based on the meta-analysis of Discovery Stage 
(GIANT) and Validations stage (deCODE, UKBiobank) studies. Effect allele is always the minor allele. Effects (b) are expressed in SD, assuming 
mean=0 and SD=1.            
The amino acid change from the most abundant coding transcript is shown in this table (see Supplementary Table 25 for more details on protein 
annotation based on VEP tool and transcript abundance from GTEx database).         
* Novel gene, i.e. not previously implicated in human obesity            
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Table 2. Genes significantly associated with BMI in a gene-based meta-analyses, aggregating R/LF coding SNVs 

Gene Location longest coding 
transcript 

Testd N 
variants 

P-value Conditioned P-
valuea 

Single variant  

       Top variant P-value 

All-ancestries sex-combined        

SLC6A17 chr1:110693132-110744823 SKAT 13 2.73E-07 0.13  rs41313405 4.45E-07 

RAPGEF3 chr12:48128453-48152889 SKAT 19 8.91E-15 0.20  rs145878042 5.16E-14 
PRKAG1 chr12:49396055-49412629 SKAT 4 2.75E-12 0.53  rs1126930 2.63E-12 

RAB21 chr12:72148643-72187256 SKAT 5 4.81E-08 0.27  rs61754230 4.96E-08 

KSR2 chr12:117890817-118406028 SKAT 7 7.15E-09 0.19  rs56214831 4.59E-08 

MAP1A chr15:43809806-43823818 SKAT 25 9.42E-07 0.16  rs55707100 1.01E-06 
MC4R chr18:58038564-58040001 VT 4 3.72E-09 0.01  rs13447325 2.97E-11 
GIPR chr19:46171502-46186982 VT 10 8.24E-09 1.12E-04  rs143430880 5.76E-06 

All-ancestries sex-specific        

ALDH3A1 (men only) chr17:19641298-19651746 SKAT 15 3.24E-07 0.003  rs142078447 8.62E-06 
ZFR2 (women only) chr19:3804022-3869027 SKAT 19 1.81E-07 0.82  rs45465594 3.64E-07 

European sex-combined        
ACHE chr7:100487615-100493592 SKAT 6 3.30E-10 0.12  rs386545548 7.22E-10 

European sex-specific         
ANGPTL7 (men only) chr1:11249346-11256038  VT 3 2.50E-06 0.008  rs202182115 2.56E-05 
ZNF169 (women only) chr9:97021548-97064111 SKAT 9 1.89E-07 0.24  rs12236219 1.06E-06 

Array-wide significant gene-based association is defined as P<2.5x10-6. P-values are based on the meta-analysis of Discovery Stage studies. 

Gene-based analyses were performed with SKAT and VT, results shown are from the test (SKAT or VT) for which the significance exceeded 

P<2.5x10-6. Only results using the "broad" SNV inclusion criteria reached array-wide significance. 

Transcript positions are reported according to Build 37 for the longest coding transcript supported by RefSeq (as displayed in USCS Genome 

Browser).  
aP-value after conditioning on the most significant (top) single variant aggregated in the gene-based test. 
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BOX 1 – Brief description of the 13 genes (alphabetical) identified  

ACHE (acetylcholinesterase). ACHE is mainly expressed in brain and muscle76. Its encoded protein 

hydrolyzes acetylcholine (Ach) at brain cholinergic synapses and neuromuscular junctions, and thus 

terminates signal transmission67. Knockout mice showed a reduction in expression of muscarinic Ach 

receptors in brain regions associated with learning and memory and showed lower ability to initiate the 

signaling cascade77. This gene has fewer missense variants than expected and is highly intolerant to loss 

of function (LoF) mutations52. 

ENTPD6 (ectonucleoside triphosphate diphosphohydrolase 6). Previously known as Interleukin 6 Signal 

Transducer-2, this gene is similar to E-type nucleotidases that participate in purine and pyrimidine 

metabolism, calcium ion binding, hydrolase activity, magnesium ion binding and nucleoside-

diphosphatase activity78. It is widely expressed in many different tissues, in particular in the brain76.  

