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Abstract 

The modulation of calcium-activated and calcium and voltage-dependent potassium 

channels, by drugs and second messengers, was investigated using the whole cell patch 

clamp technique in hippocampal slices, primary neuronal cultures, and transiently 

transfected HEK293 cells. 

The voltage and Ca2+-sensitive BK channel has emerged as a potential therapeutic 

target in conditions including multiple sclerosis and Fragile X syndrome. 

The Selwood lab have developed a compound, VSN-16R, that can rescue functions in 

mouse models of these diseases, and preliminary evidence suggested VSN-16R might 

act as a BK channel activator.. In the first part of the project I tested VSN-16R on 

heterologously expressed BK channels formed from α-subunit homomultimers or from 

coexpression of the alpha subunit with β subunits, and determined that VSN-16R does 

not act as an activator of these channels. Additionally, I characterised for the first time 

the effects of the BK activator NS19504 on heterologously expressed channels 

incorporating beta subunits, and assessed the effects of VSN-16R in the presence of 

intracellular reducing agents glutathione and dithiothreitol, and under conditions of 

oxidative stress produced by extracellular application of H2O2. 

In the second part of my thesis I aimed to discover the location of discrete subcellular 

signalling domains involved in the regulation of the slow afterhyperpolarising current 

(sIAHP) in hippocampal pyramidal neurons by monoaminergic transmitters. Various 

monoamines, including noradrenaline, converge on a pathway involving the activation of 

PKA by elevated cAMP levels, which leads to the inhibition of the sIAHP by an unknown 

mechanism. The results of my experiments provide evidence of subcellular spatial 

variation in the degree of sIAHP inhibition in response to focal application of the β-

adrenergic agonist isoproterenol, and to localised uncaging of cAMP on the inhibition of 

the sIAHP. 
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Chapter 1. Preface 

Calcium activated potassium channels are a large family of potassium channels that are 

activated by rises in cytosolic Ca2+ concentration, usually in response to the activation of 

voltage gated calcium channels. They are important players in the regulation of neuronal 

membrane excitability, transmitter release, and shaping of action potentials, and are also 

expressed in a wide range of non-neuronal tissues. Calcium activated potassium 

channels are the modulation target of several neurotransmitters, and are implicated in a 

number of disorders including multiple sclerosis, fragile X syndrome and epilepsy, and 

as a result are important potential targets for new drugs. 

The broad aim of my PhD project was to investigate the modulation of calcium activated 

potassium channels by drugs and second messengers. Within this broad framework I 

focused on two separate projects. The first was an attempt to characterise the effect  of 

VSN-16R, a putative activator of the large conductance voltage and calcium activated 

(BK) channels, on BK channel subunits heterologously expressed in HEK 293 cells.  

In the second part of my project, I examined the monoaminergic inhibition of the channels 

responsible for the slow afterhyperpolarisation in hippocampal pyramidal cells, and 

attempted to determine whether this process was spatially localised into subcellular 

signalling domains. 

Part One: Modulation of heterologously expressed BK channels by VSN-16R and 

NS19504 

The primary goal of the first part of the project was to determine whether the drug VSN-

16R functioned as an activator of BK channels. VSN-16R was synthesized by Prof. David 

Selwood and colleagues. It is a derivative of the endogenous cannabinoid anandamide, 

and has been shown to have an antispastic effect in an experimantal autoimmune 

encephalomyelitis (EAE) mouse model of multiple sclerosis (Baker, Pryce, Selwood, 

2015 abstract) and to rescue cognitive deficits in behavioural studies involving mice 

lacking the Fragile X mental retardation protein (FMRP) (Selwood, unpublished data). 

Electrophysiological experiments in the EA.hy926 endothelial cell line (Bondarenko and 

Selwood, unpublished data) have shown that extracellular application of VSN-16R 

activates a current that is sensitive to paxilline, a specific inhibitor of BK channels (Knaus 

et al 1994).  
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In order to investigate whether VSN-16R acts as a direct activator of BK channels, whole 

cell voltage clamp experiments were performed on HEK293 cells transfected with either 

the BKα subunit, which is sufficient to form functional channels, or with a combination of 

the alpha subunit and one of several auxilliary β subunits, which when incorporated into 

channels alter various channel properties including toxin resistance, kinetics, and Ca2+ 

sensitivity (Orio 2002). 

In addition, I characterised for the first time the effects of an established activator of BKα 

homomultimeric channels, NS19504 (Nausch et al 2014) on channels containing β 

subunits. 

Lastly I examined whether the effect of the redox state of the cell altered the effects of 

VSN-16R on BK channels. 

Part Two: Evidence for spatially localised signalling domains in the 

monoaminergic inhibition of the sIAHP. 

The Ca2+-dependent K+ current (sIAHP) underlying the slow afterhyperpolarisation in 

hippocampal CA1 pyramidal neurons is inhibited by noradrenaline and other monoamine 

neurotransmitters (Madison and Nicoll 1982, Benardo and Prince 1982, Andrade and 

Nicoll 1987, Haas and Konnerth 1983) via a pathway dependent on the activation 

adenylyl cyclase by GαS, and subsequent activation of PKA by cAMP (Pedarzani and 

Storm 1993). However little is currently known about the distribution of these 

components on a subcellular level, and whether they are organised into spatially 

localised cAMP signalling domains as has been reported for other processes involving 

cAMP dependent activation of PKA (Xiao et al 1999). 

To this end, whole cell voltage clamp experiments were performed in which the β-

adrenergic receptor agonist isoproterenol was applied focally to either the soma or 

dendrites of CA1 pyramidal neurons using a microinjector pipette, to determine whether 

the magnitude of sIAHP inhibition in response to β-adrenergic activation varied according 

to subcellular location.  

A second set of voltage clamp experiments aimed to probe for discrete cAMP signalling 

domains, by localised photolysis of the caged cAMP analogue BCMCM 8Br-cAMP 

(Hagen 1998). 
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Chapter 2. Materials and Methods 

2.1 Materials and Consumables 

Consumables 

Coverslips Ø 10 mm :     Menzel-Glazer 

Filters: syringe filter (0.22 um)    Millex-Millipore 

Filter paper (mm)      Whatman 

Glass capillaries: borosilicate Ø 1.5 mm 

- Slice electrophysiology    Hilgenberg 

- Cell culture electrophysiology   Kimble 

Glass Pasteur pipettes     VWR 

Microcentrifuge tubes     Sarstedt 

Plastic tubes: 10 ml, 15 ml, 50 ml   Sarstedt 

Screw cap tubes: 12 ml     Greiner  

Serological pipettes: 5ml, 10 ml, 25ml   Sarstedt 

Syringes: 1 ml, 2 ml, 50 ml    Terumo 

Tissue culture flask: T25     Sarstedt 

Volumetric pipette tips: 1 ml, 200 µl   Star Lab  

 

Equipment 

Antivibration table    TMC 

Centrifuges  Mistral 1000  MSE 

Digital balance:  LA120S   Sartorius 

Hood for cell culture: Biomat 2 

Incubators:  CO-170   Innova 

   MCO-17AI  Sanyo 

Mercury lamp  EBQ 100  LEJ 

Microscopes:  Axioskop 2  Zeiss 

   Axiovert  2  Zeiss   

Microelectrode puller: EPC-10   Narishige 

Micromanipulators: SM-1   Luigs & Neumann 

   UL-1000i  Scientifica 

Oscilloscope:  TDS 1012  Tektronix 

Osmometer:  5520   Vapro 

Patch Clamp amplifier: EPC-10   HEKA 

pH meter:  pH Meter776   Knick 

Pressure microinjector:  Picospritzer III  General Valve Corporation 
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Pump:   Dymax 30  Charles Austen Pumps  

Spectrophotometers:  Nanodrop 3300  Thermo Scientific   

Tissue slicer:   VT 1000S  Leica 

UV Flash lamp:  UV Flash II  TILL Photonics 

 

Chemicals 

 

8CPT cAMP-Na      Sigma 

ATP-Na       Sigma 

Ampicillin      Roche 

AP-V       Ascent Scientifc 

Bovine Serum Albumin     Sigma 

Bay-K8644      Sigma  

BCMCM-8Br-cAMP     Biolog 

CaCl2       Fluka 

DMEM-F12      Invitrogen 

DM-Nitrophen      Life Technologies 

DMSO       Sigma 

d-Tubocurarine-Cl     Ascent Scientific 

EBIO       Sigma 

EDTA       IBI technical 

EGTA       Sigma 

Ethanol       Fisher 

Ethidium Bromide (10 mg/ml)    Sigma 

G418       Sigma 

Glucose (Anyhdrous)     Fisher 

GTP-Na       Sigma 

H2O (cell culture)      Baxter 

H2O (intracellular solution)    Romil 

HBS (HEPES-Buffered Saline)    Sigma 

HBSS       Invitrogen 

HEPES       Sigma 

HEPES (intracellular solution)    Fluka 

Isopropanol      Fisher 

Isoproterenol      Sigma 

KCl       VWR 

Gluconic acid (K-gluconate)    Sigma 

Methylsulphuric acid (K-Methylsulphate)   ICN Biomedicals  



17 

KH2PO4       Merck 

L-Glutamine      Invitrogen 

Lucifer Yellow      Sigma 

Luria Broth      Invitrogen 

MEM       Invitrogen 

MgCl2       Fluka 

NaCl       VWR 

NaHCO3       VWR 

Na2HPO4      VWR 

NaOH       BDH 

NBQX       Ascent Scientific 

NS-19504      Neurosearch 

Neurobasal      Invitrogen 

Paxilline       Latoxan, Neurosearch 

PBS       Invitrogen 

Penicillin/Streptomycin (10000 u/ml)   Invitrogen  

Poly-D-Lysine (MW 70,000-150,000)   Sigma 

Pyruvate      Invitrogen 

Tetraethylammonium (TEA)    Sigma 

Tetrodotoxin (TTX)     Latoxan 

TRIS       Bio-Rad 

Trypan Blue      Sigma 

Trypsin-EDTA (HEK cells, 0.05 %)    Invitrogen 

VSN-16R      Canbex Therapeutics 
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2.2 Methods 

2.2.1 Coverslip preparation 

HEK293 cells 

Glass coverslips (diameter: 10 mm) were washed for 30 minutes in 100% ethanol, then 

rinsed in 75% ethanol and sterilized by baking for 8-10 hours at 200°C.  

Immediately before use, coverslips were coated by immersion in a 100 µg/ml poly-D-

lysine solution for 5-10 minutes at 37°C, then washed 3 times with 2 ml sterile H2O and 

stored in the incubator in culture medium until needed. 

Hippocampal cultures 

Glass coverslips (diameter: 10 mm) were sterilized and baked as described above for 

HEK293 cells. Coverslips were then coated with poly-D-lysine 100 µg/ml and incubated 

for 3 hours at 37°C, then washed 3 times with sterile H2O. One coverslip was then 

transferred to each well of a 4-well plate and covered with 500 µl attachment medium. 

2.2.2 Maintenance and splitting of HEK293 cells and stable cell lines 

HEK 293 cells were sourced from the German Collection of Microorganisms and Cell 

Culture and grown to confluency (80-90%) in T25 flasks in an incubator at 37°C and 5 % 

CO2. To split the cells, the medium was removed and the cell layer washed with 4 ml 

PBS to remove debris and dead cells. Cells were detached by adding 1 ml of 0.05% 

Trypsin/EDTA solution. The solution was distributed evenly over the cells and any 

excess removed, before incubation for 1 minute at 37°C. Cells were then resuspended 

in 3 ml HEK complete medium (for composition, see paragraph 2.2.13 below) and 

dissociated mechanically. A new culture was seeded using 500 µl of cell suspension in 

a total volume of 5 ml HEK complete medium. 

Stable BK cell line 

A HEK293 cell line expressing the zero-splice alpha subunit of the rat BK channel  

(rBKαØ) was kindly provided by Dr Martin Stocker.   

BK cells were grown to confluency (80-90%) in T25 culture flasks in the presence of 220 

ng/ml G418 at 37°C and 5 % CO2. The medium was removed and the cells washed with 
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4 ml PBS. Cells were detached by incubation in 3 ml of a 1 mM solution of EDTA in PBS 

at 37°C and 5% CO2. The suspension was centrifuged at 200 x g for 1 minute and the 

supernatant removed.  Cells were resuspended in 3 ml HEK complete medium and 

dissociated mechanically, and a fresh culture was seeded using 1 ml of cell suspension 

in a total volume of 5 ml. 

2.2.3 Preparation of acute dorsal hippocampal slices 

Transverse hippocampal slices (350 µm thick) were obtained from P19-24 male 

Sprague-Dawley rats. All procedures followed the guidelines outlined by the Home Office 

in the Animals for Scientific Procedures (Act 1987). Animals were anaesthetised by 

isofluorane inhalation, and decapitated with surgical scissors once adequate depth of 

anaesthesia had been confirmed by absence of a paw withdrawal reflex. Following 

decapitation, the skin on the skull was cut open using a scalpel blade. The skull was then 

cut open in a caudal to rostral direction, and the halves of the cranium peeled back to 

expose the brain. Ice-cold dissection and maintenance artificial cerebro-spinal fluid 

(dACSF; for composition, see paragraph 2.2.13 below) was poured over the brain to slow 

metabolic processes, and the hindbrain and cerebellum removed with a sharp scalpel 

blade. The hemispheres were then separated with a single longitudinal cut, dissected 

with two frontal cuts at ~85o with respect to the midline, and stored in ice cold dACSF for 

~1 minute while the slicing chamber was prepared. The hemispheres were then glued 

(rostral end downwards) onto the stage of a Leica VT1000S slicer. Slicing was performed 

in ice cold ACSF, bubbled with carbogen (95% O2, 5% CO2).  Immediately after 

separation, slices were transferred to an interface chamber containing dACSF with the 

wide end of a Pasteur pipette, and left to recover at room temperature (22-24oC) for at 

least an hour before recording. The atmosphere of the chamber was kept saturated with 

oxygen by continuous bubbling with carbogen. Slices obtained in this manner remained 

viable for 6-8 hours following dissection. 
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Figure 2.0. Rat transverse hippocampal slice 

Locations of dentate gyrus (DG), CA1 and CA3 regions of hippocampus shown by positions of labels. 

Translucent pyramidal cell layer is indicated by cartoon patch pipette. Diagram adapted 

from Jin et al (2011). 

 

2.2.4 Preparation and maintenance of hippocampal cultures 

Hippocampal cultures were prepared from P0 Sprague-Dawley rat pups. Animals were 

sacrificed by decapitation and the brain hemispheres transferred to a 55 mm Petri dish 

containing ice cold dissection medium (DM; for composition, see paragraph 2.2.13 

below). Under a dissecting microscope, the thalamus was removed from the medial side 

of each hemisphere to expose the hippocampus, which was then dissected out with 

forceps and transferred to a 35 mm dish containing ice cold DM. The process was 

repeated for the number of pups required and the 35 mm dish then transferred to the cell 

culture hood. Hippocampi were cut into 6-8 equal sections, transferred to a 10 ml tube 

using a plastic Pasteur pipette and incubated for 10 min at 37°C in 2 ml DM containing 

200 µl of 2.5% trypsin/EDTA. The tissue pellet was then transferred to a fresh 10 ml tube 

and washed 3 times with 5 ml attachment medium (AM; for composition, see paragraph 

2.2.13 below). Cells were mechanically dissociated using a glass Pasteur pipette and 

the supernatant then transferred to a fresh 10 ml tube and centrifuged for 3 min at 120 x 

g. Following centrifugation, the supernatant was aspirated and the pellet resuspended in 

3 ml AM using a serological pipette. Density of living cells was calculated using a 

haemocytometer to count the cells in 50 µl of solution containing 5 µl Trypan blue. Cells 

were then transferred to coverslips in 4-well plates at a density of 45000 cells/coverslip 

and incubated overnight at 37°C / 5% CO2. After incubation, the attachment medium was 

aspirated and replaced with 500 µl maintenance medium (for composition, see 

paragraph 2.2.13 below).  
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Cells were maintained in the incubator at 37°C / 5% CO2 and the maintenance medium 

was partially changed every 5-7 days, with the volume maintained at 500 µl. 

2.2.5 Transient transfection of HEK 293 cells 

The calcium phosphate method was used for all transfections. HEK 293 cells were plated 

onto 35 mm dishes 10-24 hours prior to transfection and allowed to grow to 70-80% 

confluency. For every transfection 4.65 µg plasmid DNA was added to a solution of 11.7 

µl CaCl2 (2 M) and 77.5 µl Tris-HCl (10 mM, pH 7.6). Where DNA was used at less than 

1 µg/µl concentration, the volume of Tris-HCl was adjusted to give a total volume of 83.1 

µl.  This solution was added dropwise to 94 µl HBS (50 mM HEPES, 1.5 mM Na2HPO4, 

280 mM NaCl, pH 7.22) while vortexing. The mixture was incubated for 30 min at room 

temperature, and added dropwise to the cells. The cells were then returned to the 

incubator for 6 hours at 37°C and 5% CO2. The precipitate was then removed from the 

cells by aspiration of the medium and washing 3 times with 1 x PBS. The medium was 

replaced with 2 ml HEK293 complete medium (for composition, see paragraph 2.2.13 

below).  

Transfected cells were then split onto coverslips 24-48 hours post transfection. Cells 

were detached by incubation at 37°C with 0.05% trypsin/EDTA for 1 minute as per the 

section on the passage of HEK293 cells. Cells then were resuspended in 1 ml HEK 

complete medium and dissociated mechanically. Cell concentration was estimated using 

a cell counting slide, and cells were plated into 3.5 cm dishes containing 5 coverslips 

each, at a concentration of approximately 400,000 cells per dish for cells to be recorded 

within 24 hours, or 200,000 cells per dish for cells to be recorded at 24-48 hours post 

transfection. 

2.2.5.1 Transfection recipes 

Rat BK alpha subunit, zero splice variant (rBKαØ) 

rBKαØ:  0.5 µg 

pBluescript: 3.95 µg 

eGFP:  0.2 µg 

rBKαØ plus human BK beta subunits (hBK-β 1-4) 

rBKαØ:  0.5 µg 

hBK-β :  1.5 µg 
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pBluescript: 2.45 µg 

eGFP:  0.2 µg 

2.2.6 Voltage clamp recordings 

In whole cell voltage clamp recordings, the membrane voltage (Vm) of the cell is held at 

a fixed potential (the holding potential, Vhold), specified to the amplifier circuit by the 

experimenter. The amplifier measures the voltage difference between the extracellular 

and intracellular volumes, and injects positive or negative current as required in order to 

maintain the cell at the holding potential. Changes in ion flux across the plasma 

membrane, which under physiological conditions would alter the membrane potential of 

the cell, are opposed by the amplifier, and are recorded as variations in the current that 

the amplifier needs to inject in order to maintain Vhold. 

2.2.6.1 Series resistance compensation 

In whole cell mode, the circuit formed between the patch and bath electrodes of the 

voltage clamp amplifier can be thought of as the equivalent of a 1st order RC circuit, 

where the capacitor is the capacitance of the plasma membrane (Cm), and the resistance 

is composed of two resistors in series: the input resistance (Rinput), which is the resistance 

to ionic current flow across the plasma membrane, and the series resistance (Rs), due 

to the narrow tip of the pipette and the opening of the membrane through which the 

connection to the cell is achieved. Since Rinput and Rs are connected in series, there is a 

voltage error between the command voltage produced by the amplifier and the potential 

difference achieved at the cell membrane, due to the voltage drop across Rs. The series 

resistance therefore produces two kinds of error in patch clamp recording: a steady state 

error, in which the command voltage is different to the membrane voltage achieved, and 

dynamic errors, due to the fact that changes in Vm lag changes in the command voltage 

with a time constant (τ) determined by τ = Rs * Cm, effectively acting as a low pass filter 

on the current measurements made. 

As a result of the above, in cases where the current under observation is either voltage 

dependent or having fast kinetics, accurate recordings can only be achieved by 

compensating for the voltage error due to the series resistance. The amplifier can 

perform this automatically by first estimating and cancelling Cm, using the waveform used 

to cancel Cm to estimate Rs and calculate the amount of compensation necessary, then 

applying that compensation, and finally making fine adjustments to the amount of Cm 

cancellation required. As this is an iterative feedback process, high degrees of 
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compensation can lead to destabilising resonance, which can kill the cell. As a result, 

series compensation was performed at between 70-80% where its use is indicated. In 

recordings where the properties of the current being measured meant that it was not 

necessary to compensate Rs electronically (i.e. slow currents with little or no voltage 

dependence), every effort was nonetheless made to maintain constant values of Rs of 

between 15-25 MOhm. 

2.2.7 Electrophysiological recordings from transfected HEK293 cells 

Recordings were made from transfected HEK293 cells between 12 and 48 hours after 

transfection. Cells were split onto 10 mm coverslips and maintained in culture medium 

incubated at 37°C and 5% CO2. They were allowed to recover for at least 3-4 hours 

before recording. During recording, coverslips were transferred to a 10 mm recording 

chamber that was perfused with HEK293 extracellular solution (H-EC; for composition, 

see paragraph 2.2.13 below) at a rate of 1-1.5ml/min, using a gravity driven perfusion 

system. Cells were visualised using an Axiovert 200 inverted microscope (Zeiss) with a 

40x objective. Additionally, GFP-transfected cells were visualised using a HAL 100 

illuminator, 480/40 nm excitation filter, dichroic dcLPQ 505 nm splitter and HQ 510 nm 

LP emission filter.  

Recordings were made at room temperature, using patch pipettes made of borosilicate 

glass (Kimble-Chase, outside diameter: 1.5-1.8  mm, wall thickness 0.3 mm), pulled 

using a 2-stage vertical puller (L/M-3P-A, List Medical or PC-10, Narishige, Japan). 

Pipette resistances were between 2.5 and 4 MΩ when filled with a methylsulphate-based 

intracellular solution (for composition, see paragraph 2.2.13 below). Voltage clamp 

recordings were made using an EPC10 patch clamp amplifier and either Pulse v8.8 or 

Patchmaster v2.90, (HEKA Electronik, Germany). 

Cells were initially approached under visual control to select a target cell and position 

the electrode above it, using a micromanipulator (UL-1000i, Scientifica)VXC44. Cells 

were chosen based on the presence of green fluorescence, good adhesion to the 

coverslip and absence of any adjacent or connected cells. Sealing was then 

accomplished by gradual lowering of the pipette onto the cell and patching based on 

observation of test pulse resistance. Tip resistance was continually monitored using a 

voltage pulse on the patch amplifier software, and an increase of tip resistance was taken 

to indicate contact with a cell membrane. Seal formation was effected by releasing the 

positive pressure and application of gentle negative pressure. During seal formation, the 

command voltage was gradually lowered to -90 mV. Once a gigaohm seal was acquired, 
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the fast capacitative transients due to the glass pipette surrounded by intra- and extra-

cellular solutions were compensated for and cancelled, and a 5 ms, 400 mV “zap” 

stimulus was used to rupture the membrane and enter whole-cell configuration. 

On entering whole-cell mode, the slow capacitative transients due to the charging of the 

cell membrane capacitance were compensated for and cancelled, together with Rs 

compensation of 70-80%. 

2.2.7.1 P/n protocol 

In experiments involving voltage-dependent currents, leak current was determined and 

subtracted by using a P/n protocol. From a holding potential outside the active range of 

the channel under study, a series of n depolarising steps of 1/n times the size of the 

command voltage was produced. These were summed to produce an estimate of the 

passive current contribution, which was subtracted from the current response to the 

pulse protocol. In all experiments on BK channels, leak was subtracted using a P/8 

protocol from a holding potential of -120 mV.  

2.2.7.2 Recordings from HEK293 cells expressing BK channel subunits 

Recordings from HEK293 cells expressing various combinations of BK channel subunits 

were made in the whole-cell configuration, in a 10 mm recording chamber bathed in H-

EC solution (for composition, see paragraph 2.2.13 below). 

For the experiment on the calcium dependence of rBKαØ, whole cell recordings were 

made using three different intracellular solutions: HEK-BK-0, HEK-BK-200 and HEK-BK-

1, differing in the concentration of CaCl2 added and the concentration of the calcium 

buffer EGTA, as detailed in the solutions appendix to this section. The free Ca2+ 

concentration was calculated for each solution using the MaxChelator web application 

(Chris Patton, Standford University, USA).  

For each combination of BK subunits, the effect of the known BK channel activator 

NS19504 was tested by addition of the drug to the bath solution at a concentration of 10 

µM, and the effect of the putative BK channel enhancer VSN-16R was tested by addition 

of the drug to the bath solution at a concentration of 20 µM. BK channel currents were 

pharmacologically discriminated from any other voltage activated currents by the 

subsequent addition of 10 µM paxilline or 5 mM TEA.  
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BK steady state current amplitude was determined by taking the mean average of the 

final 10 ms of the current response to the voltage step. In the case of the recordings of 

channels containing the β2 subunit, the peak current amplitude was additionally 

determined, using the mean average of a 5 ms window centred on the largest current 

response to the voltage step.I-V relationships were determined by recording current 

responses to a family of voltage steps (see subsequent paragraphs for details of the 

protocols), and performing a least-squares fit of the Boltzmann function: 

 

 to averaged current responses. Activation time constants were determined by least 

squares fit of a single exponential to the current response to the voltage step in the case 

of recordings of BK alpha homomultimers, and by the least squares fit of a double 

exponential in the case of recordings of BK α / β4 heteromultimers, taking the longer of 

the two time constants. 

2.2.7.3 Recordings from HEK293 cells stably expressing rBKαØ 

Recordings from HEK293 cells stably expressing BK were made in the whole-cell 

configuration using pipettes filled with HEK-BK-0, HEK-BK-200, or HEK-BK1 (for 

composition, see paragraph 2.2.13 below). In some experiments, either 500 µM 

glutathione or 500 µM dithiotheitol (DTT) were added to the HEK-BK-200 intracellular 

solution. The time course of activation for either VSN-16R or NS19504, or inhibition of 

the current by TEA or paxilline, was determined by applying 20 ms-long pulses to +90 

mV from a holding potential of -80 mV, at 10 second intervals. In every experiment the 

pulse protocol was applied for a period of at least 5 minutes to establish a stable baseline 

of current activation before application of drugs. At the end of the baseline period, and 

upon reaching steady state after each drug application, current-voltage relationships 

were determined by means of a family of 20 ms-long voltage steps from -100 to +100 

mV in 10 mV intervals, again from a holding potential of -80 mV. The time interval 

between voltage steps was 3 seconds.  

In some experiments, following acquisition of the baseline time course, H2O2 (1 mM, 5 

mM or 10 mM) was added to the extracellular perfusion, and the current amplitude 

allowed to stabilise at a new level before application of the drugs. 
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2.2.7.4 Recordings from HEK293 cells cotransfected with rBKαØ and hBK-β4 

HEK-293 cells transfected with rBKαØ, human BK-beta4 (hBK-β4) and eGFP were 

patched in the whole-cell configuration using pipettes filled with HEK-BK-200 (for 

composition, see paragraph 2.2.13 below). 

The time course of activation for either VSN-16R or NS19504, or inhibition of the current 

by TEA or paxilline, were determined by applying 200 ms-long pulses to +90 mV from a 

holding potential of -80 mV, at 10 second intervals. At the end of the baseline period, 

and upon reaching steady state after each drug application, current-voltage relationships 

were determined by means of a family of 200 ms-long voltage steps from -100 to +100 

mV in 10 mV intervals, again from a holding potential of -80 mV. 

The longer pulse duration compared to that used for rBKαØ alone was required to allow 

for the slower activation kinetics of channels with the β4 subunit to reach steady state.  

An additional set of experiments were performed in which HEK293 cells, transfected with 

rBKαØ, hBK-β4 and eGFP, were recorded in the whole cell mode using pipettes filled 

with HEK-BK-200, or HEK-BK-200 containing either 20 µM VSN-16R or 10 µM NS19504 

(for composition, see paragraph 2.2.13 below). After allowing 5 minutes for the 

intracellular solution to perfuse the cell completely, the same family of voltage steps 

described above was performed, after which the bath was perfused with Ringer solution 

containing 10 µM paxilline, and the voltage family was repeated. 

2.2.7.5 Recordings from HEK293 cells cotransfected with rBKαØ and hBK-β3 or BK-β2 

HEK-293 cells, transfected with rBKαØ, hBK-β3 or hBK-β2 and eGFP were recorded in 

the whole-cell configuration using pipettes filled with HEK-BK-200 intracellular solution 

(for composition, see paragraph 2.2.13 below). The time course of activation for either 

VSN-16R or NS19504, or inhibition of the current by TEA or paxilline, was determined 

by applying a 20 ms-long step to -140 mV from a holding potential of -80 mV, immediately 

followed by a 50 ms-long step to +90 mV, and then a 20 ms-long step to -120 mV. The 

entire protocol was repeated at 10 second intervals. At the end of the baseline period, 

and upon reaching steady state after each drug application, current-voltage relationships 

were determined by means of a family of 200 ms-longvoltage steps from -100 to +100 

mV (β3) or -100 to +120 mV (β2) in 10 mV intervals, again preceded by a 20 ms-long 

step to -140 mV and followed by a 20 ms-long step to -120 mV. In both protocols, the 

purpose of the preceding hyperpolarising step was to remove any tonic inactivation of 
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the channel by the β subunit, while the -120 mV step following each step in the voltage 

family permitted the deactivation kinetics to be observed. 

2.2.7.6 Flash photolysis of DM-Nitrophen in cells stably expressing rBKαØ 

Recordings from HEK293 cells stably expressing BK were made in the whole-cell 

configuration using pipettes filled with IC-DM (for composition, see paragraph 2.2.13 

below). To determine the effect of flash photolysis, uncaging experiments were 

performed in which the cell was held at +40 mV for 1 s, while a single UV flash was 

delivered after 500 ms using an UV Flash II lamp (Till Photonics / FEI Munich GmbH). 

UV flashes varied between 0.5 and 5 ms in duration by manually varying the ‘intensity’ 

dial on the machine, which in reality sets the duration of a constant power UV flash. The 

effect of repeated flashes on the available pool of unphotolysed DM-Nitrophen was 

tested by measuring the current response following repeated flashes delivered at 5 

second intervals, while the cell was held at +40 mV. 

2.2.8 Hippocampal acute slice recordings 

All recordings from hippocampal acute slice preparations were made from CA1 

pyramidal cells in dorsal hippocampal slices using the blind whole-cell patch clamp 

technique (Blanton et al., 1989).  Experiments were performed with a HEKA EPC-10 

amplifier controlled by Pulse or Patchmaster software (HeKa Electronik). Slices were 

transferred from the interface chamber to the recording chamber on the stage of an 

upright microscope (Zeiss Axioskop) and immobilised using a “harp” – a net made from 

a platinum wire frame with nylon fibres stretched across it. During recordings, slices were 

submerged in the recording chamber and perfused at a rate of 2-2.5 ml/min with ACSF-

2 (for composition, see paragraph 2.2.13 below), bubbled with carbogen. 

 Recordings were made using patch pipettes prepared using a 2-stage vertical puller 

(Narishige PC-10) and glass capilliaries (1.5 mm ø borosilicate glass, Hilgenberg, 

Germany). Pipettes were long shanked and had a tip resistance between 4.5-6 MΩ when 

filled with K-gluconate (IC-APA1; for composition, see paragraph 2.2.13 below). 

Before the pipette tip was placed in the bath, a small amount of positive pressure was 

applied to prevent clogging of the tip and to clear debris from the surface of the slice. 

Once in the bath, the pipette was gradually lowered towards the CA1 cell layer using a 

micromanipulator (Luigs & Neumann, Germany).  To achieve a GigaOhm seal, the 

pipette was lowered gradually into the cell layer, while a test pulse of 5 mV amplitude 

and 10 ms duration was applied to the electrode and visualised on an oscilloscope.  The 
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test pulse allowed the tip resistance to be monitored as the electrode was lowered, and 

an increase of tip resistance was used as an indication of contact with a cell membrane. 

Positive pressure was then released and a small amount of negative pressure applied 

to induce seal formation. During this process, the command voltage was stepped from 0 

to -60 mV to facilitate seal formation.  

Once a high resistance (>1GΩ) seal was formed, the fast capacitive transient of the 

electrode was cancelled electronically using the amplifier circuitry.  To achieve whole cell 

configuration, the membrane under the pipette was then ruptured using a 5 ms-long, 400 

mV zap stimulus and sustained gentle suction. Once the whole cell configuration had 

been acquired, the patch amplifier was switched to the current clamp mode to acquire a 

measure of the resting membrane potential. Cells with a resting potential more 

depolarised than -55 mV were discarded. Additionally, the firing behaviour of the cells 

was assessed in order to determine that the patched cell was a CA1 pyramidal neuron, 

as opposed to a glial cell or interneuron. Action potentials were elicited using a 40-100 

pA current injection of 1 s duration. Experiments were only performed where action 

potential shape, duration and spike frequency adaptation were typical for CA1 pyramidal 

cells (Figure 2.1). 

 

Figure 2.1. Example of an action potential train from a CA1 pyramidal neuron 
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Action potential train was elicited from a CA1 pyramidal cell using ICAPA-1 intracellular.  

(a) Voltage response to the current injection in (b). The presence of a late phase adaptation is 

typical of pyramidal cells as opposed to interneurons.  

(b) The 1s current injection of 100 pA, used to generate the action potential train. 

2.2.8.1  Hippocampal slice whole cell voltage clamp protocols 

Series Resistance Protocol 

Series resistance (Rs) and input resistance (Rinput) were determined by measuring the 

current response to a hyperpolarising voltage step of amplitude 5 mV and duration 100 

ms from a holding potential of -50 mV (Figure 2.2). This holding potential was used to 

minimise activation of the mixed-cation current Ih, which activates between -50 and -70 

mV (Luthi and McCormick, 1998). The traces were sampled at 20 kHz and filtered to 4 

kHz. The voltage protocol used is displayed in Figure 2.2, together with an example 

current response. Three consecutive measurements were averaged for each cell. 

 

Figure 2.2. Series Resistance Protocol 

(a) Voltage protocol, consisting of a 100 ms, -5 mV step from a holding potential of -50 mV. 

(b)  Example current trace in response to (a). Series resistance is calculated by measuring the 

series current minimum at (i) and converting to resistance via Ohm’s law (Rs=Is/δV). Input 

resistance is calculated by measuring the input current at (ii) and converting to resistance 

by (Ri=Ii/δV). 
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sIAHP + Rs protocol 

The sIAHP was measured following a depolarising step from a holding potential of –50 mV 

to between -10 and +10 mV for a duration of 50-250 ms. Following the depolarising step, 

a 12 s-long recording was made of sIAHP (Figure 2.3). The traces were sampled at 1.25 

KHz and filtered to 250 Hz, and the protocol was repeated at intervals of 30 s. A series 

protocol immediately preceded each stimulus pulse and was used to monitor Rs 

throughout the recording. Only experiments in which Rs varied by less than 15% were 

used in the analysis. Peak current amplitude was measured by taking the mean average 

of a window between 500 and 750 ms following the termination of the stimulus voltage 

step. Decay time constant was calculated by fitting a single exponential function to the 

trace between 750 ms following the termination of the stimulus step, and the end of the 

trace. 

All acute slice recordings were performed in the presence 0.5 µM tetrodotoxin (TTX) to 

block voltage gated sodium channels, and 50-100 µM d-tubocurarine (dTC) to inhibit the 

SK channel-mediated afterhyperpolarising current (IAHP). 

Additionally, recordings were made in the presence of tetraethylammonium (TEA), which 

blocks a subset of voltage-gated K+ channels. Unless otherwise stated, the concentration 

of TEA used was 1 mM, at which concentration the sIAHP is enhanced because VGKC 

blockade increases the Ca2+ current during the stimulus pulse by removing the 

contribution of K+ channels to membrane repolarisation. 
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Figure 2.3. sIAHP+Rs Protocol 

(a) Voltage stimulus, consisting of a 100ms, -5 mV hyperpolarising step from holding potential 

of -50 mV, followed by a depolarising step from -50 mV to +10 mV for 100 ms.  

(b)  Current trace in response to (a). The Peak amplitude of sIAHP is measured as the mean 

value of the region between the two dotted lines (i),which are 150 ms apart, the leftmost 

being 500 ms after the end of the stimulus pulse. 

Effect of drugs on sIAHP 

Following attainment of the whole-cell configuration, the sIAHP protocol was initiated and 

the current was allowed to run up to a stable baseline for at least 10 minutes in the 

presence of TTX, TEA and dTC. After a stable baseline had been achieved, either 1-

Ethyl-2-benzimidazolinone (EBIO; 1 mM), ethanol (EtOH; 10 or 20 mM) or Methyl 2,6-

dimethyl-5-nitro-4-[2-(trifluoromethyl)phenyl]-1,4-dihydropyridine- 

3-carboxylate (Bay-K 8644; 1 µM) was dissolved in ACSF and applied extracellularly via 

bath perfusion until a new stable sIAHP amplitude was achieved. The drug was then 

removed and washout attempted. 

Effect of varying concentrations of TEA on sIAHP 

The sIAHP protocol was initiated and the current allowed to run up to a stable baseline for 

at least 10 minutes in the presence of TTX and dTC. The cell was then bathed in ACSF-
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2 (for composition, see paragraph 2.2.13 below) containing increasing concentrations of 

TEA (1 mM, 5 mM, 10 mM and 20 mM). In the case of the 10 mM and 20 mM 

concentrations, the NaCl concentration of the ACSF was reduced by an equivalent 

amount to avoid the possibility of osmolarity changes influencing the behaviour of the 

cell. In each case the sIAHP was allowed to reach a stable state before the next 

concentration of TEA was applied. Following the application of the last concentration, 

the drug was removed and the recording continued in order to observe a washout. 

2.2.9 Focal application of isoproterenol 

Hippocampal pyramidal cells were recorded in the whole-cell mode (2.4.2) using IC-

APA-1 intracellular solution containing 200 µM Lucifer yellow (for composition, see 

paragraph 2.2.13 below). The cell was allowed to fill with fluorophore for at least 20 

minutes, during which time Rs was monitored, and thereafter sIAHP was recorded for a 

further 10 minutes to establish a stable baseline for current amplitude.  

ACSF containing 50 µM isoproterenol and 1 mM Lucifer yellow was then applied focally 

to cells using a Picospritzer III microinjector (Parker). The ACSF containing the Lucifer 

yellow was maintained in a 500 µl Eppendorf tube bubbled with carbogen (95% O2 5% 

CO2). Immediately before an experiment, 20 µM isoproterenol was dissolved in the 

aliquot and the resultant solution loaded into the microinjector pipette. This procedure 

was designed to minimize both the potential for oxidization of isoproterenol, which would 

lead to a change in effective concentration, and de-gassing of the ACSF, which might 

lead to changes in pH and hypoxic effects being observed in the cell following 

application. 

During the cell-filling, but before the sIAHP baseline acquisition phase of the experiment, 

the microinjector pipette was kept some distance above the slice, to prevent any effect 

on the cell due to leakage of solution from the pipette due to diffusion. The pipette was 

then moved into the target position and the baseline traces acquired. In each experiment, 

the puff was applied to one of two distinct regions, chosen to correspond to either the 

soma/proximal dendritic region or the distal dendritic region. Both target positions were 

determined by eye, and were defined by positioning the tip approximately 2 soma 

diameters (i.e. approximately 40 µm) from the intersection of the soma with the apical 

dendrite (soma/proximal) or 5 soma diameters (~100 µm) past the first visible branching 

point of the apical dendrite (distal dendrite). 
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The microinjector was used as a puffer pipette, and settings were set to 10 ms duration 

and 10 psi, which produced a cone-shaped puff, in which the fluorescent area was 

around 20 µm in diameter at a point around 100 µm from the pipette tip.  

Due to the laminar flow of ACSF across the surface of the tissue slice, the puff (as 

indicated by the fluorescent dye) diffused away from the site of application in the direction 

of the laminar flow. As a result, it was necessary to orient the slice so that the longitudinal 

axis of the cell being recorded was approximately perpendicular to the direction of flow. 

The positions of the various elements of the recording setup are shown in figure (Figure 

2.4). 

 

Figure 2.4. Schematic of the focal application experiment 

Patch pipette (right) is used to patch soma, microinjector pipette (left) containing lucifer yellow and 

isoproterenol is used to locally apply isoproterenol to different parts of the neuron. 

2.2.10 Recordings from hippocampal cultures 

Recordings were made from cultured hippocampal neurons between DIV 4 to 12 (DM-

Nitrophen experiments) and DIV 15 to 24 (BCMCM-8Br-cAMP experiments). Cells were 

cultured on 10 mm coverslips and maintained in maintenance medium incubated at 37°C 

and 5% CO2. At the start of the recording session, coverslips were transferred to a 

recording chamber that was perfused with rACSF extracelular solution (for composition, 

see paragraph 2.2.13 below), bubbled with carbogen, at a rate of 1.5 ml /min using a 
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pump perfusion system. Cells were visualised using a Zeiss Axioskop microscope with 

a 60x objective. Additionally the visual field was displayed on a monitor via a camera 

(VX44, TILL Photonics, Germany). 

Recordings were made at room temperature, using patch pipettes (1.5 mm ø borosilicate 

glass, Hilgenberg, Germany), pulled using a 2-stage vertical puller (PC-10, Narishige, 

Japan). Tip resistances were between 3.0 and 4.0 MΩ in a methylsulphate based 

intracellular solution (IC-HC or IC-DM; for composition, see paragraph 2.2.13 below). 

Voltage clamp recordings were made using an EPC10 patch clamp amplifier and Pulse 

v8.8 (HEKA Electronik, Germany). 

Every attempt was made to record only from pyramidal neurons, and the identity of cells 

in the culture as pyramidal neurons was determined by observation of the presence of a 

triangular perikaryon, a large apical dendrite and shorter basal dendrites (Banker and 

Cowan 1977, Kreigstein and Dichter, 1983). Identification of dendrites was determined 

based on their length, branching pattern and tapering diameter (Dotti et al 1988).  

During seal formation, cells were initially approached by the pipette under visual control 

in order to select a cell matching the criteria described above, using an SM-1 

micromanipulator (Luigs and Neumann, Germany). The pipette was then lowered onto 

the cell and seal formation was achieved by monitoring changes in the tip resistance in 

response to a test voltage step on an oscilliscope (Tektronix TDS1012), and an increase 

in resistance was determined to represent contact of the tip with the cell membrane. The 

positive pressure was then released and gentle negative pressure applied to facilitate 

seal formation, and during seal formation the voltage was gradually stepped to -60 mV. 

Once a GigaOhm seal had been achieved, the fast capacitative transients were 

compensated for and cancelled on the amplifier software, and the whole-cell 

configuration was achieved using suction and a zap voltage pulse (10 ms-long step; 400 

mV). 

Immediately before attempting to achieve the whole cell configuration, 250 µM TTX, 25 

µM (2R)-amino-5-phosphonovaleric acid (APV) and 5 µM 2,3-dihydroxy-6-nitro-7-

sulfamoyl-benzo[f]quinoxaline-2,3-dione (NBQX) were added via the perfusion system, 

in order to suppress action potential firing and inhibit glutamatergic synaptic activity. 

Once the whole cell configuration had been acquired, the patch amplifier was switched 

to current clamp mode to acquire a measure of the resting membrane potential. Cells 

with a resting potential more depolarised than -55 mV were discarded. 
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2.2.10.1 DM-Nitrophen uncaging  

Pyramidal cells were identified and patched using the method described in 2.10, using 

IC-DM intracellular solution containing 3 mM of the photolabile calcium buffer DM-

Nitrophen, 60% loaded with Ca2+. Correct loading of DM-Nitrophen was achieved by 

making two solution aliquots, one loaded to 100% by adding CaCl2 at a concentration 

calculated using Maxchelator v1 (Chris Patton, Stanford University), and the other 

containing no Ca2+. The solutions were then mixed ratiometrically to achieve correct 

loading. The soma of the cell to be patched was positioned in the centre of the visual 

field. Following acquisition of the whole-cell state, the cell was left for a period of at least 

10 minutes to permit dialysis of the cell with the intracellular solution and the caged 

compound.  

Flash photolysis of DM-Nitrophen was achieved using a UV Flash II pulsed light source 

(TILL Photonics), along with a light path that incorporated a sliding lens, permitting the 

area of the visual field covered by the flash to be altered . The area of the flash was 

adjusted so that it covered an area approximately twice the diameter of the soma, 

centred in the middle of the visual field. A series of four flashes was applied, set at the 

device’s maximum duration of 5 ms, with a 2 s interval between flashes. During the flash 

protocol, the cell was held at -50 mV and current response data were acquired. An Rseries 

step (2.8.1.1) was included at the start of the data acquisition phase, between the Rseries 

step and the first flash, and the cell was held at -50 mV and was recorded for a period of 

1s before presentation of the flash, in order to establish a current baseline. 

2.2.11 BCMCM-8Br-cAMP uncaging 

Pyramidal cells were identified and patched using the method described at the start of 

paragraph 2.10, using IC-HC intracellular solution containing 200 µM BCMCM-8Br-

cAMP. Prior to patching, the cell was positioned so that the region where the flash was 

to be centred was in the middle of the visual field.  

Once the whole cell configuration was achieved, the cell was recorded for at least 10 

min using the sIAHP+Rs protocol (2.8.1.2), to establish a baseline for the sIAHP amplitude 

and to permit the diffusion of the caged compound into the cell. Following this period, a 

train of 5 flashes of duration 5 ms, separated by 800 ms intervals, was delivered, and 

the sIAHP+Rs protocol restarted. In some cells, the flash protocol was delivered at multiple 

time points in the experiment. In each case, subsequent flashes were delivered once the 

sIAHP amplitude had reached a new stable baseline.  
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The flash protocol was delivered to one of two subcellular locations. The first covered 

the cell soma, which was achieved by setting the lens in the light path of the flash such 

that the flash covered a circular area equal to approximately to ⅛ of the visual field of 

the 60x water immersion lens. Before the start of the experiment, the light source was 

set to strobe mode, and with the lens immersed and focused on the coverslip, a circle 

was drawn on the monitor screen around the area covered by the flash. The cell was 

then positioned so that the soma, but none of the apical dendrite, was inside the inscribed 

circle, and the cell was then patched at the soma and the experiment performed as 

described above. 

The second region was designed to cover the proximal portion of the apical dendrite, 

and was set by positioning the light path lens so that the area covered by the flash was 

equal to approximately to ¼ of the visual field of the 60x lens. The stage was then moved 

such that the first branch point of the apical dendrite was the edge of the flashed region 

furthest from the soma (Figure 2.5). In this way it was possible to cover around ¾ of the 

portion of dendrite between the soma and the first branch point, although the precise 

proportion varied slightly depending on cell morphology. 

 

Figure 2.5. Schematic showing location and relative size of the dendritic and somatic flash 

regions 
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2.2.12 Analysis 

All experiments were analysed using IGOR Pro v6.32A (USA) with additional processing 

in Neuromatic 2 (kindly provided by J. Rothman, UCL). Methods for the measurement of 

values pertinent to each experimental protocol are detailed in the relevant sections. In 

all experiments, voltages are reported without correction for liquid junction potential 

(LJP), which takes values of -11 mV (K-Gluconate) or -5 mV (K-Methylsulphate). 

Graphs were produced using IGOR Pro v6.32A and Prism v7 (Graphpad USA), and 

statistical analysis performed using Prism v7. Throughout this document, error bars on 

graphs and figures denotes standard error of the mean (SEM). Throughout the text, 

values are reported as mean ± SEM. Normality of sample distributions was determined 

using the Shapiro-Wilk normality test. Where samples were not normally distributed, the 

relevant non-parametric test was used, as quoted in the text. 

2.2.13 Solutions 

2.2.13.1 Cell culture media 

HEK complete medium 

 

DMEM/F12   

Fetal Bovine Serum 10% 

L-Glutamine 2 mM 

Penicillin/Streptomycin 100 U/ml, 100 µg/ml 

Dissection Medium 

 

1 x HBSS 

10 mM HEPES 

Attachment Medium 

 

50 ml Aliquot 

1 x MEM 

1 mM Pyruvate  

0.5 ml 100X L-Glutamine 

0.66 ml 0.59% Glucose 

5 ml 10% Horse Serum 
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Maintenance medium 

 

50 ml Aliquot 

1 x Neurobasal 

0.33 ml 0.6% Glucose 

0.25 ml 100X L-Glutamine 

0.25 ml Penicillin/Streptomycin (10000 U/ml) 
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2.2.13.2 Slice preparation media 

Dissection and maintenance ACSF (dASCF) 

 

NaCl    125 mM 

KCl   1.25 mM 

KH2PO4   1.25 mM 

NaHCO3   25 mM 

Glucose   16 mM 

CaCl2   1 mM 

MgCl2   1.5 mM 

pH 7.4 when bubbled to saturation with carbogen. 

Solution was prepared as a 5X stock, minus glucose, CaCl2 and MgCl2, using Milli-Q 

deionised water. 

1X solution was prepared on the day by dilution with Milli-Q water and supplemented 

with glucose, while MgCl2 and CaCl2 were added once the solution had been bubbled to 

saturation with carbogen. 

2.2.13.3 Extracellular solutions 

All extracellular solutions were prepared using Milli-Q deionised water. 

HEK 293 Extracellular (H-EC) 

 

NaCl   145 mM 

KCl    4 mM 

HEPES   10 mM 

Glucose   11 mM 

CaCl2   1 mM 

MgCl2   0.5 mM 

pH 7.4 
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Recording ACSF (rACSF) 

 

NaCl    125 mM 

KCl   1.25 mM 

KH2PO4   1.25 mM 

NaHCO3   25 mM 

Glucose   16 mM 

CaCl2   2 mM 

MgCl2   1.5 mM 

 

pH 7.4 when bubbled to saturation with carbogen. 

Solution was prepared as a 5X stock, minus glucose, CaCl2 and MgCl2, using Milli-Q 

deionised water. 

1X solution was prepared on the day by dilution with Milli-Q water and supplemented 

with glucose, while MgCl2 and CaCl2 were added once the solution had been bubbled to 

saturation with carbogen. 

2.2.13.4 Intracellular solutions 

All intracellular solutions were made with Romil water. 

HEK-BK-0 

 

K-Methylsulphate  135 mM 

HEPES     10 mM 

EGTA   10 mM 

MgCl2 was added in sufficient quantity to give free Mg2+ of 1 mM, using Maxchelator 

(C.Patten, Stanford University). 

HEK-BK-200  

 

K-Methylsulphate  135 mM 

HEPES     10 mM 

EGTA    5 mM 

CaCl2 and MgCl2 were added in sufficient quantity to give free Ca2+ of 200 nM and free 

Mg2+ of 1 mM, using Maxchelator (C.Patten, Stanford University) 
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HEK-BK-1 

 

K-Methylsulphate  135 mM 

HEPES     10 mM 

EGTA    5 mM 

CaCl2 and MgCl2 were added in sufficient quantity to give free Ca2+ of 1mM and free 

Mg2+ of 1 mM, using Maxchelator (C.Patten, Stanford University) 

IC-APA1: standard neuron intracellular solution (K-Gluconate) 

 

K-Gluconate   135 mM 

KCl   10 mM 

HEPES   10 mM 

Na2ATP      2 mM 

Na3GTP   0.4 mM 

MgCl2   1 mM 

pH 7.2-7.3   

Osmolarity 280-290 mOsm/L 

IC-APA3: Standard neuron intracellular solution (K-Methylsulphate) 

 

KMeSO4   135 mM 

KCl   10 mM 

HEPES    10 mM 

Na2ATP      2 mM 

Na3GTP   0.4 mM 

MgCl2   1 mM 

pH 7.2-7.3   

Osmolarity 280-290 mOsm/L 
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IC-MOPS 

 

K-Gluconate  100 mM 

HEPES     40 mM 

MOPS   5 mM 

MgCl2   2 mM 

EGTA   0.1 mM 

CaCl2   0.05 mM 

Na2ATP      2 mM 

Na3GTP   0.4 mM 

pH 7.2-7.3   

Osmolarity 280-290 mOsm/L 

IC-DM 

 

KMeSO4   110 mM 

HEPES     50 mM 

MgCl2   0.5 mM 

Na2ATP      2 mM 

Na3GTP   0.4 mM 

Phosphocreatine   10 mM 

DM-Nitrophen     3 mM 

pH 7.2   

Osmolarity 280-290 mOsm/L 

Correct loading of DM-Nitrophen was achieved by ratiometric mixing of IC-DM solution 

aliquots, one calcium-free, and the other 100% loaded with Ca2+ using CaCl2. Correct 

load was calculated using Maxchelator (C.Patten, Stanford University). 
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PART ONE: Effect of VSN-16R and NS19504 on 

heterologously expressed BK channel subunits. 

Chapter 3. Introduction 

3.1 BK channels 

BK channels, also known as MaxiK, BKCa, Slo1 or KCa1.1, are potassium channels of 

high unitary conductance that exhibit the unique property of being activated by both 

intracellular Ca2+ and voltage. They are ubiquitously expressed throughout the body, 

performing diverse roles in different tissues, and exhibit variation in their biophysical 

properties depending on their subunit composition and a variety of alternative splice 

variants. BK channels have been implicated in a number of pathological conditions, 

including the monogenic disorder Fragile X syndrome, which is the most common 

heritable cause of cognitive impairment. They therefore represent an important potential 

therapeutic target for novel drug therapies. 

3.1.1 BK channel structure: the alpha subunit 

The BKα subunit is the necessary and sufficient molecular component for the formation 

of a functional BK channel. The minimal functional channel is formed from a 

homotetrameric assembly of this subunit, which is the translation product of the KCNMA1 

gene. Unusually for members of the S4 superfamily of K+ channels, BKα consists of 7 

as opposed to 6 transmembrane segments, known as S0 to S6.   

The broad structure of the BKα subunit consists of three functionally distinct regions: a 

voltage sensitive domain (VSD) comprising transmembrane segments S1-S4, a pore 

forming region (S5 and S6, plus linker), and a cytosolic C-terminal region which contains 

two Ca2+ sensing domains. 

As with all other voltage dependent K+ channels, the positively charged S4 segment is 

involved in the voltage sensing apparatus, though the extent of the voltage sensing 

domain (VSD) in Kv channels is defined as the region comprising segments S1 to S4. 

However in the BK channel, only one of the positively charged residues on S4 has been 

directly implicated in voltage sensing (Diaz et al 1998). The pore domain of the channel 

is formed by the S5 and S6 segments, which contain the K+ channel signature sequence, 

and mediates pharmacological block by TEA, charybdotoxin and iberiotoxin. A number 
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of residues forming the inner vestibule of the pore permit the concentration of K+ ions in 

the vicinity of the pore via electrostatic mechanisms, leading to the characteristic high 

conductance of the channel (Brelidze et al 2003), along with a residue (D292) in the 

external vestibule (Haug 2004). 

Tetramerisation of the alpha subunit is mediated by a hydrophilic region linking the 

transmembrane S6 and intracellular hydrophobic S7 segment (Quirk and Reinhart 2001). 

This is the only region capable of self-association and formation of stable tetramers in 

solution, and truncation of the channel at this location produces a dominant negative 

phenotype. 

The presence of an extra transmembrane region at the N terminal end of the molecule 

leads to the N terminus being located extracellularly (Meera, 1997), and it is this region 

that mediates association between BKα and the auxiliary beta (β1-β4) and gamma  (γ1-

γ4) subunits (Morrow et al 2006), which confer differences in various properties such as 

channel kinetics, Ca2+ sensitivity, and pharmacology. 

The region between the S8-S9 linker and the C-terminus is known as the tail. It can be 

expressed separably from the rest of the protein, and co-expression of the core protein 

and the tail region produces a functional channel, and both regions are required for the 

production of functional channels. This intracellular C-terminal portion of the human BKα 

protein has been successfully crystallised, confirming the prediction that this region 

contains two Ca2+-sensing domains, RCK1 and RCK2 (Yuan et al, 2010), one in the S7-

S8 region, and another at the C-terminus comprising the S9-S10 linker and part of the 

S10 region (Schreiber et al, 1999). The second Ca2+ sensitive domain also contains the 

Ca2+ binding site, a region known as the Calcium bowl, consisting of an Asp-rich 

sequence.  
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Figure 3.1. Cartoon of BK α subunit structure. Membrane-spanning and intracellular helices 

are shown as numbered red cylinders. N and C respectively represent the amino and carboxy 

termini of the molecule.   

3.1.2 Functional properties of the BKα homotetrameric channel 

BK channels display a range of functional properties that make them of particular interest 

to the biophysicist. Compared to other voltage dependent K+ channels, they exhibit a 

very high unitary conductance of around 100-300 pS in 100 mM symmetrical KCl, a 

property that inspired the channel’s nomenclature (“Big” K or MaxiK). As described 

above, this feature is thought to be due to the capacity of residues in the cytosolic and 

extracellular vestibule regions of the pore loop to concentrate K+ ions around the pore 

entrance via electrostatic attraction. They are also unique in being sensitive to both 

voltage and intracellular Ca2+. Both voltage and calcium are sufficient to activate the 

channel in the absence of the other (Cui et al 1997, Palotta et al, 1981), though to 

produce pOpen values in the region of 0.5 in a physiologically relevant membrane 

potential range requires the presence of around 10 µM Ca2+. As a result of this, they can 

be seen as acting as coincidence detectors (Patazis and Olcese 2016), capable of 

integrating voltage and calcium signalling, as well as providing a homeostatic effect on 

Ca2+ entry via voltage gated calcium channels (VGCCs), as increased calcium entry 

leads to greater BK activation, and hence hyperpolarisation, which in turn reduces VGCC 

activation. BK channels tend to be collocalised with VGCCs in most tissues (eg. in 

auditory hair cells (Roberts et al 1990)), with the coupling allowing local elevation of 
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[Ca2+]i to the 10 µM range. A Similar collocolisation is observed between plasma 

membrane BK channels and ryanodine receptors in sarcoplasmic reticulum (Orio 2002). 

3.1.3 BK Channel variants 

Mammalian BK channels can be associated with a range of auxilliary subunits of two 

subtypes, called β and γ, which can greatly alter many properties of the channel: kinetics, 

resistance to blockade by toxins, and sensitivity to Ca2+ and voltage. Further functional 

diversity is conferred by a wide range of alternative splice variants of both the BKα 

subunit and β subunit RNA, as well as post-translational modifications such as lipidation 

and phosphorylation.  

3.1.3.1 Beta subunits 

BK β subunits are a family of small (20-30 KDa) membrane proteins, consisting of two 

transmembrane regions connected by a 120-residue extracellular loop, with the amino 

and carboxy termini on the cytoplasmic side of the membrane. At present, four types of 

β subunit (β1-β4) have been cloned in mammals (Marty 1981, Behrens et al 2000, 

Brenner, Jegla et al 2000, Ubele et al 2000). Each confers a different set of modifications 

to the functional properties of the canonical channel. 

The first beta subunit to be cloned, now known as β1, was initially identified from smooth 

muscle preparation as having high affinity for the BK channel blocker charybdotoxoin 

(Ctx). It is found in a range of non-neuronal tissues including hair cell, smooth muscle 

and endothelium (Orio et al 2002). Co-expression of this subunit with the BKα leads to a 

leftward shift in the voltage dependence, particularly at intracellular Ca2+ concentrations 

greater than 1 µM, as well as slowing the activation and deactivation kinetics of the 

channel.  

A second subunit, β2, was discovered by searching human expressed tag sequence 

database using β1 as a query sequence (Wallner et al 1999). Coexpression of the 

resultant peptide with BKα yielded a channel with an inactivating phenotype, reminiscent 

of the currents previously observed in rat chromaffin cells (Xia et al, 1999), as well as 

reduced sensitivity to the blocker charybdotoxin (Ctx). Truncation of the cytosolic N-

terminus of the β2 subunit produced a mutation lacking the inactivation phenotype, 

suggesting a mechanism reminiscent of the N-type inactivation model originally 

described in Shaker (Xia et al, 1999). The rate of inactivation was also shown to be 

calcium-dependent, with the time constant for 10 µM [Ca2+]i around 5-fold lower than that 

at 100 nM [Ca2+]i.  The β2 subunit is widely expressed in brain, including in hippocampal 
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CA1 pyramidal neurons, where it modulates the inter-spike interval in the initial portion 

of an action potential burst (Shao et al 1999, Faber and Sah 2003), and suprachiasmatic 

nucleus (Whitt et al, 2016), where circadian changes in β2 expression levels modulate 

neuronal excitability. 

A third beta subunit, named β3, was also cloned from human EST databases (Xia et al, 

2000). It was found to be enriched in various non neuronal tissues, including pancreas, 

spleen and testis (Orio 2002). Phylogenetically similar to β2, it confers inactivating 

properties which are less rapid and pronounced than those of β2, which are more visible 

at highly positive voltages. There are three splice variants (a-c), which differ primarily in 

the speed and completeness of the inactivation properties conferred. In addition, the β3 

subunit confer the property of outward rectification on the channel (Behrens et al 2000, 

Xia et al 2000). 

A final subunit, β4, is expressed primarily in brain, including hippocampus, dentate gyrus, 

and cortex. It is the most phylogenetically distinct member of the β family, and confers a 

wide range of properties on the channel, including a reduced Ca2+ sensitivity, 

pronounced slow activation and inactivation kinetics, a reduced sensitivity to the specific 

BK blockers iberiotoxin and charybdotoxin (Meera et al, 2000), and an increased 

sensitivity to martentoxin (Shi et al, 2008). 

Table 3.1. Summary of the effects of different mammalian β subunits on channel properties 

Subunit 
Ca2+/voltage 
sensitivity 

kinetics inactivation Pharmacology 

β1 Leftward shift slowed no Increased Ctx sensitivity 

β2 none No change rapid None 

β3 
(a, b, c, d) 

none No change 

High voltages 
only 

Splice 
dependent 

None 

β4 Rightward shift slowed no 

Iberiotoxin resistance 

Ctx resistance 

Martentoxin sensitivity 
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3.1.3.2 Gamma subunits 

In addition to the four members of the beta subunit family, an additional family of BK 

modulatory subunits, known as γ1-γ4 have also been identified. The first clue to the 

existence of this subunit family came from the discovery of an unusual BK-like 

conductance in lymph node carcinoma cells (Gessener 2005). This conductance 

displayed most of the characteristics typical of the BK channel, such as a large 200 pS 

unitary conductance and sensitivity to BK-specific blockers paxilline, iberiotoxin and 

penitrem A, however the voltage dependence was shifted leftward by as much as 140 

mV compared with BK alpha homomultimeric channels in expression systems. 

This feature was not readily explicable by any previously known mechanism, and it was 

subsequently demonstrated that, although the lymph node carcinoma cells expressed 

the normal splice form of BKα, immunopurification and mass spectrometry of the channel 

complex revealed a 35 kDa leucine-rich protein, which when knocked down in the tumor 

cell abolished the leftward shift in the I-V relationship (Yan and Aldrich, 2010). 

Association of the fragment with BKα was subsequently confirmed via 

immunoprecipitation following coexpression in HEK293 cells, and its effects on BKα 

voltage sensitivity were likewise demonstrated by voltage clamp experiments on the 

same cells (Yan and Aldrich, 2010). 

This subunit, and the three others subsequently identified, all share a similar set of 

structural and functional characteristics. Each has a similar molecular weight, with a 

single membrane spanning region, an extracellular N-terminus, as evidenced by a 

cleavable n-terminal extracellular targeting peptide, and a short intracellular C-terminal 

region (Yan and Aldrich, 2012). All contain a single leucine-rich LRR domain in the 

extracellular N-terminal region, which in other protein families is implicated in protein-

protein interaction. Functionally, all four types of γ subunit appear to have similar effects, 

differing only in the extent of the hyperpolarising shift conferred. Whilst the expression 

pattern of these subunits among different tissue subtypes is not yet well known, it is likely 

that their role is confined primarily to non-excitable cells, by virtue of this property. 

3.1.3.3 Stoichiometry of subunits 

In the initial discovery by immuno-coprecipitation of the β1 subunit in bovine smooth 

muscle, the isolated channel complex was found to comprise an octameric assembly of 

BKα and β1 subunits in a 1:1 ratio. Thus each alpha subunit can bind to a single β 

subunit, and the entire assembly can have between 0 and 4 β subunits. As a result the 
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number of β subunits present in each assembly is dependent on the ratio of β to α 

expression, and each β present contributes incrementally to the channel properties,  as 

demonstrated in Xenopus oocyte by Wang et al (Wang et al 2002), where the beta 

subunit altered the voltage dependency of the whole cell current in a titration-dependent 

manner according to the ratio of β to α mRNA injected. One additional point worthy of 

consideration in the case of heterologous expression systems is the observation that in 

the granule cells of dentate gyrus the β4 subunit  causes internalisation of the channel 

assembly from the plasma membrane and sequestration to the endoplasmic reticulum 

(Shruti et al, 2012). It is not known if this effect is recapitulated in heterologous 

expression systems, or whether the effect strength is dependent on stoichiometry, but if 

so it might lead to a bias towards channel complexes containing a lower fraction of beta4 

present in the plasma membrane. 

The stoichiometry of the more recently discovered y subunit family is less well 

characterised, however in terms of contribution to the functional properties of the 

channel, it has been shown that γ1 exhibits an all-or-none effect: there are no 

intermediate hyperpolarising shifts dependent on the molar ratio of mRNA injected into 

Xenopus oocytes (Gonzalez-Perez et al, 2014). It is possible that a single γ1 subunit is 

sufficient to produce the full effect, or it may be that γ subunits form a tetrameric 

assembly which subsequently associates with the Bkα channel complex. 

3.1.3.4 Alternative splicing 

In addition to the diversity conferred on BK channels by the auxilliary subunits, there is 

a further source of structural variability in the form of transcriptional modification of the 

alpha subunit mRNA. A total of 13 alternate exons are present in the human KCNA1 

gene, theoretically leading to thousands of possible splice variants (Beisel et al, 2007). 

In C. elegans, where the combinatorial possibilities number a more manageable 12, all 

were shown to be expressed endogenously, and under heterologous expression were 

shown to confer alterations to activation kinetics and calcium sensitivity (Johnson et al, 

2011). In mammalian KCNA1, a number of studies have shown variations in the 

properties of the heterologously expressed splice variants, however few have been 

shown to have much physiological relevance. One exception of note is the STREX exon, 

which resides at the carboxyl terminus of the BKα molecule. The presence of this exon 

alters a wide range of channel properties, including enhancement of channel opening 

(Saito et al, 1997)  activation and deactivation kinetics, hormone regulation (Xie and 

McCobb 1998), and response to cAMP dependent phosphorylation (Tian et al 2001) and 

oxidation (Erxleben et al 2002). The STREX exon is widely expressed in CNS, and has 
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been shown to be upregulated in a rat model of temporal lobe epilepsy (Ermolinksy et al 

2011), suggesting that the balance of expression between STREX and the zero-splice 

form might have important physiological consequences in regulating neuronal firing 

patterns. 

3.2  Modulation of BK channels 

Aside from voltage and Ca2+, BK channels are regulated by a wide range of cellular 

signalling molecules. These endogenous modulation sources include postranslational 

modifications such as serine/threonine phosphorylation (Widmer et al, 2003, Yan et al, 

2008), palmitoylation (Shipston 2013) and ubiquitination (Liu et al, 2014)  as well as direct 

modulation by small intracellular signals such as H+ and Mg2+ (Brelidze and Magelby, 

2004, Zhang et al 2001), CO, membrane lipids (Dopico and Bukiya, 2014), steroids, and 

haem (Hou et al 2006, Hou et al 2009).  

3.2.1 Reactive Oxygen/Nitrogen Species 

Reactive oxygen and nitrogen species are generated during normal physiological 

function, and have been shown to interact with and modulate wide range of cell signalling 

components including ion channels, and as a result the redox state of the intracellular 

compartments is under tight homeostatic control. In proteins generally, and ion channels 

in particular, reactive oxygen and nitrogen species modulate function by reversible 

oxidation/reduction of the thiol groups on cysteine and methionine residues. 

Disregulation of such homeostatic mechanisms controlling cellular redox state has been 

implicated in pathology, including in neurodegenerative disorders such as multiple 

sclerosis, Parkinsons, and Alzheimers (Pennisi et al 2011). Aside from the importance 

of redox in pathological conditions, redox-dependent modulation of ion channel function 

is important for the electrophysiologist, as the artificial intracellular solutions used in 

patch clamp experiments typically produce a far more oxidising intracellular environment 

than that of the endogenous cytoplasm. 

BK channels in particular have been shown to be affected both by the presence of 

artificially introduced oxidising and reducing agents, and by oxidative stress. Wang et al 

(Wang et al 1997) showed that application of the reducing agents glutathione (GSH) and 

dithiothreitol (DTT) to the cytosolic surface of excised BK macropatches led to an 

increase in channel activity, whereas sulphydryl oxidising agents inhibited channel 

activity, in a manner that persisted following washout, though remained capable of being 

reversed by reagents that promoted the opposing redox process. DiChiara and Reinhart 
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(1997) demonstrated that the oxidising agent hydrogen peroxide (H2O2) caused a 

reduction in BK channel activity by shifting the voltage dependence to more positive 

potentials, while DTT produced the opposite effect, and suggested that this phenomenon 

underlies the ‘run-down’ effect seen in excised patches. Similar effects on BK channel 

activity have been observed in rat CA1 pyramidal cells (Soh et al 2001), though other 

experiments in vivo have found an inverted effect, where an oxidising agent DTNB 

increased BK channel open probability in inside-out patches taken from rat CA1, while 

GSH had no effect (Gong et al, 2000). A possible explanation for this ambiguity of effect 

was suggested by Tang et al ( Tang et al, 2001), who showed that the methionine-

specific oxidising agent chloramine-T increased BK open probability, whereas cysteine 

specific reagents such as DNTB decreased channel activity. However this cannot fully 

explain the in vivo results, as DTNB had a facilitative effect on BK channel activity in the 

experiments described by Gong et al (Gong et al, 2000). 

Mammalian neurons are extremely vulnerable to oxidative stress. Hypoxia leads to a 

variety of effects including depolarisation of the resting membrane potential. It has been 

hypothesised that this depolarisation is due to oxidative inhibition of K+ channels, 

including BK. In support of this hypothesis, Gao and Fung (Gao and Fung, 2002) found 

that BK channels in hippocampal pyramidal cells of rats exposed to hypoxic conditions 

for 4 weeks had a lower open probability than those in normal rats, and  that this effect 

was rescued by an oxidising agent, but not by a reducing agent. 

Though the precise effects of reactive oxygen/nitrogen species on BK channel function 

is not fully understood, it remains an important consideration to the researcher, as in 

other channels redox state has been shown to alter a number of channel properties 

including kinetics (Ciorba et al, 1999), and could conceivably also affect other properties 

such as calcium sensitivity and drug binding. 

3.3 BK channel pharmacology 

A number of pharmacological blockers and activators of BK have been identified, 

including small molecule blockers such as tetraethylammonium (TEA) and paxilline, 

scorpion toxins such as charybdotoxin and iberiotoxin, and synthetic activators such as 

NS1619 and NS19504. 
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3.3.1 Peptide blockers 

A number of short-peptide BK channel blockers are known, the majority coming from the 

a-kTX family, isolated from the venom of various species of scorpion. These are pore 

blocking toxins of the cysteine-stabilized α/β family, (Csα/β) which reduce K+ ion flow 

through the pore by plugging the ion-conducting pathway with a highly-conserved lysine 

residue (Yu et al 2016). The first blocker used in the characterisation of BK channels 

was the 37-residue peptide Charybdotoxin (Ctx), isolated from the venom of Leiurus 

quinquestriatus. It possesses an affinity for the BK channel pore in the 50 nM range, but 

lacks specificity as it also blocks other K+ conductances including SK (Herman and 

Erxleben, 1987) and IK (Anderson et al, 1988). 

Iberiotoxin (Ibtx), another 37-residue peptide with 68% sequence similarity to Ctx, is a 

specific blocker of BK channels, which also exhibits a higher affiinity for BK than Ctx 

(IC50 = 2-10 nM). It is also useful in the separation of conductances mediated by β4 

containing channels (eg Brenner et al 2005), as the β4 subunit confers reduced Ibtx 

sensitivity (Meera et al, 2000).  

There are a number of other toxins with pharmacological utility in the study of BK 

channels. Limbatustoxin (Lbtx) is very similar in structure to Ibtx, and exhibits similar 

levels of affinity and selectivity. Slotoxin exhibits differing effects on complexes 

containing different combinations of alpha and beta subunits as it exhibits different a Kd 

depending on the subunit composition (Garcia-Valdez et al 2001). Another a-KTX 

peptide, martentoxin, blocks Ibtx-resistant β4-containing channels with a higher affinity 

than the BK-a homotetramter (Shi et al, 2008). Additionally a number of toxins from other 

families can block BK with high specificity and efficacy, including BmP09, a scorpion 

toxin of a different subfamily of Csα/β, and natrin, a 220 residue peptide isolated from 

snake venom (Wang et al, 2005). 

3.3.2 Small molecule blockers 

Aside from the toxins described above, there are a number of small molecular blockers 

of BK channels, including tetraethylammonium (TEA), a promiscuous K+ channel blocker 

which blocks BK channels in a voltage-dependent manner, and a number alkaloids that 

exhibit BK-specific block, including the indole diterpenes paxilline (Zhou et al 2014) and 

penitrem A (Asano et al, 2012). which act as allosteric modulators. 
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3.3.3 Activators 

A wide range of compounds with BK activating properties have been identified, including 

steroid hormones such as 17β-estradiol (Valverde et al 1999) and synthetic analogues 

such as tamoxifen (Dick et al, 2001), arachidonic acid and metabolites of cytochrome 

P450, epoxygenase, and lipoxigenase (Feletou 2009),  and antiepileptic drugs such as 

chlorzoxazone (Liu et al 2003) and zonisamide (Huang et al 2007). Additionally, a 

number of synthetic small molecule BK-specific openers have been developed. The first 

of these was NS004, developed by Neurosearch (Olesen 1994a), but a more recently 

developed compound NS1619 (Olesen 1994b) is the most widely used in functional 

studies of the BK channel. NS1619 is not strictly an opener, having no effect in the 

absence of Ca2+, but instead leads to an increase in Ca2+ sensitivity, producing a leftward 

shift in the V1/2 of activation of around 25 mV in response to a 10 µM concentration. The 

precise site and of action is not known: the S6/RCK linker is known to be necessary for 

function (Gessner 2012), but whether this is a binding site or just a portion of the channel 

necessary for the conformational changes leading to activation is uncertain, though this 

region has been implicated in transmission of the Ca-dependent conformational changes 

in the RCK domain to the opening of the gate (Jiang et al, 2002) which would suggest 

the latter interpretation to be sufficient. 

Despite its widespread use, NS1619 exhibits a number of disadvantages as a 

pharmacological tool, including relatively poor potency, and off-target effects such as 

inhibition of VGCCs. As a result, a number of analogues have been developed in an 

attempt to redress these issues, including NS11021 (Bentzen 2007) and NS19504 

(Nausch 2014). The latter has been shown to activate BK with an EC50 of 11 µM, with 10 

µM producing a 60 mV leftward shift of the activation V1/2 in heterologously expressed 

hBKα channels. These activators have been demonstrated to work in both heterologous 

expression systems and in a physiological setting (Bentzen et al 2007, Bentzen et al 

2009, Kun et al, 2009, Nausch et al 2014), but have yet to be fully characterised, for 

example in terms of their interaction with channels containing beta subunits. 

3.4 Physiological role of BK channels 

The wide range of BK channel configurations conferred by subunit composition, 

transcriptional and post-translational modifications leads to a diverse range of 

physiological functions. In ion transporting cells such as the kidney, BK channels 

contribute to electrolyte  homeostasis by providing a high throughput pathway for K+ ions 

(Filosa et al, 2006), and to airway hydration by airway epithelial cells, an effect that relies 
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on the constitutive activity of the channel, possibly facilitated by gamma subunits 

(Manzanares et al, 2014). BK channels are especially widely expressed in excitable 

cells, and are involved in processes such as hormone release in adrenal chromaffin cells 

(Vergara et al, 1998), vascular smooth muscle (Nelson et al, 1995, Jaggar et al, 2000), 

and tuning of auditory hair cells (Fettiplace et al, 1999).  

3.4.1 Role of BK in neurons 

In neurons, BK channels open in response to depolarisation and Ca2+ influx, leading to 

K+ efflux and hyperpolarisation of the membrane. This general schema is utilised in 

different ways according to cell type and BK subunit composition, but the main effect 

categories are contributions to the firing threshold, modulation of action potential (AP) 

width, and contribution to the fast phase of the afterhyperpolarisation (Adams et al, 1982, 

Lancaster and Nicoll, 1987). Additionally the above can have further downstream effects 

on the activity of other channels ( eg. Brenner et al, 2005). 