GIPR (gastric inhibitory polypeptide receptor). GIPR encodes a G-protein coupled receptor for gastric 

inhibitory polypeptide that is secreted by intestinal K-cells after food ingestion59. GIPR activation 

stimulates insulin secretion from pancreatic β-cells and mediates fat deposition by increasing lipoprotein 

lipase activity, lipogenesis, fatty acid and glucose uptake in adipocytes. GIPR is mostly expressed in 

EBV-transformed lymphocytes, stomach and visceral adipose tissue76.  

HIP1R (huntingtin interacting protein 1 related). HIP1R is a multi-domain protein that promotes actin 

binding and cell survival and interacts with CLTB and HIP1 (GeneCards). HIP1 and HIP1R appear to 

play central roles in clathrin-coated vesicle formation and intracellular membrane trafficking by 

promoting transient interaction between actin filaments and the endocytic machinery79,80. HIP1R is most 

expressed in the stomach tissue, brain (substantia nigra, spinal cord, hippocampus), and sun-exposed skin 

76.  

KSR2 (kinase suppressor of ras 2). KSR2 is an intracellular protein that functions as a molecular scaffold 

to regulate MAP kinases ERK1/2 and determine cell fates. KSR2 also regulates AMPK activity 
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controlling cellular thermogenesis, fat oxidation, and glucose metabolism18,61,62. Knockout mouse models 

and human mutations have been linked to obesity risk62. KSR2 is almost exclusively expressed in the 

brain. It has fewer missense variants than expected and is highly intolerant to LoF mutations52. 

MC4R (melanocortin 4 receptor). MC4R is a seven-transmembrane G-protein coupled receptor, 

predominantly expressed in the brain76. MC4R has been known to play a key role in body weight 

regulation for more than 20 years. Activation of MC4R by -MSH, a POMC-derived peptide, suppresses 

food intake, MC4R antagonists increase food intake and MC4R deficiency in human and rodent models 

results in hyperphagia and severe and early-onset obesity81. More than 150 MC4R mutations have been 

identified in individuals with severe, early-onset obesity81, many of which lead to a complete or partial 

loss of function82,83. Up to 6% of individuals with severe, early-onset obesity carry pathogenic mutations 

in MC4R, making MC4R deficiency the most common form of monogenic obesity82,84. 

PRKAG1 (protein kinase AMP-activated non-catalytic subunit gamma 1). The protein encoded by 

PRKAG1 is one of the gamma regulatory subunits of the AMP-activated protein kinase (AMPK), which is 

an important energy-sensing enzyme that monitors cellular energy status34. AMPK and PRKAG1 are 

ubiquitously expressed76. In the hypothalamus, AMPK influences food intake, energy expenditure and 

glucose homeostasis36. Muscle-specific overexpression of AMPK 1 subunit in mice results in increased 

food intake, but does not affect body weight, presumably through a compensatory increased energy 

expenditure85.  

RAB21 (member RAS oncogene family). RAB21 belongs to the Rab family of monomeric GTPases 

involved in the control of cellular membrane traffic. The encoded protein is widely expressed76 and plays 

a role in the targeted trafficking of integrins, and is involved in the regulation of cell adhesion and 

migration86. RAB21 is thought to be intolerant to LoF mutations52.  

RAPGEF3 (rap guanine nucleotide exchange factor 3, also EPAC1). RAPGEF3 encodes the exchange 

protein directly activated by cAMP isoform 1 (EPAC1), one of two cAMP sensors that are involved in 

numerous intracellular cAMP-mediated functions87. EPAC1 is ubiquitously expressed76, and insights from 
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mouse knockout models suggest a role in energy homeostasis and the development of obesity and 

diabetes through the regulation of leptin and insulin signaling31,87. 

ZFR2 (zinc finger RNA binding protein 2). The biological function of the gene product is as yet 

undetermined. GO annotations related to this gene include nucleic acid binding. It may have a role in 

dendritic branching and axon guidance88,89. ZFR2 is predominantly expressed in the brain76.  

ZBTB7B (zinc finger and BTB domain containing 7B, also ThPOK). ZBTB7B is a transcription factor 

regulating T-cell fate in the thymus, particularly as the master regulator of CD4+ lineage 

commitment90. It is a repressor of type 1 collagen gene expression91. This gene is mainly expressed in T-

cell lineages, skin and gastrointestinal tissues. ZBTB7B is thought to be intolerant to LoF mutations52. 

ZFHX3 (zinc finger homeobox 3). ZFHX3 encodes a transcription factor with multiple homeodomains 

and zinc finger motifs and plays a role in cell-cycle, myogenic and neuronal differentiation. This gene is a 

tumor suppressor92 that influences circadian rhythms93,94 and sleep94. It may also contribute to the genesis 

of atrial fibrillation95. ZFHX3 is highly expressed in arterial tissue and also other tissues76. The ZFHX3 

gene is highly intolerant to LoF mutations52. 

ZNF169 (zinc finger protein 169). The biological function of the gene product is as yet unclear. GO 

annotations suggest that ZNF169 is involved in nucleic acid binding and transcriptional regulation. This 

gene is ubiquitously expressed76.  

More details and references in Supplementary Table 24.  
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ONLINE METHODS 

Study design & participants  

The discovery cohort consisted of 123 studies (163 datasets) comprising 526,508 adult (≥18yrs) 

individuals of the following ancestries (Supplementary Figure 1): 1) European (N = 449,889), 2) South 

Asian (N = 29,398), 3) African (N = 27,610), 4) East Asian (N = 8,839), and 5) Hispanic (N = 10,772). 

All participating institutions and coordinating centers approved this project and informed consent was 

obtained from all study participants. Discovery meta-analyses were carried out in each ancestry separately 

and in the All-ancestries combined group, for both sex-specific and sex-combined analyses. SNVs for 

which associations reach suggestive significance (P<2.0x10-6) in the discovery analyses, were taken 

forward for follow-up in 192,226 individuals of European ancestry from the UK BioBank and deCODE. 

Conditional analyses were conducted in the All-ancestries and European descent groups. Study-specific 

design, sample quality control and descriptive statistics are provided in Supplementary Tables 1-3. 

Phenotype  

Body mass index (BMI: weight [in kilograms] / height [in meters] 2) was corrected for age, age2 and 

genomic principal components (PC, derived from GWAS data, the variants with MAF > 1% on 

ExomeChip, or ancestry informative markers available on the ExomeChip), as well as any additional 

study-specific covariates (e.g. recruiting center), in a linear regression model. For studies with non-related 

individuals, residuals were calculated separately by sex, whereas for family-based studies sex was 

included as a covariate in the model. Additionally, residuals for case/control studies were calculated 

separately. Finally, residuals were subject to inverse normal transformation96. 

Genotype calling  

The majority of studies followed a standardized protocol and performed genotype calling using the 

designated manufacturer software, which was then followed by zCall97. For 10 studies, participating in the 

Cohorts for Heart and Aging Research in Genomic Epidemiology (CHARGE) Consortium, the raw 

intensity data for the samples from seven genotyping centers were assembled into a single project for joint 
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calling98. Study-specific quality control (QC) measures of the genotyped variants were implemented 

before association analysis (Supplementary Table 2).  

Statistical analyses 

Study-level association analyses. Individual cohorts were analyzed separately for each ancestry, in sex-

combined and sex-specific groups, with either RAREMETALWORKER (see URL links at the end of the 

Online Methods) or RVTEST99 (Supplementary Table 2), to associate inverse normal transformed BMI 

with genotype accounting for potential cryptic relatedness (kinship matrix) in a linear mixed model. 

These software tools are designed to perform score-statistics based rare-variant association analyses, can 

accommodate both unrelated and related individuals, and provide single-variant results and variance-

covariance matrices. The covariance matrix captures linkage disequilibrium (LD) relationships between 

markers within 1 Mb, which is used for gene-level meta-analyses and conditional analyses100. Single-

variant analyses were performed for both additive and recessive models.  

Centralized quality-control. A centralized quality-control procedure, implemented in EasyQC101, was 

applied to individual cohort association summary statistics to identify cohort-specific problems: (1) 

assessment of possible problems in BMI transformation, (2) comparison of allele frequency alignment 

against 1000 Genomes Project phase 1 reference data to pinpoint any potential strand issues, and (3) 

examination of quantile-quantile (QQ) plots per study to identify any problems arising from population 

stratification, cryptic relatedness and genotype biases.  