During action potential generation, BK is responsible for tuning the duration of the action 

potential by altering the rate of membrane repolarisation. Depolarisation leads to the 

activation of VGCCs, and the coincidence of depolarisation and Ca2+ entry leads to BK 

activation and faster repolarisation. 

Differing subunit composition of the BK channel population in different neuronal subtypes 

can lead to different firing behaviour. For example in burst firing in hippocampal CA1 

pyramidal cells, BK contributes to the firing rate of the early action potentials in a burst, 

but not the later ones (Gu et al, 2007). This is because CA1 neurons contain a high 

proportion of inactivating (β2 containing) BK channels, and channels which initially 

contribute to the fast phase of the afterhyperpolarisation (fAHP) become inactivated by 

sustained firing. This in turn affects firing rate, as when BK is active the more pronounced 

fAHP leads to faster relief of voltage-dependent inactivation in the voltage gated sodium 

channels, permitting more rapid firing, but as the BK channel population becomes 

inactivated, the fAHP decreases in amplitude and recovery of voltage gated sodium 

channels is less rapid. 

Conversely, in other cell types, such as the granule cells of the dentate gyrus, the 

presence of channels containing the β4 subunit lead to slower kinetics of BK activation, 

effectively inhibiting their participation in rapid membrane repolarisation, as well as 

inhibiting the activation of other Ca2+ sensitive conductances. β4 knockout mice 

displayed epileptiform activity and increased firing rate and reduced inter-spike interval, 
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as well as reduced spike frequency adaptation, and sharper action potentials (Brenner 

et al 2005). Additionally, the AHP was smaller in knockouts. Application of 10 µM paxilline 

to the wild type animals had no effect on firing rate, suggesting that BK in this case does 

not contribute directly to the firing rate. Instead, blockade of SK channels by apamin or 

UCL1684 in the wild type mice increased firing rate to a level equivalent to that observed 

in the knockout. 

Thus the role of β4-containing BK channels in DG granule cells is to prevent BK 

activation during the millisecond timeframe of membrane repolarisation, thereby leading 

to action potential broadening and a greater degree of SK channel activation, which 

drives mAHP-mediated adaptation, and an effective low pass filtering of DG granule 

inputs. This effect makes sense in the context of preventing seizures, as granule cells 

represent the main site of cortical input to the hippocampal formation. 

3.5 Role of BK channels in pathology 

BK channels are implicated in a wide variety of pathological conditions. A number of BK 

channelopathies exist, in which mutations at one or more points in the channel protein 

lead to dysfunction. Channelopathies of BK underly conditions such as epilepsy and 

paroxysmal dyskinesia (Lorenz et al 2007, Du et al 2005), and BK dysfunction has also 

been implicated in conditions as diverse as diabetes, cardiovascular disease (Rusch, 

2009), neurological damage following stroke (Koide et al, 2012) and cancer (Ge et al 

2014). Recently, a growing body of evidence suggests some involvement of BK in Fragile 

X syndrome. 

3.5.1 Fragile X 

Fragile X syndrome (FXS) is one of the most commonly occurring genetic causes of 

learning disability and autism. It has a frequency of around 1 in 4000 males, and 1 in 

6000 females and around 1 in 250 females are carriers. In approximately 25% of cases 

it also presents with childhood seizures (Hagerman and Stafstrom, 2009). 

Pathology results from the expansion of a CGG repeat sequence in the 5’ UTR of the 

FMR1 gene, leading to hypermethylation of this region which causes the FMR1 gene to 

be silenced, and the loss of its protein product, FMRP.  

FMRP is an mRNA-binding protein that is ubiquitously expressed, with particular 

abundance in the CNS, where it is present in both neurons and glia. It binds to a wide 
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variety of mRNA targets and acts as a negative regulator of their translation (Wang et al, 

2012). In the central nervous system, much of the work performed in FMR1 -/- mice has 

focused on widespread alterations to the expression of postsynaptic proteins, but FMRP 

has also been implicated in presynaptic physiological changes, including elevated levels 

of Ca2+ influx and increased neurotransmitter release during stimulation in FMR knockout 

mice (Deng et al, 2011). Furthermore, recordings from the CA3 region of hippocampus 

in FMR1 -/- mice has shown a broadening of action potential (AP) width during high 

frequency spiking, which was rescued by inclusion of FMRP in the pipette, and replicated 

in WT mice by the introduction of an FMRP antibody (Deng et al 2013). The effect 

appeared to not be due to modulation of expression level as it persisted in the presence 

of translation inhibitors. The AP broadening effect caused by the FMRP antibody in wild 

type mice was suppressed by the introduction of the BK-specific blockers paxilline and 

iberiotoxin, suggesting that the changes in AP width caused by FMRP are due to a 

reduction in the BK channel current, and abolished the differences in AP duration 

between FMRP -/- and WT mice. 

The mechanism for FMRP dependent upregulation of BK activity appears to be that 

FMRP directly binds the BK channel and modulates the channel’s Ca2+ sensitivity. In the 

Deng experiment described above,the differences in AP width and fAHP amplitude 

between FMRP -/- and WT mice were abolished by the addition of 10 mM BAPTA to the 

pipette. 

A previous study using co-immunoprecipitation of FMRP and FLAG-tagged BKα (Brown 

et al, 2010) has demonstrated that FMRP does not interact directly with the BKα subunit. 

However FMRP does coprecipitate with the β4 subunit (Deng et al 2013), the main β-

subunit present in CA3 pyramidal cells (Torres et al, 2007). Additionally, β4 -/- mice do 

not exhibit AP broadening in response to perfusion of FMRP anitibody (Deng et al 2013), 

and FMR1/β4 double knockout mice have phenotypes more similar to WT mice than 

FMR1 knockouts, in terms of BK channel open probability and action potential duration 

(Deng and Klyatchko, 2016). It therefore appears that the FMRP-dependent changes to 

action potential duration observed in FMR1 -/- mice are dependent on interaction with 

the β4 subunit, leading to an upregulation of BK channel calcium sensitivity. 

3.6 VSN-16R: a putative BK channel enhancer with therapeutic 

possibilities 

A compound, VSN-16R, developed by the Selwood Lab (UCL) appears to rescue 

cognitive deficits in behavioural assays of FMRP -/- mice (Selwood, unpublished), as 
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well as having an antispastic effect in the EAE mouse model of multiple sclerosis (Baker, 

Pryce, Selwood, 2015 abstract). VSN-16R is an anandamide derivative, however it has 

been shown via in vitro assays to not bind any cannabinoid receptor, save for the 

predominantly endothelial CBe receptor. Furthermore, in voltage clamp experiments 

conducted in the EA.hy926 endothelial cell line, VSN-16R induces a large, voltage-

dependent whole cell current that is inhibited by 10 µM paxilline, a BK-specific blocker. 

The antispastic effects of VSN-16R in the EAE mouse model are also absent in the 

presence of paxilline. It is therefore possible that VSN-16R acts as an enhancer of BK 

channel activity, either via interaction with the alpha subunit, or perhaps more enticingly 

given its effect on FMRP knockouts, in a beta-4 dependent manner. 

Aim of the project 

Our project aimed to determine whether VSN-16R acts as a direct enhancer of BK 

channels, either on the homotetrameric BKα assembly, or in a manner dependent on the 

presence of one of the β subunits. In order to address this question, we used whole cell 

recordings of BK channels heterologously expressed in HEK 293 cells. Additionally, we 

attempted to characterise for the first time the effect of the BK channel activator NS19504 

on heterologously expressed BK channels containing β subunits, and investigated 

whether the effect of VSN-16R on BK channel function was affected by the intracellular 

redox state. 
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Chapter 4. Results 

This section of the thesis presents evidence from whole-cell voltage clamp 

experiments,the primary goal of which was to determine whether the drug VSN-16R 

functions as an activator of BK channels.  

In the EA.hy926 endothelial cell line, VSN-16R applied extracellularly at a concentration 

of 10 µM, led to the activation of a whole-cell current that was inhibited by 10 µM paxilline, 

a specific blocker of BK channels (Bondarenko et al, unpublished data). As a result of 

this, it was hypothesised that the capacity of VSN-16R to rescue both FMRP -/- mice 

behavioural and cognitive deficits and spasticity in an EAE animal model of multiple 

sclerosis might be due to its action on BK channels. In order to test this hypothesis, it 

was decided to examine the compound’s effect on BK channels formed by the rat BK 

alpha subunit (rBK-αØ in a heterologous expression system, in this case the HEK 293 

cell line, by performing whole-cell patch clamp recordings.  

4.1 Expression of rBK-αØ channels in HEK 293 cells, and 

characterisation of Ca2+ sensitivity 

The zero-intron splice α subunit of the rat BK channel (rBK-αØ) was expressed in HEK 

293 cells by transient transfection, using the calcium phosphate method. Transfection 

efficiency, as estimated by the presence of eGFP expression, varied between 50% and 

80%. A large, non-inactivating, voltage-dependent conductance was observed in >95% 

of green cells patched. A first set of experiments was performed using intracellular 

solutions containing three different concentrations of free Ca2+.  

In the whole cell patch clamp configuration, the cell was held at -90 mV, and a family of 

40 ms-long voltage steps was delivered, between -100 and +100 mV in 10 mV steps, 

with an inter-step interval of 8 s. The results are summarised in Figure 4.1. Panel (a) 

shows current response traces obtained in response to four different voltage pulses from 

individual representative cells recorded with each of the three calcium concentrations. 

The currents displayed a number of features typical of BK channels: they exhibited 

voltage dependency, rapid activation kinetics (time constant = 2.68 ms ± 0.15 ms, n = 

15), and were non-inactivating. Additionally, the high degree of noise observed in the 

current during the voltage step was likely due to the high unitary conductance of the 

individual channels, which is the principal characteristic of BK, from which the channel’s 

name is derived. It was more pronounced in the cells recorded with zero (Figure 4.1a, 

red traces) and 200 nM calcium (Figure 4.1a, blue traces) than with 1 µM calcium (Figure 
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4.1a, yellow traces), presumably because the open probability is lower in the former. The 

averaged current voltage relationships for cells recorded at each intracellular Ca2+ 

concentration is shown in Figure 4.1 (b). At all concentrations tested, the current 

observed was clearly voltage dependent, but the higher the free Ca2+ concentration in 

the intracellular solution, the larger the current produced for a given voltage, and the 

lower the voltage required to begin activating the current. The fact that a current was 

elicited at higher voltages even in the absence of intracellular free Ca2+ , is consistent 

with the observation that the BK channel is strictly speaking a voltage-gated channel that 

is modulated by calcium, and is capable of being opened by voltage alone, even in the 

absence of calcium (Orio 2002). 
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Figure 4.1. Recordings from HEK293 cells transfected with rBKαØ using different 

concentrations of intracellular Ca2+ 
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(a) Current traces from representative cells recorded in the whole cell patch clamp 

configuration, using intracellular solution containing 0 (top, red traces), 200 nM (middle, 

blue traces) and 1 µM (bottom, yellow traces) free Ca2+. Voltage steps to the values shown 

above each trace were made from a holding voltage of -90 mV for a period of 40ms. 

(b) Averaged I-V curves in response to the voltage families described in (a). Circular markers 

denote mean current at any given voltage, error bars denote SEM. Trend line is the least-

squares fit of the Boltzmann function to the data. 

(c) Box-whisker plot of the current amplitudes measured in response to a step to +90 mV for 

each of the three intracellular Ca2+ concentrations. 

One of the limitations of the whole cell voltage clamp technique in measuring BK channel 

activity at low calcium concentrations is that it is not possible to produce a saturating IV 

curve within a physiologically relevant voltage range. At concentrations of Ca2+ under 10 

µM, very high voltages are needed to saturate the I-V relationship, such that the current 

response to further voltage increases reaches a plateau. This plateau phase is required 

in order to permit the fitting of the Boltzmann function to the I-V  curve in order to 

determine the voltage of half-maximal activation (V1/2). Highly depolarising voltage steps 

are detrimental to integrity of cell membranes and hence the stability of the gigaOhm 

seal. Furthermore due to the high degree of overexpression and large unitary 

conductance, currents recorded at highly depolarising voltages are large, and suffer 

increasingly from voltage errors, to the point at which they cannot effectively be voltage 

clamped. 

As a result of this, it is difficult to directly quantify the size of the calcium dependent shift 

in the voltage dependency of the channel population. The standard method for 

quantifying such a shift is to fit a Boltzmann curve to the I/Imax: V relationship in order to 

determine V1/2: the voltage at which half-maximal activation is achieved. In conditions 

where the channel does not saturate, this fit cannot be reliably achieved. Therefore 

although our results imply a leftward shift in the V1/2 of activation with increasing calcium, 

this cannot be determined quantitatively from the data, except by examining the 

interaction of voltage and drug effects in the 2-way ANOVA. 

4.2 Effects of paxilline and TEA on the BK current 

The current produced by the alpha subunit of the BK channel is known to be blocked 

with a high degree of specificity by the alkaloid paxilline (Knaus et al 1994). In order to 

confirm the identity of the current produced by the heterologously expressed rBKαØ 

construct, paxilline was applied to the cells during whole-cell patch clamp recordings. 

Bath application of 10 µM paxilline produced a rapid, non-reversible inhibition of the 
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current in 10 out of 10 cells tested (Figure 4.2a). The inhibition was almost complete 

(mean residual current = 9.1% ±2.2 % of baseline; Figure 4.2c), though typically a small, 

voltage dependent and inactivating conductance remained following application (Figure 

4.2b). The mean amplitude of this residual current was 192 ± 65 pA at +90 mV. It is likely 

that this is a voltage dependent K+ conductance endogenous to the HEK 293 cell line. 

The rBKαØ -mediated current was also fully inhibited by bath application of 5 mM TEA in 

7 out of 7 cells tested (mean residual current 7.2% ± 2.9%, Figure 4.2a, b, c), and there 

was no significant difference between the degree of inhibition by paxilline and that of 

TEA (2-tailed t-test, p=0.65, Figure 4.2c). However, unlike paxilline, inhibition by TEA 

was reversible in 6 out of 7 cells. 
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Figure 4.2. Effect of paxilline and TEA on rBKαØ in HEK293 cells 

(a) Representative timecourses of the steady state current response to a series of 50 ms-long 

voltage steps to +90 mV from a holding potential of -90 mV. Left hand plot shows the effect 

of 10 µM paxilline on the current, right hand plot shows the effect of 5 mM TEA. Voltage 

steps were delivered at 10 s intervals. 

(b) Representative traces from the time-course plots shown in (a). Left hand traces show the 

effect of 10 µM paxilline, right hand traces show the effect of 5 mM TEA. 

(c) Bar diagram showing the percentage of the whole cell current remaining in response to a 

50 ms-long voltage step to +90 mV, in the presence of 10 µM paxilline or 5 mM TEA. 
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4.3 Effect of NS19504 on currents mediated by the heterologously 

expressed rBKαØ 

The compound NS19504 (5-((4-bromophenyl)methyl)-1,3-thiazol-2-amine)is a known 

activator of the alpha subunit of the current mediated by fully spliced, human BK channel 

alpha subunits (Nausch et al 2014). It has been shown to produce a leftward shift in the 

V1/2 of activation at concentrations of 10 µM. This property makes it a good candidate for 

a reference compound for our experimental conditions and for comparison to VSN-16R. 

To test the effect of NS19504 on HEK 293 cells expressing the rat BK channel isoform, 

rBKαØ,10 µM of the compound was applied extracellularly, while the time course of any 

current changes due to the compound was monitored by delivering a 40 ms voltage step 

to +90 mV from a holding potential of -90 mV, at 10 s intervals. The protocol was run for 

around 5 minutes in order to permit equilibration of the intracellular solution inside the 

cell, and to establish a stable baseline current. The compound was then applied 

continuously until a new stable state was reached, and then 10 µM paxilline was applied 

to abolish the BK current. Additionally, to assess the I-V relationship, families of traces 

acquired at different voltages, consisting of 40 ms-long steps from -90 mV to between -

100 and + 100 mV in 10 mV intervals, were obtained at the end of baseline acquisition, 

at the end of NS19504 application, and following inhibition by paxilline. 

 Figure 4.3a shows the effect of the compound on the current responses to a family of 

voltage steps in a typical cell. In 5 out of 5 cells, NS19504 increased the size of the 

current and the current was largely inhibited by 10 µM paxilline. The activation due to 

NS19504 occurred relatively rapidly, as can be seen from the timecourse (Figure 4.3b). 

Mean time to plateau was 162 s ±16 s (n=5). 

The averaged IV curves for all cells, before and after application of NS19504, are shown 

in Figure 4.3 (d).  As with Figure 4.1, in our whole-cell recording conditions, it was not 

possible to reach saturating values of the current response in the voltage range tested, 

and it was therefore impossible to measure a shift in V1/2 directly. However, at +90 mV, 

NS19504 increased current amplitude to 329% ±52% of baseline, while at +50 mV the 

current was increased to 696% ± 217% of baseline. In the 2-way repeated measures 

ANOVA, the effect of NS19504 was signifcant (Table 4.1, p=0.0013, n=5), and there was 

a significant interaction between the effects of voltage and NS19504 (p=0.002). These 

results suggest that NS19504 acts as an activator of the currents mediated by the rat 

homologue of BK-α. 
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Figure 4.3. Effect of NS19504 on rBKαØ - mediated currents in HEK293 cells 

(a) Current responses from a representative cell to a family of 40 ms-long voltage steps to 

potentials between -100 and +100 mV, in 10 mV increments, from a holding potential of -90 

mV. Leftmost traces shows current responses under baseline conditions, middle traces after 

application of 10 µM NS-19504, right hand traces after co-application of 10 µM NS-19504 and 

10 µM paxilline. 

(b) Timecourse of the steady-state current response to a series of 40 ms-long voltage steps to 

+90 mV from a holding potential of -90 mV for the cell shown in (a). Voltage steps were 

delivered in 10 s intervals. X-axis shows trace number, Y-axis shows current amplitude in nA. 

Horizontal bars denote the timing and duration of application of NS-19504 and paxilline. 

(c) Bar diagram showing the effect of NS19504 on whole cell current amplitude in response to 

voltage steps to +90 mV and + 50 mV. Error bars show SEM, n=5. 

(d) Averaged I-V curves in response to the voltage families described in (a). Bar heights denote 

mean, error bars denote SEM. Trend line is the least-squares fit of the Boltzmann function to 

the data. 
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Table 4.1. Effect of NS19504 on currents mediated by rBKαØ 

 SS DF MS F (DFn, DFd) P value 

Voltage 
(50 mV vs. 90 mV) 2.41E-17 1 2.41E-17 F (1, 6) = 

57.48 P=0.0003 

NS19504 2.48E-17 1 2.48E-17 F (1, 6) = 
32.34 P=0.0013 

Interaction: voltage 
x NS19504 3.86E-18 1 3.86E-18 F (1, 6) = 

25.21 
P=0.0024 

      

 Source of Variation 
% of total 
variation 

P value   

 voltage 33.32 0.0003 ***  

 NS19504 34.32 0.0013 **  

 
Interaction: 

voltage x NS-19504 5.34 0.0024 **  

Table shows 2-way ANOVA with factors Voltage (+50 vs +90 mV) and NS19504 (baseline vs. + 10 µM). 

Abbreviations: SS=  , DF= degrees of freedom, MS= Mean square of treatment effect, F(Dfn,Dfd)=F 

statistic based on the degrees of freedom of the treatment (DFn) and error (DFd), values given in 

parentheses after the F statistic.  

4.4 Effect of VSN-16R on currents mediated by the heterologously 

expressed rBKαØ 

To test the hypothesis that VSN-16R acts as an enhancer of BK-α channel activity, 

experiments were performed in which 20 µM of VSN-16R was added extracellularly to 

HEK 293 cells expressing rBKαØ. Experiments conducted by Prof. Selwood’s 

collaborators suggested that, in the EA.hy926 cell line, a concentration of 20 µM VSN-

16R was sufficient to activate a paxilline-sensitive current. The experiments were 

performed as described above for NS19504. When VSN16-R was applied for 7-15 

minutes, no noticeable change in current amplitude was observed, as shown by the time-

course of current responses to depolarising steps to +90 mV shown in Figure 4.4b. 

Figure 4.4a shows the effect of the compound on the current responses to a family of 

voltage steps in a representative cell. In contrast to the effects seen with NS19504, VSN-

16R does not appear to alter the current amplitude or activation kinetics noticeably. 

Activation time constant for a voltage step to +90 mV at baseline was 2.36 ± 0.34 ms, 

compared to 2.65 ± 0.59 ms after application of VSN-16R. This difference was not 

significant (paired 2-tailed t-test p=0.41, n=7).  Comparison of the current responses 

before and after 7-15 minutes of VSN16-R application shows that at +90 mV, VSN-16R 

decreased the current to 97.8% ± 2.8% of baseline, while at +50 mV, VSN-16R increased 
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the current to 107% ± 3.2% of baseline (Figure 4.4c). Neither of these changes were 

statistically significant (2-Way repeated measures ANOVA, Table 4.2, p=0.62, n=7). 

Additionally, the averaged IV curves overlap almost completely (Figure 4.4d). It is 

therefore apparent that VSN-16R does not act as an enhancer of homomeric channels 

formed from rBKαØ subunits under our experimental conditions. 

 

Figure 4.4. Effect of VSN-16R on rBKαØ - mediated currents in HEK293 cells 

(a) Representative current traces, taken from a single cell in response to a family of 50 ms-

long voltage steps to potentials between -100 and +100 mV, in 10 mV increments, from a 

holding potential of -90 mV. Left traces show current responses under baseline conditions, 
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middle traces after application of 20 µM VSN-16R, right hand traces responses to 20 µM 

VSN-16R and 10 µM paxilline. 

(b) Time-course of current amplitudes from the cell shown in (a) showing response of the 

whole cell current to a series of 50 ms-long voltage steps, delivered at 10 s intervals, to 

+90 mV from a resting potential of -90 mV for the cell shown in (a). X-axis shows trace 

number, Y-axis shows current amplitude in nA. The timing and duration of application of 

VSN-16R and paxilline are shown by horizontal bars. 

(c) Bar diagram showing the mean effect of VSN-16R on whole cell current amplitudes in 

response to voltage steps to +90 mV and + 50 mV. Error bars show SEM, n=8. 

(d) Averaged I-V curves in response to the voltage pulse families described in (a). Bar heights 

denote mean, error bars denote SEM. Trend line is the least-squares fit of the Boltzmann 

function to the data, n=8. 

Table 4.2. 2-way repeated measures ANOVA of the effect of VSN16-R on currents mediated 

by rBKαØ 

 SS DF MS F (DFn, DFd) P value 

Voltage 
(50 mV vs. 90 mV) 2.50E-17 1 2.50E-17 F (1, 6) = 

25.89 P=0.0022 

VSN-16R 4.50E-21 1 4.50E-21 F (1, 6) = 
0.2684 

P=0.6230 

Interaction: voltage 
x VSN-16R 2.25E-20 1 2.25E-20 

F (1, 6) = 
0.9601 P=0.3650 

      

 
Source of 
Variation 

% of total 
variation 

P value   

 Voltage 59.48 0.0022 **  

 VSN-16R 0.01069 0.623 ns  

 
Interaction: 

voltage x VSN-16R 0.05335 0.365 ns  

Table shows 2-way ANOVA with factors Voltage (+50 vs +90 mV) and VSN-16R (baseline vs. + 10 µM). 

Abbreviations: SS=  , DF= degrees of freedom, MS= Mean square of treatment effect, F(Dfn,Dfd)=F 

statistic based on the degrees of freedom of the treatment (DFn) and error (DFd), values given in 

parentheses after the F statistic.  
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4.5 Effect of NS19504 and VSN-16R on currents mediated by 

heterologously expressed rBKαØ + β4 channel complexes 

Although VSN-16R appears to have no effect on the currents mediated by homomeric 

BK-α channels, it is possible that its enhancing effect is dependent on the presence of 

one or more β subunits as part of the BK channel complex. In particular, the β4 subunit 

is not only widely expressed in neurons (Torres 2007) and in the EA.hy926 cell line 

(Bondarenko et al, unpublished), but also has been implicated as a target for the 

interaction between FMRP and BK in hippocampal pyramidal cells (Deng et al 2013, 

Deng and Klyachko 2016). It is therefore possible that the rescue of behavioural and 

cognitive abnormalities in FMR1 -/- mice by VSN-16R is mediated by interaction of this 

drug with BK channels containing the β4 subunit.  

In order to test this hypothesis, HEK 293 cells were transfected with both rBKαØ and 

hBK-β4 subunit cDNA in a ratio of 1:4. Figure 4.5a shows a set of normalised current 

traces, each averaged from 10 responses to a +90 mV voltage step in a single cell, from 

cells containing only rBKαØ (n=11) and cells containing rBKαØ and hBK-β4 (n=13). For 

cells containing β4, the mean time constant of activation was 30.6 ± 2.5 ms (n = 13), 

more than an order of magnitude higher than that of cells containing only rBKαØ (2.8 ± 

1.0 ms, n=11, 2-tailed T-test p<0.0001) (Figure 4.5b).  
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Figure 4.5. Functional expression of BK channel complexes containing rBKαØ and hBK-β4 

subunits 

(a) Comparison of normalised current traces from HEK 293 cells expressing rBKαØ and rBK-

αØ with hBK-β4. Each trace on the graph represents the averaged current response of a 

single cell to a series of 10 voltage steps to +90 mV from a holding potential of -90 mV. 

Duration of step in the rBKαØ traces is 20 ms, that of rBKαØ +hBK-β4 traces is 100 ms. 

The X-axis denotes time in seconds, the Y axis denotes I/Imax. 

(b) Comparison of the activation time constants (τ) for the cells shown in (a). τ was determined 

for each cell by fitting a double exponential to each averaged trace and treating the longer 

of the two as the time constant of activation. Y axis shows τ in seconds. Bars denote mean 

and SEM. 

It is therefore apparent that the co-transfection led to the functional expression of BK 

channels containing the β4 subunit.  

Although NS19504 activates BK-α homomeric channels, there are as yet no data on its 

effects on BK channels containing any of the β subunits. We therefore conducted 

experiments to determine the effect of the compound on currents mediated by rBKαØ + 

hBK-β4 channel complexes in HEK 293 cells. 

The effects of bath application of 10 µM NS19504 are summarised in Figure 4.6.  

Figure 4.6a shows the effect of the compound on the current responses to a family of 

200 ms-long voltage steps from -90 mV to between -100 mV and +100 mV in 10 mV 

steps, in a representative cell. In 4 out of 4 cells, NS19504 increased the amplitude of 

the current, and the entirety of the current was inhibited by 10 µM paxilline (Figure 4.6b). 

Figure 4.6c summarises the effect on current amplitude at +90 mV and +50 mV. The 



71 

mean current amplitude at +90 mV increased to 410% ± 95% of baseline, whereas at 

+50 mV, NS19504 increased current amplitude to 682% ± 280%. A 2-way repeated 

measures ANOVA was conducted on the effect of voltage and NS19504 (Table 4.3, 

n=5). The effect of NS19504 was significant (p=0.0007), and there was a significant 

interaction between voltage and NS19504 (p=0.016).  These results suggest that the 

effect of NS19504 on current amplitude in heteromeric channels formed from BK-α and 

BK-β4 subunits is similar to its effect on the homomeric BK-α channel. Again our results 

imply some degree voltage dependence in the effect of NS19504, though as before it is 

impossible to quantify this due to the lack of current saturation across the voltage range 

tested (Figure 4.6d). 
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Figure 4.6. Effect of NS19504 on currents mediated by rBKαØ + hBK-β4 channel complexes 

in HEK293 cells 

(a) Current traces showing the response of a single cell to a family of voltage steps to 

potentials between -100 and +100 mV, in 10 mV steps, from a resting potential of -90 mV. 

Duration of the voltage step is 200 ms. Leftmost traces show current responses under 

baseline conditions, middle traces after application of 10 µM NS-19504, right hand traces 

after co-application of 10 µM NS-19504 and 10 µM paxilline. 
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(b) Time-course of currents produced by a series of 100 ms-long voltage steps, at 10 s 

intervals, to +90 mV from a resting potential of -90 mV. Cell is the same one shown in (a). 

X-axis shows trace number, Y-axis shows steady state current response in nA. Horizontal 

bars denote the timing and duration of application of NS-19504 and paxilline. 

(c) The bar chart shows the effect of NS19504 on whole cell current amplitude in response to 

voltage steps to +90 mV and + 50 mV across all cells. Error bars denote SEM, n=4 

(d) Averaged I-V curves in response to the voltage families described in (a). Bar heights show 

mean, error bars denote SEM. Trend line represents the least-squares fit of the Boltzmann 

function to the data. n=4. 

Table 4.3. 2-way repeated measures ANOVA of the effect of NS19504 on currents mediated 

by rBKαØ +β4 

 SS DF MS 
F (DFn, 
DFd) 

P value 

Voltage 
(50 mV vs. 90 mV) 1.54E-17 1 1.54E-17 F (1, 4) = 

120.2 P=0.0004 

NS19504 1.48E-17 1 1.48E-17 F (1, 4) = 
89.26 

P=0.0007 

Interaction: voltage 
x NS19504 2.36E-18 1 2.36E-18 F (1, 4) = 

15.97 
P=0.0162 

      

 Source of Variation 
% of total 
variation 

P value   

 voltage 40.13 0.0004 ***  

 NS19504 38.72 0.0007 ***  

 
Interaction: 

voltage x NS19504 6.166 0.0162 *  

Table shows 2-way ANOVA with factors Voltage (+50 vs +90 mV) and NS19504 (baseline vs. + 10 µM). 

Abbreviations: SS=  , DF= degrees of freedom, MS= Mean square of treatment effect, F(Dfn,Dfd)=F 

statistic based on the degrees of freedom of the treatment (DFn) and error (DFd), values given in 

parentheses after the F statistic.  

 

The effects of bath application of VSN-16R on currents mediated by BK-α + β4 

heteromeric channels are summarised in Figure 4.7. Figure 4.7a shows the response of 

a representative cell to a family of 200 ms voltage steps from -90 mV to between -100 
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mV and + 100 mV in 10 mV steps, before and after the application of 20 µM VSN-16R, 

and following the application of 10 µM paxilline, while Figure 4.7b shows the time-course 

from the same cell in response to a series of 100 ms-long  depolarising steps to +90mV, 

from a holding potential of -90 mV. In 5 of 7 cells tested there was a small increase in 

current amplitude following application of 10 µM VSN-16R, whilst in one cell there was 

no change in current amplitude, and in one cell the current decreased by 20%. The 

averaged I/V curves for all cells, before and after application of VSN-16R, is shown in 

Figure 4.7c. At any given voltage, the mean current was slightly higher following the 

application of VSN-16R, but the effect was rather small. Comparisons of the current 

responses at +90 mV and +50 mV, before and after application of 10 µM VSN-16R are 

summarised in Figure 4.7d. Although the current amplitude at both +50 mV and +90 mV 

is increased following the application of 20 µM VSN-16R, the effect of the drug is not 

significant (Table 4.4, p=0.11, 2-way repeated measures ANOVA, n=7). From these 

results, it appears that VSN-16R has little or no effect as an activator of heteromeric BK 

channels containing BK-α and hBK-β4. 
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Figure 4.7. Effect of VSN-16R on currents mediated by rBKαØ + hBK-β4 channel complexes 

in HEK293 cells 

(a) Current responses from a representative cell to a family of 200 ms-long voltage steps to 

potentials between -100 and +100 mV, in 10 mV increments, from a holding potential of -

90 mV. Leftmost traces show current responses under baseline conditions, middle traces 

after application of 20 µM VSN-16R, right hand traces after co-application of 20 µM VSN-

16R and 10 µM paxilline. 

(b) Time-course of the steady-state current responses to a series of 100 ms-long voltage steps 

to +90 mV from a holding potential of -90 mV for the cell shown in (a). Voltage steps were 

delivered in 10 s intervals. X-axis shows trace number, Y-axis shows current response in 

nA. Horizontal bars denote the timing and duration of application of VSN-16R and paxilline. 
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(c) Bar diagram showing the effect of VSN-16R on whole cell current amplitude in response 

to voltage steps to +90 mV and + 50 mV. Error bars show SEM, n=7. 

(d) Averaged I-V curves in response to the voltage families described in (a). Bar heights 

denote mean, error bars denote SEM. Trend line is the least-squares fit of the Boltzmann 

function to the data. n=7. 

Table 4.4. 2-way repeated measures ANOVA of the effect of VSN16-R on currents mediated 

by rBKαØ +β4 

 SS DF MS 
F (DFn, 
DFd) 

P value 

Voltage 
(50 mV vs. 90 mV) 6.23E-18 1 6.23E-18 F (1, 6) = 

25.67 P=0.0023 

VSN-16R 6.50E-20 1 6.50E-20 F (1, 6) = 
3.438 P=0.1131 

Interaction: voltage 
x VSN-16R 3.74E-20 1 3.74E-20 F (1, 6) = 

3.72 P=0.1020 

      

 Source of Variation 
% of total 
variation 

P value   

 Voltage 60.76 0.0023 **  

 VSN-16R 0.6331 0.1131 ns  

 
Interaction: 

voltage x VSN-16R 0.3646 0.102 ns  

Table shows 2-way ANOVA with factors Voltage (+50 vs +90 mV) and VSN-16R (baseline vs. + 20 µM). 

Abbreviations: SS=  , DF= degrees of freedom, MS= Mean square of treatment effect, F(Dfn,Dfd)=F 

statistic based on the degrees of freedom of the treatment (DFn) and error (DFd), values given in 

parentheses after the F statistic.  
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4.6 Effect of intracellular NS19504 and VSN-16R on heterologously 

expressed rBKαØ + β4 

Given the high solubility of VSN-16R in aqueous solutions, there remains the possibility 

that its capacity to activate BK channels requires access to the cytosolic region of the 

channel assembly. Under this hypothesis, it could be that the effects seen in EA.hy926 

cells are absent in HEK 293 cells because the latter lack some transporter or other route 

of uptake into the cytosol. It is also the case that most evidence obtained in EA.hy926 

cells was from experiments performed in the inside-out patch clamp configuration, 

whereby Ca2+ and VSN-16R were directly applied to the cytosolic side of the membrane. 

In order to rule out the possibility that VSN-16R might have only a very limited access to 

the cytosol when it is bath applied and this might limit its effect on BK channels expressed 

in HEK 293 cells, recordings were made from HEK 293 cells transfected with rBKαØ + 

hBK-β4 subunits,  firstly under control conditions using standard intracellular solution in 

the patch pipette, and subsequently using intracellular solution containing either 10 µM 

NS19504 or 20 µM VSN-16R. 

The results of this experiment are summarised in Figure 4.8. Panel (a) shows traces at 

+90 mV from the control cells (in red), cells recorded with 20 µM VSN-16R in the pipette 

(in blue), and cells recorded with 10 µM NS-19504 in the pipette (in yellow). In each case 

the solid line shows the current trace obtained by averaging recordings from of all cells 

under each condition, while the shaded area indicates the difference between the 

smallest and largest currents recorded under each condition. Figure 4.8b shows the 

mean current sizes recorded in response to a +90 mV step, for each composition of the 

intracellular solution. Cells recorded using standard intracellular solution exhibited an 

average current size of 1.7 ± 0.5 nA (n=5), whereas cells recorded using an intracellular 

solution containing 20 µM VSN-16R exhibited an average current amplitude of 1.4 ± 0.1 

nA (n=7), and those recorded using intracellular solution containing 10 µM NS19504 

gave a current of 7.6 ± 1.2 nA (n=4). Currents elicited in the NS19504 group were 

significantly larger than those of the control group, whereas those from the VSN-16R 

group were not (ANOVA p=0.01, Sidak’s multiple comparisons test p=0.01 

(NS19504>control) and p=0.98 (VSN-16R > control)). 
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Figure 4.8. Effect of intracellularly applied VSN-16R and NS19504 on rBKαØ + hBK-β4 

channel-mediated currents in HEK293 cells 

(a) Compound traces of responses to a 200 ms-long voltage step to +90 mV, from a holding 

potential of -90 mV, from cells recorded using standard intracellular solution (red), 

intracellular solution containing 20 µM VSN-16R (blue) and intracellular solution 

containing 10 µM NS19504 (yellow). Solid line shows a current trace obtained by averaging 

of all cells recorded under the relevant condition, shaded area shows the range between 

the smallest and largest current traces recorded. Control cells n=5, VSN-16R n=7, NS19504 

n=4. 

(b) Bar diagram showing mean responses to the same +90 mV step using the three different 

intracellular solutions. Error bars denote SEM. Number of experiments is as stated in (a). 



79 

4.7 Effect of NS19504 and VSN-16R on currents mediated by 

heterologously expressed rBKαØ + β2 channel complexes 

The other BK channel accessory subunit expressed in the EA.hy926 endothelial cell line 

is β2. As with β4, β2 is widely expressed in the brain, including the hippocampus (Shao 

et al 1999, Faber and Sah 2003). Whereas the β4 subunit confers slow activation kinetics 

and reduced iberiotoxin sensitivity on the BK current, β2 produces a distinctive 

inactivating phenotype.  

It is possible that the effects of VSN-16R seen in the endothelial cell line are mediated 

by an interaction dependent on the presence of the β2 subunit. In order to test this 

hypothesis, HEK 293 cells were transfected with both rBKαØ and hBK-β2 cDNAs in a 

ratio of 1:4. 

As with the β4 experiment, we first examined the effects of NS19504 on currents 

mediated by BK-α +β2 channels, to assess whether this compound enhances the activity 

of heterologously expressed channels of this composition.  

The effects of bath application of 10 µM NS19504 on the BK-α +β2  current are 

summarised in Figure 4.9. As can bee seen from Figure 4.9a, the current produced from 

cells transfected with BK-α +β2 exhibits an inactivating profile, which becomes 

increasingly pronounced at more positive voltages.  The inactivation is incomplete, with 

a residual current of around 50% of the peak current present at the end of the trace, even 

for the most positive voltages tested.  As with the experiments with channels formed by 

BK-α and BK-α +β4 subunits, application of 10 µM NS19504 produced a rapid and 

dramatic increase in current amplitude, as can be seen in the time-course in Figure 4.9b. 