Meta-analyses. Meta-analyses were carried out by two different analysts at two sites in parallel. We 

excluded variants with a call rate < 95%, Hardy-Weinberg equilibrium P-value < 1×10-7, or large allele 

frequency deviations from reference populations (> 0.6 for all-ancestry analyses and > 0.3 for ancestry-

specific population analyses). Significance for single-variant analyses was defined at the array-wide level 

(a Bonferroni-corrected threshold of P < 2×10-7 for ~250,000 SNVs). To test for sex-differences of the 

significant variants (P < 2×10-7), we calculated the P-diff for each SNP, which tests for differences 

between women-specific and men-specific beta estimates using EasyStrata102. For gene-based analyses, 
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we applied the sequence kernel association test (SKAT)103 and the Variable Threshold (VT)104 gene-based 

methods using two different sets of criteria (broad and strict) to select predicted damaging R/LF variants 

with MAF < 5%, based on coding variant annotation from five prediction algorithms (PolyPhen2 

HumDiv and HumVar, LRT, MutationTaster and SIFT)20. Our broad gene-based tests included nonsense, 

stop-loss, splice site, and missense variants that are annotated as damaging by at least one algorithm 

mentioned above. Our strict gene-based tests included only nonsense, stop-loss, splice site, and missense 

variants annotated as damaging by all five algorithms. Statistical significance for gene-based tests was set 

at a Bonferroni-corrected threshold of P < 2.5×10-6 for about 20,000 genes16,105. Singe-variant and gene-

based meta-analyses were both performed using RareMETALS R-package106. As our secondary analyses 

are nested and/or highly correlated with our primary analysis, we chose the same, already stringent, 

Bonferroni-corrected significance threshold for both analyses.  

Genomic inflation. Although the overall λGC value is in the normal range for all coding variants (λGC = 

1.1, Supplementary Table 23), we observed a marked genomic inflation of the test statistics even after 

adequate control for population stratification (linear mixed model) arising from common markers (λGC = 

1.99, Supplementary Figure 2a and Supplementary Table 23). Such inflation is expected for a highly 

polygenic trait like BMI, as was previously confirmed for height15, and is consistent with our very large 

sample size5,107. Furthermore, some of the inflation may be due to the design of the ExomeChip, which 

besides R/LF coding SNVs also contains (common and non-coding) SNVs that include previously 

identified GWAS loci for all traits, including for BMI and BMI-related traits, reported in the GWAS 

catalogue at the time of its design.  

After removing established loci (+/- 1Mb), the excess of significant associations is markedly 

reduced and inflation reduced (Supplementary Figures 2c and 2d). 

Furthermore, to exclude the possibility that some of the observed associations between BMI and R/LF 

SNVs could be due to allele calling problems in the smaller studies, we performed a sensitivity meta-

analysis with primarily European ancestry studies totaling >5,000 participants. We found very concordant 
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effect sizes, suggesting that smaller studies do not bias our results (Supplementary Figure 12). 

Follow-up Analysis. We sought additional evidence for association of the top signals (P<2.0x10-6) 

identified in the discovery meta-analysis using two independent studies from the UK (UK Biobank, 

interim release, N = 119,613) and Iceland (deCODE, N = 72,613), respectively (Supplementary Tables 

1-3). We used the same QC and analytical methodology as described above. We used the inverse-variance 

weighted fixed effects meta-analysis in METAL108, to combine the discovery and follow-up association 

results. Significant associations were defined at P < 2×10-7 in the combined meta-analysis of discovery, 

UK Biobank and deCODE results. 

Effect of study design. To investigate the potential effect of study design of the participating studies, we 

tested for heterogeneity between population-based, all case-control studies, T2D case-control studies 

(Supplementary Table 26). None of these comparisons showed significant evidence of heterogeneity 

(P<7.4x10-5, correcting for multiple testing).  