In 5 of 5 cells tested this increase was greater than 200% of the baseline current 

amplitude, and in all cells the resultant current was completely inhibited by either 10 µM 

paxilline or 5 mM TEA. 
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Figure 4.9. Effect of NS19504 on currents recorded from HEK293 cells coexpressing rBKαØ 

+ hBK-β2 subunits 

(a) Current responses from a representative cell to a family of 100 ms-long voltage steps to 

potentials between -100 and +130 mV, in 10 mV increments, from a holding potential of -

90 mV. Leftmost trace shows current response under baseline conditions, middle trace 

after application of 10 µM NS-19504, right hand trace after co-application of 10 µM NS-

19504 and 10 µM paxilline. Following the voltage step, the cell was held at -140 mV for 40 

ms in order to remove inactivation, but this portion of the recording is not shown. 
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(b) The time-course shows the peak current response of the same representative cell to a 100 

ms-long step to +100 mV, from a holding potential of -90 mV. Steps were delivered at 10 s 

intervals. Peak current was determined as the mean current of a 5 ms window either side 

of the peak value recorded. Horizontal bars show the periods during which NS19504 and 

paxilline were applied. Y axis shows peak current amplitude, X axis shows trace number. 

(c) Bar graphs showing the peak (left) and steady state (right) current amplitude in response 

to voltage steps to +120 mV and +50 mV steps, taken from the voltage families described 

in (a). Red bars denote the mean baseline current amplitude, blue bars show the amplitude 

following application of 10 µM NS19504 (n=5). Error bars denote SEM. Y axis shows current 

amplitude 

(d) Averaged I-V relationships for the peak and steady-state current taken from the voltage 

families described in (a). Bar heights show the mean current amplitude for each voltage 

step, while error bars show the SEM (n=5). Trend line was generated from a least-squares 

fit of the Boltzmann function to the data. 

Due to the inactivating nature of the current, the effect of NS19504 on the peak and on 

the “steady state” component of the current were analysed separately. The preceding 

scare-quotes are necessary because in 3 of 5 cells, a true steady state had not been 

reached by the end of the 100 ms-long voltage pulse in the most positive region of the 

voltage range tested. The “steady state” analysis therefore does not represent a true 

steady state, but is nonetheless far closer to the inactivated state of the channel 

population than the peak.  

The current-voltage relationship for both peak and steady-state current responses is 

displayed in Figure 4.9c, and comparisons of specific voltage points are shown in Figure 

4.9d. At +120 mV, application of 10 µM NS19504 increased peak current amplitude to 

~190% of baseline (mean of ratios = 1.90, SEM=0.11), whereas at +50 mV, the peak 

current amplitude was increased by ~220% (mean of ratios = 2.20, SEM=0.008). The 

effect of the drug was significant ( Table 4.5a, 2-way repeated measures ANOVA, 

p=0.0076, n=5) and there was a significant interaction between the effects of NS19504 

and that of voltage voltage (p=0.0053). 

Application of 10 µM NS19504 caused an increase in the steady state current amplitude 

measured at +120 mV to 182% of baseline (SEM =0.14), while at +50 mV, current 

amplitude was increased to 222% of baseline (SEM=0.11). Again, both the effect of 

NS19504 (Table 4.5b, 2-way repeated measures ANOVA, p= 0.0002, n=5) and the 

interaction between NS19504 and voltage (p=0.0018) were significant. 

Taken together, these results suggest that NS19504 functions as an enhancer of 

heteromeric BK channels composed of BK-α + β2 subunits.  
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Table 4.5. 2-way repeated measures ANOVA of the effect of NS19504 on currents mediated 

by rBKαØ +hBK-β2.  (a) effect of NS19504 on the peak current amplitude. (b) effect of 

NS19504 on the steady state current amplitude. 

(a) Effect of NS19504 (peak) 

 SS DF MS F (DFn, DFd) P value 

voltage 6.02E-18 1 6.02E-18 F (1, 4) = 38.1 P=0.0035 

NS19504 4.11E-18 1 4.11E-18 F (1, 4) = 24.82 P=0.0076 

Interaction: voltage 
x NS19504 4.25E-19 1 4.25E-19 F (1, 4) = 30.31 P=0.0053 

      

 
Source of 
Variation 

% of total 
variation 

P value   

 Voltage 3.41E+01 0.0035 **  

 NS19504 23.32 0.0076 **  

 voltage x NS19504 2.412 0.0053 **  

(b) Effect of NS19504 (steady state) 

 SS DF MS F (DFn, DFd) P value 

voltage 2.57E-18 1 2.57E-18 F (1, 4) = 2449 P<0.0001 

NS19504 1.72E-18 1 1.72E-18 F (1, 4) = 155.3 P=0.0002 

Interaction: voltage 
x NS19504 1.23E-19 1 1.23E-19 F (1, 4) = 54.17 P=0.0018 

      

 
Source of 
Variation 

% of total 
variation 

P value   

 voltage 46.62 <0.0001 ****  

 NS19504 31.17 0.0002 ***  

 voltage x NS19504 2.227 0.0018 **  
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Table shows 2-way ANOVA with factors Voltage (+50 vs +90 mV) and NS19504 (baseline vs. + 10 µM). 

Abbreviations: SS=  , DF= degrees of freedom, MS= Mean square of treatment effect, F(Dfn,Dfd)=F 

statistic based on the degrees of freedom of the treatment (DFn) and error (DFd), values given in 

parentheses after the F statistic.  

 

In order to determine whether VSN-16R acts as an enhancer of heteromeric BK-α+β2 

channels, 20 µM VSN-16R was added under the same conditions as in the NS19504 

experiment described above. The results are summarised in Figure 4.10. The time 

course of current changes in response to drug application for a representative cell is 

shown in Figure 4.10b, and example traces in response to a family of 100 ms-long 

voltage pulses is shown in Figure 4.10a. In general, bath application of 20 µM VSN-16R 

had no observable effect on the current, either with reference to the time-course of the 

response at +100 mV, or with reference to the current families. 

Comparisons of specific voltage points are shown in Figure 4.10c and the current-voltage 

relationship for both peak and steady-state current responses is displayed in Figure 

4.10d.. Application of 20 µM VSN-16R reduced the peak current amplitude, as measured 

at +120 mV, to 98% of baseline (mean of ratios= 0.98, SEM=0.01), while at +50 mV, the 

current was reduced to 94% of baseline (SEM=0.05). The effect of VSN-16R was not 

statistically significant (Table 4.6a,  p= 0.30, 2-Way Repeated Measures ANOVA , n=5). 
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Figure 4.10. Effect of VSN-16R on currents mediated from HEK293 cells coexpressing 

rBKαØ + hBK-β2 subunits 

(a) The currents measured from a single cell, representative of the dataset, in response to a 

family of 100 ms-long voltage steps to potentials between -100 and +130 mV, in 10 mV 

increments, from a holding potential of -90 mV. The cell was held at -140 mV for 40 ms at 

the end of the main step, in order to remove inactivation. This portion of the recording is 

not shown. Left-hand traces show baseline current responses to the voltage pulse family, 

middle traces after application of 20 µM VSN-16R, right hand traces responses to 20 µM 

VSN-16R and 10 µM paxilline.  
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(b) Time-course of peak current response of the cell shown in (a) to a series of 120 ms-long 

steps, delivered at 10 s intervals, to +100 mV, from a holding membrane potential of -90 

mV. Peak current was determined as the mean current of a 5 ms window either side of the 

peak value recorded. Horizontal bars show the periods during which 20 µM VSN-16R and 

10 µM paxilline were applied. Y axis shows peak current amplitude, X axis shows trace 

number. 

(c) Bar graphs showing the peak (left) and steady state (right) mean current amplitude in 

response to voltage steps to +120 mV and +50 mV steps, taken from the voltage families 

described in (a). Red bars denote the mean baseline current amplitude, blue bars show the 

amplitude following application of 20 µM VSN-16R (n=5). Error bars denote SEM. Y axis 

shows current amplitude 

(d) Averaged I-V relationships for the peak and steady-state currents obtained in response to 

the voltage step families described in (a). Bar heights show the mean current amplitude 

for each voltage step, while error bars show the SEM (n=5). Trend line was generated from 

a least-squares fit of the Boltzmann function to the data.  

VSN-16R also produced no significant effect on the steady-state amplitude of the current 

(Table 4.6b, p=0.42, 2-way Repeated Measures ANOVA n=5). 

As with the BK-α homomeric and BK-α+β4 heteromeric channels, it appears that VSN-

16R does not function as a direct enhancer of heteromeric BK-α+β2 channels, according 

to our evidence from heterologous expression in HEK 293 cells. 
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Table 4.6. 2-way repeated measures ANOVA of the effect of VSN16-R on currents mediated 

by rBKαØ +hBK-β2.  (a) effect of VSN-16R on the peak current amplitude. (b) effect of 

VSN-16R on the steady state current amplitude. 

(a) effect of VSN-16R (peak) 

 SS DF MS F (DFn, DFd) P value 

Voltage 

(50 mV vs. 90 mV) 
5.25E-18 1 5.25E-18 F (1, 4) = 

24.95 
P=0.0075 

VSN-16R 6.48E-21 1 6.48E-21 F (1, 4) = 
1.435 P=0.2971 

Interaction: voltage 
x VSN-16R 8.00E-23 1 8.00E-23 F (1, 4) = 

0.03543 P=0.8599 

      

 
Source of 
Variation 

% of total 
variation 

P value   

 Voltage 56.57 0.0075 **  

 VSN-16R 0.06986 0.2971 ns  

 
Interaction: 

voltage x VSN-16R 
0.0008624 0.8599 ns  

(b) Effect of VSN-16R (steady state) 

 SS DF MS F (DFn, DFd) P value 

Voltage 
(50 mV vs. 90 mV) 2.58E-18 1 2.58E-18 

F (1, 4) = 
92.75 P=0.0007 

VSN-16R 1.75E-20 1 1.75E-20 
F (1, 4) = 
0.8123 P=0.4184 

Interaction: voltage 
x VSN-16R 1.43E-20 1 1.43E-20 F (1, 4) = 

3.334 P=0.1419 

      

 
Source of 
Variation 

% of total 
variation 

P value   

 Voltage 76.51 0.0007 ***  

 VSN-16R 0.5177 0.4184 ns  

 
Interaction: 

voltage x VSN-16R 
0.4242 0.1419 ns  

Table shows 2-way ANOVA with factors Voltage (+50 vs +90 mV) and VSN-16R (baseline vs. + 20 µM). 

Abbreviations: SS=  , DF= degrees of freedom, MS= Mean square of treatment effect, F(Dfn,Dfd)=F 

statistic based on the degrees of freedom of the treatment (DFn) and error (DFd), values given in 

parentheses after the F statistic.  



87 

4.8 Effect of NS19504 and VSN-16R on currents mediated by 

heterologously expressed rBKαØ +β3 channel complexes 

The effect of both drugs was additionally tested in HEK 293 cells expressing BK-α+β3 

channel subunits. Given that β3 RNA transcripts were not detected in the EA.hy926 

endothelial cell line, a β3-specific activation effect of VSN-16R would be an unlikely 

explanation for the results observed in that cell line, however it was decided to test it 

under our experimental conditions, if only for completeness, and because it would be 

useful to determine whether the subunit conferred any change in sensitivity to NS19504.  

The effects of bath application of 10 µM NS19504 on the BK-α+β3 current are 

summarised in Figure 4.11. The β3 subunit is reported to confer a fast but incomplete 

inactivation effect, which is reportedly only visible during large depolarisations (Nausch 

et al 2014). Our results do not show any inactivation (Figure 4.11a), likely because of the 

highly voltage-dependent nature of the effect. However, in the previous co-transfection 

experiments, where the β2 and β4 subunits did produce an observable change in the 

current properties, we saw the change in all of the cells tested. It is therefore reasonable 

to assume that β3 was also successfully expressed and incorporated into the channels. 

As can be seen from the representative time-course in Figure 4.11b, application of 

NS19504 produced a distinctive increase in current amplitude, as seen in previous 

experiments for BK channels with different subunit compositions.  

The current-voltage relationships before and after application of 10 µM NS19504 are 

displayed in Figure 4.11c, and comparisons of specific voltage points are shown in Figure 

4.11d. Application of NS19504 increased the current amplitude at +90 mV to 200% ± 

13% of baseline, whereas at +50 mV the current increased to 376% ± 34% of baseline. 

The effect of NS19504 was significant (Table 4.7, p=0.005, 2-Way repeated measures 

ANOVA, n=5), and there was an interaction between the drug effect and that of voltage 

(p=0.029). 



88 

 

Figure 4.11. Effect of NS19504 on currents mediated by rBKαØ + hBK-β3 channels in 

HEK293 cells 

(a) Current responses from a representative cell to a family of 50 ms-long voltage steps to 

potentials between -100 and +100 mV, in 10 mV increments, from a holding potential of -

90 mV. Leftmost traces show current responses under baseline conditions, middle traces 

after application of 10 µM NS-19504, right hand traces after co-application of 10 µM NS-

19504 and 10 µM paxilline. 
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(b) Time-course of the steady-state current response to a series of 50 ms-long voltage steps 

to +90 mV from a holding potential of -90 mV for the cell shown in (a). Voltage steps were 

delivered in 10 s intervals. X-axis shows trace number, Y-axis shows current amplitude in 

nA. Horizontal bars denote the timing and duration of application of NS-19504 and 

paxilline. 

(c) Bar diagram showing the effect of NS19504 on whole cell current amplitude in response 

to voltage steps to +90 mV and + 50 mV Error bars show SEM, n=5. 

(d) Averaged I-V curves in response to the voltage families described in (a). Bar heights 

denote mean, error bars denote SEM. Trend line is the least-squares fit of the Boltzmann 

function to the data, n=5. 

This suggests that NS19504 acts as an enhancer of heterologously expressed BK-α+β3 

heteromeric channels. Although the lack of saturation of the IV relationship again 

precludes direct assessment of the V1/2 of activation, the increase in current amplitude 

at +50 mV is signifcantly larger than that at +90 mV, which is as would be expected if the 

V1/2 had been shifted leftward by NS19504. 

Table 4.7. 2-way repeated measures ANOVA of the effect of NS19504 on currents mediated 

by rBKαØ +hBK-β3 

 SS DF MS 
F (DFn, 
DFd) 

P value 

Voltage 
(50 mV vs. 90 mV) 7.37E-17 1 7.37E-17 F (1, 4) = 

23.53 P=0.0083 

NS19504 3.18E-17 1 3.18E-17 F (1, 4) = 
29.62 P=0.0055 

Interaction: voltage 
x NS19504 3.85E-18 1 3.85E-18 F (1, 4) = 

10.9 
P=0.029 

      

 Source of Variation 
% of total 
variation 

P value   

 Voltage 47.26 0.0083 **  

 NS19504 20.39 0.0055 **  

 
Interaction: 

voltage x NS19504 2.47 0.0299 *  

Table shows 2-way ANOVA with factors Voltage (+50 vs +90 mV) and NS19504 (baseline vs. + 10 µM). 

Abbreviations: SS=  , DF= degrees of freedom, MS= Mean square of treatment effect, F(Dfn,Dfd)=F 

statistic based on the degrees of freedom of the treatment (DFn) and error (DFd), values given in 

parentheses after the F statistic.  
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The effects of bath application of 20 µM VSN-16R on the BK-α+β3 currents are 

summarised in Figure 4.12. As can be seen in Figure 4.12a and 4.12b, VSN-16R does 

not appear to have any effect on the amplitude of the BK-α+β3 current, either in terms 

of the time-course at +90 mV or in terms of the amplitude of the current responses to 

increasing voltage steps before and after drug application. Additionally there is almost 

complete overlap between the averaged IV curves (Figure 4.12d) At +90 mV, application 

of 20 µM VSN16R reduced current ampitude to 99.4% ± 7% of baseline, while at +50 

mV, the current was increased to 103% ± 14% of baseline. There was no significant 

difference between the current amplitudes before and after VSN-16R application (Table 

4.8, p=0.98, 2-way repeated measures ANOVA, n=5 ) (Figure 4.12c). It therefore 

appears that VSN-16R does not function as a direct enhancer of heteromeric BK-α +β3 

channels. 
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Figure 4.12. Effect of VSN-16R on currents mediated by rBKαØ + hBK-β3 channel 

complexes in HEK293 cells 

(a) Current responses from a representative cell to a family of 50 ms-long voltage steps to 

potentials between -100 and +100 mV, in 10 mV increments, from a holding potential of -

90 mV. Leftmost traces show current responses under baseline conditions, middle traces 

after application of 20 µM VSN-16R, right hand traces after co-application of 20 µM VSN-

16R and 10 µM paxilline. 

(b) Time-course of the steady-state current response to a series of 50 ms-long voltage steps 

to +90 mV from a holding potential of -90 mV for the cell shown in (a). Voltage steps are 
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delivered in 10 s intervals. X-axis shows trace number, Y-axis shows current amplitude in 

nA. Horizontal bars denote the timing and duration of application of VSN-16R and paxilline. 

(c) Bar diagram showing the effect of VSN-16R on whole cell current amplitude in response 

to voltage steps to +90 mV and + 50 mV. Error bars show SEM, n=5. 

(d) Averaged I-V curves in response to the voltage families described in (a). Bar heights 

denote mean, error bars denote SEM. Trend line is the least-squares fit of the Boltzmann 

function to the data, n=5. 

Table 4.8. 2-way repeated measures ANOVA of the effect of VSN-16R on currents mediated 

by rBKαØ +hBK-β3 

 SS DF MS F (DFn, DFd) P value 

Voltage 
(50 mV vs. 90 mV) 2.42E-17 1 2.42E-17 F (1, 4) = 35.75 P=0.0039 

VSN-16R 9.80E-24 1 9.80E-24 
F (1, 4) = 
0.0002785 P=0.98 

Interaction: voltage 
x VSN-16R 5.99E-21 1 5.99E-21 F (1, 4) = 

0.4017 P=0.56 

      

 
Source of 
Variation 

% of total 
variation 

P value   

 Voltage 75.59 0.0039 **  

 VSN-16R 3.06E-05 0.98 ns  

 
Interaction: 

voltage x VSN-16R 
0.01869 0.56 ns  

Table shows 2-way ANOVA with factors Voltage (+50 vs +90 mV) and VSN-16R (baseline vs. + 20 µM). 

Abbreviations: SS=  , DF= degrees of freedom, MS= Mean square of treatment effect, F(Dfn,Dfd)=F 

statistic based on the degrees of freedom of the treatment (DFn) and error (DFd), values given in 

parentheses after the F statistic.  

In summary, the effects of VSN-16R and NS19504 were not noticeably different for 

currents mediated by BK channels incorporating any of the three β subunits tested, 

compared to rBKαØ. In the case of VSN-16R, the drug did not appear to have any effect 

of current amplitude, and in the case of NS19504, it caused an increase in current 

amplitude for each combination of subunits tested, and the magnitude of the change in 
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current amplitude was not significantly different in each case (One way ANOVA, F (3, 

18) = 2.673, p=0.08). 

4.9 Effect of VSN-16R on on currents mediated by heterologously 

expressed rBKαØ in the presence of intracellular reducing agents 

glutathione and dithiothreitol 

VSN-16R failed to enhance currents mediated by channels formed by heterologously 

expressed rBKαØ and rBKαØ co-expressed with the β4, β2, and β3 subunits, challenging 

the hypothesis that BK channels could be directly targeted  as part of the mechanism by 

which the compound activated a paxilline-sensitive current in the EA.hy926 cell line. One 

possibility is that VSN-16R activates BK channels directly in a manner dependent on the 

redox state of the cell. BK channels are known to be regulated by the redox state of the 

cell (Herman et al 2015), and endothelial cells are known to utilise redox signalling 

(Panieri and Santoro, 2015). Furthermore, conventional intracellular solutions for whole 

cell patch clamp recordings might produce a redox state more oxidised than that of the 

endogenous cytosol, and we hypothesised that this might affect our results with VSN-

16R. We therefore decided to test this hypothesis by conducting experiments on HEK 

293 cells expressing channels formed by rBKαØ alone, in which the intracellular solution 

was augmented with either 500 µM glutathione (GSH) or 500 µM dithiothreitol (DTT) in 

order to produce a reducing environment in the cell during the whole-cell experiment. 

The results for the experiment in which 10 µM VSN-16R was applied to cells expressing 

rBKαØ, using 500 µM glutathione in the intracellular solution, are shown in Figure 4.13. 

Panels (a) and (b) show the effects of application of 10 µM VSN-16R on a single 

representative cell. Glutathione did not significantly alter the kinetics of the currents 

mediated by BK-α channels (Figure 4.13a as compared with the results described in 

Figure 4.4). Application of 10 µM VSN-16R did not produce any noticeable effect on the 

time-course of the BK current amplitude (Figure 4.13b) and, as with previous 

experiments, the current following application of VSN16-R was abolished by application 

of 10 µM paxilline or 5 mM TEA. Figure 4.13d shows the I-V relationship before and after 

the application of 10 µM VSN-16R in the presence of 500 µM intracellular GSH. The two 

curves overlap almost completely, suggesting that VSN-16R did not affect the voltage 

dependence of the channel. At +90 mV, application of 10 µM VSN16R reduced current 

amplitude to 97% ± 7% of baseline, while at +50 mV the current was increased to 115% 

± 5% of baseline. The effect of VSN-16R was not significant. (Table 4.9, p=0.98, 2-Way 

repeated measures ANOVA, n=6, Figure 4.13c). 
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It was therefore concluded that the augmentation of the intracellular solution with 500 

µM intracellular GSH was not sufficient to permit the enhancement of BK-α–mediated 

currents by VSN-16R. 
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Figure 4.13. Effect of VSN-16R on currents mediated by channels expressed in HEK293 

cells expressing rBKαØ channels in the presence of intracellular glutathione 

The experiments summarised in this figure were performed by R. Roberts (undergraduate student), 

under my supervision. 

(a) Current families recorded from a single cell representative of the dataset, in the presence 

of 500 µM intracellular glutathione (GSH), to a family of 40 ms-long voltage steps to 

potentials between -100 and +100 mV, in 10 mV increments, from a holding potential of -

90 mV. Left traces show baseline current responses of cell, middle traces show responses 
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in the presence of 20 µM VSN-16R, and right hand traces show responses following 

application of  20 µM VSN-16R + 5 mM TEA. 

(b) Time-course of the BK current amplitude in the cell shown in (a). Voltage steps of 50 ms-

long to +100 mV were delivered at 10 s intervals, from a holding potential of -90 mV. X-axis 

shows trace number, Y-axis shows current amplitude at steady state. The periods during 

which VSN-16R and TEA were applied are denoted by horizontal bars. 

(c) Comparison of the current amplitudes recorded in response to voltage steps to either +90 

mV or +50 mV, before and after application of 20 µM VSN-16R. Red bars show the current 

measured under baseline conditions, blue bars show the response after application of 20 

µM VSN-16R. Error bars denote SEM. n=7. 

(d) Averaged I-V plots for the voltage families described in (a), across all cells (n=7). Filled 

circles show the mean current amplitude for each voltage step, while error bars show the 

SEM. Trend line was generated from a least-squares fit of the Boltzmann function to the 

data. 

Table 4.9. 2-way repeated measures ANOVA of the effect of VSN-16R on currents mediated 

by rBKαØ, in the presence of 500µM GSH 

 SS DF MS F (DFn, DFd) P value 

Voltage 
(50 mV vs. 90 mV) 1.16E-17 1 1.16E-17 F (1, 5) = 7.56 P=0.040 

VSN-16R 2.67E-24 1 2.67E-24 F (1, 5) = 
0.0001847 P=0.98 

Interaction: voltage 
x VSN-16R 4.63E-20 1 4.63E-20 F (1, 5) = 3.019 P=0.14 

      

 
Source of 
Variation 

% of total 
variation 

P value   

 Voltage 29.35 0.040 * Yes 

 VSN-16R 6.76E-06 0.98 ns No 

 
Interaction: 

voltage x VSN-16R 0.1173 0.14 ns No 

Table shows 2-way ANOVA with factors Voltage (+50 vs +90 mV) and VSN-16R (baseline vs. + 20 µM). 

Abbreviations: SS=  , DF= degrees of freedom, MS= Mean square of treatment effect, F(Dfn,Dfd)=F 

statistic based on the degrees of freedom of the treatment (DFn) and error (DFd), values given in 

parentheses after the F statistic.  
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To corroborate the result obtained using GSH, the same experiment was repeated 

replacing 500 µM GSH with 500 µM DTT, another reducing agent. The results are 

summarised in Figure 4.14. As before, there was no observable change in whole-cell 

current amplitude during either the time-course or the voltage family protocols in 

response to the bath application of 10 µM VSN-16R (Figure 4.14a, b). The presence of 

500 µM DTT also did not appear to alter the kinetics of the observed current (Figure 

4.14a). Again, the current was abolished successfully by either 5 mM TEA or 10 µM 

paxilline. Figure 4.14d shows the effect of 10 µM VSN-16R on the averaged IV 

relationships across all cells (n=7). Qualitatively speaking, it can be seen that there is 

very little difference in the means ± SEM of the two curves, suggesting little change in 

the I-V relationship following VSN-16R application in the presence of DTT. Additionally,  

application of 10 µM VSN16R increased current amplitude at +90 mV to 104% ± 4% of 

baseline, while at +50 mV the current was increased to 101% ± 14% of baseline. 

However the effect of VSN-16R was not significant (Table 4.10 p=0.37, 2-Way repeated 

measures ANOVA, n=7). 
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Figure 4.14. Effect of VSN-16R on currents in HEK293 cells expressing rBKαØ channels in 

the presence of intracellular dithiothreitol 

The experiments summarised in this figure were performed by R. Roberts (undergraduate student), 

under my supervision. 

(a) Current traces in response to a family of 40 ms-long voltage steps to potentials between -

100 and +100 mV, in 10 mV increments, from a holding potential of -90 mV, in the presence 

of 500 µM intracellular dithiothreitol (DTT). Left traces show baseline current responses of 
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cell, middle traces show responses in the presence of 20 µM VSN-16R, and right hand 

traces show responses following application of  20 µM VSN-16R + 5 mM TEA. 

(b) Time-course of the currents recorded from the cell shown in (a). Voltage steps of 50 ms to 

+100 mV were delivered at 10 s intervals, from a holding potential of -90 mV. X-axis shows 

trace number, Y-axis shows current amplitude measured at steady state. The periods 

during which VSN-16R and TEA were applied are denoted by horizontal bars. 

(c) Comparison of the current amplitudes recorded in response to voltage steps to either +90 

mV or +50 mV, before and after application of 20 µM VSN-16R. Red bars show the current 

measured under baseline conditions, blue bars show the response after application of 20 

µM VSN-16R. Error bars denote SEM. n=7. 

(d) Averaged I-V plots for the voltage families described in (a), across all cells (n=7). Filled 

circles show the mean current amplitude for each voltage step, while error bars show the 

SEM. Trend line was generated from a least-squares fit of the Boltzmann function to the 

data. 

Table 4.10. 2-way repeated measures ANOVA of the effect of VSN-16R on currents 

mediated by rBKαØ, in the presence of 500µM GSH 

 SS DF MS F (DFn, DFd) P value 

Voltage 
(50 mV vs. 90 mV) 1.37E-17 1 1.37E-17 F (1, 6) = 

51.07 P=0.0004 

VSN-16R 2.64E-20 1 2.64E-20 F (1, 6) = 
0.9254 P=0.37 

Interaction: voltage 
x VSN-16R 1.65E-20 1 1.65E-20 F (1, 6) = 

2.465 P=0.17 

      

 
Source of 
Variation 

% of total 
variation 

P value   

 Voltage 73.04 0.0004 ***  

 VSN-16R 0.1406 0.37 ns  

 
Interaction: 

voltage x VSN-16R 0.08811 0.17 ns  

Table shows 2-way ANOVA with factors Voltage (+50 vs +90 mV) and NS19504 (baseline vs. + 10 µM). 

Abbreviations: SS=  , DF= degrees of freedom, MS= Mean square of treatment effect, F(Dfn,Dfd)=F 

statistic based on the degrees of freedom of the treatment (DFn) and error (DFd), values given in 

parentheses after the F statistic.  
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Taken together, the results from the experiments with GSH and DTT in the pipette 

solution suggest that the presence of a reducing environment does not unmask a redox-

dependent enhancing effect of VSN-16R on BK-α-mediated currents. 

4.10 Effect of VSN-16R on currents mediated by heterologously 

expressed rBKαØ channels in the presence of extracellularly applied 

hydrogen peroxide 

One of the major components in the pathogenesis of multiple sclerosis is oxidative 

stress, whereby reactive oxygen species emitted by macrophages contribute to the 

demyelination and axonal damage in both MS itself and the EAE animal model (Syburra 

and Passi, 1999) (Gilgun-Sherki et al 2004). Given that VSN-16R has been shown to 

alleviate spasticity in the EAE model, and again given the propensity of BK channel 

function to be modulated by oxidation states, it was hypothesised that the effects of VSN-

16R on BK channels might be dependent on a state of cellular oxidative stress. 

In order to test this hypothesis, H2O2 was applied extracellularly to induce a state of 

oxidative stress in HEK 293 cells transfected with rBKαØ subunits. Initial experiments 

determined that 10 mM extracellular H2O2 caused a noticeable reduction in the BK 

current, but proved unconducive to stable electrophysiological recordings, ultimately 

causing a breakdown of the seal or the death of the cell. Conversely, at 1 mM H2O2, 

there was no discernable reduction in the whole-cell current, and so it would be difficult 

to argue that the cell was suffering from oxidative stress (data not shown). 

Experiments with 5 mM H2O2 provided a satisfactory compromise. The results of 

experiments performed using H2O2 at this concentration can be seen in Figure 4.15. The 

time course of the BK current amplitude in Figure 4.15b shows that, once a stable 

baseline current was established, the cell was exposed to 5 mM extracellular H2O2 until 

a new stable current level had been obtained. The cell was then perfused with 

extracellular solution containing 5 mM H2O2 and 10 µM VSN-16R, with 5 mM TEA being 

added at the end of the experiment in order to abolish the BK current (Figure 4.15b). In 

5 out of 5 cells tested, extracellular application of 5 mM H2O2 led to a reduction of the 

whole-cell current, without any visible alteration of the quality of the recordings. 

Subsequent application of 10 µM VSN-16R led to a partial rescue of the current 

amplitude in 3 out of 5 cells. These effects are summarised in Figure 4.15c. At + 90 mV, 

5 mM H2O2 reduced the current to 80% ± 3.4% of baseline, while at +50 mV, the current 

was largely unchanged at 101% ± 6.0% of baseline. The current at +90 mV then 
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increased back to 98.2% ± 6.4% of baseline following the addition of 10 µM VSN-16R 

on top of the 5 mM H2O2 .  

 

Figure 4.15. Effect of hydrogen peroxide on the response to VSN-16R of currents in 

HEK293 cells expressing rBKαØ channels 

(a) Current traces in response to a family of 40 ms-long voltage steps to potentials between -

100 and +100 mV, in 10 mV increments, from a holding potential of -90 mV. All traces come 

from a single representative cell. From left to right: responses under baseline conditions, 

in the presence of 5 mM extracellular H2O2, following application of 5 mM H2O2 + 20 µM 

VSN-16R, and after the addition of 5 mM TEA on top of the afforementioned compounds. 

(b) Time-course of the cell shown in (a). Horizontal bars show the periods during which each 

compound was applied by bath perfusion. 

(c) Comparison of the averaged current recorded across all cells (n=5) to voltage steps to +50 

mV and +90 mV, at baseline (red), following the application of 5 mM H2O2 (blue) and of 5 

mM H2O2 + 20 µM VSN-16R (yellow). Error bars show SEM. 

(d) I-V plots showing the average response at each voltage recorded across all cells (n=5). 

Same colour code as in (b). Filled circles denote the mean current response, while error 

bars denote the SEM. 
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Table 4.11. 2-way repeated measures ANOVA of the effect of H2O2 and H2O2 + VSN-16R 

on currents mediated by rBKαØ. Multiple comparisons were performed using Tukey’s multiple 

comparisons test to control for the familywise error rate.  

 SS DF MS F (DFn, DFd) P value 

voltage 5.35E-17 1 5.35E-17 F (1, 4) = 97.8 P=0.0006 

Drug 8.94E-19 2 4.47E-19 F (2, 8) = 8.252 P=0.011 

Interaction: voltage 
x drug 6.27E-19 2 3.14E-19 F (2, 8) = 6.256 P=0.023 

      

 Source of Variation 
% of total 
variation 

P value   

 voltage 83.05 0.0006 ***  

 VSN-16R 1.388 0.011 *  

 
Interaction: 

voltage x VSN-16R 
0.974 0.023 *  

      

 
Mutliple 

Comparisons     

 90 mV     

 baseline vs. H2O2 0.0029    

 
baseline vs. 
H2O2 + VSN 

0.7977    

 
H2O2 vs. 

H2O2 + VSN-16R 0.0067    

 50 mV     

 baseline vs. H2O2 >0.9999    

 
baseline vs. 
H2O2 + VSN 0.5316    

 
H2O2 vs. 

H2O2 + VSN-16R 0.5355    
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Table shows 2-way ANOVA with factors Voltage (+50 vs +90 mV) and VSN-16R (baseline vs. + 20 µM). 

Abbreviations: SS=  , DF= degrees of freedom, MS= Mean square of treatment effect, F(Dfn,Dfd)=F 

statistic based on the degrees of freedom of the treatment (DFn) and error (DFd), values given in 

parentheses after the F statistic.  

The results were compared by a 2-way repeated measures ANOVA (Table 4.11). There 

was a significant effect of drug treatment (p=0.011, n=5), and the interaction between 

voltage and drug effect was also significant (p=0.023). Multiple comparisons of the 

different treatments at each of the two voltage steps yielded a significant difference at 

+90 mV between baseline and H2O2 (p=0.0029) and between H2O2 and H2O2 + VSN-

16R (p=0.0067). However at +50 mV, no significant effect of treatment was observed for 

any comparison pair. 

In summary, these data show that 5 mM H2O2 causes a decrease in the amplitude of the 

BK current at +90 mV, and that, following the application of VSN-16R, there does appear 

to be a recovery of some sort following application of VSN-16R. There does not appear 

to be any effect of either compound at +50 mV. 
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Chapter 5. Discussion 

5.1 Whole cell recordings of currents mediated by heterologously 

expressed rBKαØ 

Whole cell voltage clamp recordings from cells transfected with rBKαØ cDNA elicited 

currents that displayed characteristics typical of BKα homomultimeric channels. Current 

amplitude was dependent on both voltage and intracellular [Ca2+] (Figure 4.1), and the 

current was completely blocked by either paxilline (Knaus et al 1994) or low 

concentrations of TEA (Figure 4.2). Additionally the current recordings exhibited a noisy 

appearance, typical of currents through channels of large conductance when the open 

probability is relatively low (Olesen et al 1994). Mean activation time constant was 1.68 

± 0.15 ms, consistent with measurements described elsewhere (Orio et al, 2002, Wang 

et al 2009, Nausch et al 2014). As a result of these factors, it is clear that the whole cell 

currents recorded are overwhelmingly mediated by channels formed from the rBKαØ 

subunit. 

In our whole cell recordings, it was not possible to accurately quantify the voltage of half-

maximal activation (V1/2), a typical measure of changes in voltage dependence. In 

keeping with previous studies involving whole-cell recordings of BK currents in low 

intracellular [Ca2+] (e.g. Olesen et al, 1994;  Strobaek et al 1996, Nausch et al 2014), it 

was not possible to achieve a voltage at which the current amplitude reached a plateau, 

which is necessary in order to fit a Boltzmann function to the IV curve and so determine 

V1/2. At low intracellular calcium concentrations, the voltage at which saturation is 

achieved is very high, and the combination of a high unitary conductance and 

overexpression due to transient transfection lead to very large currents being produced 

at these high voltages. The large number of open channels of high conductance 

drastically reduces the membrane resistance, leading to a significant voltage error, which 

cannot be adequately controlled by Rs compensation (see methods 2.2.6.1). Additionally, 

large voltage steps had a destabilising effect on the patched cell.  

In their paper on the activation of BK channels by the benzimidazolone NS1619, Olesen 

and colleagues (Olesen et al 1994) attempted to report voltage shifts using the voltage 

at which each curve reached an arbitrary current amplitude value. However this seems 

unreasonably arbitrary, as the recorded curves are essentially fragments of a sigmoidal 

Boltzmann curve, varying in slope throughout the function. It is therefore not apparent 

whether any “shift” is due to a genuine voltage shift, or instead due to a generalised 
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increase in current amplitude in a voltage independent manner, e.g. due to an increase 

in open probability at all voltages. 

As a result of these limitations, it is common to record BK channel currents using excised 

patches, where the current amplitudes are more manageable.  In excised patches, the 

point at which saturation of the conductance occurs can be observed using a tail current 

protocol (eg. Strobaek et al 1996). Following the activating voltage step, the cell is 

stepped to a negative voltage at which the channel is closed, and at which there is an 

inward driving force on K+. At the start of the negative voltage step, current flows through 

the channel as it closes, allowing observation of channel conductance independent of 

the driving force on K+, which otherwise changes as the voltage is stepped, and adds a 

linear increase to the observed current amplitude even when the channels are maximally 

open. This approach allows for an accurate measurement of V1/2, but again would not 

work in whole cell experiments in low [Ca2+]i as the voltages required to reach maximal 

activation are still very high (Strobaek et al 1996), such that their application caused the 

whole cell configuration to become unstable, and led the subsequent loss of the cell. 

Excised patch recordings exhibit a number of problems however, which make examining 

the effect of activators difficult. BK channels are modulated by a wide variety of 

intracellular signals, and as a result BK currents in excised patches exhibit a number of 

time-dependent changes in activity following excision, including a prolonged, gradual 

“run down” of current amplitudes due to a shift in the V1/2 of activation to more depolarised 

potentials (DiChiara and Reinhart 1997, Lin et al 2004, ). While this is not a serious 

problem in measuring activators known to have a rapid effect on channel activity, in 

situations where the timecourse of activation is purely speculative, it is possible that the 

effect would be masked by the run down. Additionally, BK channels in excised patches 

can exhibit so-called Wanderlust kinetics, in which the channels exhibit large, slow 

fluctuations in open probability, as well as sensitivity to Ca2+ (Silberberg et al 1996). 

These features make the interpretation of activation changes in response to drug 

administration difficult. Additionally, it was considered useful to keep the local 

environment experienced by the channel as close to physiological relevance as possible. 

Although heterologous expression systems are necessarily rather less representative of 

specific physiological contexts than ex vivo preparations, they preserve the presence of 

cytosolic and membrane-associated intracellular factors that can regulate BK channel 

function, such as kinases and phosphatases, and membrane phospholipids such as 

PIP2.  
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It was therefore decided that the whole cell configuration represented a better medium 

for examining the capacity of VSN-16R to activate BK channels. 

5.2 Effect of NS19504 on currents mediated by heterologously 

expressed rBKαØ 

NS19504 produced a pronounced and statistically significant increase in the BK current 

amplitude when applied extracellularly at a concentration of 10 µM (Figure 4.3). The 

increase in current amplitude due to NS19504 was around 300% of baseline, when 

measured at +90 mV. The additional application of paxilline once the current had 

reached a plateau was used to confirm that the observed current was entirely mediated 

by BK channels. 

While the activation observed in our experiments was pronounced, it was only around 

15% of that reported by for human BKα as measured in the whole cell configuration in 

the paper that originally reported the activation effects of NS19504 (Nausch et al 2014). 

It is possible that this is due to differences in the amount of intracellular free Ca2+ (their 

30 nM vs our 200 nM). Indeed in the same paper, the authors assess the effects of 

NS19504 in excised patches using a free intracellular [Ca2+] of 300 nM, and report a 

current increase of a similar magnitude to that observed in our experiments. Alternatively 

the difference could potentially be caused by differences in the response of the rat and 

human isoforms of the alpha subunit. The time course of the activation effect was similar 

to that reported in the aforementioned study. 

In our experiment there was a larger increase in the current amplitude measured at +50 

mV than that measured at +90 mV (Figure 4.3c) and in the 2-way ANOVA there was a 

significant interaction between the effect of voltage and that of NS19504 (Table 4.1), 

suggesting there may be some voltage dependence to the effects of NS19504.   

Our results represent the first evidence that NS19504 acts as an activator of channels 

formed by the rat BKα subunit, and are largely in agreement with the observations 

reported for BK channels formed by the human alpha subunit (Nausch et al 2014). They 

also act as a benchmark against which to compare the effect of VSN-16R under our 

experimental conditions. 
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5.3 Effect of VSN-16R on currents mediated by heterologously 

expressed rBKαØ 

In experiments conducted by Prof. Selwood’s collaborators, VSN-16R produced a large 

increase in whole cell current amplitude in the EA.hy926 cell line, and this current was 

inhibited by paxilline (Bondarenko et al, unpublished data).These data suggested that 

VSN-16R led to the activation of a BK mediated current in the cell line, and so our 

intention was to determine whether the drug acted by direct activation of BK channels, 

using the heterologously expressed products of BK cDNA in HEK293 cells. The 

EA.hy926 cell line (Edgell et al 1983) is derived from the fusion of human umbilical vein 

endothelial cells with the permanent human cell line A459, and expresses Factor VIII-

related antigen, a marker of differentiated endothelial cells. From RNA sequencing data 

EA.hy926 cells are known to express the BK alpha subunit, and the β3 and β4 subunits 

(D.Selwood, unpublished data). The presence of the BK alpha subunit has also been 

independently confirmed in the human umbilical vein endothelial cell by reverse 

transcriptase PCR (Begg et al, 2003). 

In our hands, there was no effect of VSN-16R on currents through channels formed by 

rBKαØ elicited at either +50 mV or +90 mV. No significant increase in current amplitude 

was observed during the experiments when the drug was applied for a period of 7-15 

minutes (Table 4.2), and there was an almost perfect overlap in the I-V curves produced 

at the end of the baseline phase of the experiments and at the end of the drug application 

phase (Figure 4.4). These results largely rule out the possibility of a direct effect of VSN-

16R on BK channels purely formed by the pore-bearing rBKαØ subunit. The VSN-16R 

stock solution used by our lab was tested for purity by Prof. Selwood using high 

performance liquid chromatography and mass spectrometry (LC-MS), and the 

compound is highly stable in aqueous solution, making it unlikely that the negative result 

was observed due to incorrect preparation of the compound. Our results do not rule out 

the possibility that there is a direct effect of VSN-16R that is specific to the protein product 

of human KCNMA1, and this would need to be examined in future experiments. An 

additional issue is that there are a total of 13 alternate exons in KCNMA1, and together 

these lead to a combinatorial explosion of thousands of possible splice variants (Beisel 

et al, 2007). It would therefore be extremely difficult to exclude the involvement of every 

combination individually. Alternative exons have been shown to affect various aspects 

of channel function, including voltage and Ca2+ sensitivity (Shipston et al 2001), and 

capacity for phosphorylation by PKA (Tian et al 2001, Zhang et al 2004). However as yet 

no exon-specific change in sensitivity to any small molecule inhibitor or activator, or to 

any toxin, has been described. Also, given that the VSN-16R effects we are trying to 
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explain are relatively diverse, including effects from not only individual cell lines but 

rescue of behavioural and neurological abnormalities in MS and FXS animal models, it 

seems unlikely that a single splice variant is necessary for all the effects of VSN-16R 

that have been observed.  

An additional possibility that was considered was whether the oxidation state of the 

intracellular environment had an effect on the efficacy of VSN-16R. The activity of BK 

channels is modulated by the redox state of the cell (Hermann et al 2015, Wang et al 

1997, DiChiara and Reinhardt 1997), and signalling based on redox state changes has 

been observed in endothelial cells (Panieri and Santoro, 2015). Intracellular solutions 

used in patch clamp experiments are typically more oxidised than the cytosol, so it was 

hypothesised that this could mask an effect of VSN-16R. Therefore, under my 

supervision, Ruairi Roberts performed experiments in HEK 293 cells transfected with 

rBKαØ, using intracellular solution containing either dithiothreitol (DTT) or glutathione 

(GSH). Under these conditions, the BK channel-mediated current amplitude was similar 

to that observed in the presence of standard intracellular solution. Application of VSN-

16R again did not produce any change in current amplitude elicited over a whole range 

of voltages (Figure 4.13, 4.14).  

Additional experiments were performed using standard intracellular solution, in which 

hydrogen peroxide (H2O2) was applied extracellularly, in order to simulate conditions of 

oxidative stress, which has been shown to reduce BK channel open probability in rat 

hippocampal neurons (Gao and Fung, 2002). In keeping with these findings, a reduction 

in BK current amplitude was observed in response to H2O2. It was hypothesised that 

VSN-16R might have an activating effect on BK channels that was dependent on a state 

of oxidative stress, as reactive oxygen species emitted by macrophages contribute to 

demyelination in both multiple sclerosis and the EAE mouse model, in which VSN-16R 

has been shown to have an antispastic effect. However, in our experiments, application 

of VSN-16R did not have any significant effect on BK current amplitude in the presence 

of H2O2. 

5.4 Effect of VSN-16R on currents mediated by heterologously 

expressed rBKαØ in combination with β subunits 

As VSN-16R did not appear to have any effect on channels formed by the rBKαØ subunit 

alone, it was tested on HEK-293 cells transiently transfected with both rBKαØ and one of 

three different human β subunits, using the same methodology as for the alpha subunit 

alone. The presence of β subunits is known to affect the sensitivity of the BK channel to 
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various toxins. For example the β4 subunit confers reduced sensitivity to iberiotoxin 

(Meera et al 2000) and increased sensitivity to martentoxin (Shi et al 2008). As a result, 

it is important for any potential BK targeting drug to be tested on channels composed of 

defined β subunits. Additionally, no β subunit specific opener has yet been found for BK 

channels, and a compound of this nature would be very valuable, for example being able 

to activate β4 containing BK channels in neurons, without for example affecting the β1-

containing BK channels responsible for regulation of homeostatic K+ secretion in renal 

tubules.  As both β4 and β3 had been detected in the RNA sequencing data of the 

EA.hy926 cell line, both these were tested, as was β2, which is widely expressed in 

neurons, and was therefore considered potentially relevant to the reported behavioural 

and neurological effects in the animal model studies. Currents recorded from cells 

transfected with rBKαØ and either β2 and β4 displayed a clear electrophysiological 

phenotype, allowing for easy confirmation that these subunits were being successfully 

expressed and incorporated into the channel assemblies. When the β4 subunit was co-

expressed with rBKαØ, the activation time constant for the current was around an order 

of magnitude slower than for the currents in cells expressing only the rBKαØ 

subunit(Figure 4.5), and in the case of the β2 subunit, currents displayed an inactivating 

phenotype (Figure 4.9, 4.10). Currents from cells transfected with β3 subunit DNA were 

not noticeably different from those transfected with only rBKαØ, however this was to be 

expected given that the β3 subunit only confers a very rapid, small inactivation in the 

presence of low internal free Ca2+, and even then only at very positive voltages (Xia et al 

2000). The ratio of β subunit cDNA to rBKα cDNA used was 4:1 by mass, in order to 

increase the chances that the expression ratio of β to α subunits would be high. As the 

β subunits are only around 20-30 kDa compared to the 60 kDa alpha subunit, the molar 

ratio is around 6:1. As discussed in the Introduction, the stoichiometry of the BK channel 

assembly is such that each channel can have between zero and four β subunits, and in 

a given cell the stoichiometries of the channel population can be described by a Poisson 

distribution, biased further towards higher numbers the higher the molar ratio of BKα to 

β RNA transcripts in the cell (Wang et al 2002).  

The results of all three sets of experiments were largely identical to those observed in 

cells expressing channels formed by only the rBKαØ subunit. In all cases, there was no 

significant effect of VSN-16R on current amplitude, and an almost complete overlap in 

the averaged I-V curves obtained before and after drug application (Figure 4.7, 4.10, 

4.12). In every experiment, currents were almost entirely abolished by paxilline. In 

additional experiments, the effect on current amplitude of including VSN-16R 

intracellularly was tested on cells transfected with rBKαØ and hβ4 subunits (Figure 4.8). 
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BK current amplitude in cells in which VSN-16R was included in the pipette was not 

significantly different from currents in the control cells.  

From these experiments it seems relatively clear that there is no direct effect of VSN-

16R on recombinant BK channels formed from alpha subunits and either β2, β3, or β4 

subunits.  

5.5 Effect of NS19504 on currents mediated by heterologously 

expressed rBKαØ in combination with β subunits 

Extracellular application of NS19504 produced a significant increase in the whole-cell 

current amplitude for all three of the β subunits tested. The increase in amplitude due to 

NS19504 was not significantly different between cells expressing only rBKαØ, and cells 

expressing rBKαØ together with any of the β subunits tested.  

In each case, the drug had a larger effect at +50 mV than at +90 mV, and judging from 

the results of the 2-way ANOVA analysis (Table 4.3, 4.5, 4.7), a small but significant 

amount of the variance in each case was explained by the interaction between voltage 

and drug effect. The  percentage of variance explained by this interaction was similar in 

each case, as well as for the alpha subunit alone.  

These data are the first to show that NS19504 is effective as an activator of BK channels 

containing β subunits, though it does not appear that there is much difference between 

its effect on heteromultimeric channels containing β-subunits, and that observed in BKα 

homomultimeric channels. The most likely explanation is therefore that the opener acts  

solely at a site on the alpha subunit, and does not require the beta subunits for its action. 

5.6 Potential alternative mechanisms of action of VSN-16R 

VSN-16R has been shown to rescue behavioural abnormalities in FMRP-/- mice, and 

has an antispastic effect in the EAE mouse model of multiple sclerosis, with the effect 

being prevented by paxilline (Selwood et al, unpublished data). Combined with the 

activation of a paxilline-sensitive current in the EA.hy926 cell line (Bondarenko and 

Selwood, unpublished data), these data present a case that the medically useful effects 

of the compound might be dependent on the activation of a BK current. However, our 

data do not show any evidence of  a direct activation of either recombinant rat BKα 

homomultimeric channels, or heteromultimers combining rBKαØ and either the beta 3 or 

beta 4 subunits, which are the only ones expressed in EA.hy926 cells. 
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One possibility for the lack of effect seen by our lab on heterologously expressed BK 

channels is that the effect of VSN-16R on a paxilline-sensitive current observed in the 

EA.hy926 cell line by Bondarenko and Selwood (unpublished data) is not due to a direct 

activation of BK channels, but instead represents an indirect effect resulting from the 

interaction of VSN-16R with a different target. The compound has been shown to relax 

mesenteric artery constriction in rat, and the effect is prevented by the cannabinoid 

receptor antagonists rimonabant and AM 251 (Hoi et al, 2007), as well as O-1918, a 

specific inhibitor of a cannabinoid receptor of unknown molecular identity that is present 

in endothelial cells and activated by anandamide (Offertaler et al, 2003) and atypical 

cannabidiol (an-cbd). Furthermore, the effect of VSN-16R on vasoconstriction was 

reduced by inhibiting BK channels using 50 nM charybdotoxin, suggestive of a coupling 

of cannabinoid receptors to the activation of BK channels as a potential mediator of this 

effect (Hoi et al, 2007).  

VSN-16R has been shown to not bind to either CB1 or CB2 cannabinoid receptors (Hoi 

et al, 2007; D. Selwood, unpublished data). However, a number of groups have proposed 

the existence of an atypical cannabinoid receptor in endothelial cells, based on evidence 

that anandamide produces vasodilation in the mesenteric arterial bed (Jarai et al 1999), 

which is not prevented by CB1 or CB2 specific antagonists (Wagner et al 1999) and 

persists in CB1/CB2 knockout mice (Jarai et al 1999). Abnormal cannabidiol (an-cbd), a 

structural analog of cannabidiol which does not bind CB1 or CB2 receptors, mimicks the 

vasodilation produced by anandamide in the arterial bed cells (Jarai et al 1999), and both 

its effects and those of anandamide are inhibited by O-1918, another structural analogue 

of cannabidiol (Offertaler et al 2003).  

Might this atypical cannabinoid receptor be responsible for the effects of VSN-16R on 

BK channel activation? In human umbilical vein endothelial cells, from which the 

EA.hy926 cell line is derived, extracellular application of an-cbd has been shown to lead 

to BK channel activation (Begg et al, 2003). The authors conclude that this effect was 

independent of intracellular free Ca2+ concentration, by adding the fast Ca2+ buffer 

BAPTA to the intracellular solution. Under these conditions, an-cbd still produced an 

increase in BK channel activation. 

The above results suggest that VSN-16R might indirectly activate the BK current via 

cannabinoid receptors in the EA.hy926 cell line. Activation of the cannabinoid receptors 

might lead to activation of BK channels either as a result of a change in intracellular  Ca2+ 

concentration or of post-translational modifications of BK channels. As the effects of the 

atypical cannabinoid receptor are inhibited by pertussis toxin (Begg et al 2003), this might 
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be by direct interaction between Gi/o and the BK channel, or via some downstream 

second messenger. Alternatively, activation of the receptor could lead to release of Ca2+ 

from intracellular stores, leading to an increase in BK channel activation due to the Ca2+ 

dependent shift in the voltage dependence. In support of this latter hypothesis, 

anandamide has been shown to increase cytoplasmic Ca2+ concentration by mobilisation 

of calcium from intracellular stores in the EA.hy926 cell line (Mombouli et al, 1999), and 

this effect was not abolished by the CB1 antagonist SR141716A.  

5.7 Conclusions 

The results presented in this part of the thesis are essentially twofold. First they show 

that NS19504 is a BK channel activator, capable of activating rat BKα homomeric 

channels and heteromeric channels comprising the β2, β3 and β4 subunits, extending 

previous findings obtained on recombinant human BK channels formed by the alpha 

subunit alone  (Nausch et al 2014).  

Second, it is concluded that VSN-16R does not act as a direct BK channel activator, 

either by activation of recombinant channels formed by the alpha subunit alone, or in a 

manner dependent on any of the three β subunits tested here. Application of VSN-16R 

is no more effective on BK-mediated currents in cells in a reduced redox state, or under 

conditions of oxidative stress, than it is under typical whole cell recording conditions. 

Given that VSN-16R is a derivative of the endocannabinoid compound anandamide, it 

remains a reasonable possibility that the effects of VSN-16R observed in the EA.hy926 

cell line, the behavioural rescue of FMRP-/- mice, and the compound’s antispastic effects 

in the EAE murine model of multiple sclerosis, are all mediated by the indirect modulation 

of BK channels via cannabinoid receptors, a hypothesis that needs to be tested in further 

experiments.  
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PART TWO: Evidence for spatially localised signalling 

domains in the monoaminergic inhibition of the sIAHP. 

Chapter 6. Introduction 

6.1 The Afterhyperpolarisation 

In hippocampal pyramidal cells, trains or bursts of action potentials trigger the activation 

of hyperpolarising K+ conductances underlying an extended afterhyperpolarisation 

(AHP) of the membrane potential. Whilst there is some crossover between the currents 

responsible for the membrane repolarisation phase of an action potential and those 

responsible for the afterhyperpolarisation, the afterhyperpolarisation represents a 

delayed opening of K+ channels that persists beyond the end of spike repolarisation, and 

is important for controlling neuronal excitability and firing rate. 

The AHP in hippocampal pyramidal cells has three components, differing on the basis 

of their kinetics and the contributing ion channels, and known as the fast AHP (fAHP), 

medium AHP (mAHP) and slow AHP (sAHP).  

6.1.1 fAHP 

The fast afterhyperpolarisation is mediated by a conductance activated by both calcium 

and voltage, and has a duration of around 2-5 ms (Storm 1989). The associated current, 

known as IC, is absent in the presence of Ca2+ chelators, is inhibited by 

tetraethylammonium (TEA) at submillimolar concentrations, and is additionally blocked 

by the BK-specific inhibitors iberiotoxin and paxilline, as well as by charybdotoxin 

(Lancaster and Nicoll 1987, Shao et al 1999, Gu et al  2007). It is therefore thought that 

IC is mediated by the large conductance BK channels in hippocampus, which also 

contribute to the membrane repolarisation phase of the action potential (Adams et al 

1982, Lancaster and Nicoll 1987). The fAHP is present after individual action potentials 

and following the first spikes in a burst, but is absent following the later spikes in a given 

burst. This is likely due to BK channel inactivation due to the presence of a BK channel 

subtype containing the β2 subunit (Faber and Sah 2003). 
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6.1.2 mAHP 

The mAHP is generated in response to a train or burst of action potentials, and exhibits 

rapid activation kinetics (<10 ms) and a duration of up to 100 ms. The mAHP is mediated 

by both Ca2+ sensitive and voltage sensitive components, and the relative contribution 

of these varies with cell type. Initial investigations of mAHP in pyramidal cells supported 

the view that it was mediated by the voltage dependent  current, IM, which is sensitive to 

muscarinic receptor activation (Brown and Griffifth, 1983). Subsequently, studies in 

various neuronal subtypes demonstrated the contribution of a separate Ca2+ dependent 

component, which was inhibited by the bee venom toxin apamin (Pennefather et al, 

1985, Sah and McLachlan 1991, 1992, Schwindt et al, 1988), and this current was 

ascribed to the small conductance SK channel family. In CA1 pyramidal neurons, a 

mAHP current (IAHP) was described as being largely SK2 mediated in voltage clamp 

experiments (Stocker et al 1999). However subsequent studies using current clamp 

argued that the mAHP generated in response to a train of action potentials was 

exclusively mediated by IM, which in CA1 pyramidal cells is mediated by Kv7.3 (Gu et al, 

2005). A subsequent study (Chen et al, 2014) resolved the controversy by demonstrating 

that populations of both channels are present in the soma of CA1 pyramidal neurons, 

but only Kv7.3 channels normally contribute significantly to mAHP, with SK2 contribution 

becoming unmasked only when Kv7 channel activity was downregulated. 

6.1.3 sAHP 

The third, and by far the most enigmatic component of the afterhyperpolarisation is the 

sAHP, mediated by a Ca2+ dependent K+ current (sIAHP) with unusually slow kinetics 

(Alger and Nicoll 1980, Hotson and Prince 1980, Schwartzkroin and Stafstrom 1980, 

Lancaster and Adams, 1986). The rising phase of the current has a duration of 400-700 

ms, with a decay phase lasting several seconds. Channel kinetics are temperature 

sensitive, but as an example experiments conducted by Lancaster and Adams (1986) 

give the decay time constant as 1.5 s, though in experiments at room temperature this 

can be as much as 4 s (Gustafsson & Wigstrom 1981).  

The sAHP is generated in response to a train of action potentials or prolonged 

depolarisation, and plays a prominent role in spike frequency adaptation (Sah and Faber, 

2002). The size of the sAHP is directly proportional to the number of action potentials 

generated in current clamp experiments (Madison and Nicoll 1984, Lancaster and 

Adams 1986). The property of increasing sAHP activation in a stimulation-dependent 
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manner acts as a negative feedback control, reducing the neuron’s intrinsic excitability 

in response to further stimulation. 

sAHP is pharmacologically separable from the mAHP and fAHP by its insensitivity to 

apamin and d-tubocurarine (Sah 1996), its lack of sensitivity to TEA up to concentrations 

of 5 mM (Storm 1990), and its inhibition by a range of neuromodulators, including the 

monoamines serotonin (5-HT), noradrenaline, dopamine and histamine (Benardo and 

Prince, 1982; Madison and Nicoll, 1982; Haas and Konnerth, 1983; Andrade and Nicoll, 

1987; Colino and Halliwell, 1987; Pedarzani and Storm, 1993, 1995; Torres et al. 1995), 

as well as acetylcholine (Cole and Nicoll, 1983), and glutamate via metabotropic and 

NMDA receptors (Charpak et al. 1990; Blitzer et al. 1995). 

6.2 sIAHP channel kinetics and calcium dependence 

One of the challenges in understanding the sAHP is the relationship between the calcium 

dependence of the underlying current (sIAHP) and its slow kinetics. Whilst it was 

established early on that sIAHP activation is dependent on intracellular Ca2+ elevation 

(Alger and Nicoll 1980, Hotson and Prince 1980, Schwartzkroin and Stafstrom 1980, 

Lancaster and Adams 1986), it was not clear how the time-course of the Ca2+ signal led 

to the time-course of the current itself, as the time-course of the Ca2+ signal is around an 

order of magnitude faster than that of the current (Sah and Clements 1999, Jaffe et al 

1992). Given that none of the known potassium channels has single channel kinetics 

that can directly make sense of this discrepancy, this poses a conundrum, to which 

several explanations have been proposed: 

(1) that the sIAHP channels are distant from the point of Ca2+ entry and the sIAHP time-

course thus represents the time taken for Ca2+ to diffuse from VGCCs to the sIAHP 

channels (Lancaster and Zucker 1994; Zhang et al. 1995); (2) that a second messenger 

step is needed between Ca2+ influx and sIAHP channel activation (Schwindt et al. 1992; 

Lasser-Ross et al. 1997; Abel et al. 2004 ); (3) that the calcium signal activating the 

channels underlying the sAHP is due to Ca2+ induced Ca2+ release (Sah & 

McLachlan,1991; Moore et al. 1998; Tanabe et al.1998); or (4) that delayed facilitation 

of the voltage-gated Ca2+ channels is responsible for the activation of sIAHP (Cloues et al. 

1997; Bowden et al. 2001). 
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6.3 Molecular identity of sIAHP 

The most enigmatic feature of the sAHP current (sIAHP) is that as yet there is no 

conclusive molecular correlate: the identity of the channel responsible for the current in 

hippocampal neurons remains unknown. It is generally assumed that it is mediated by a 

single conductance, as its activation and decay kinetics can be fitted adequately by 

single exponential functions (Sah and Clements 1999). Noise analysis of the whole-cell 

current (Sah & Isaacson 1995) suggests that the channels underlying the current exhibit 

a single channel conductance of around 2-7 pS and a mean open time of 2 ms. However 

this value may represent an underestimate of the unitary conductance if the channels in 

question are located in the dendrites as opposed to the soma (Valiante et al. 1997; Sah 

and Bekkers 1996). 

Despite the advent of molecular cloning techniques, the channel identity has been 

difficult to pin down, partly due to conflicting results in different preparations, and also 

due to a lack of specific pharmacological tools. A number of candidates have been 

proposed, including SK1 (KCa 2.1; Bowden et al 2001), Kv7.3 (Kv7/M, KCNQ family; 

Tzingounis and Nicoll 2008, Tzingounis et al 2010, Kim et al 2012), IKCa/SK4 (KCa 3.1; 

King et al 2015), and the sodium/potassium ATPase (Gulledge et al 2013). 

SK1 (KCa2.1) 

It was initially hypothesised that apamin-insensitive SK1 channels were responsible for 

the sIAHP (Kohler et al., 1996; Bowden et al 2001), but this was called into question by 

experiments showing SK1 had a higher sensitivity for apamin than previously thought 

(Shah and Haylett 2000, Strobaek et al 2000), and by experiments in SK1, SK2, and 

SK3 knock-out mice, which did not show any reduction in sIAHP amplitude in CA1 

pyramidal cells (Bond et al, 2004). As a result, it is unlikely that SK1 channels are 

responsible for the sIAHP in hippocampal pyramidal neurons. 

Kv7/KCNQ 

The Kv7 family of potassium channels are the protein products of the KCNQ gene family. 

Of the five family members, only KCNQ2 (Kv7.2), KCNQ3 (Kv7.3) and KCNQ5 (Kv7.5) 

are expressed in neurons (Jentsch 2000). A 2008 paper showed that IM and sIAHP were 

both reduced in the dentate gyrus granule cells of KCNQ2/KCNQ3 double knockout 

mice, though no change was seen in CA1 pyramidal cells (Tzingounis and Nicoll, 2008). 

A subsequent paper by the same group proposed that another member of the KCNQ 
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family, KCNQ5 (Kv7.5) mediates part of the sIAHP in CA3 pyramidal neurons, as mice 

transfected with KCNQ5 dominant negative constructs displayed a significantly reduced 

sIAHP amplitude compared to controls in CA3, though again not in CA1 neurons 

(Tzingounis et al, 2010). Another line of evidence comes from the compound UCL2077 

which was shown to specifically inhibit sIAHP in hippocampal neurons in culture (Shah et 

al, 2006) and also heterologously expressed KCNQ channels, though in a subtype 

dependent manner, blocking KCNQ1 and KCNQ2 strongly, but not KCNQ5 or KCNQ3 

except at positive potentials (Soh et al 2010). 

Set against this evidence are a number of objections, including the fact that KCNQ/Kv7 

channels are negatively modulated by Ca2+ (Marrion et al, 1991, Selyanko and Brown, 

1996), and the fact that UCL2077 is suggested as a blocker of sIAHP in hippocampal 

neurons, but has been shown in the heterologously expressed KCNQ channels to only 

inhibit KCNQ2, the involvement of which has not been experimentally confirmed in CA3 

or CA1 pyramidal neurons. 

IKCa / SK4 

Another recently suggested candidate for the sIAHP in CA1 neurons is IKCa / SK4. 

The IKCa current was initially ruled out as a candidate for the sIAHP because IKCa 

expression was described as being absent in northern blot experiments of whole-brain 

lysate (Logsdon et al 1997), but it was subsequently suggested to be present in 

hippocampal and neocortical pyramidal cells using antibodies against IKCa (Turner et al, 

2015). 

King et al (2015) reported that the selective IKCa inhibitor Tram-34 (Wulff et al 2000) 

reduced spike frequency accommodation and sAHP amplitude in CA1, and further 

showed that IKCa/SK4 knock out animals exhibited a smaller sIAHP than control 

littermates. However this finding conflicts with earlier experiments characterising the 

pharmacology of sIAHP, as charybdotoxin, which blocks IKCa/SK4 along with BK, Kv1.2 

and Kv1.3 channels, did not have any effect on sIAHP amplitude in rat CA1 pyramidal 

neurons (Lancaster and Nicoll, 1987, Shah and Haylett 2000). A subsequent study not 

only failed to recapitulate the Tram-34 result in pyramidal neurons of either CA1 or 

basolateral amygdala, but also found that SK4 knockout mice exhibited a sIAHP current 

that was not significantly different to control animals (Wang et al 2016). As a result of 

these concerns, the weight of current evidence opposes involvement of SK4 channels in 

the mediation of sIAHP in CA1 pyramidal neurons. 
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Na+/K+ ATPase 

An early paper (Schwindt et al 1989) found evidence of a slow afterhyperpolarisation 

representing the activation of a pump rather than a channel population in cat neocortical 

neurons. A 1 s-long depolarising step was used, and activated a long duration 

hyperpolarisation lasting from a few seconds up to several minutes. This afterpotential 

was shown to have different characteristics to the sAHP described in CA1 pyramidal 

neurons (Alger and Nicoll, 1980), as it was insensitve to Ca2+, was abolished in the 

presence of TTX, and was observed even in cells recorded using a Ca2+-free 

extracellular solution. As the underlying current was dependent on Na+ ions, it was 

termed IK(Na) (Schwindt et al, 1989). 

Notwithstanding the obvious differences between this current and the Ca2+ sensitive sIAHP 

observed in hippocampal pyramidal cells (Alger and Nicoll 1980, Hotson and Prince 

1980, Schwartzkroin and Stafstrom 1980, Lancaster and Adams 1986, Storm 1989, 

Lancaster and Zucker 1994, Zhang et al, 1996, Velumian and Carlen 1999, among 

others), Gulledge and colleagues (Gulledge et al 2013) speculated that the sodium-

potassium ATP-ase  was predominantly responsible for the sAHP observed in CA1 

pyramidal neurons. They observed a long-lasting (20 s long) afterhyperpolarisation in 

mouse CA1 pyramidal cells, which was shown to be Na+ dependent, Ca2+ insensitive 

and blocked by TTX and the specific Na+/K+ pump inhibitor ouabain. Their suggestion 

was that previous experiments attributing the mechanism underlying the sAHP in CA1 

pyramidal cell to a Ca2+ sensitive current represented an inaccurate picture due to focus 

on conducting experiments at room temperature rather than at a more physiologically 

relevant temperature, or due to species differences, or due to using predominantly young 

animals for the experiments. However recent work in the Pedarzani lab (A. Tedoldi  2015, 

PhD thesis, unpublished) has shown that all of these propositions are not plausible. 

Experiments in mice of average age 4 months showed a Ca2+-dependent sAHP, 

excluding the possibility that IK(Na) involvement had been underestimated due to the age 

of animals used, while experiments at 35oC showed a sAHP that was insensitive to TTX, 

and abolished by the application of a membrane-permeable cAMP analogue, 8-CPT-

cAMP.  

From these results it is clear that the afterpotential described by Gulledge and colleagues 

(2013) is different from the Ca2+ dependent, cAMP/PKA modulated 

afterhyperpolarisation described by previous authors in CA1 pyramidal neurons, and is 

probably activated by the large amount of current used to elicit the long action potential 
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trains, which bear similarity to the long (1 s) voltage step used by Schwindt and 

colleagues in neocortical neurons (Schwindt et al 1989). 

6.4 Suppression of sIAHP by neuromodulators 

The amplitude of sIAHP is highly modulated by a range of neurotransmitters acting on 

metabotropic receptors, including glutamate (Charpak et al 1990), acetylcholine (Cole 

and Nicoll 1983, Cole and Nicoll 1984), and the monoamines serotonin (5-HT) (Andrade 

and Nicoll, 1987), noradrenaline (Madison and Nicoll 1982), dopamine (Benardo and 

Prince, 1982), and histamine (Haas and Konnerth, 1983). All of the above transmitters 

exhibit a similar end effect, namely the inhibition of the sAHP and underlying sIAHP, and 

all act via G-protein coupled receptors. However there is some divergence as to their 

downstream mechanisms of action.  

The monoamine transmitters have been shown to act via GαS mediated signalling, 

leading to the activation of adenylyl cyclases, the generation of a cyclic AMP signal and 

subsequent activation of protein kinase A (PKA). Bath application of the membrane-

permeable cAMP analogue 8-CPT-cAMP or the adenylyl cyclase activator forskolin 

mimics the action of monoaminergic agonists (Pedarzani & Storm, 1993), causing a 

reversible suppression of sAHP and the underlying sIAHP. Intracellular application of Rp-

cAMPS, a specific inhibitor of the cAMP binding site of PKA, or PKI, a specific peptide 

inhibitor of the catalytic subunit of PKA, inhibits the suppression of sAHP and sIAHP by 

both monoaminergic agonists and 8-CPT-cAMP (Pedarzani & Storm, 1993, 1995). There 

is therefore strong evidence that all four monoamine neuromodulators act via adenylyl 

cyclase and PKA to suppress the sIAHP. 

Acetylcholine, acting via M3 muscarinic receptors, and glutamate, acting on mGluR5 and 

mGluR1 receptors (Ireland and Abraham, 2002), appear to utilise a different pathway, 

mediated by Gαq (Krause et al 2002) and independent of PKA (Pedarzani and Storm, 

1995). Cholinergic inhibition of the sIAHP is dependent on Ca2+ /calmodulin-dependent 

protein kinase II (CaMK-II)(Pedarzani and Storm, 1995), but this is not the case for the 

glutamatergic pathway. 

A common problem in understanding the role played by this large number of apparently 

redundant neuromodulatory pathways is that in each case, the end actor in the 

suppression of the sIAHP is currently unknown. It is possible that the different pathways 

all converge on the same final step to affect suppression of the current, though it is also 

plausible that the apparent homogeneity of effect, observed with different modulators 
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during bath application of pharmacological tools, masks functional diversity mediated by 

localised signalling domains. There is strong evidence that such domain-limited 

signalling exists, both as a general principle and in this specific case. For example, the 

population of CaMK-II that mediates the cholinergic inhibition appears to be insensitive 

to the rises in bulk Ca2+ responsible for the activation of the sIAHP during action potential 

generation (Pedarzani and Storm, 1995). Additionally, there is considerable evidence 

from a variety of cell types of spatially restricted cAMP signalling domains, which when 

activated confer different or occasionally even opposing effects. 

6.5 Monoaminergic Signalling Domains 

One of the principal ways in which functional specialisation can be achieved by two 

signals acting upon a common pathway is by the localisation of signalling components 

(receptors, kinases and their downstream targets etc.) into discrete, spatially 

compartmentalised pools or domains. In the case of monoaminergic cAMP-dependent 

signalling, activation of the receptors produces a spatially localised cAMP signalling 

domain, leading to the activation of nearby kinases or other targets (Pawson and Nash, 

2003). Further tuning and sharpening of the domain boundaries can be achieved by the 

action of associated phosphodiesterases (Strangherlin et al 2011), and assemblies of 

the domain components are brought into tight spatial association with the aid of 

scaffolding proteins. 

There is considerable evidence for the existence and functional significance of such 

domains in PKA-dependent modulation of a variety of cellular processes (reviewed by 

Zaccolo 2011, Dai and Hell 2009). As a characteristic example, cardiac myocytes contain 

a population of β-adrenergic receptors of both β1 and β2 subtypes. Stimulation of β 

receptors by noradrenaline leads to the PKA-dependent activation of L-type voltage 

gated Ca2+ channels, and increases pulse rate and contractility. However, whereas the 

β1 subtype leads to PKA activation throughout the cell, activation of β2 by β2-specific 

ligands leads to enhanced kinase activation at the sarcolemma (Xiao et al 1999). This 

effect is dependent on the assembly of β2 receptors into a signalling complex, along with 

adenylyl cyclase, PKA and its counteracting phosphatase PP2A, and the L-type channel, 

held together by structural proteins of the A-kinase anchoring protein family (AKAP) 

(Shih et al, 1999, Hulme et al, 2003, Dai and Hell 2009). AKAPs are a diverse family of 

proteins characterised by the presence of an amphipathic helix motif that binds to the 

PKA regulatory subunit. They also possess a variety of specialised domains, allowing 

them to bind various other protein partners and facilitate colocalisation and coordination 
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of action. Additionally, some AKAPs exhibit lipid modifications that permit binding to 

membrane phospholipids (Davare et al. 2001). 

6.6 Evidence for localised signalling domains contributing to 

monoaminergic suppression of sIAHP 

A currently open question is whether the monoaminergic modulation of sIAHP by PKA in 

hippocampal pyramidal cells involves similar localised signalling domains.  

 

Figure 6.1 Schematic of signalling relationships implied by evidence in section 6.6 

(a) Microcystin inhibits PP2A, causing run-down of sIAHP. This effect is blocked by PKA 

inhibitors 

(b) Inhibition of adenylyl cyclase leads to an increase in sIAHP amplitude, while inhibition of 

phosphodiesterases leads to a gradual decrease in amplitude of the current. 

(c) Schematic of the equilibrium between the action of PKA and its associated phosphatase 

PP2A on the phosphorylation state of the hypothetical target of PKA-mediated inhibition of sIAHP 

 

One line of evidence that suggests the presence of such mechanisms comes from 

electrophysiological experiments conducted in the presence of Ht31, a competitive 

AKAP inhibitor derived from the AKAP binding site of the PKA regulatory subunit (Carr 

et al 1992), which disrupts the basal tone of PKA signalling in rat hippocampal pyramidal 

cells. 

Intracellular perfusion of microcystin, a serine-threonine protein phosphatase inhibitor, 

leads to a progressive run-down of sIAHP amplitude during recordings, and this run-down 

is abolished by PKA inhibitors (Pedarzani and Storm 1993; Pedarzani et al 1998). 

Conversely inhibition of adenylyl cyclase leads to an increase in sIAHP amplitude, while 
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inhibition of phosphodiesterases leads to its gradual decrease. These findings suggest 

that there exists a basal tone to PKA-dependent control of sIAHP amplitude, due to the 

balance between a constitutively active population and both PKA and phosphatises, 

most likely PP2A (Pedarzani et al 1998).  

It was hypothesised that using Ht31 to inhibit the binding of AKAP to PKA would disrupt 

this balance, leading to an increase in sIAHP amplitude. In whole cell voltage clamp 

recordings of sIAHP, the current amplitude is small at the beginning of the recordings, but 

repeated stimulation leads to a typical, gradual increase in the sIAHP amplitude, a 

phenomenon known as run-up (Zhang et al., 1995; Borde et al., 2000).  

In cells in which Ht31 was included in the intracellular solution, both the increase in sIAHP 

amplitude in this run-up phase, and its duration, were enhanced compared with control 

cells (Pedarzani, unpublished data). This suggests that AKAPs organise a spatially 

localised pool of PKA in close proximity to the phosphorylation targets that affect the 

suppression of sIAHP. It is therefore plausible that sIAHP channels and their modulating 

receptors are organised into spatial domains, and that different transmitter systems could 

act on separate signaling complexes, possibly linked to different populations of sIAHP 

channels. 