Conditional analyses. The RareMETALS R-package106 was used to identify independent BMI associated 

signals across the all-ancestry meta-analysis results in the discovery phase. RareMETALS performs 

conditional analyses by using covariance matrices from each individual cohort to distinguish true signals 

from the shadows of adjacent significant variants in LD. The conditional associations of all the variants 

within 1Mb of each R/LF coding variant were analyzed to identify [1] nearby secondary signals and [2] to 

determine independence from nearby non-coding variants or previously identified GWAS loci (previously 

defined as a window of 1Mb surrounding the lead SNP). Gene-based conditional analyses were also 

performed in RareMETALS. 

 Due to the selective coverage of variants on the ExomeChip, we also conducted the respective 

conditional analyses in the UK Biobank dataset that included 847,441 genome-wide genotyped markers, 

and 72,355,667 variants imputed against UK10k haplotype reference panel, merged with the 1000 

Genomes Phase 3 reference panel. Where available, directly genotyped variants where used for 

conditional analyses. Otherwise, imputed variants with good imputation quality (IMPUTE2 info score > 
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0.6) were used. We used QCTOOL to extract variants of interest from the original imputed data set. 

Subsequently, GTOOL was used to convert to PLINK format (genotype calling threshold 0.99) and 

merged with the directly genotyped variants for conditional analyses in PLINK v1.90b3.35 64-bit (25 

Mar 2016). 

Conversions of effect size and explained variants. We assumed that 1 SD = 4.5 kg/m2 BMI-units, 

based on population based data, and 1.7m as the average height of a person to convert effects 

sizes in SD-units into body weight. The variance explained by each variant was calculated using 

the effect allele frequency (f) and beta (β) from the meta analyses using the formula109 of 

explained variance = 2f(1-f)β2. 

Penetrance analysis. We examined the penetrance for the four rare SNVs, p.Arg525Gln (rs56214831) in 

KSR2, p.Tyr35Ter (rs13447324) in MC4R, and p.Arg190Gln (rs139215588) and p.Glu288Gly 

(rs143430880) in GIPR in European ancestry data from the UKBiobank (N up to 120,000). For each 

variant, we compared the prevalence of underweight (BMI < 18.5 kg/m2), normal weight (18.5 kg/m2 ≤ 

BMI < 25 kg/m2), overweight (25 kg/m2 ≤ BMI < 30 kg/m2) and obesity (BMI ≥ 30 kg/m2) of non-carriers 

with non-carriers. We used a Pearson 2 test to test for difference between distributions, and a 2 for 

linear trend to test whether distributions of carriers were shifted compared to non-carriers. For 

p.Arg525Gln in KSR2 and p.Tyr35Ter in MC4R, we hypothesized that obesity prevalence was higher in 

carriers than in non-carriers, whereas for the two GIPR variants, we hypothesized that the prevalence of 

normal weight was higher in carriers than non-carriers.  

Associations with obesity for the coding rare and low-frequency loci in children. For each of the 14 

R/LF SNVs, we tested for association with childhood obesity in the CHOP cohort (Childhood Obesity: 

Early Programming by Infant Nutrition), the Severe Childhood Onset Obesity Project (SCOOP), the UK 

Household Longitudinal Study (UKHLS) and INTERVAL Study (INTERVAL). Summary statistics 

across the studies were combined using a fixed effects inverse-variance meta-analysis with METAL108. 
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In the CHOP study, cases (1,358 boys, 1,060 girls) were defined as having a BMI > 95th 

percentile at any point in their childhood. Controls (1,412 boys, 1,143 girls) were defined as having < 50th 

percentile consistently through throughout childhood. The BMI percentiles are based on the CDC 2000 

Growth Charts. All children were classified based on their BMI measurements between the ages of 2 and 

18. All individuals are of European ancestry and were collected at the Children’s Hospital of 

Philadelphia. Informed consent was obtained from all study participants and study protocols were 

approved by the local ethics committees. Genotypes were obtained using the HumanHap550v1, 

HumanHap550v3, and Human610-Quad high-density SNP arrays from Illumina. The intersection of all 

SNPs on the arrays was used in all subsequent pre-imputation analyses. Before imputation, we excluded 

SNPs with a Hardy-Weinberg equilibrium P-value < 1.0×10-6, call rate of < 95% or MAF of < 1%. The 

genotypes were then pre-phased using Shapeit2 and imputed using the 1000 Genomes Phase 1 integrated 

variant set with Impute2. After imputation, SNPs were excluded if the INFO score was < 0.4. Boys and 

girls were analyzed separately using a logistic regression of case and control status, adjusting for three 

eigenvectors, and summary statistics were combined using a fixed effects inverse-variance meta-analysis 

with METAL108.  