An additional putative mechanism that might produce specificity and divergence of the 

different PKA-mediated signals is differential activation of isoforms of adenylyl cyclase 

(AC) by different receptors and their associated G-proteins. A number of different 

adenylyl cyclases are expressed in hippocampal neurons (Sanabra et al. 2011), which 

vary in their susceptibility to activation by different G-protein subunits, as well as in their 

response to Ca2+. All adenylyl cyclase isoforms are, to some extent, activated by Gαs G-

protein subunits, but the AC1 and AC8 isoforms are additionally stimulated by Ca2+, and 

inhibited by Gβγ, and AC8 has a reduced sensitivity to activation by Gαs. Conversely, 

the AC2 and AC4 isoforms are insensitive to calcium, and activated by Gβγ  (Cooper 

and Crossthwaite 2006).   

Experiments conducted by the Pedarzani lab (R. Taylor, unpublished data) used double 

knockout mice of AC1 and AC8 to investigate the involvement of these isoforms in the 

inhibition of sIAHP by monoamines. No difference was observed between the knockouts 

and control mice in their response to a non-saturating concentration of either 5-HT or the 

β-adrenergic agonist isoproterenol. However, sIAHP is also surpressed in CA1 pyramdial 

cells in a PKA-dependent manner in response to high frequency stimulation (HFS) of 

Schaeffer collaterals, mediated by glutamate acting on NMDA receptors (Blitzer et al 
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1995). The PKA dependency of this process was shown by the fact that it can be 

abolished by PKI6-22, a pseudosubstrate inhibitor of PKA (R. Taylor, unpublished data). 

In the AC1/AC8 DKO, no significant suppression of the sIAHP was observed in response 

to HFS of the Schaffer collaterals. Thus although AC1 and AC8 are not necessary for 

monoaminergic suppression of sIAHP, they nonetheless transduce another PKA-

dependent pathway leading to the same result. Again this suggests that the general 

similarities of response, seen in suppression of the sAHP by different neuromodulators 

during bath application experiments, mask hidden complexities, such as distinct 

signaling domains, coupled to different receptors, capable of modulating pools of sAHP 

channels by locally activating the cAMP/PKA pathway. 

6.7 Aims of the project 

The aim of this project is to investigate the possibility that there are spatially localised 

cAMP signalling domains in hippocampal pyramidal neurons, comprising monoamine 

receptors, a population of sIAHP channels, and the intervening signalling components, 

such as adenylyl cyclase and PKA. In particular the aim is to acquire the first data on 

spatial localisation of one of these signalling pathways. Two separate experimental 

strategies were designed and adopted: focal application of the β-adrenergic agonist 

isoproterenol via a microinjector, and localised uncaging of BCMCM-8Br-cAMP, a cAMP 

analogue contained in a photolabile cage (Hagen, 1998).  

The first part of this project aims to determine the optimal recording conditions for sIAHP, 

such that a large amplitude, stable current can be observed for periods of up to an hour, 

in order to maximise the dynamic range for the inhibition experiments used in the other 

two parts. Parts 2 and 3 comprise the focal application experiments and the cyclic 

nucleotide uncaging, respectively. 

Focal application technique 

In the extant literature, monoaminergic suppression of sIAHP has been studied using the 

application of compounds in the bath perfusion or administered intracellularly via the 

pipette. Both these approaches are effective at determining the global response of the 

cell, but lack the spatial or temporal resolution required for the identification of specific 

effects mediated by localised signalling domains. By utilising techniques that affect only 

a part of the cell, additional effects can be revealed that are not picked up by bath 

application. 
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As an example, Fiorillo and Williams (Fiorillo and Williams 1998) showed that application 

of mGluR1 agonists to ventral dopaminergic midbrain neurons via the bath perfusion 

elicited a depolarising potential, whereas transient application of the same agonists, 

using a microinjector localised to the soma, induced a hyperpolarisation that 

desensitised in response to prolonged application. Such an approach has not as yet 

been used for monoamine transmitters and their effects on membrane conductances 

and excitability.  

In the data presented in this project, a microinjector was used to puff the β-adrenergic 

agonist isoproterenol onto two different compartments of the neuron: the soma / proximal 

apical dendrite region and the distal apical dendrites. Where differences in the degree of 

suppression of sIAHP between the two regions are observed, this could be interpreted 

either as a difference in receptor density, or as a change in the degree of coupling 

between the receptors in that location and the sIAHP channel. 

BCMCM 8Br-cAMP uncaging 

Caged compounds are light sensitive probes, based on the principle that a signalling 

molecule of interest can be rendered inert from a signalling perspective by the addition 

of a protecting group that can be cleaved off by irradiation with light (Ellis-Davies 2007). 

The process thereby allows biological processes to be perturbed with a high degree of 

spatial and temporal resolution by localised irradiation of an area of interest. Photolabile 

cages have previously been used to examine the calcium-dependence of sIAHP and its 

relation to the kinetics of the current (Lancaster and Zucker 1994, Sah and Clements, 

1999), but thus far a similar approach has not been attempted with caged cyclic AMP. 

The experiments presented here use a caged form of 8Br-cyclic AMP, (BCMCM 8Br-

cAMP) which is resistant to hydrolysis (Hagen 1998). As the Pedarzani lab had not 

previously worked with caged compounds, preliminary experiments were conducted with 

DM-Nitrophen (Ellis-Davies et al, 1996), a photolabile calcium buffer, in order to 

configure our equipment for uncaging and have positive controls for the efficiency of the 

system.  
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Chapter 7. Results 

7.1 Optimization of sIAHP current recording conditions in acute 

hippocampal slices 

The first set of experiments aimed to determine a set of optimal recording conditions for 

the slow afterhyperpolarising Ca2+-dependent K+ current (sIAHP). As subsequent 

experiments were to investigate the sIAHP as a target for spatially localised 

monoaminergic signalling, it was necessary to find experimental conditions in which the 

current amplitude was stable over a period of between 30 minutes and 1 hour, and also 

as large as possible, in order to maximise our chances to detect even small changes in 

response to the activation of the cAMP-dependent signalling pathway. 

Whole-cell voltage clamp experiments were performed on CA1 pyramidal cells from 

acute slice preparations of rat hippocampus, in which the sIAHP was elicited by the 

protocol described in the methods (2.2.8.1). In brief, a 100 ms-long  depolarising step to 

+10 mV from a holding potential of -50 mV was used to activate voltage dependent Ca2+ 

channels, leading to a rise in intracellular Ca2+ concentration, which in turn activated 

sIAHP. Immediately following the acquisition of whole-cell configuration, 0.5 µM TTX, 1 

mM TEA, and 50 µM dTC were applied extracellularly in order to block voltage-gated 

Na+ channels, some voltage and Ca2+ dependent K+ channels, and the small 

conductance Ca2+ activated K+ (SK) channels that underlie IAHP. Under these conditions 

a large, partially unclamped inward Ca2+ current, the calcium action current (Figure 7.1a) 

was observed during the stimulus pulse, followed by an outward current (sIAHP) upon 

returning to the holding potential of -50 mV (Figure 7.1b). Upon repetition of the 

depolarising pulse every 30 s, a progressive increase or run-up of the sIAHP amplitude 

was observed, reaching a stable level with 5-10 minutes (Figure 7.1c). There was a 

concomitant run-down of  IAHP over the same time period, due to the effect of dTC. 

Cells recorded in this manner displayed a mean resting membrane potential of -59.5 ± 

0.5 mV and a membrane resistance of 173.7 ± 8.6 MΩ (n = 56), as determined at the 

beginning of each whole-cell recording.  

Time courses of sIAHP peak amplitude and decay time constant from a representative 

recording can be seen in Figure 7.1c and d). Current amplitude and decay kinetics were 

stable for over 30 minutes. The intracellular solution used in the recordings was either 

ICAPA-1 or IC-MOPS, the latter being a modified intracellular solution with increased 

buffering capacity in the pH 7.0 to 7.2 range (see Methods 2.2.13), which, based on 
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existing literature, we hypothesised might increase the size and stability of the sIAHP 

(Tombaugh 1998). We observed no significant difference between recordings performed 

with the two intracellular solutions in resting membrane potential  (Vm), input resistance 

(Rinput), or peak amplitude and decay time constant of the sIAHP, so results for the two 

solutions were combined. The mean sIAHP amplitude for all cells recorded (n=56) was 

39.5 ± 3.0 pA, and the mean decay time constant was 2.8 ± 0.2 s. These values were 

recorded once the current had increased to a stable state in the presence of TTX, TEA 

and dTC. 

 

Figure 7.1. sIAHP properties under typical recording conditions 

(a)  Detail of the current response to a 100 ms voltage step to +10 mV from a holding potential 

of -50 mV from a representative cell, showing the calcium action current. Dashed line 

denotes baseline current response for cell held at -50 mV. 

(b)  Example trace from the same recording, showing the outward sIAHP current following the 

voltage step. Dashed line denotes the baseline current at -50 mV. 

(c)  Time course of the sIAHP peak amplitude for the same representative cell. Traces are 

aqcuired at 30s intervals. Note the “run up” phase of the current. 

(d)  Time course of the sIAHP decay time constant for the same representative cell. 

7.1.1 Optimal parameters of the stimulus pulse  

The sIAHP is a voltage-independent current, which is elicited experimentally using a 

voltage step to activate voltage-gated Ca2+ channels, which in turn leads to an increase 
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in cytosolic Ca2+ that activates the sIAHP. In order to determine the optimal parameters 

for the voltage step, the duration was initially set to 100 ms, while the amplitude was 

stepped from the holding potential of -50 mV to voltages between -20 and 20 mV in 2 

mV steps. Traces from a representative cell are shown in Figure 7.2a. For all cells tested 

(n=5), sIAHP increased in amplitude from zero to saturation as the voltage was varied 

between -10 and +10 mV. In a given cell the current amplitude initially increased 

gradually with stimulus voltage, and then showed a sharp transition to a near-maximal 

value. Data from all cells are summarised in Figure 7.2e. In each cell the current 

amplitude sharply increased from less than 25% of its maximal value to a near-maximal 

one within a narrow range of voltage steps, suggesting the existence of a threshold 

voltage at which the Ca2+ channels driving sIAHP are activated. In support of this 

hypothesis, in each case the unclamped Ca2+ action current first appeared on the same 

trace as the sIAHP sharply increased in size (Figure 7.2b). The apparent threshold voltage 

at which the sIAHP amplitude showed a sharp increase varied between cells within the 

range of +2 and +4 mV, hence the large error bars at these voltage values.  

To determine optimal stimulus duration, a voltage step from -50 mV to +10 mV was 

delivered for durations between 50 and 100 ms in 5 ms increments. Example traces from 

a representative cell are shown in Figure 7.2c, and data from all cells are summarised in 

Figure 7.2f. sIAHP amplitude increased with stimulus duration, reaching saturation 

between 85 and 100 ms. In contrast to the voltage changes, the current amplitude 

increased gradually in response to increasing stimulus duration, and did not show any 

discontinuity. The unclamped Ca2+ action current also increased gradually with stimulus 

duration (Figure 7.2d). 

From these experiments, optimal parameters for the stimulus pulse in CA1 pyramidal 

neurons were determined to be a 100 ms-long voltage steps to + 10 mV, as these values 

were sufficient to saturate the current response to both voltage and duration parameters. 
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Figure 7.2. Effect of stimulus properties on sIAHP 

(a)  sIAHP response to different sized voltage steps in an example cell. Numbers above each 

trace represent voltage (mV) to which the cell was stepped, from a resting potential of -50 

mV. 

(b)  Detail of the stimulus pulses from the traces in (a), showing the development of the 

calcium action current. 

(c)  Traces showing sIAHP response to voltage steps of varying duration. Numbers above each 

trace represent stimulus duration in ms. In each case the cell was stepped from a resting 

potential of -50 mV to +10 mV. 

(d)   Detail of the stimulus pulses from the traces in (c), showing the development of the Ca2+ 

action current. 

(e)  Graph summarising response of all cells (n=5) to stimulus pulses of varying target voltage. 

Y axis shows relative activation (I/IMax), filled circles represent the mean, and vertical bars 

the SEM. 

(f)  Graph summarising response of all cells (n=5) to stimulus pulses of varying duration. 

Y axis shows relative activation (I/IMax), filled circles represent the mean, and vertical bars the SEM. 
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7.1.2 Effect of the K+ channel blocker TEA on sIAHP amplitude  

Tetraethylammonium (TEA), a potassium channel blocker, has been shown to increase 

the Ca2+ current observed during membrane depolarisation, probably due to its ability to 

block voltage-gated K+ channels, which would otherwise contribute to a rapid membrane 

repolarisation and prevent the generation of regenerative dendritic Ca2+ spikes (Golding 

et al. 1999). Application of TEA might therefore be permissive for the Ca2+ entry 

necessary for the activation of sIAHP and expected to increase sIAHP amplitude. However, 

a reduction in sIAHP amplitude following application of TEA at concentrations between 5 

and 10 mM has also been reported (Lancaster & Adams, 1986). I therefore tested the 

sensitivity of sIAHP to TEA under our experimental conditions, primarily to find the optimal 

concentration of TEA to maximise and stabilise sIAHP amplitude. 

As a secondary objective, recent attempts at identifying the molecular correlate of sIAHP 

have put forward KCNQ channels as potential candidates (Tzingounis et al. 2008, 2010).  

Depending on their subunit composition, KCNQ channels display sensitivity to TEA in 

the range of 0.3 to over 50 mM (Hadley et al. 2000; Schroeder et al. 2000). It was 

therefore additionally useful to compare the degree of potentiation or inhibition of sIAHP 

at different concentrations of TEA to the IC50 of various KCNQ subunits, in an attempt to 

assess the validity of the hypothesis that they contribute to the sIAHP in CA1 pyramidal 

neurons. 

ACSF containing TEA at four concentrations (1 mM, 5 mM, 10 mM and 20 mM) was 

applied extracellularly via the perfusion system. In the case of 10 mM and 20 mM, 

osmolarity was controlled by omission of the equivalent amount of NaCl from the ACSF 

solution.  

The time course of a representative experiment is shown in Figure 7.3a, along with traces 

from each TEA concentration used in that experiment showing the sIAHP (Figure 7.3b) 

and the partially clamped Ca2+ transient during the voltage step (Figure 7.3c). 

Summarised results from all experiments are displayed in Figure 7.3d. Recordings were 

made from 10 cells but not all concentrations were tested on every cell. The number of 

trials in which each concentration was tested is indicated above the corresponding bar 

in the chart. The largest increase in sIAHP amplitude occurred in the presence of 1 mM 

TEA (mean = 167 ± 23% of baseline). At 5 mM TEA also increased the sIAHP amplitude, 

but to a lesser extent, while at 10 mM and 20 mM TEA inhibited the sIAHP. In most cases 

(5/6 cells), at 20 mM TEA abolished the sIAHP entirely. As can be seen in Figure 7.3c, the 

size of the unclamped Ca2+ current is larger at all TEA concentrations applied than in the 
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baseline condition, but does not noticeably alter in size between 1 mM TEA and the 

higher concentrations tested. It therefore appears that TEA facilitates the sIAHP in the 

concentration range below 5 mM, by increasing the size of the inward Ca2+ current during 

the stimulus pulse, but has an inhibitory effect in the 10 - 20 mM range by a mechanism 

that is independent of the voltage-dependent Ca2+ current and is most likely a block of 

the channels underlying sIAHP.  

 

Figure 7.3. Effect of varying TEA concentration on sIAHP amplitude 

(a) Timecourse of an example cell, in which three concentrations of TEA (1 mM, 10 mM and 

20 mM) were applied sequentially. Horizontal lines indicate period during which each 

concentration was applied.  

(b) Representative traces taken from the same cell as the timecourse in (a). 

(c) Detail of the stimulus pulses from the traces in (b), showing the Ca2+ action current. 

(d) Summarised data for all cells. Y axis shows percentage change in sIAHP amplitude relative 

to baseline. Bar height shows mean change for each concentration, Error bars show SEM. 

The total number of cells in which each concentration was tested is indicated above each 

column. 

7.1.3 Pharmacological modulation of sIAHP amplitude  

A number of compounds have been reported to increase sIAHP amplitude, including EBIO 

(Pedarzani et al 2001), EtOH (Reynolds et al 1990) and Bay-K 8644 (Tombaugh et al 
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2005). The possibility of using these compounds to increase the amplitude of sIAHP in the 

recordings was therefore explored. 

Pedarzani et al (2001) report an increase in sIAHP amplitude in CA1 pyramidal neurons 

in response to 1 mM EBIO, applied extracellularly. I therefore tested the effect of 1 mM 

EBIO by performing voltage clamp recordings in which 1 mM EBIO was added to the 

bath perfusion for a period of at least 10 minutes, following the establishment of a stable 

sIAHP baseline level. The results are summarised in Figure 7.4. In all cells tested (n=4), 

EBIO initially led to an increase in peak sIAHP amplitude with respect to baseline (124% 

± 8.8% of baseline, Figure 7.4a-d). This increase was significant ( Figure 7.4d, one-

sample t-test p<0.047, n=4) at 2 minutes following application. However, the effect of 1 

mM EBIO on sIAHP appeared to be of limited duration, such that at 10 minutes following 

application the mean current was 89% ±6.7% of baseline, not significantly different from 

baseline level (one-sample t-test p<0.18, n=4). While our recordings did not directly 

measure the extent of Ca2+ entry during the stimulus pulse, a qualitative impression can 

be formed by reference to the partially clamped Ca2+ current (Figure 7.4c). EBIO did not 

appear to substantially alter this current. Also the decay time constant of sIAHP was not 

significantly different from baseline at either +2 minutes or +10 minutes following 

application of EBIO, (Figure 7.4e, one sample t-test p=0.37 (+2 mins) one sample t-test 

p=0.51 (+10 mins), n=4 ), suggesting that EBIO did not affect current kinetics. It therefore 

appears that, although EBIO does increase sIAHP amplitude, the effect is either brief in 

duration, or else subsequently reversed by an equivalent inhibitory effect. EBIO is 

therefore not a good candidate for increasing sIAHP amplitude for the purpose of my 

experiments. 
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Figure 7.4. Effect of EBIO on sIAHP amplitude 

(a) Example timecourse of sIAHP peak amplitude during application of 1 mM EBIO. Time course 

of drug application is denoted by the horizontal line. 

(b) Individual traces taken from points marked with coloured arrows in (a). Red trace is the 

baseline amplitude, blue trace is taken from a point 2 minutes after application of 1 mM 

EBIO, yellow trace is at a point 10 minutes after application of 1 mM EBIO. 

(c) Temporal magnification of the stimulus region of the same traces, showing the calcium 

action current 

(d) Percentage change of sIAHP amplitude relative to baseline, at 2 minutes and 10 minutes 

following drug application (n=4). Horizontal line indicates mean, vertical bars represent 

SEM. 

(e) Percentage change of sIAHP decay time constant, relative to baseline, at 2 minutes and 10 

minutes following drug application (n=4). 

Several studies investigated the effects of ethanol (EtOH) on the afterhyperpolarisation 

potential in rat CA1 pyramidal cells. Carlen et al (1982) and Reynolds et al (1990) report 
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an increase in the amplitude and duration of the post-spike afterhyperpolarisation, 

whereas Siggins et al (1987) observed no increase in either amplitude or duration 

following EtOH application.  

In order to test whether EtOH had any effect on the amplitude of sIAHP under our experi- 

mental conditions, ACSF containing either 10 mM (n=7) or 20 mM (n=5) EtOH was 

applied to cells and the changes in sIAHP amplitude and kinetics measured once the 

current had reached a stable state (Figure 7.5). Neither concentration produced a 

significant change in the peak amplitude of the current (2-tailed one sample t-test p = 

0.34 and p = 0.46 respectively, Figure 7.5 d,e).  

Some cells (5 out of 7 at 10 mM and 3 out of 5 at 20 mM) displayed a stable increase in 

cur- rent of up to 42% , however in the others the current decreased by up to 15% 

(Figure7. 5 d). Exclusion of the non-responding cells from the analysis yields a mean 

change in sIAHP amplitude to 122.7 ± 8.2% of baseline for 10 mM and 118.3 ± 7.6% of 

baseline for 20 mM ethanol. Ethanol produced a more consistent effect on the kinetics 

of sIAHP. Both concentrations caused an increase in the decay time constant of the 

current in every cell, with a mean change to 116.9 ± 5.1%  (10 mM) and 108.7 ± 3.5% 

(20 mM) of baseline time constant, though the change was only significant at 10 mM 

(one-sample t-test p = 0.02, Figure 7.5 d,e). Neither concentration appeared to alter 

substantially the size or shape of the partially unclamped Ca2+ current. We therefore 

conclude that ethanol produced a small, but sizeable and stable increase in current in 

the majority of cells, however in other cells it appeared to have no effect, or caused a 

decrease in current amplitude. As a result, there was no significant increase in sIAHP 

amplitude for the group as a whole. In the context of the current project, the magnitude 

of any observed increased in sIAHP amplitude was outweighed by the inconsistency of 

the effect. Ethanol was therefore not used as part of the recording conditions for 

subsequent experiments. 
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Figure 7.5. Effect of EtOH on sIAHP properties 

(a) Timecourse of sIAHP amplitude for a representative cell. Horizontal line indicates duration 

of EtOH application. 

(b) Representative traces from the timecourse in (a). The position of each trace in the 

timecourse is indicated by a coloured symbol and arrow. 

(c) Detail of the current trace in (b) showing the voltage step and calcium action current. 

(d) Summarised data for 10 mM EtOH (n=7) and (e) 20 mM EtOH. Horizontal lines indicate 

means, error bars represent SEM. Y axis in each case is percentage of baseline response. 

The dihydropyridine Bay-K8644 is an agonist of L-type Ca2+ channels that has been 

shown to increase the afterhyperpolarisation and Ca2+ spike amplitude in current clamp 

recordings (Tombaugh et al. 2005). We applied 1 µM Bay-K8644 and measured the 

change in the amplitude and decay time of sIAHP once the current had reached a stable 

state (Figure 7.6a). This usually took between 10 and 20 minutes. The effect of Bay-

K8644 on the sIAHP of a representative cell is shown in Figure 7.6 (a, b, c).  Bay-K8644 

increased the peak current amplitude in 5 out of 6 cells (mean amplitude 115.6 ± 6.9% 
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of baseline, n = 6, Figure 7.6d), but this increase was not statistically significant (1-

sample t-test p > 0.05). The sIAHP decay time constant was significantly increased (128.7 

± 3.5%, 1-sample t-test p<0.02). Bay-K8644 did not appear to affect the partially 

unclamped Ca2+ current (Figure 7.6c). We could therefore only partly replicate the effect 

of Bay-K8644 on the afterhyperpolarisation seen by Tombaugh in current clamp 

recordings, but we did not see any apparent change in the size of the un- clamped Ca2+ 

current.  

 

Figure 7.6. Effect of Bay-K 8644 on sIAHP amplitude 

(a) Timecourse of the sIAHP peak amplitude for a representative cell.  

Horizontal line indicates duration of Bay-K 8644 applicaiton. 

(b) Representative traces from the timecourse in (a). The position of each trace in the 

timecourse is indicated by a coloured circle and arrow. 

(d) Summarised data for 1 µM Bay-K 8644 (n=7). Horizontal line indicates the mean, error bars 

denote SEM. The Y axis represents percentage of the baseline response.  
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Of the three compounds tested, none produced an effect of sufficient magnitude and 

stability to warrant the compound’s inclusion in our experiments. The effect of EBIO on 

sIAHP amplitude was initially relatively large, but the enhancement was not persistent. The 

effects of ethanol varied from cell to cell, and the effect of Bay-K8644 on current 

amplitude was so small as to be statistically insignificant for our sample size. All three 

compounds were therefore omitted from the ACSF for subsequent experiments. 

7.2 Focal application of the β-adrenergic agonist isoproterenol in 

hippocampal CA1 pyramidal cells 

Bath application of the β-adrenergic receptor agonist isoproterenol inhibits sIAHP in CA1 

pyramidal cells via the adenylyl cyclase / PKA pathway (Pedarzani & Storm 1993). At 

present little is known about the spatial distribution of the receptors responsible for the 

inhibition of sIAHP. Considering that cyclic AMP/ PKA signalling is subject to tight spatial 

control in many cell types (eg .Zaccolo et al 2011), and based on preliminary results of 

our laboratory on the effect of PKA anchoring proteins on the basal modulation of the 

sIAHP amplitude (Pedarzani, unpublished data) and on the involvement of specific 

subtypes of adenylyl cyclases in the modulation of sIAHP by different monoamine 

neurotransmitters (Taylor et al., unpublished data), our working hypothesis is that sAHP 

channels might be part of signalling domains organised in the close proximity of specific 

receptors (i.e. the β-adrenergic receptor) located in distinct subcellular compartments 

(e.g. soma, axonal initial segment, axon, proximal dendrites, distal dendrites) in CA1 

pyramidal neurons. The location of these signalling domains would have important 

functional consequences for the neuron in terms of signal integration or encoding.  

To test the hypothesis that β-adrenergic inhibition of sIAHP is spatially localised, we used 

a microinjector to permit focal application of the β-adrenergic agonist isoproterenol onto 

different subcellular locations in CA1 hippocampal pyramidal neurons. Cells were 

recorded in whole-cell voltage clamp, using an intracellular solution containing a 

fluorescent dye (Lucifer yellow) in order to visualise their processes. Following 

acquisition of the whole-cell configuration, the cell was left for a period of 20 minutes to 

permit diffusion of the Lucifer yellow of the intracellular solution into the dendritic arbor; 

ACSF containing 50 µM isoproterenol and 1 mM Lucifer yellow was then applied to the 

dendrites via the microinjector using a 10 ms-long puff at a pressure of 5 psi. To limit the 

drug application as much as possible to discrete subcellular compartments, the 

parameters of the microinjector were chosen to produce a puff with an approximate 

diameter of 2 soma diameters (~40 µm). Because the dendritic arbor of the cell is 

typically hundreds of microns in length, this was considered sufficient to distinguish 
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between two major, distinct locations: a region containing the soma and proximal apical 

dendrite, and another consisting of the distal apical dendrites, distal to the first main 

branching point of the apical dendritic tree. 

In order to demonstrate that the microinjector puff did not directly affect the sIAHP or the 

passive membrane properties of the cell, the microinjector tip was positioned adjacent 

to the soma, and a puff of ACSF containing 1 mM Lucifer yellow, but no isoproterenol, 

was delivered (n = 5). A representative cell from this group is shown in Figure 7.7. The 

sIAHP was recorded for a period of 15 minutes in the presence of TTX, TEA and dTC in 

order to establish a stable baseline for the current amplitude. The puff was then delivered 

via the pressure system and the recording continued. Figure 7.7a shows the overlay of 

a traces acquired immediately before (red) and 1 minute after (blue) the puff, and a detail 

of the same traces showing the partially clamped Ca2+ current can be seen in Figure 

7.7b. In both cases, the overlap is almost complete, suggesting that the puff did not either 

destabilise the whole-cell configuration or have any direct effect on the sIAHP or the 

calcium transient. There was likewise no observable change in the time course of either 

the peak sIAHP amplitude (Figure 7.7c, e) or input resistance (Figure 7.7d, f). Mean sIAHP 

amplitude at 1 minute after the puff was 99.4% ± 2.5% of baseline (n = 5), and the change 

was not significant (Wilcoxon signed rank test p = 0.99). Mean input resistance before 

the puff was 252 MΩ ± 17 MΩ. Following the puff, the input resistance was 259 MΩ ± 21 

MΩ. This change was not statistically significant (Wilcoxon signed rank test p = 0.99, n=5). 
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Figure 7.7. Representative example cell for control puff experiment 

 (a) Representative traces showing sIAHP amplitude before (red) and after (blue) application of 

a 5ms, 5psi puff of ACSF containing 200 µM Lucifer yellow only, delivered to the soma of 

the cell. 

(b) Detail of the voltage stimulus from the traces in (a), showing the calcium action current. 

(c) Timecourse of the sIAHP peak amplitude of the same cell. The position of the puff is 

indicated by the vertical arrow. Traces acquired every 30 s. 

(d) Timecourse of the input resistance of the same cell. The position of the puff is indicated 

by the vertical arrow. Traces acquired every 30 s. 
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(e) Summary of changes to sIAHP peak amplitude following the puff protocol. Error bar denotes 

mean and SEM. Black circles represent responses of individual cells. Y axis denotes 

percent of baseline current. 

(f) Summary of Rinput before and after the puff. Individual cell responses are repsresented by 

black circles linked by dashed lines. Bar height denotes mean, error bars represent SEM. 

Y axis shows Rinput in MΩ. 

Next, puffs of the same size and intensity, but additionally containing 50 µM 

isoproterenol, were delivered to the same somatic location as the control puff. The results 

of a single representative experiment are shown in Figure 7.8. Puff application of 

isoproterenol caused a reduction in sIAHP amplitude in 7/7 cells (Figure 7.8a, c), although 

a pronounced calcium spike was still visible during the stimulus pulse (Figure 7.8b). The 

time course of the reduction was rapid, with almost all the reduction occurring within one 

trace following the puff (Figure 7.8 c).  

Application of the puff completely abolished the current in 3/7 cells tested, and in the 

remaining four the current was reduced to less than 25% of baseline level. Mean residual 

current was 6.7% ± 2.1% of baseline, and was significantly lower than the baseline 

current (Wilcoxon signed rank test p<0.03, Figure 7.8e). The puff also significantly 

reduced the input resistance from 244 ± 20 MΩ to 218 ± 27 MΩ (Wilcoxon Signed Rank 

Test P = 0.03, Figure 7.8f). Although the inhibition observed in the sIAHP would be expected 

to lead to an increase in input resistance due to the closure of the underlying K+ channels, 

the cAMP/PKA pathway activated by isoproterenol is also an important regulator of other 

neuronal channels (see Discussion). 
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Figure 7.8. Representative example cell for focal application at soma 

(a) Representative traces showing  sIAHP current response immediately before (red) and 

immediately after (blue) application of a puff containing 200 µM Lucifer yellow and 20 µM 

isoproterenol, delivered to the soma of the cell. 

(b) Detail of the voltage step from the traces in (a) and the Ca2+ current. 

(c) Timecourse of the peak sIAHP amplitude of the same cell. The position of the puff is 

indicated by the vertical arrow. Traces acquired every 30 s. 
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(d) Timecourse of the input resistance for the same cell. The position of the puff is indicated 

by the vertical arrow. Traces acquired every 30 s. 

(e) Summary of change in peak amplitude of sIAHP following the puff. Error bar denotes mean 

and SEM. Black circles represent responses of individual cells. Y axis denotes percentage 

of baseline current. 

(f) Summary of Rinput before and after the puff protocol. Individual cell responses are 

repsresented by black circles linked by dashed lines. Bar height denotes mean, error bars 

represent SEM. Y axis shows Rinput in MΩ. 

The same experimental strategy was used to investigate the impact of beta-adrenergic 

receptor stimulation in the distal dendrites on sIAHP. To this purpose, the puff pipette was 

positioned over the distal dendrites, at a location immediately distal to the first observable 

branch point in the Lucifer yellow filled neuron. 

The results of a representative experiment are shown in Figure 7.9. Following the puff, 

there was a reduction in sIAHP amplitude in 6/6 cells tested (Figure 7.9 a,e), and again 

the calcium spike during the stimulus pulse remained pronounced (Figure 7.9b). As with 

the somatic pulse, the time course of the reduction was rapid, occurring on the trace 

subsequent to the puff (Figure 7.9c). Mean residual current was 47.6% ± 8.8% of 

baseline, and the amplitudes after the puff were significantly lower than those before 

(Wilcoxon signed rank test p<0.03, Figure 7.9e). The input resistance also decreased 

slightly in 6/6 cells following application of the puff, from 233 ± 11 MΩ to 207 ± 10 MΩ, 

and this reduction was statistically significant (Wilcoxon Signed Rank Test p<0.03, 

Figure 7.9f). 
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Figure 7.9. Representative example cell for focal application at distal dendrites 

(a) Current traces from a representative cell, showing sIAHP current immediately before (red) 

and immediately after (blue) application of a puff containing 200 µM Lucifer yellow and 20 

µM isoproterenol, delivered to the distal portion of the apical dendrite. 

(b) Detail of the voltage step from the traces in (a), including the Ca2+ action current. 

(c) Timecourse showing the peak amplitude of  sIAHP , taken from the same cell as (a). The 

position of the puff is indicated by the vertical arrow. Traces acquired every 30 s. 
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(d) Timecourse of the input resistance for the same cell. The position of the puff is indicated 

by the vertical arrow. Traces acquired every 30 s. 

(e) Summary of change in peak amplitude of sIAHP following the puff. Error bar denotes mean 

and SEM. Black circles represent responses of individual cells. Y axis denotes percentage 

of baseline current. 

(f) Summary of Rinput before and after the puff protocol. Individual cell responses are 

repsresented by black circles linked by dashed lines. Bar height denotes mean, error bars 

represent SEM. Y axis shows Rinput in MΩ. 

A comparison of the relative reduction in current amplitude for each experimental group 

is shown in Figure 7.10a. A 50 µM isoproterenol puff delivered to the soma and proximal 

dendrite region was approximately three times as effective at inhibiting the sIAHP current 

as the same puff delivered to the distal dendrite region. The somatic and distal dendrite 

focal isoproterenol applications both produced reductions that were significantly greater 

than that of control experiments, performed without isoproterenol, and additionally the 

reduction due to the somatic puffs was significantly greater than that due to the distal 

puffs ( ANOVA  F(2,15) = 78.2, p<0.0001, Sidak’s multiple comparisons test: p<0.0001 

(soma vs. control) p<0.0001 (distal vs. control), p<0.0001 (distal vs. soma). 

The above data provide clear and first evidence that the effect of locally applied 

isoproterenol on sIAHP  is greater in the soma and proximal dendrite region of the neuron 

than in the distal dendrite region. It is noted that while the residual current responses to 

the somatic puff are tightly clustered around the mean, there is a much greater spread 

of results in response to the puffs delivered to the distal dendrite region. This difference 

in variability may be due to variability in the spatial spread of the puff, or to the structure 

of the finer dendritic branches covered by it, compared to the relatively uniform shapes 

of the soma and the initial segment of the apical dendrite. Another possibility is that in 

some cells the dendritic tree was not as superficially placed within the slice as the soma. 

See the Discussion section for a fuller examination of these issues. 

Although the absolute reduction in series resistance in response to focal application of 

isoproterenol was statistically significant in both regions tested, suggestive of a channel 

opening effect, the magnitude of the change was relatively small. The percentage 

changes in input resistance for each condition are shown in Figure 7.10 (b). Comparison 

of the effect sizes for the three experimental conditions yields the result that there is a 

significant difference between the control condition and each of the conditions where 

isoproterenol was applied, but no significant difference between the effects of the 

isoproterenol puff on input resistance at the two locations  (Kruskali-Wallace  test (3,18) 

p=0.01. Dunn’s multiple comparisons test p=0.049 (soma vs. control), p=0.028 (distal 
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dendtrite vs. control, p=0.99 (soma vs. dendrite). It therefore appears that isoproterenol 

acts to open some channels in the neuron, though there is no difference in the magnitude 

of the input resistance between the two locations. It is possible that this is because the 

contribution to the change in input resistance made by the channels underlying sIAHP is 

outweighed by the opening of unrelated channels by isoproterenol. See the discussion 

section for possible candidates for the identity of these channels. 
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Figure 7.10. Effect of focal application of 20 µM isoproterenol at different cellular locations 
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(a) Graph showing the change in sIAHP amplitude, expressed as percentage of baseline 

amplitude, in response to 5ms, 5 psi puff of ACSF containing 200 µM Lucifer yellow and 

20 µM isoproterenol, delivered to the soma or distal dendrite regions of each cell.  Also 

shown is change in sIAHP amplitude in response to a puff of ACSF containing only 200 µM 

Lucifer yellow, delivered to the soma of the cell. Individual cell responses are denoted by 

black circles. Error bars show mean and SEM. Y axis represents percentage of baseline 

peak sIAHP amplitude. 

(b) Graph summarising the effect of the puff protocol on the input resistance for the control 

puff experiment and the 20 µM isoproterenol puff at the two subcellular locations. Y axis 

shows percentage of baseline input resistance. Black circles represent individual cell 

responses. Error bars denote mean and SEM. 

(c) Summary of changes in the holding current at -50 mV before and after the puff protocol, 

for all three experimental groups. Black circles represent responses of individual cells. 

Error bars show mean and SEM, Y axis shows change in holding current amplitude in pA. 

7.3 Is there subcellular compartmentalisation of the cAMP signal? 

Evidence from photo-uncaging experiments 

The spatial variation in the extent of β-adrenergic receptor mediated inhibition of sIAHP 

observed in the focal application experiments could be due to the number and density of 

receptors in different subcellular compartments. Alternatively it could be evidence for the 

existence of distinct localised cAMP signalling domains, such that the cAMP signal 

produced by pool of adenylyl cyclases activated by the receptors in the distal dendrite is 

less tightly coupled to the sIAHP channels than that produced by the receptors and 

cyclases near the soma. Such domains are limited partly by diffusion, such that the 

cyptoplasmic volume where the cAMP concentration is high enough is within a few 

micrometres of the cyclases, and partly by the presence of phosphodiesterases which 

limit the spread of the cAMP signal by hydrolysis (Introduction 6.5).  

In order to test whether the coupling of the cAMP signal to the sIAHP channels is spatially 

localised, it was decided to use flash photolysis of a caged cyclic AMP analogue, BCMCM-

8Br-cAMP, using a flash from a UV lamp focused down the light path of the microscope. By 

using a lens to vary the area covered by the UV flash, and by patching the somata of cells 

such that they are offset from the centre of the field of view, it was possible to cause this 

flash to be focused on two separate subcellular locations: the soma, and the proximal portion 

of the apical dendrite. 
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7.3.1 Uncaging of DM-Nitrophen in HEK293 cells stably expressing rBKα 

channels 

The technique of using flash photolysis via a mercury lamp was new to our lab, and so initially 

it was decided to set up and test the uncaging apparatus using a simple system and a well 

characterised caged compound. It wasdecided to use the calcium cage DM-nitrophen, which 

is based on the calcium buffer EDTA. Before photolysis, it binds calcium with a Kd of 5 nM, 

but following photolysis this increases to 3 mM, allowing the production of a rapid increase 

in intracellular free Ca2+ in response to a light flash (Kaplan and Ellis-Davies 1988).  In order 

to detect this change in free Ca2+, recordings were made from HEK293 cells stably 

expressing the zero-splice alpha subunit of the rat BK channel (rBKαØ). BK channel activity 

is modulated by both voltage and Ca2+, and the half-maximal voltage (V1/2) of activation of 

BK-mediated currents is shifted leftward by increasing intracellular free [Ca2+]. When 

expressed in HEK293 cells, channels formed from rBKαØ produce a large whole-cell current, 

which can act as a sensitive detector of any changes in intracellular free [Ca2+].  

Figure 7.11a shows a current trace from a representative HEK293-BK cell in response 

to a 50 ms-long voltage step to +30 mV from a holding potential of -90 mV (red), and in 

response to the same voltage step in the presence of 10 µM paxilline, a specific blocker 

of BK channels. The mean current recorded in response to the voltage step, before and 

after the application of paxilline is shown in Figure 7.11b. Application of 10 µM paxilline 

reduced mean current amplitude from 3.2 ± 0.6 nA to 0.2 ± 0.04 nA, mean residual 

current was 4.7% ± 0.8% of baseline (n=7). It is therefore apparent that the current in 

response to the +30 mV step was predominantly a BK current. 

Cells were patched in the whole-cell configuration and left for 10 minutes in order to 

permit the intracellular solution, including 3 mM DM-Nitrophen , to perfuse the cell. The 

cell was then held at +30 mV while a 10 ms-long flash was delivered by the mercury 

lamp. An example trace in response to the flash is shown in Figure 7.11c. The timing of 

the flash is shown by the arrow. In response to the flash, there was a rapid increase in 

current amplitude with an onset time of <10 ms, which decayed slowly over the course 

of several hundred milliseconds. Mean current amplitude in response to a single flash at 

+30 mV was 301 ± 65 pA (Figure 7.11d, n=9). The size of the current response increased 

with the duration of the flash delivered (Figure 7.11e, n = 9). In the lower end of the 

duration range the increase in current amplitude was supralinear with respect to the 

increase in flash duration, and this became closer to linear as higher durations were 

reached. The shape of this relationship suggests that a relatively small proportion of the 

DM-Nitrophen was uncaged with each flash, as even at maximum duration, there is no 

sign of a saturation of the response, as would be expected if a flash of shorter duration 
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was significantly depleting the pool of unphotolysed DM-Nitrophen. Further evidence for 

this assumption comes from a second experiment, in which a flash at maximum duration 

was delivered at 10 s intervals while the cell was held at +30 mV. A representative time-

course is shown in Figure 7.11f. There is a noticeable run-down of the current response 

with each additional flash, eventually reaching a stable level. The mean number of 

flashes required to reduce the current response by half was 15.8 ± 1.7 (n=6). 

These results demonstrate that the photolysis system is capable of delivering sufficient 

energy to photoactivate a subset of the DM-nitrophen in the region covered by the flash, 

and provided confirmation that our uncaging system was functioning correctly.  
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Figure 7.11. HEK293 whole cell recordings illustrating BK-alpha channel properties and 

response to uncaging of DM-Nitrophen 

(a) Example current response to a 50 ms voltage step to +30 mV from a holding potential of -

90 mV, under voltage clamp. Red trace shows the current response under baseline 

conditions, blue trace shows the current response in the presence of 10 µM paxilline.  
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(b) Effect of 10 µM paxilline on the BK current amplitude (n=7). Error bars denote SEM, bar 

heights represent mean current response to a voltage step to +30 mV from a holding 

potential of -90 mV. Y axis denotes current in nA. 

(c) Response of a cell to a single flash of 10 ms duration, while held at +30 mV. The position 

of the flash in the trace is denoted by the vertical arrow. Dashed red line represents the 

baseline current at +30 mV. 

(d) Summary of the response to the flash protocol in (c) across all cells tested (n=9). Bar 

height denotes the mean current response to the flash when the cells were held at +30 mV. 

Error bars denote SEM. Y axis shows current amplitude in pA. 

(e) Summary of responses from all cells to varying the flash duration. Y axis shows I/Imax. 

Error bars show SEM. n=9. 

(f) Example timecourse showing the current response to sequential flashes of 10 ms 

duration, delivered at 10 s intervals, while the cell was held at +30 mV. Each filled circle 

represents a trace in which one flash was delivered. Y axis shows current amplitude in pA. 

7.3.2 Uncaging DM-Nitrophen in hippocampal cultured neurones activates a 

dTC-sensitive conductance 

Uncaging Ca2+ in a cell line overexpressing BK channels leads to the generation of a 

whole-cell current that is likely to be larger than can be seen in most physiologically 

relevant situations. This might be further enhanced by the lower endogenous calcium 

buffering capacity of HEK293 cells compared with neurons. We therefore attempted a 

similar experiment in cultured hippocampal neurons in an attempt to determine the effect 

of Ca2+ uncaging under our experimental conditions in a neuronal context. 

Rat hippocampal cultured neurons of DIV 7 to 14 were patched in the whole-cell 

configuration, with an intracellular solution containing 3 mM DM-Nitrophen. Following 

acquisition of whole-cell state, the cell was left to rest for a period of 10-15 minutes to 

permit the diffusion of the caged compound into the cell. Two protocols were then used: 

one, which used a voltage step to elicit an afterhyperpolarising current, as in previous 

experiments on the sIAHP, and another, which delivered 4 consecutive flashes 2 s apart, 

while holding the cell at -50 mV.  

The results of the experiment are summarised in Figure 7.12. Panel (a) shows current 

traces from a representative cell in response to 4 consecutive flashes. The leftmost trace 

shows the current under baseline conditions, at a time point ten minutes after whole-cell 

configuration was first achieved. Successive flashes appear to have an additive effect 

on the amplitude of the current elicited. Mean current amplitude in response to the fourth 

flash in the train was 51.3 pA ± 6.8 pA (Figure 7.12c, n= 8). Bath application of 100 µM 
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d-tubocurarine (dTC) abolished all but 10.4% ± 3.6% of the current response to flashing 

(Figure 7.12d). Mean amplitude after application of 100 µM dTC was 5.1 pA ±1.6 pA, 

and the effect was significant (paired t-test p< 0.001, n=8). The current produced in 

response to the flashes was not sensitive to 1 mM TEA. Mean residual current after 

application of 1 mM TEA was 94.9% ±11.3% of baseline (Figure 12e), and this difference 

was not significant (Wilcoxon matched pairs signed rank test p=0.62, n = 5). Based on 

its Ca2+ sensitivity and pharmacological profile (inhibition by dTC, but not by low TEA 

concentrations), the flash induced current is likely to be mediated by SK channels. 

The current mediated by SK channels, IAHP, was further measured in response to a 

voltage protocol consisting of a 200 ms-long depolarising step to +20 mV from a holding 

potential of -50 mV, interleaved with the flash protocols for each cell. Figure 7.12b shows 

the IAHP elicited in response to the voltage protocol delivered to the same cell as shown 

in Figure 7.12a. IAHP was largely inhibited by 100 µM d-tubocurarine, but was not affected 

by 1 mM TEA, suggesting that the majority of the afterhyperpolarising current in the cells 

recorded in this experiment, as well as the entirety of that elicited by the flash protocol, 

is mediated primarily by dTC-sensitive SK channels.  
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Figure 7.12. Uncaging of DM-Nitrophen in primary culture hippocampal neurons 

(a) Current response of a representative cell to a series of four flashes of 10 ms duration and 

separation of 800 ms: under baseline conditions, following application of 100 µM d-

tubocurarine, following washout of d-tubocurarine, and after subsequent application of 1 

mM TEA. The cell was held at -50 mV. Arrow indicates position of the final flash in the 

series, which provides the values for the graphs in (d) and (e). 

(b) Current response under the same cell to a 100 ms voltage step to +10 mV from a holding 

voltage of -50 mV, under the same conditions as in (a). 

(c) Summary of the amplitude of the currents elicited in response to the 4th flash in the train 

across all cells (n=8), under baseline conditions and following the application of 100 µM 

dTC. Bar height represents the mean, error bars denote SEM. The Y axis shows current 

amplitude in response to the 4th flash, in pA. 
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(d) Relative effect of 100 µM dTC on the amplitude of the current response to the 4th flash in 

the train. Paired responses from an individual cell are denoted by filled circles connected 

by a dashed line. Y axis denotes percent of baseline current response. Bar height gives 

the mean response across all cells, error bars denote SEM. Dashes red line indicates the 

baseline of 100%. 

(e) Relative effect of 1 mM TEA on the amplitude of the current response to the 4th flash in 

the train. Paired responses from an individual cell are denoted by filled circles connected 

by a dashed line. Y axis denotes percent of baseline current response. Bar height gives 

the mean response across all cells, error bars denote SEM. Dashed red line indicates the 

baseline of 100%. 

7.3.3 Localised uncaging of 8Br-cAMP in hippocampal neurons inhibits sIAHP 

Having established that photolysis of caged compounds in hippocampal cultured 

neurons was achievable using our apparatus and led to the activation of a Ca2+-

dependent current upon Ca2+ uncaging, we proceeded to use this approach to release a 

different second messenger and trigger the activation of a signalling pathway known to 

inhibit sIAHP. In particular, we used the localised uncaging of a caged cAMP analogue to 

attempt to determine the existence and location of signalling domains underlying the 

cAMP-dependent modulation of sIAHP and compare them to those engaged by 

monoamine transmitters, as we had investigated by focal activation of β-adrenergic 

receptors. Whole cell voltage clamp recordings were performed in DIV 14 to 28 

hippocampal pyramidal neurons, using a KMeSO4-based intracellular solution (IC-4 - see 

methods) containing 200 µM BCMCM-8Br-cAMP. The 8-bromo analogue of cAMP is 

membrane-permeable and resistant to degradation by phosphodiesterases, and so the 

signal persists until cleared from the uncaging site by diffusion. This has the advantage 

that the cAMP signal was likely to be long lasting enough to be detected using the 

infrequent (30 s interval) sampling frequency required for stable sIAHP recordings, 

although, balanced against this, is the capacity for the uncaged 8Br-cAMP to diffuse 

away from the site of uncaging to other subcellular compartments over time. 

As with the DM-Nitrophen experiment described previously, the flash was delivered by 

focusing the output of a UV flash lamp through the 60x water-immersion objective of the 

microscope. Using this apparatus, it was possible to vary the size of the area covered by 

the flash, and by positioning the patch electrode in different parts of the visual field, it 

was possible to patch the soma whilst flashing a dendritic region at a distance of around 

4 to 5 soma diameters away, such that the edge of the flashed area furthest from the 

soma was set at a point immediately proximal to the first branch point of the apical 

dendrite. In this way it was possible to create two experimental conditions: in the first 

one, the flash was centred on the soma, while in the second it was delivered to the 
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proximal region of the apical dendritic tree. In order to successfully cover the soma while 

excluding the proximal apical dendrites, the flash aperture was set such that the flash 

covered a circular area ⅛  the area of the visual field of the 60x lens, while in order to 

cover the proximal dendrite region successfully, it was necessary to increase this to a 

region equal to ¼  of the area of the visual field. It should be noted that doubling the area 

in this manner halves the photon density of the flash. 

In order to control for any effects of the flash itself on the sIAHP current, initial control 

experiments were carried out using an intracellular solution devoid of BCMCM-8Br-

cAMP. The current was recorded for an initial period of 15 minutes, in the presence of 

0.5 µM TTX, 1 mM TEA and 50 µM dTC, applied extracellularly, to permit its stabilisation. 

Following this period, a flash protocol, consisting of a train of 5 flashes of 10 ms duration 

and 800 ms separation was  delivered to the soma, and the current was recorded again 

for a further 10 minutes immediately following the flash.  

The results from a representative cell are shown in Figure 7.13. Panels (a) and (b) show 

the time-course of the peak sIAHP amplitude and the input resistance of the cell, with the 

time point of the flash protocol denoted by an arrow. The current trace immediately 

preceding the flash protocol (red) and one taken 1 minute after the flash protocol (blue) 

are superimposed in panel (c). As can be seen from this representative cell, no 

discernible change was observed in the amplitude or kinetics of the current, and this was 

true of all cells tested.There was also no obvious change in the partially clamped Ca2+ 

current during the stimulus pulse (Figure 7.13d). 

Following the flash train, mean sIAHP peak current amplitude increased to 101.8% ± 4.0% 

of baseline. This change was not statistically significant (Wilcoxon matched pairs signed-

rank test p=0.06, n=5, Figure 7.13e). There was likewise no significant change in the 

decay time constant (τ) of the current. Mean baseline τ was 6.02 ± 0.83 s, which rose to 

6.31 ± 0.9 s following the flash (Wilcoxon matched pairs signed-rank test p=0.18, Figure 

7.13f). Mean input resistance before the flash was 159 ± 14 MΩ, while after the flash it 

increased to 160 ± 16 MΩ, and this change was also not statistically significant (paired 

2-tailed t-test p<0.81, n=5, Figure 7.13g). The flashes also had no significant effect on 

the holding current of the cell. The mean change in the holding current was 1.82 ± 1.22 

pA, and this change was not statistically significant (Wilcoxon signed ranks test p=0.21, 

Figure 7.13h). 

It was therefore concluded that the flash protocol itself did not affect either the current 

amplitude and kinetics of the sIAHP current, or on the holding current or input resistance 
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of the wider cell. It was therefore concluded that the flash protocol alone did not affect 

the behaviour of the cell or the current. 

 

Figure 7.13. Effect of flash protocol on control cells (no BCMCM-8Br-cAMP) 

(a) Timecourse of sIAHP amplitude for a representative cell in response to a 200 ms voltage 

step to +20 mV from a holding potential of -50 mV. Vertical arrows show the positions of 

each flash train protocol, which consisted of 5 flashes of 10 ms duration each, and a 

separation of 800 ms. Traces were acquired at 30 s intervals. 

(b) Timecourse of input resistance for the same cell. Vertical arrows show the positions of 

each train of flashes. 
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(c) Example traces showing amplitude of sIAHP before (red) and after (blue) a flash train 

protocol. Top traces correspond to first flash, bottom traces correspond to second flash. 

In each case, “before” traces are the trace immediately before the flash train, and “after” 

traces are the fourth trace after the flash train. 

(d) Detail of the voltage step for the traces in (c), showing the calcium action current. 

(e) Summary of the effect of the flash protocol on the peak sIAHP amplitude. Filled circles show 

the responses of individual cells. Error bars denote mean and SEM of the responses. Y 

axis represents percentage of baseline peak amplitude. n=5 

(f) Graph summarising the effect of the flash protocol on the decay time constant (τ) of the 

sIAHP. Y axis denotes the decay time constant in seconds. Filled circles connected by 

dashed lines represent the change in  τ of individual cells. Bars represent the mean τ 

before and after the flash protocol. Error bars show SEM. n=5 

(g) Summary of the effect of the flash protocol on the input resistance. Y axis shows input 

resistance following the flash as a percentage of the baseline input resistance. Filled 

circles denote individual cell responses. Bar height shows mean response of all cells. 

Error bars denote SEM. n=5 

(h) Summary of the change in holding current in response to the flash protocol. Y axis 

represents change in holding current in pA. Individual responses are represented as black 

filled circles. Bar height denotes the mean change in Ihold across all cells. Error bars 

represent SEM. n=5 

In subsequent experiments, cells were filled with intracellular solution containing 200 µM 

BCMCM-8Br-cAMP. Following a 15 minute period to allow current run-up and diffusion 

of the caged compound into the cellular processes, a flash protocol, consisting of a train 

of 5 flashes of 10 ms duration and 800 ms interval, was delivered to either the soma or 

the proximal apical dendrite. 

The results from a cell representative of the somatic experiments is shown in Figure 

7.14. Panel (a) shows the timecourse of the sIAHP peak amplitude for the cell. In some 

experiments, such as the one shown, the flash protocol was repeatedly applied, primarily 

to provide a demonstration of the reproducibility of the flash effect. The time-course of 

the input resistance is shown in panel (b), again with arrows denoting the timing of the 

flash protocols. Panel (c) shows the effect of the first two flash trains on the sIAHP peak 

current amplitude, as superimpositions of the trace immediately preceding the flashing 

(red) and one taken 1 minute after the flashing (blue). In both cases the flash protocol 

led to a noticeable decrease in the current amplitude (left traces), without substantially 

altering the size of the partially clamped Ca2+ current (d). Multiple instances of the flash 

protocol were delivered to 3 of 7 cells, and in each case the third or fourth application 

led to an irreversible run-down of the sIAHP current, a concomitant increase in the current 

required to hold the cell at -50 mV, and a decrease of the input resistance. 



157 

Considering only the first flash in each cell, a reduction in the current amplitude and a 

shortening of current decay kinetics  was observed in all cells tested (Figure 7.14e, f). 

The mean current following the flash was 54.2 ± 5.2% of the baseline value, and this 

change was statistically significant (Wilcoxon signed rank test p<0.01, n=7). Mean decay 

T was 6.4 ± 0.85 s before the flash, and 4.2 ± 0.30 s after, and this difference was 

significant (Wilcoxon matched pairs signed rank test 0.015). 

Following the flash, the input resistance increased from 178 ± 14 MΩ to 194 ± 12 MΩ, a 

statistically significant increase (paired 2-tailed t-test, p<0.015, Figure 7.14g). In 

percentage terms, the average Rinput increase was 110% ± 5.3%. The flash also 

produced an inward shift in the holding current by an average of 17.9 ± 4.1 pA (one-

sample t-test p=0.005, Figure 7.14h). 
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Figure 7.14. Effect on sIAHP of uncaging BCMCM-8Br-cAMP in soma 

(a) Timecourse of sIAHP amplitude for a representative cell in response to a 200 ms voltage 

step to +20 mV from a holding potential of -50 mV. Vertical arrows show the positions of 

each flash train protocol. Traces were acquired at 30 s intervals. 

(b) Timecourse of input resistance for the same cell. Vertical arrows show the positions of 

each train of flashes. 



159 

(c) Example traces showing amplitude of sIAHP before (red) and after (blue) a flash protocol. 

Top traces correspond to first flash, bottom traces correspond to second flash. In each 

case, “before” traces are the trace immediately after the flash train, and “after” traces are 

the third trace after the flash train. 

(d) Detail of the voltage step for the traces in (c), showing the calcium action current. 

(e) Summary of the effect of the flash protocol on the peak sIAHP amplitude. Filled circles show 

the responses of individual cells. Error bars denote mean and SEM of the responses. Y 

axis represents percentage of baseline peak amplitude. n=7 

(f) Graph summarising the effect of the flash protocol on the decay time constant (τ) of the 

sIAHP. Filled circles connected by dashed lines represent the change in  τ of individual 

cells. Y axis represents the decay time constant in seconds. Bars represent the mean 

decay time constant across all cells,  before and after the flash protocol. Error bars show 

SEM. n=7 

(g) Summary of the effect of the flash protocol on the input resistance. Y axis shows input 

resistance following the flash as a percentage of the baseline input resistance. Filled 

circles denote individual cell responses. Bar height shows mean response of all cells. 

Error bars denote SEM. n=7 

(h) Summary of the change in holding current in response to the flash protocol. Y axis 

represents change in holding current in pA. Individual responses are represented as black 

filled circles. Bar height denotes the mean change in Ihold across all cells. Error bars 

represent SEM. n=7 

In a separate set of experiments the flash was delivered to the proximal apical dendrite 

instead of the soma. In order to optimally cover this region while omitting the soma itself, 

the size of the flash area was increased two-fold. Figure 17.5 shows data from a 

representative cell, with the time-course of the sIAHP peak amplitude shown in panel (a), 

while the time-course of the input resistance is shown in panel (b), again with arrows 

denoting the timing of the flashes. As with the soma group, the train of flashes led to a 

reduction in the sIAHP amplitude in 7/7 cells (Figure 7.15 c, e), without noticeably altering 

the size of the unclamped Ca2+ current observed during the stimulus pulse (Figure 

7.15d). 

The effect of the flashes on the sIAHP current was generally larger than that observed in 

the somatic experiments, with the mean current amplitude following the flash train being 

31.7 ± 5.6% of the baseline current, a statistically significant change (Wilcoxon matched 

pairs signed rank test = 0.015, n=7, Figure 7.15e).  The flash train also had a stronger 

effect on current kinetics, as the mean decay time constant reduced from 5.87 ± 0.89 s 

to 2.68 ± 0.55 s,  (Wilcoxon matched pairs signed rank test p=0.015, n=7, Figure 7.15f).  
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The input resistance after flashing increased from 161 ± 15 MΩ to 183 ± 17 MΩ (in 

percentage terms an increase to 114 ± 2.6% of baseline), also statistically significant 

(paired 2-tailed t-test, p=0.001, Figure 7.15g).  The flash train also produced an inward 

shift of the holding current of 14.0 ± 2.9 pA, and this change was statistically significant 

(one sample t-test p=0.003, n=7, Figure 15h). 

 

Figure 7.15. Effect on sIAHP of uncaging BCMCM-8Br-cAMP in proximal dendrites 

(a) Timecourse of sIAHP amplitude for a representative cell in response to a 200 ms voltage 

step to +20 mV from a holding potential of -50 mV. Vertical arrows show the positions of 

each flash train protocol. Traces were acquired at 30 s intervals. 
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(b) Timecourse of input resistance for the same cell. Vertical arrows show the positions of 

each train of flashes. 

(c) Example traces showing amplitude of sIAHP before (red) and after (blue) a flash protocol. 

Top traces correspond to first flash, bottom traces correspond to second flash. In each 

case, “before” traces are the trace immediately after the flash train, and “after” traces are 

the third trace after the flash train. 

(d) Detail of the voltage step for the traces in (c), showing the calcium action current. 

(e) Summary of the effect of the flash protocol on the peak sIAHP amplitude. Filled circles show 

the responses of individual cells. Error bars denote mean and SEM of the responses. Y 

axis represents percentage of baseline peak amplitude. n=7 

(f) Graph summarising the effect of the flash protocol on the decay time constant (τ) of the 

sIAHP. Filled circles connected by dashed lines represent the change in  τ of individual 

cells. Y axis represents the decay time constant in seconds. Bars represent the mean 

decay time constant across all cells,  before and after the flash protocol. Error bars show 

SEM. n=7 

(g) Summary of the effect of the flash protocol on the input resistance. Y axis shows input 

resistance following the flash as a percentage of the baseline input resistance. Filled 

circles denote individual cell responses. Bar height shows mean response of all cells. 

Error bars denote SEM. n=7 

(h) Summary of the change in holding current in response to the flash protocol. Y axis 

represents change in holding current in pA. Individual responses are represented as black 

filled circles. Bar height denotes the mean change in Ihold across all cells. Error bars 

represent SEM. n=7 

A comparison of the effects of the flashes at the two different locations is shown in Figure 

7.16. The flash protocol had a more pronounced effect on both the amplitude and decay 

kinetics of the sIAHP current when delivered at the dendritic location than when delivered 

to the soma. The percentage residual current following a flash train delivered to the soma 

was almost twice that following the same flash protocol delivered to the proximal 

dendrite, and this difference was significant (2-tailed T-test p=0.01, n=7,Figure 7.16a). 

The effect on the decay time constant of the current was less conclusive. Following a 

flash protocol delivered to the soma, the decay time constant was 67.9 ± 6.0 % of the 

baseline duration, versus 46.5 ± 9.6 % following the same protocol delivered to the 

proximal apical dendrite (Figure 7.16b). However, this effect was not statistically 

significant (2-tailed T-test p=0.08, n=7). In the dendritic condition, one cell in particular 

was an outlier, registering almost no change in decay time constant, while the next 

smallest effect was a reduction to 55% of baseline, yet this cell responded like the rest 

in terms of change in current amplitude, so it is difficult to make a case for its exclusion. 
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In terms of intrinsic membrane properties, the input resistance increased in response to 

the flash protocol in both locations, though not in the control condition where BCMCM-

8Br-cAMP was omitted from the solution. Mean input resistance was 110 ± 5.3 % of 

baseline for the somatic flash experiments, and 114.2% ± 6.8 for the dendritic 

experiments (Figure 7.16c). There was no significant difference between the effect size 

at the two locations (2-tailed T-test p=0.52).  

As previously reported, the flash protocol caused an inward shift in the holding current 

at both locations. However there was no significant difference between the effect size at 

the two locations (Mann-Whitney test p=0.71, Figure 7.16d). 

These data suggest that a flash train delivered to the proximal apical dendrite has a 

greater inhibitory effect on the sIAHP amplitude than one delivered to the soma. The effect 

is observable despite the fact that the flash covering the dendritic region is effectively at 

half power in terms of photon density compared to that covering the soma. This result 

suggests that the signalling machinery responsible for the cAMP-dependent inhibition of 

sIAHP may be enriched in the proximal apical dendrite compared to the soma itself. 
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Figure 7.16. Summary of effects of uncaging BCMCM-8Br-cAMP in different subcellular 

locations 
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(a) Comparison of the change in sIAHP peak amplitude in response to the flash train protocol 

at the soma (n=7) and at the proximal dendrite (n=7). Filled circles denote the responses 

of individual cells. Y axis shows the percentage of the baseline current present following 

the flash protocol. Bar heights show the mean of all responses at each location, error bars 

denote SEM. 

(b) Comparison of the change in the decay τ of sIAHP in response to the flash train protocol at 

both locations. The response of each individual cell is denoted by a filled circle. Bar height 

represents mean post-flash decay τ  expressed as a percentage of the baseline τ. Error 

bars denote SEM. Y axis is percentage of baseline decay time constant. 

(c) Effect of the flash protocol on the input resistance of the cell at the two subcellular 

locations. Responses of individual cells are indicated by the filled circles. Y axis is Rinput 

following flash train protocol, as percentage of baseline value. Bar height represents 

mean, error bars denote SEM. 

(d) Summary of changes in Ihold in response to the flash protocol. Filled circles represent the 

responses of individual cells, bar heights show mean change in Ihold for each region. Error 

bars denote SEM. 
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Chapter 8. Discussion 

The project was divided into three sections. In the first section, experiments were 

undertaken in order to determine the optimal recording parameters for sIAHP. For 

subsequent experiments it was desirable for the sIAHP to be as large as possible, and to 

remain at a stable amplitude for a period of approximately one hour. This would allow 

the greatest possible signal to noise ratio for measurement of any inhibitory responses 

that might be observed. Optimal parameters of the voltage step protocol were 

determined, along with the concentration of tetraethylammonium (TEA) that produced 

the largest facilitatory effect on the sIAHP amplitude. Additionally, the effects of three drugs 

(EBIO, ethanol, and Bay-K8644), which had been reported to produce a facilitation of 

sIAHP, were tested, though none produced a stable and reliable increase in sIAHP 

amplitude under our conditions. 

The second section of the project used the focal application of the β-adrenergic agonist 

isoproterenol to demonstrate that there is spatial variation in the adrenergic inhibition of 

sIAHP at a subcellular level. Microinjector application of isoproterenol inhibited a greater 

proportion of sIAHP when focused on a region centred on the soma than when focused 

on the distal portion of the dendritic tree. 

The third and final section of the project aimed to determine whether the spatially 

localised differences in inhibition seen in the isoproterenol experiments might be due to 

the activation of different spatially localised cAMP signalling domains. The initial 

experiments in this section involved the setup and testing of a UV flash photolyis 

(“uncaging”) system, using the photolabile calcium buffer DM-Nitrophen (Kaplan and 

Ellis-Davies 1988) to demonstrate that uncaging could be achieved using our apparatus 

both in HEK293 cells and subsequently in hippocampal neuronal cultures. The system 

was then used to uncage the caged cAMP analogue BCMCM 8Br-cAMP (Hagen et al, 

2001) in hippocampal neuronal cultures, and it was demonstrated that a train of UV 

flashes directed at the proximal dendritic region was more effective at inhibiting sIAHP  

than the same protocol delivered to the soma, suggesting the existence of discrete cAMP 

signalling domains coupled to the channels that underlie sIAHP. 

8.1 Optimisation of sIAHP recordings 

The aim of the first set of experiments was to find a set of recording conditions for the 

sIAHP that maximised both the amplitude and stability of the current over a long period of 
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time, in order to maximise the sensitivity of the current to modulation by either focally 

applied isoproterenol or localised uncaging of cAMP analogues. 

To this end, a number of parameters were considered. In the first set of experiments, the 

duration and amplitude the voltage step used to evoke sIAHP was varied, in an attempt to 

find the values at which the current response saturated.  

Next, a range of concentrations of the K+ channel blocker TEA were tested, in order to 

find the concentration range that produced a facilitation of the sIAHP amplitude, as well as 

the range over which the current was inhibited. 

Finally we tested the effect on the sIAHP amplitude of three drugs, which had been 

previously been reported as having a facilitatory effect on the current. 

8.1.1 Optimal Stimulus parameters 

The sIAHP peak amplitude increased from zero to a maximal value as the stimulus voltage 

was increased between -10 and +10 mV (Figure 7.2). In each cell, a sharp transition was 

observed, such that the current amplitude jumped from less than 25% of maximal to a 

near-maximal value, over a single 2 mV increment. The voltage at which this sharp 

transition occurred varied from cell to cell, but was always in the range of +2 mV to +4 

mV, and in each case was accompanied by the appearence of a partially clamped, 

inward Ca2+ current on the same trace as the sudden transition in sAHP current 

amplitude (Figure 2a, b). 

The result can be explained in two possible ways. The sudden increase in current 

amplitude could be caused by threshold behaviour of the voltage gated Ca2+ channel 

(VGCC) population underlying the calcium transient, perhaps due to the activation of a 

dendritic calcium spike. Alternatively, the transition could be caused by a non-linear 

relationship between the command voltage of the stimulus and the number of VGCCs 

recruited, as could occur if the VGCCs are located in the dendrites and there is only 

limited space clamp of the dendritic arbor. Simultaneous current clamp of the soma and 

dendritic compartments of CA1 neurons were used by Golding and colleagues (Golding 

et al 1999) to determine the factors responsible for calcium spike initiation and 

repolarisation. Injections of current above a given threshold elicited a calcium spike, and 

the threshold level was lower for injections to the dendrite than to the soma, though the 

difference between compartments was abolished when voltage gated sodium channels 

were inhibited with TTX. This result suggests that, in the presence of TTX, stimulation of 

the neuron at the soma is as effective at activating Ca2+ spikes as stimulation at the 
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dendrite, which would tend to favour the calcium spike explanation of the sudden 

appearance of the calcium action current and increase in sIAHP amplitude. However, from 

our data it is not possible to rule out the potential influence of space clamp limitations. 

The relationship between sIAHP peak amplitude and stimulus duration did not exhibit the 

same discontinuity as that seen in the case of stimulus voltage. Across the range of 

durations tested, there was a gradual increase from zero to saturation, with response 

saturation occurring between 80 and 90 ms (Figure 7.2c). This gradual increase was 

also reflected in the shape of the calcium action current. It is clear in qualitative terms 

that the time-to-peak and peak amplitude of the calcium action current are similar for all 

stimulus durations, but that the duration of the current increases along with the stimulus 

duration, possibly because at shorter durations, the depolarising stimulus terminates 

more rapidly than the channels underlying the calcium action current terminated under 

conditions of sustained stimulation. 

For both stimulus voltage and duration, it was possible to find values at which sIAHP 

amplitude reached saturation, and it was therefore concluded that a 100 ms step from a 

holding potential of -50 mV to +10 mV represents the optimal stimulus parameters for 

use in future experiments. In terms of the survival of the clamped cell and the stability of 

the recordings, it makes sense to use the minimum sufficient stimulus, as such sustained 

large depolarisations are probably not experienced during normal physiological function. 

The results observed here are broadly consistent with the close relationship between 

Ca2+ influx and sIAHP amplitude described by previous studies (eg. Lancaster and Adams 

1986, Constanti and Sim 1987). 

8.1.2 Effect of TEA on sIAHP amplitude 

Low concentrations of TEA have previously been reported to have a potentiating effect 

on the sIAHP (Schwartzkroin and Prince 1980, Lancaster and Adams 1986). We therefore 

examined the effect of varying concentrations of TEA on sIAHP amplitude. In addition to 

determining an optimal concentration to add to the extracellular solution, a second 

motivation for this experiment was that some recent attempts to determine the molecular 

correlates of sIAHP have suggested KV7 (KCNQ) channels as potential candidates 

(Tzingounis et al 2008, 2010, Soh et al 2010). Depending on their subunit composition, 

KCNQ channels display varying sensitivity to TEA, ranging from 0.3 mM to over 50 mM. 

It was therefore instructive to determine the concentration range of TEA over which an 

inhibitory effect on the sIAHP was observed. 
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Our experiments show that at concentrations below 5 mM, TEA has a net facilitatory 

effect on sIAHP, whereas at 10 mM and over the effect is inhibitory (Figure 3b, d). Of the 

concentrations tested, facilitation was highest for 1 mM, and it is likely that between 1 

mM and 5 mM there is a point of inflection whereby the inhibitory effects begin to override 

the facilitation seen at lower concentrations. The number of concentrations used in these 

experiments was insufficient to determine the EC50 or IC50, and even with a larger 

number of concentration steps, the attempt might have been hindered by an overlap of 

the facilitation and inhibition curves. 

It is apparent from our data that the mechanism mediating the inhibitory effect of TEA on 

sIAHP is independent of that underlying the facilitatory effect. All concentrations of TEA 

tested produced a qualitative increase in the amplitude of the calcium action current 

during the stimulus step, compared to that observed in the absence of TEA. The size of 

the transient at different TEA concentrations appeared to be similar, and the effect 

appeared to reverse following washout (Figure 7.3c). This is consistent with the findings 

of Golding and colleagues (1999), who observed that TEA increases the Ca2+ current 

observed during membrane depolarisation, probably by blocking various voltage-gated 

K+ channels, such as BK and some KV channels, which would otherwise contribute to a 

more rapid repolarisation of the membrane. 

The inhibitory effect appears to be independent of the amount of  Ca2+ influx, as the 

transient remains at concentrations that block sIAHP, suggesting that inhibition occurs by 

another mechanism, probably by direct block of the sIAHP channels, as TEA is known to 

block a wide range of K+ channel subtypes. 

The possibility that the suppression of sIAHP by TEA may occur due to direct inhibition of 

the underlying channels has implications for recent work which proposes one or more 

members of the KV7 channel family as the molecular correlate of the slow 

afterhyperpolarisation. Genetic loss of function studies (Tzingounis and Nicoll 2008,  

Tzingounis et al 2010, Soh et al 2010) have implicated the KV7.2 (KCNQ2) and KV7.3 

(KCNQ3) subtypes in mediating sIAHP in dentate gyrus granule cells, and KV7.5 (KCNQ5) 

in CA3 pyramidal cells. The remaining family members ,encoded by KCNQ1 and 4 are 

not expressed in the hippocampus (Jentsch et al 2000). Mice transfected with KCNQ5 

dominant negative constructs displayed significantly reduced sIAHP amplitude compared 

to controls in CA3 pyramidal cells, though not in CA1, while mice co-transfected with 

dominant negative KCNQ2/KCNQ3 constructs displayed reduced sIAHP amplitude in 

dentate gyrus granule cells, though not in hippocampal pyramidal cells.  
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Assuming that the inhibitory effects of TEA observed in our data occur via direct inhibition 

of the underlying channels, this argues against the involvement of KV7.3 or KV7.5 

homomultimers in the CA1 sIAHP, as these have been reported to be inhibited by TEA 

with IC50 of >30 mM and >70 mM respectively (Hadley at al, 2003, Schroder et al, 2000). 

Equally, it is unlikely that KV7.2 is a significant contributor to the current in CA1, as it is 

inhibited by TEA with an IC50 of 0.3 mM, whereas in our data both 1 mM and 5 mM 

concentrations of TEA led to an increase in sIAHP amplitude. The KCNQ3 protein product 

can also form heteromultimers with KCNQ2. Various estimates of the IC50 of this 

heteromultimeric channel have been reported in heterologous expression experiments, 

with the results being somewhat different depending on whether  simple co-transfection 

or transfection of a tandem concatemer was used. Values of IC50 for the co-expressed 

KCNQ2/3 are reported as 3.5 mM (oocyte, Wang et al 1998), 3.8 mM (CHO, Hadley et 

al, 2000) and 4.1 mM (HEK-293, Hadley et al, 2003), whereas the IC50 for channels 

formed of tandem constructs are reported as 6.7 mM (HEK293, Hadley et al, 2003) and 

10.2 mM (CHO, Wickenden et al 2000). As a result of this variation, it is not entirely 

possible to rule out the involvement of such a heteromultimer from our TEA data. 

However, the fact that double knockouts of KCNQ2 and KCNQ3 did not affect sIAHP in 

hippocampal pyramidal cells (R Taylor and P. Pedarzani, unpublished data), coupled 

with the lack of effect of the KV7 channel inhibitor XE991 on sIAHP currents observed by 

other members of our lab (A. Boehlen, unpublished data), suggests that the KV7 family 

members are unlikely to be involved in sIAHP generation in CA1 pyramidal neurons. 

As a result of this experiment, we can conclude that, at low concentrations, TEA has a 

facilitatory effect on the sIAHP , probably due to facilitation of Ca2+ influx during the 

stimulus pulse, while at higher concentrations it has an inhibitory effect, possibly due to 

blockade of the channels responsible for the sIAHP current itself. We can therefore use 

low TEA concentrations (i.e. 1 mM) to enhance the amplitude of the sIAHP in our 

recordings. 

8.1.3 Effect of three pharmacological agents on sIAHP 

The effect of three drugs, EBIO, ethanol and Bay-K8644, on the sIAHP were investigated, 

based on previous studies that reported an activation effect on the current (Pedarzani et 

al 2001, Carlen et al 1982, Reynolds et al 1990, Tombaugh et al 1995). In our hands 

none appeared to increase sIAHP in a stable and consistent manner. 

EBIO 
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EBIO has previously been reported to increase the amplitude of sIAHP in hippocampal 

neurons (Pedarzani et al, 2001). They reported a ~150% increase in sIAHP amplitude 

following bath application of 1 mM EBIO, with the facilitiation reaching a maximal value 

after 2-3 mins. Our data showed a significant but smaller initial increase in sIAHP 

amplitude, following a similar timecourse (Figure 4), however an additional gradual run-

down of the current amplitude was observed, beginning 5-10 minutes after drug 

application, and eventually stabilising at a value close to the original baseline. Pedarzani 

and colleagues do not report this biphasic effect on sIAHP, though they did observe a 

gradual run-down of the Ca2+ transient during the voltage step, and this is reported to 

occur with a similar time course to the run-down of sIAHP in our data. However in our 

recordings, the amplitude of the Ca2+ current does not alter noticeably. Regardless, in 

our hands, EBIO did not appear to increase sIAHP in a stable manner, and so was not 

used in subsequent experiments. 