 SCOOP is a sub-cohort of the Genetics Of Obesity Study (GOOS) cohort. It includes >1,500 UK 

European ancestry individuals with severe, early onset obesity (BMI Standard Deviation Score > 3 and 

obesity onset before the age of 10 years), in whom known monogenic causes of obesity have been 

excluded (cases with MC4R mutations were excluded). Two case-control analyses with SCOOP cases 

were performed: 1) SCOOP vs. UKHLS for which array (Illumina HumanCoreExome) data was 

available, and 2) SCOOP vs. INTERVAL, for whom whole-exome sequencing data was available.  

For the array based analyses, UKHLS controls were genotyped on the Illumina 

HumanCoreExome-12v1-0 Beadchip. SCOOP cases and 48 UKHLS controls were genotyped on the 

Illumina HumanCoreExome-12v1-1 Beadchip. The 48 overlapping UKHLS samples were used for 

quality control to ensure there were no systematic differences and bias between the two versions of the 

chip. SCOOP and UKHLS samples were phased with SHAPEITv2, and imputed with IMPUTE2 using 
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the combined UK10K-1000G Phase III reference panel. For the WES analyses, SCOOP vs. INTERVAL 

controls were WES within the UK10K-EXOME project (Agilent v3) and the INTERVAL project 

(Agilent v5) respectively and were then jointly called and QC-ed on the union of the sequencing baits. 

Individuals overlapping or related between the array based and WES studies were removed.  

After QC, 1,456 SCOOP and 6,460 UKHLS (BMI range 19-30), and 521 SCOOP and 4,057 

INTERVAL individuals were available for the two analyses, all were unrelated, of high quality, and of 

European ancestry. For both analyses (i.e. SCOOP vs. UKHLS and SCOOP vs. INTERVAL), a 

maximum likelihood frequentist association test with the additive genetic model was implemented in 

SNPTEST v2.5. In the SCOOP vs. UKHLS analysis, sex and the first six PCs were included as covariates 

and variants with a SNPTEST INFO score <0.4 and HWE p<10-6 were removed. For the SCOOP vs 

INTERVAL analysis, we performed an unadjusted analysis (adjustment for PCs did not change 

sufficiently the results) and variants were limited to those covered at ≥7x in at least 80% of each 

sequencing cohort, meeting the VQSR threshold of –2.52, missingness <80%, HWE P-value<10-8, and 

GQ ≥30.  

Cross-trait analyses. We evaluated each of the 14 R/LF SNVs for their association with other relevant 

obesity-related traits and conditions. We performed lookups in ExomeChip meta-analysis results from 

other consortia, including, our own GIANT consortium (height15, WHR adjusted for BMI24), MAGIC 

(HbA1c, Fasting Insulin, Fasting Glucose, 2-hour glucose), GLGC (HDL-cholesterol (HDL-C), LDL-

cholesterol (LDL-C), triglycerides and total cholesterol)), IBPC40 (systolic and diastolic blood pressure), 

REPROGEN23 (age at menarche and menopause) and GoT2D/T2D-GENES16 (type 2 Diabetes). 

Associations were considered significant at P < 2.0×10-5, accounting for multiple testing. 

Phenome-wide association analysis (PheWAS). To evaluate the potential for pleiotropic effects for SNPs 

discovered from primary analyses, we performed phenome-wide association studies (PheWASs) using 

genotype and phenotype data from two independent sources of electronic health records (EHR): 

Vanderbilt University Medical Center Biorepository (BioVU) and the United Kingdom BioBank 



Page 52 of 54 

(UKBB). Phenotype selection and analysis strategy were synchronized across sites. A total of 1502 

hierarchical phenotype codes from EHRs were curated by grouping International Classification of 

Disease, Ninth Revision (ICD-9) clinical/billing codes as previously described110. Phenotype codes with 

20 or more cases and with minor allele count of 5 or greater in cases and controls were eligible for 

analysis. Series of logistic regression analyses were then performed in individuals of European ancestry 

for each eligible phenotype-genotype combination while adjusting for 5 genetic ancestry PCs. Odds ratios 

from genotype-phenotype combinations present in both BioVU and UKBB were then aggregated using 

inverse-variance weighted fixed-effects meta-analysis. Associations with p-values corresponding to false 

discovery rate (FDR) cut off of less than 10% were considered statistically significant. 