Ethanol 

Ethanol has been reported to increase both the amplitude and duration of the post-spike 

afterhyperpolarisation in current clamp recordings (Carlen et al 1982, Reynolds et al 

1990). Neither study was conducted in the presence of a compound such as apamin, 

which could separate the medium and slow phases of the AHP. A similar experiment 

(Siggins et al 1987) failed to find any increase in AHP amplitude.  

Our experiments examined the effects of two concentrations (10 mM and 20 mM) of 

ethanol on the amplitude of the sIAHP recorded in voltage clamp mode, with the IAHP 

inhibited with dTC. For both concentrations tested, an increase in sIAHP amplitude was 

observed in some cells but not in others. At both concentrations, sIAHP amplitude 

following application of ethanol is not significantly different from baseline across all 

experiments, although some cells responded with marked stable increases to as much 

as 140% of baseline amplitude.  

It is possible that in the non-responding cells, a concomitant run-down of the sIAHP, 

occurred for reasons unrelated to the drug application, as these experiments were 

performed early in the first year of my PhD, and sIAHP is sensitive to the overall health of 

the patched cell. There were no grounds on which to exclude these cells with regard to 

changes in input resistance, holding current or resting membrane potential however. An 

alternative hypothesis is that there is some underlying heterogeneity in the response of 

CA1 pyramidal neurons to ethanol. There is evidence that distinct subtypes of pyramidal 
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cell exist in CA1, with regard to intrinsic firing properties (Jensen et al 1996) as well as 

in their response to neuromodulators (Graves et al 2012).  

In agreement with Carlen and colleagues (Carlen et al 1982) we observed an increase 

in sIAHP duration, as evidenced by the decay time constant, in every cell tested at both 

concentrations. In summary, while ethanol does appear to produce an increase in sIAHP 

amplitude in some cells, we have not been able to demonstrate that it does so reliably, 

however it does appear to increase sIAHP duration in a consistent manner. 

BAY-K8644 

Bay-K8644 is a dihydropyridine agonist of L-type voltage gated calcium channels 

(Thomas et al 1985). It has been reported that Bay-K8644 increased the amplitude of 

the sAHP measured during current clamp experiments in hippocampal pyramidal cells 

(Tombaugh et al 2005), though the effect was not quantitatively assessed. A change was 

also reported in the shape of the Ca2+ spike, consistent with the characterised role of 

Bay-K8644 as an L-type channel agonist. 

In our hands, Bay-K8644 appeared to produce a small, gradual increase in sIAHP 

amplitude in 5 out of 6 cells tested, but in 3 of 6 cells the magnitude of the increase was 

under 20% and the effect was overall not statistically significant. There was, however, a 

significant increase in the duration of the current, as measured by the decay time 

constant. In our experiments, there was no obvious, qualitative change in the Ca2+ 

current observed during the voltage step. It is possible that the lack of a dramatic effect 

on sIAHP amplitude is due to this lack of change in the Ca2+ current: it may be that our 

stimulus parameters already are maximally effective at activating the pool of calcium 

channels that supply the Ca2+ signal that activates sIAHP. Consistent with this hypothesis, 

Thomas and colleagues (Thomas et al 1985) report that Bay-K8644 has a stronger 

facilitative effect at potentials where the open probability of the calcium channels is low. 

In conclusion, none of the three drugs tested produced an increase in sIAHP amplitude 

that was both reliably reproduced from cell to cell, and stable over a sufficiently long 

period of time. Of the three, only EBIO produced a statistically significant increase in 

sIAHP peak amplitude, but the duration of this effect was too brief for use in long 

recordings. Ethanol reliably increased sIAHP duration, but the effect on sIAHP amplitude 

was not consistent from cell to cell, and Bay-K8644 did not produce a statistically 

significant change in sIAHP amplitude, though it did increase the decay time constant. It 
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was therefore decided not to add any of the compounds tested to the ACSF during 

subsequent sIAHP experiments. 

8.2 Focal application of isoproterenol reveals intercompartmental 

differences in β-adrenergic suppression of sIAHP 

Previous work in our lab has suggested the possibility of spatially localised domains 

involved in the monoaminergic suppression of sIAHP..  As described in the introduction 

(6.5), inhibition of PP1/PP2A leads to a run down of sIAHP, and the run-down is abolished 

by PKA inhibitors (Pedarzani and Storm, 1993; Pedarzani et al., 1998). Inclusion of the 

AKAP-inhibitor Ht-31 in the patch pipette caused an increase in the amplitude and 

duration of the run-up of sIAHP (Pedarzani, unpublished data). Taken together, these 

results suggest there is a  basal tone of  PKA activity, and its associated phosphatases 

PP1/PP2A, the balance of which is disrupted by the inhibition of AKAPs, anchoring 

proteins that bind PKA and PP1/PP2A. This suggests that spatial anchoring might be 

necessary for maintaining the kinase-phosphatase balance, which is in turn suggestive 

of spatial localisation of the elements of the signalling domains underlying sIAHP inhibition. 

In our experiment, we used focal application of the β-adrenergic agonist isoproterenol, 

via a microinjector, to test for spatial inhomogeneity in the inhibition of the sIAHP. Our 

results show that application of isoproterenol to the soma/proximal dendrite region of rat 

CA1 pyramidal neurons almost completely abolishes sIAHP, whereas the same drug 

concentration applied to the distal dendrite region inhibits only ~50% of the current. 

Interpretation of this result hinges to a certain extent on assumptions about the area 

covered by the microinjector puff. In order to visualise this, Lucifer yellow was included 

in the puff pipette solution, allowing the spread to be visualised, while the same 

concentration of Lucifer Yellow was added to the intracellular solution to permit 

visualisation of the dendritic arbor. The microinjector produced a teardrop-shaped puff, 

spreading out from the tip of the injection pipette, before diffusing away in the direction 

of the laminar flow. The slice was positioned in such a way that a puff applied to the 

dendrite would not diffuse over the soma, and vice versa (Methods Figure 2.4). 

The initial spread of the puff was estimated to be ~40 µm. At the somatic location, this 

was enough to cover both the soma itself and part of the initial segment of the apical 

dendrite. The same approximate area was covered at the distal dendrite location, which 

was around 100 µm past the first observable branch point. Due to the larger size of the 

soma compared to the narrow dendrite, it is likely that a larger absolute surface area of 
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the cell was covered by the somatic puff than by the one at the distal dendrite. It is also 

clear that a larger proportion of the somatic membrane was covered by the puff than the 

proportion of distal dendritic membrane covered by the puff at that location. It could 

therefore be argued that a larger total surface area of the neuron’s  plasma membrane 

was covered by the somatic puff than by the distal dendrite puff, and hence a larger total 

number of receptors were activated in the soma than in the dendrite, leading to an 

overstatement of the difference observed between the two regions. However, set against 

this, the fact that the lumen of the dendritic compartment is far narrower than that of the 

soma means that for a given number of receptors activated, the subsequent rise in cAMP 

concentration in response to receptor activation might be expected to be higher. Spatial 

modelling studies predict that the different geometry of the compartments might alter the 

shape and dynamics of the cAMP microdomain (Neves et al 2008). Consistent with this, 

Castro and colleagues measured the activation of PKA by isoproterenol in dendrites 

compared to the soma, using the fluorescent sensor AKAR2 (Castro et al, 2010). PKA 

activation in the soma in response to 100 nM isoproterenol was ~60% of that achieved 

by a saturating concentration of forskolin, an adenylyl cyclase activator. However in the 

dendrite, the response to the same concentration of isoproterenol was ~95% of that 

achieved by forskolin. Thus the same concentration of isoproterenol raises PKA activity 

by a greater amount in the dendrite than in the soma. These differences were abolished 

by the PDE4 inhibitor rolipram, suggesting that the action of phosphodiesterases is 

responsible for reducing the spatial spread of the cAMP signal. 

Although this suggests that the increase in cytosolic cAMP will be higher in dendrites 

than in the soma, the increase in cAMP concentration in the vicinity of the membrane 

may be similar for both compartments. Assuming the channels underlying sAHP are 

indeed associated with PKA and phosphatases in spatially localised domains at the 

membrane (Introduction 6.5) then there may not be a difference in the size of the cAMP 

signal encountered by the relevant PKA population. 

Could our results be explained by a different receptor density at the two locations? The 

subcellular expression pattern of β-adrenergic receptors in hippocampal pyramidal 

neurons is currently an open question. Davare and colleagues (Davare et al 2001) 

performed antibody staining of β2-AR in rat hippocampal sections and reported the 

presence of β2-AR in both apical dendritic spines and the somata of pyramidal neurons. 

A similar study involving both light and electron microscopy to assess β-AR 

immunoreactivity in dentate gyrus granule cells showed enrichment in the dendrites, 

though some receptors were also present in the soma (Milner et al, 2000). Given the 

limited information on β-adrenergic receptor localisation on a subcellular level, it is 
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impossible to rule out the possibility that the different effect sizes at the two locations 

simply reflect differences in receptor density, rather than differences in the degree of 

coupling to the sIAHP signalling machinery. 

One line of evidence against a variation in receptor density, and consequently 

differences in the number of receptors covered by the puff, is that the puff had a similar 

effect in both locations on both the input resistance and holding current. Puffs at both 

locations produced a reduction in both Rinput and Ihold, but the effect size was not 

significantly different between regions (Figure 7.11 b,c) and there was no change in 

either Rinput or holding current following the puff in the control experiments. The reduction 

in Ihold probably represents the activation of an inward current in response to β-AR 

activation. This phenomenon has previously been observed in neurons following bath 

application of noradrenaline as well as serotonin, and is mediated by the cAMP signal 

(Pedarzani and Storm 1995, Gasparini and DiFrancesco 1999, Chapin et al 2002). The 

amplitude of the change in holding current observed following the puff is approximately 

50% of that reported for the bath application of isoproterenol (Pedarzani and Storm 

1995), and also around 50% of that observed in later experiments following the uncaging 

of 8Br-cAMP in cultured hippocampal neurons (Figure 7.16d).  If the number of β-ARs 

activated was substantially different between the two locations, one might expect a 

difference in the extent of activation of the inward current mediating the change in Ihold, 

yet in our experiments the change in Ihold was not significantly different at the soma 

compared to the distal dendrites. This could be taken as an argument in favour of a 

relatively uniform distribution of β-ARs, especially given that the measured result is 

smaller than that reported elsewhere, which would suggest that the homogeneous 

response of Ihold was not due to maximal activation of the channels responsible for the 

inward current. This hypothesis would benefit from further experiments in which 

isoproterenol was bath applied shortly after the puff, to determine whether the puff was 

sufficient to saturate this response. 

However this interpretation suffers from two potential confounds. There could be a 

gradient of the density of the underlying channels, which might mask that of the β-ARs, 

and coupling between the β-AR and the channels could vary, either by organisation into 

subcellular signalling domains, or simply because of the geometry of the compartment, 

the dendrites having a much higher surface area to volume ratio than the soma. Possible 

candidates for the channels underlying the change in holding current are discussed in 

the section on cAMP uncaging (8.3.3). 
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8.3 Evidence of multiple cAMP signalling domains contributing to 

suppression of sIAHP 

The focal application experiments described in the previous section provide evidence of 

some spatial inhomogeneity in the inhibitory response of sIAHP to the activation of β-

adrenergic receptors. The different effect sizes observed following somatic and dendritic 

application could potentially be explained either by differences in the density of receptors 

at the different locations, or by differences in the coupling of those receptors to the 

population of PKA responsible for the inhibition of sIAHP . The most obvious way for such 

coupling to be mediated is by the cAMP signal generated by the activation of adenylyl 

cyclase by the Gαs moiety of the G-protein coupled to the β-AR. For this reason we 

decided to probe the existence of discrete cAMP signalling domains directly, using the 

localised uncaging of cAMP.   

8.3.1 Flash photolysis of DM-Nitrophen in HEK293 cells containing rBKαØ 

produces an increase in the BK current 

Initial experiments were performed to test the efficacy of the uncaging setup, using the 

photolabile Ca2+ buffer DM-nitrophen (Kaplan and Ellis-Davies 1988). DM-Nitrophen is 

one of the most well-established caged compounds, and the calcium signal was readily 

detectable in a HEK293 cell line stably expressing the rBKαØ channel subunit used in 

part 1 of the thesis, as the BK whole cell current is large, and the voltage dependence is 

strongly modulated by intracellular Ca2+. 

Recordings from the stable cell line using an intracellular solution containing 3 mM DM-

Nitrophen 50% loaded with Ca2+, showed a voltage dependent whole-cell current in the 

nanoampere range that was inhibited by the BK-specific inhibitor paxilline (Figure 11a,b). 

When the cell was then held at +30 mV and a single flash was delivered, an increase in 

whole cell current was observed (figure 11c,d), and the current amplitude varied with the 

pulse duration (Figure 11e). While it was not possible to quantify the increase in free 

Ca2+ produced by each flash, repetition of the flash protocol produced a gradual 

reduction of the amplitude of the current response with each subsequent flash (Figure 

11f).  The size of the current response decreased with successive flashes before 

eventually reaching a stable level, presumably because at this level the rate of diffusional 

exchange of unphotolysed compound through the pipette balanced the rate at which the 

remaining unphotolysed DM-nitrophen underwent photolysis. 
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Taken together these data confirm that the flash protocol was competent to effect 

photolysis of DM-Nitrophen and produce a Ca2+ signal that led to an increase in the BK 

current. However, it does not appear that a large fraction of the total DM-nitrophen in the 

region covered by the flash was photolysed by any given flash. 

8.3.2 Flash photolysis of DM-nitrophen in cultured rat hippocampal neurons 

elicits a current with similar pharmacology to IAHP 

Having established that the flash lamp was able to effect photolysis in HEK293 cells, the 

next set of experiments sought to ensure that a similar effect could be achieved in 

cultured neurons. Due to the crucial roles played by free Ca2+ signals and active Ca2+ 

currents in neuronal function, neurons have a higher buffering capacity for free Ca2+ than 

do HEK293 cells, and hippocampal cultures contain debris and glial cells that might affect 

the efficiency of the flash photolysis.  

DM-Nitrophen was uncaged in cultured rat hippocampal neurons via a series of 4 

flashes. This flash protocol elicited a series of short duration outward current responses 

that grew larger with each flash in the train, with the last and largest response in each 

recording being of around 30-40 pA amplitude (Figure 12a).  

Given that a number of Ca2+ activated conductances exist in hippocampal neurons, there  

are several potential candidates for the observed current: specifically, the BK channels 

that contribute to action potential repolarisation and the fast afterhyperpolarisation, the 

SK channels thought to underlie IAHP (Stocker et al 1999), and the unknown Ca2+ 

activated conductance mediating sIAHP (Alger and Nicoll 1980, Hotson and Prince 1980, 

Schwartzkroin and Stafstrom 1980, Lancaster and Adams, 1986). 

The current responses elicited by Ca2+ uncaging were inhibited by d-tubocurarine but not 

by low concentrations of TEA (Figure 12d,e). d-Tubocurarine inhibits both the SK-

mediated medium afterhyperpolarisation (IAHP) (Strøbaek et al 2000) and also BK 

channels (Smart, 1987). However, BK channels are inhibited by TEA at low 

concentrations (Vergara et al 1984), so it is unlikely that the observed current is due to 

their activation. The current responsible for sIAHP can likewise be ruled out given that it is 

insensitive to dTC.  

In the same cells, depolarising voltage steps elicited a short outward current of around 

400-500 pA. This current was partially inhibited by dTC but not by TEA (Figure 12b), 

similar to what we observed for the current elicited by Ca2+ uncaging. It is likely that part 

of this is the IAHP, given its pharmacological profile and that the duration is too short to be 
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sIAHP. The medium afterhyperpolarisation in hippocampal pyramidal cells is mediated by 

both the Ca2+ dependent SK channels and the voltage-dependent IM (Stocker et al 1999, 

Gu et al 2007, Chen et al 2014), and it is likely that the partial inhibition of the observed 

current is due to inhibition of the SK-mediated component. 

A similar experiment has been previously performed in rat acute hippocampal slice (Sah 

and Clements, 1999). In the absence of apamin, flash photolysis of DM-nitrophen 

produced an outward current that activated rapidly and decayed over several seconds, 

and in the presence of apamin the activation time constant became an order of 

magnitude slower. They also observed the sIAHP in the same cells following a voltage 

step protocol. Our results differ in that a sIAHP -like current was not observed either 

following the voltage step or the uncaging protocol. This may be due to the fact that 

recordings were made too soon after the neuronal culture preparation, as in acute slices 

sIAHP is not visible until around the end of the second postnatal week (L. Cingolani, M. 

Stocker and P. Pedarzani unpublished results, Costa et al 1991, Spigelman et al 1992). 

In support of this, during subsequent experiments on cAMP uncaging, large sIAHP 

currents of 80-150 pA were observed in response to the same voltage step protocol, 

using rat hippocampal cultures recorded at DIV 14-28. 

8.3.3 Spatially localised uncaging of BCMCM 8Br-cAMP reveals 

intercompartmental differences in sIAHP suppression 

Uncaging of BCMCM 8Br-cAMP in cultured rat hippocampal pyramidal neurons led to a 

reduction of sIAHP,, amplitude and a shortening of the decay time constant, as well as a 

small increase in the input resistance of the cell, and an inward shift in the holding 

current. 

These results provide evidence that the sIAHP exhibits a compartment-specific inhibitory 

response to cAMP. Uncaging of BCMCM 8Br-cAMP in the proximal dendrite location 

produced an inhibitory response approximately 1.75 times the size of that observed in 

the soma (Figure 16a). Evidence from the control experiments excluded the possibility 

that the flash protocol itself was responsible for any of the observed changes in sIAHP or 

intrinsic membrane properties, such as the input resistance or holding current (Figure 

13). These results provide a clear indication of the existence of localised signalling 

domains mediating the cAMP-dependent inhibition of sIAHP, as discussed in detail below. 

The flash protocol on its own did not affect the cell’s intrinsic properties or the 

amplitude and kinetics of sIAHP. 
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From the lack of effect observed in response to flashes delivered in the absence of the 

caged compound, it was clear that the flash protocol itself did not affect either the 

properties of sIAHP or the intrinsic membrane properties of the neuron. In the traces 

immediately following application of the flash protocol in the absence of caged 

compounds, there was no change in either the input resistance or the holding current, 

suggesting that the flash itself neither led to the opening or closing of membrane 

channels, nor altered the resting membrane potential (Figure 13 g, h).  

There was equally no significant change in the sAHP current amplitude or kinetics in 

response to the flash train in the absence of caged compounds. While the sIAHP amplitude 

altered slightly more in percentage terms than the input resistance or holding current, 

the direction of change was apparently random, so the mean remained close to 100% 

and the overall change was not significant (Figure 13d).  A rapid change in sIAHP 

amplitude was not observed in any cell. Additionally there was no significant alteration 

in the decay time constant before and after application of the flash protocol. 

It is therefore safe to conclude that the effects seen in the subsequent uncaging 

experiments were due to the effects of the uncaged 8Br-cAMP, and not caused by any 

non-specific effects of the UV flash on the cell. 

Uncaging of BCMCM 8Br-cAMP affects the amplitude and kinetics of sIAHP 

sIAHP is known to be modulated by a range of monoamine neurotransmitters, via a 

pathway involving the activation of adenylyl cyclase by Gαs, the subsequent production 

of cAMP and the activation of Protein Kinase A (PKA) (Pedarzani and Storm 1993). 

Consistent with these findings, our data shows that uncaging of caged BCMCM 8Br-

cAMP leads to a suppression of  sIAHP  at both locations tested. This occurred rapidly, 

with maximal inhibition occurring within 30-60 s of the flash protocol being applied, in 

every cell tested (n=14). This contrasts with the findings of Pedarzani and Storm (1993), 

which shows maximal effect of bath applied 8CPT-cAMP occurring over a time frame of 

3-4 minutes. It is likely that the majority of the observed time difference between the 

experiments is due to the extra time required for bath-applied 8CPT-cAMP to diffuse 

through the plasma membrane into the cytosol, however our experiments suggest a new 

upper bound to the rate of cAMP-dependent inhibition of sIAHP. It is unfortunate that the 

voltage protocol used to elicit sIAHP  cannot practicably be delivered with a finer temporal 

grain, partly because the current duration is so long, and also because an extended 

period of rest is required to enable clearance of cytoplasmic Ca2+ to prevent deterioration 
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of the cell. It is therefore not possible to set a lower bound to the inhibition rate below 30 

s. 

In both the somatic and proximal dendrite locations, a statistically significant shortening 

of the sIAHP decay time constant was observed following the flash protocol. It is possible 

that this change in kinetics is a simple function of the degree of activation of the current. 

Several studies (Gustafsson and Wigstrom 1981, Madison and Nicoll 1984, Lancaster 

and Adams 1986) report that the amplitude and kinetics of the sAHP scale in direct 

proportion to the number of action potentials generated in a neuron.  

 Following the flash protocol, the Ca2+ action current triggered by the stimulus voltage 

step remained approximately the same size, so it is not likely that the effect of cAMP was 

due to any change in the influx of Ca2+ into the cell during the voltage step. 

Uncaging of BCMCM-8Br-cAMP alters intrinsic membrane properties in a non 

region-specific manner 

An effect of the flash protocol was also seen in the intrinsic membrane properties of the 

neurons. Following application of the flash protocol at both locations, the input resistance 

increased, though in both cases the magnitude of this increase was small: a 10% 

increase when the flash was applied at the somatic location (Figure 14e) and one of 14% 

at the dendritic location (Figure 15e). At both locations the effect size was significantly 

larger than that observed in the control experiment, and there was no significant 

difference between the effect size at either location (Figure 16c). The input resistance of 

the cell is inversely proportional to the total membrane conductance, and changes reflect 

the opening and closing of membrane channel populations. The input resistance 

increases as channels close. As the inhibition of the sAHP current was stronger in the 

proximal dendritic location compared to the soma, a larger increase in Rinput would be 

expected in response to the dendritic flash protocol compared with the somatic one. In 

our data, the change observed in the proximal dendrite is larger than that in the soma, 

but not significantly so. There are two possible explanations for this. Firstly, if the total 

pool of channels underlying sIAHP is relatively small, then it may be that changes in Rinput 

due to their inhibition are dwarfed by intrinsic fluctuations in channel activity unrelated to 

the uncaging protocol. This explanation does not appear to be supported by the relative 

stability of Rinput  in the control cells. Alternatively, the cAMP signal could be acting on 

other channel populations in a way that partially masks the contribution of the sIAHP 

channel population to Rinput. The K2P family leak channel TREK-1, for example, is 

expressed in CA1 pyramidal neurons (Talley et al, 2001), and is inhibited by cAMP via 
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PKA (Deng et al, 2007). If TREK-1 were enriched at the soma compared to the proximal 

dendrite, the contribution to Rinput due to their inhibition by the cAMP signal could mask 

that caused by the difference in sIAHP inhibition.  

Other cAMP-modulated channels have been described in hippocampal pyramidal cells. 

Direct activation of the olfactory cyclic nucleotide gated channel CNGA2 has been 

suggested as a candidate underlying 5-HT induced membrane depolarisation (Chapin et 

al, 2002), as has the modulation of the HCN channels underlying Ih (Gasparini and 

DiFrancesco, 1999). Activation of Ih has also been suggested as the mediator of a similar 

membrane depolarisation in response to noradrenaline (Pedarzani and Storm, 1995). 

It is possible that the cAMP signal in response to the flash leads to the activation of a 

larger fraction of one or both of these channel populations, thereby counteracting the 

increase in Rinput  due to the closure of sAHP or TREK-1 channels. In support of this, an 

inward shift was observed in the holding current following the flash protocol in both 

regions (Figure 16d), but not in the control experiments (Figure 13h). The magnitude of 

this shift is similar to that observed by Pedarzani and Storm (1995) following application 

of isoproterenol or 8-CPT-cAMP. Additionally, there is a well established density gradient 

of HCN1 and HCN2 channels that underlie Ih in CA1 pyramidal cells (Lorincz et al 2002, 

Magee 1998, Notomi and Shigemoto 2004). The density of HCN channels increases with 

increasing distance along the apical dendrite away from the soma. This would mean that 

a larger population of HCN channels are available for activation by the cAMP signal at 

the dendritic location, which might mean that a larger number are activated in response 

to the flash protocol at this location, counteracting the larger number of sAHP channels 

closed, and thereby reducing the magnitude of the change in Rinput. 
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Uncaging of BCMCM-8Br-cAMP inhibits sIAHP amplitude more in the proximal 

dendrite than in the soma 

A significantly higher degree of inhibition was observed in response to the flash protocol 

delivered to the proximal dendrite location than to that delivered to the soma. Following 

the somatic flash protocol, the mean residual current was 54% of baseline, compared to 

31% following the flash protocol delivered to the proximal dendrite (Figure 16a).  

One feature of the experimental design that deserves some consideration in the light of 

this result is the decision to focus the flash on a wider area in the proximal dendrite 

condition, compared to the soma condition. The reason for this was that the soma 

presented a more compact target, such that the entire soma could readily be covered by 

a flash area of a given radius, with little “dead” space: areas where the photons did not 

hit the target neurons (Figure 2.5). However a flash of the same radius would only hit a 

small fraction of the proximal dendrite, which would lead to an understatement of the 

effect size in the dendrite compared to the soma. I therefore decided to use a flash of 

twice the radius, in order to cover a larger portion of the proximal dendrite. The radius of 

the flash area is controlled by moving a lens in the light path, and so as a result of this, 

the photon density of the flash was halved. Any photolytic process has a property known 

as the quantum yield: a fractional quantity that describes the number of uncaging events 

that occur per photon absorbed (Lacowicz 2006). Therefore, for a given concentration of 

the compound, the number of uncaging events is directly proportional to the number of 

uncaging events, up to the point where the photon density is so high that all most of the 

caged compound is uncaged at once. The fact that we still observed a significantly 

stronger inhibition of the sIAHP in response to the dendritic flash is therefore unlikely to be 

due to the fact that a larger area was flashed compared to the soma protocol, as the 

photon density was lower in the proximal dendrite, and this would be expected to reduce 

the number of uncaging events proportionately, so that approximately the same number 

of uncaging events would occur in the larger area as the smaller. 

One other consideration concerning the differences between the two regions is that the 

two compartments are different in terms of geometry. The soma has a relatively low 

surface area to volume ratio compared to the proximal dendrite. As a result, a similar 

number of uncaging events in the two locations could lead to a proportionately higher 

concentration of cAMP in the dendritic location compared to the soma. This could 

potentially contribute to the difference in sIAHP inhibition seen between the two locations. 
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In order to correctly interpret the observed differences in sIAHP inhibition between the two 

compartments, it is helpful to consider the implications of two hypotheses: one in which 

the signalling complexes containing PKA and the target channels are distributed 

throughout the neuron with a uniform density, and one in which there is tight clustering 

of the complexes at one or more subcellular locations. 

If the flash protocol in both were to produce a constant photon density, doubling the area 

of plasma membrane over which the uncaging occurred would be expected to produce 

an effect size approaching double the magnitude, given the subsidiary assumptions that 

the dendritic tree was dense enough that only a small proportion of the photons in either 

area missed the neuron, and that the signalling complexes are in relatively close 

association with the plasma membrane. Under such conditions, the larger effect 

observed at the dendritic location could be simply a function of the area covered by the 

flash, as opposed to a local enrichment of the cAMP-dependent signalling complex 

underlying sIAHP inhibition. 

However, in reality two of these assumptions are untenable. Most importantly, the photon 

density did not remain constant when the flash area was doubled: it halved, as the same 

number of photons produced by the lamp were distributed over twice the area by the 

lens array. Also while the somatic flash covered an area approximately equivalent to that 

of the soma, and hence few photons missed their target, that covering the dendrite was 

only filled to approximately one third to one half by the dendritic arbor of the patched cell. 

It is therefore difficult to see how the observed results can be consistent with a uniform 

distribution of the signalling complex, and it is much more likely that there is some degree 

of compartmentalisation of the signal. 

For the reasons outlined above, it is relatively safe to assume that the results do 

represent some localisation of the signalling complexes responsible for transducing the 

cAMP signal into inhibition of sIAHP. How should the results observed be interpreted in 

this context?  

Uncaging of 8Br-cAMP by the flash protocol produces a local elevation of its 

concentration in the region where the flash was delivered. The 8Br-cAMP then diffuses 

away from this initial location towards other compartments of the cell. The rate of this 

diffusion in a neuron is not fully understood, however estimates of the rate of cAMP 

diffusion have been produced experimentally in cardiac myocytes (Agarwal et al, 2015). 

Using a fluorescently labelled cAMP analogue, the diffusion coefficient in cardiac 

myocytes was estimated to be 9.7 µm2/s, significantly slower than that expected under 
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conditions of free diffusion (~300 µm2/s). Nonetheless, assuming a similar speed of 

diffusion, by the start of the second sIAHP trace following the flash protocol, the cAMP 

signal would be expected to have spread up to 300 µm from the site of uncaging, in other 

words a greater distance than the separation of the two flash locations.  

How then to explain the difference in inhibition between the two regions? 

If one were to accurately measure the cAMP concentration at the centre of the flash, and 

at another point in the neuron outside the flashed region, then the concentration of cAMP 

would reach a higher level in the centre of the flashed region than in the area outside, 

and the concentration gradient would subsequently reduce as the cAMP diffused away. 

It therefore follows that a signalling complex close to the site of uncaging would 

experience a higher concentration of cAMP immediately following the flash than one at 

a more distant location. It is likely that the signalling complexes responsible for the 

inhibition of sIAHP are located closer to the proximal dendritic location than to the soma. 

Nonetheless, some of the cAMP signal from the somatic flash location would be 

expected to diffuse to the site occupied by the sIAHP signalling complexes,  and hence an 

effect was seen at both locations. 

It is important to remember that 8Br-cAMP has reduced susceptibility to hydrolysis by 

phosphodiesterases, and it is likely that the real cAMP domains produced by β-

adrenergic receptor activation are more tightly spatially tuned as a result of 

phosphodiesterase activity.  

An alternative explanation is that the sAHP channel signalling complexes might be 

unevenly distributed between the two locations, perhaps with a density gradient that is 

low at the soma, and increases into the proximal dendrite. These explanations are not 

mutually exclusive, and the observed result could be due to a mixture of diffusion of the 

cAMP signal away from the uncaging site, and an uneven distribution of the sAHP/PKA 

signalling complexes. 

The experiments presented in this chapter have provided two separate lines of evidence 

for spatially localised control over cAMP-dependent suppression of sIAHP. Focal 

application of isoproterenol in CA1 pyramidal cells in acute slice preparation showed that 

isoproterenol delivered to the soma/ proximal dendrite region was more effective at 

inhibiting sIAHP than the same concentration delivered to the distal dendrites, a result that 

could be explained either by differences in receptor density at the two locations, or by 
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differences in their coupling to the signalling complexes responsible for inhibition of the 

sAHP channels by PKA. 

The latter explanation assumed the existence of spatially restricted cAMP signalling 

domains, and in order to determine whether these were present, 8Br-cAMP was uncaged 

in a spatially localised manner in pyramidal cells of hippocampal neuronal cultures, and 

it was observed that a train of UV flashes delivered to the proximal portion of the apical 

dendrite (centred on the first branch point of the dendritic arbor) was more effective at 

inhibiting sIAHP than the same protocol delivered to the soma.  

It should be noted that the results of these two experiments are not exactly 

commensurable. In the focal application experiment, the comparison was between the 

soma/proximal apical dendrite on the one hand, and the distal portion of the apical 

dendritic arbor on the other. In the flash experiment, the distinction was between the 

soma and the proximal apical dendrite. This was due to methodological constraints: it 

was not possible to flash two locations more than a couple of hundred microns apart, 

due to the requirement of using the 60x objective to focus the UV lamp output sufficiently 

to produce an uncaging effect. In the focal application experiment, it was necessary to 

use the 20x objective instead to permit positioning of the microinjector pipette, making it 

necessary to separate the regions tested further. 

Additionally the focal application experiment was performed in acute slice preparations 

of rat hippocampus, whereas the uncaging experiment was performed in rat 

hippocampal cultures. This was necessary because it was not possible to achieve the 

uncaging result, using either DM-Nitrophen or BCMCM-8Br-cAMP, in acute slices, 

presumably because the layer of debris on the surface of the slice absorbed too great a 

proportion of the UV photons. The use of these different preparations leads to two 

potential confounds. The cultured cells are not organised into discrete layers, and so it 

is necessary to determine whether a cell is pyramidal using its morphology. Our criteria 

are discussed in methods (2.2.10).  

It is not possible to know whether the pyramidal cells recorded in culture were originally 

from CA1 or CA3, and these cells may have different properties, both in terms of intrinsic 

membrane properties and in their response to modulatory signals, although similar 

distinctions have been observed within the CA1 region itself (Graves et al 2012, Jensen 

et al 1994, 1996). Furthermore, it is not certain that cultured neurons maintain the same 

subcellular spatial expression patterns of the signalling components of interest, 

compared to those in acute slice preparations. 
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As a result of these issues, care needs to be taken in drawing comparisons between the 

two sets of experiments, as it cannot be assumed that the two systems are identical. 

Nonetheless, the results of both experiments are consistent with the hypothesis that the 

complexes including PKA and the sIAHP channels are located somewhere in the proximal 

portion of the apical dendrites. This is in agreement with the result achieved by Sah and 

Bekkers (1995), who used the time course of relaxation of the membrane current to 

estimate the location of the sAHP channels. In their experiment, they used the fact that 

the relaxation of the membrane current in response to a voltage step will occur more 

slowly, the further the membrane responsible is from the patch pipette, due to the cable 

properties of the dendritic compartment. By evoking GABA-mediated inhibitory 

postsynaptic currents (IPSC) at the soma and in the dendrites, they were able to 

compare the rate of current relaxation for the two currents by stepping the voltage to the 

reversal potential of the IPSC at the peak of the current. They then compared these 

estimates to a similar estimate acquired for the sIAHP, using a compartmental cable model 

of the CA1 pyramidal neuron, and produced an estimate suggesting that the sIAHP 

channels were located in the proximal apical dendrite within 200 µm of the soma.  

The results of both of our experiments appear to support this estimate of the location of 

the sIAHP channels. In the focal application experiment, a puff of isoproterenol covering 

the soma and the proximal 20-40 µm of the apical dendrite produced a stronger inhibition 

of sIAHP than the same puff delivered to a point 100 µm past the first branch point of the 

apical dendrite. In the 8Br-cAMP uncaging experiment, a flash delivered to the region 

immediately proximal to the first branch point of the dendrite was more effective than one 

delivered directly to the soma. Assuming that the signalling complexes containing PKA 

are in close proximity to the sAHP channels, these results would support the location of 

the channels in a proximal dendritic location. It is possible that PKA does not act directly 

on the channels to effect their inhibition, in which case this assumption would not 

necessarily hold. An interesting future experiment would be to repeat the cAMP uncaging 

experiment in the presence of the AKAP inhibitor Ht31, to see if this would abolish the 

differences in the extent of inhibition observed between the two regions. 

  



186 

 

8.4 Conclusions 

The results presented in this section of the thesis provide the first direct evidence for the 

existence of spatially localised signalling domains mediating the monoaminergic 

suppression of sIAHP in hippocampal pyramidal neurons of CA1. Focal application of 

isoproterenol in acute slice preparation showed that isoproterenol delivered to the soma/ 

proximal dendrite region was more effective at inhibiting sIAHP than the same 

concentration delivered to the distal dendrites, and spatially localised uncaging of caged 

cAMP produced a stronger inhibitory effect on the current in the proximal dendritic region 

than at the soma. The existence of spatially localised signalling domains in PKA-

dependent signalling pathways is well established in other processes, such as the control 

of L-type calcium channels in cardiac myocytes by B-adrenergic receptors (Xiao et al 

1999), but these experiments provide the first evidence of such localised signalling in 

control of the slow afterhyperpolarisation. This result has particular importance given the 

difficulties encountered by various experimenters in pharmacologically isolating the sIAHP 

current, and hence establishing the molecular identity of the channel or channels that 

mediate it, as such experiments typically involve bath application of the compounds in 

question. Such approaches affect the entire cell at once, and are consequently blind to 

any subcellular differences in the identity of the molecular components mediating the 

process under scrutiny.  

Future experiments should provide greater clarity as to the precise compartmentalisation 

of the signalling domains underlying the monoaminergic control of sIAHP, as well as the 

degree of specialisation among different monoaminergic transmitters and their receptors. 

It is something of a conceptual puzzle why the current literature shows diverse 

neuromodulatory systems all converging on the same pathway to  suppress sIAHP. This 

may be the true picture: that it is functionally advantageous for sIAHP to be the 

convergence target of multiple transmitter systems, or it may be that each system 

actually exerts differential control over subpopulations of the channels underlying sIAHP. 

Both these questions might be answered using the more precise spatial targeting made 

possible by LED-light activation of chaemeric optogenetic constructs consisting of the 

extracellular portion of rhodopsin fused to the intracellular loops of the different 

monoamine receptors, such as that developed for the B2-adrenergic receptor by the lab 

of Karl Diesseroth (Airan et al 2009). 
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Calcium-dependent potassium channels play an important role in setting the intrinsic 

electrical properties of hippocampal neurons. The first part of my thesis focused on BK 

channels, which are unique in their ability to respond to both voltage and calcium signals, 

and therefore play an important role in both signal integration and homeostasis, as well 

as in tuning the action potential. They therefore represent important potential drug 

targets for regulation of neuronal function, as evidenced by the fact that differences in 

BK channel function are observed in the phenotypes of fragile X mouse models. The 

results described in this thesis were negative in terms of the putative BK opener VSN-

16R, but did characterise for the first time the effects of the opener NS19504 on B-

subunits of the channel.  

The second part of the thesis focused on the slow afterhyperpolarisation sIAHP, and its 

regulation by monaminergic transmitters, and showed the first prelimnary evidence of 

spatial localisation of the noradrenergic control of sIAHP. As the slow phase of the 

afterhyperpolarisation is important in the control of firing rate adaptation, and given the 

continued lack of a clear molecular identity for the channel mediating the current, 

understanding the precise spatial and temporal dynamics of neuromodulatory influences 

on the current has important implications for the design of novel drugs that could 

potentially be of use in treatment of neurological dysfunctions with a high firing rate 

phenotype, such as epilepsy. 
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