Gene set enrichment analysis. We adapted DEPICT, a gene set enrichment analysis method for GWAS 

data, for use with the ExomeChip (‘EC-DEPICT’). DEPICT’s primary innovation is the use of 

“reconstituted” gene sets, where many different types of gene sets (e.g. canonical pathways, protein-

protein interaction networks, and mouse phenotypes) were extended through the use of large-scale 

microarray data (see111 for details). EC-DEPICT computes P-values based on Swedish ExomeChip data 

(Malmö Diet and Cancer [MDC], All New Diabetics in Scania [ANDIS], and Scania Diabetes Registry 

[SDR] cohorts, N=11,899) and, unlike DEPICT, takes as input only coding variants and only the genes 

directly containing those variants, rather than all genes within a specified amount of linkage 

disequilibrium (Supplementary Note). 

 Four analyses were performed for the BMI EC variants: [1] all coding variants with P<5x10-4, [2] 

all coding variants with P<5x10-4 independent of known GWAS variants5, [3] all coding R/LF variants 

with P<5x10-4, and [4] all coding R/LF variants with P<5x10-4 independent of known GWAS variants. 

Affinity propagation clustering3 was used to group highly correlated gene sets into “meta-gene sets”. For 

each meta-gene set, the member gene set with the best P-value was used as representative for purposes of 

visualization (Supplementary Note). DEPICT for ExomeChip was written using the Python 

programming language (See URLs).  
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Drosophila RNAi knockdown experiments. For each of the 13 genes in which R/LF coding variants were 

associated with BMI, we searched for its corresponding orthologues in Drosophila in the ENSEMBL 

orthologue database. Orthologues were available for nine genes, but missing for ZBTB7B, MC4R, GIPR, 

and ZNF169. For each of the nine genes, we generated adipose-tissue (cg-Gal4) and neuronal (elav-Gal4) 

specific RNAi-knockdown crosses, leveraging upstream activation sequence (UAS)-inducible short-

hairpin knockdown lines, available through the Vienna Drosophila Resource Center (VDRC). We crossed 

male UAS-RNAi flies and elav-GAL4 or CG-GAL4 virgin female flies. All fly experiments were carried 

out at 25 °C. Five-to-seven-day-old males were sorted into groups of 20, weighed and homogenated in 

PBS with 0,05% Tween with Lysing Matrix D in a beadshaker. The homogenate was heat-inactivated for 

10 min in a thermocycler at 70 °C. 10µl of the homogenate was subsequently used in triglyceride assay 

(Sigma, Serum Triglyceride Determination Kit) which was carried out in duplicates according to protocol, 

with one alteration: the samples were cleared of residual particulate debris by centrifugation before 

absorbance reading. Resulting triglyceride values were normalized to fly weight and larval/population 

density. We used the non-parametric Kruskall-Wallis test to compare wild type with knockdown lines. 

Enrichment analysis in monogenic genes of obesity. We identified 39 genes with strong evidence that 

disruption causes monogenic or syndromic forms of obesity (Supplementary Table 21). To test whether 

these genes are enriched for R/LF coding variant associations with BMI, we conducted simulations by 

matching each of the 39 genes with other genes based on gene length and number of variants tested, to 

create a matched set of genes. We generated 1,000 matched gene sets from our data and assessed how 

often the number of R/LF coding variants that exceeded given significance thresholds was greater in our 

monogenic/syndromic obesity gene set compared to the matched gene sets. 

 

DATA AVAILABILITY 

Summary statistics can be downloaded from 

http://portals.broadinstitute.org/collaboration/giant/index.php/GIANT_consortium 

http://portals.broadinstitute.org/collaboration/giant/index.php/GIANT_consortium
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