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Abstract 

High surface area N-doped mesoporous carbon capsules with iron traces 

exhibit outstanding electrocatalytic activity for the oxygen reduction reaction 

(ORR) in both alkaline and acidic media. In alkaline conditions, they exhibit a 

more positive onset (0.94 V vs. RHE) and half-wave potentials (0.83 V vs. RHE) 

than commercial Pt/C, while in acidic media the onset potential is comparable to 

that of commercial Pt/C with a peroxide yield lower than 10 %. The Fe-N-doped 
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carbon catalyst combines the high catalytic activity with remarkable 

performance stability (3500 cycles between 0.6 and 1.0 V vs. RHE), which 

stems from the fact that iron is coordinated to nitrogen. Additionally, the newly 

developed electrocatalyst is unaffected by the methanol cross-over effect in 

both acid and basic media, contrary to commercial Pt/C. The excellent catalytic 

behavior of the Fe-N-doped carbon, even in the more relevant acid medium, is 

attributable to the combination of chemical functions (N-pyridinic, N-quaternary 

and Fe-N coordination sites) and structural properties (large surface area, open 

mesoporous structure and short diffusion paths), which guarantees a large 

number of highly active and fully accessible catalytic sites and rapid mass-

transfer kinetics. Thereby, this catalyst represents an important step forward 

towards replacing Pt catalysts with cheaper alternatives. In this regard, an 

alkaline anion exchange membrane fuel cell was assembled with the Fe-N-

doped mesoporous carbon capsules as the cathode catalyst providing current 

and power densities matching those of a commercial Pt/C, which glimpses the 

practical applicability of the Fe-N-carbon catalyst. 

 

 

 Keywords: carbon nanomaterial, nitrogen-doping, oxygen reduction reaction, 

non-noble metal catalysts, capsule 
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One major limitation in the performance of proton exchange membrane 

(PEM) fuel cells is the sluggish kinetics of the oxygen reduction reaction (ORR) 

occurring at the cathode.1, 2 This issue compromises their widespread utilization 

and commercialization. Traditionally, platinum has been considered as the best 

catalyst for the ORR, taking into account its high activity via four electrons 

transfer leading to water as the final product. However, platinum is scarce, its 

performance degrades in time and it is very expensive.3, 4 Considerable 

research efforts have been directed towards the discovery of cost-effective 

materials exhibiting comparable catalytic performance to platinum, while 

showing a better tolerance towards CO poisoning. The development of non-

precious metal catalysts 5-8 and metal-free catalysts 9 has gained increasing 

research attention due to their good catalytic activity towards ORR, low cost and 

good durability. Despite exhaustive research in non-precious metal and metal-

free ORR catalysts, the challenge remains to be able to maintain or even 

increase the electrochemical performance and durability at the PEMFC’s 

cathode.10, 11  

Heteroatom-doped carbon materials are promising alternatives as ORR 

catalysts -often via a 4e- route similar to platinum-, with high current densities 

and high onset potential.12 Among various dopants, nitrogen has been 

extensively studied due to its enhanced electrocatalytic activity for ORR, in 

addition to other beneficial properties, such as increased electrical conductivity 

and oxidation stability. 13-16 The main drawback of N-doped metal-free carbon 

materials when used as electrocatalysts is their poor performance and poor 

stability in acidic media.2, 17-20 Indeed, most reports show excellent N-doped 

electrocatalysts in alkaline media,21-25 but only very few groups have shown a 
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good performance in acid media.26-29 Furthermore, even if previously reported 

N-doped metal-free carbons exhibited a good performance in acid media, their 

performance drastically decreased after several cycles due to the degradation 

of the carbon matrix.2, 12, 24 To overcome these difficulties, N-doping has been 

combined with the addition of non-precious metals such as cobalt or iron, 

leading to catalysts that exhibit a higher activity, long-term stability and better 

tolerance to poisons than only N-doped carbons.27, 30, 31 Within this context, one 

of the most promising catalysts is a carbon material containing Fe–N moieties 

on the surface (Fe–N–C) which, even with only iron traces, shows a higher 

catalytic activity.11, 32-34 The main active site is believed to be iron coordinated to 

nitrogen, which has been demonstrated to play a major role in the ORR 

process. 11, 35 

Herein, we report on N-doped mesoporous carbon capsules with iron traces 

as ORR electrocatalyst with remarkable performance and stability under both 

acid and alkaline conditions. This material was synthesized by using pyrrole as 

carbon precursor and non-porous core/mesoporous shell silica particles as 

sacrificial template. The use of FeCl3 for the oxidative polymerization of pyrrole 

leads to a N-doped carbon material with traces of iron, which cannot be 

dissolved even after harsh acid treatment as a consequence of the fact that part 

of it is coordinated to nitrogen and the other is as Fe3C encapsulated in a 

relatively thick graphitic layer (~ 15 nm). Although the use of pyrrole as carbon 

precursor for ORR catalysts has already been reported,36-38 the electrocatalytic 

activity of such catalysts in acid electrolyte is far from that of commercial 

platinum. However, our ORR electrocatalysts exhibit several properties that are 

highly important for an effective performance: a) a large number of nitrogen 
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functional groups within the carbon framework due to the use of pyrrole as the 

carbon precursor; b) the presence of nitrogen-iron coordination sites; c) a high 

specific surface area (∼ 1600 m2 g-1) and a porosity made up of uniform 

mesopores (∼ 3.8 nm) due to the mesoporous shell  of the silica template; d) a 

hollow  morphology that entails a uniform thin carbon layer (thickness ∼ 50 nm) 

greatly reducing diffusion distances and e) the existence of graphitic domains 

enhancing their electronic conductivity. The combination of all these chemical 

and structural properties guarantees a large number of highly active and fully 

accesible catalytic sites and rapid mass-transfer kinetics. Consequently, our 

electrocatalyst exhibits a high ORR activity - which is close to or higher than 

that of the Pt/C catalyst - in both basic and acid media. It is worth noting that the 

excellent electrocatalytic activity has been confirmed by using a rotating ring-

disk electrode, which has allowed assessing the reaction mechanism and 

quantifying the percentage of harmful H2O2 produced, a procedure not widely 

used in the literature.19, 21-23 Furthermore, an alkaline fuel cell (AAEMFC) has 

been succesfully assembled with the Fe-N-doped cathode catalyst. 

Results and discussion 

Structural and chemical properties of the N-doped carbon capsules 

An illustration of the synthetic method is shown in Figure 1. In order to 

synthesize porous hollow carbon particles, we used as template silica particles 

with a structure formed by a solid core and a mesoporous shell, and pyrrole as 

carbon precursor and N-dopant. The pores of the silica particles were 

impregnated with FeCl3 and, then, infiltrated with pyrrole vapors which rapidly 

polymerized to polypyrrole. Subsequently, the silica-polypyrrole composite was 
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carbonized and the silica framework and most of iron were dissolved with 

hydrofluoric acid, giving rise to Fe-N-doped carbon capsules (Fe-N-CC).  

The SEM image in Figure 2a shows that the carbon particles have a 

spherical morphology with a uniform diameter of 580 ± 40 nm (see inset in 

Figure 2a). These microspheres exhibit a hollow structure, as evidenced by the 

high-magnification TEM image displayed in Figure 2b, which reveals that the 

diameter of the central macroporous core is around 330 ± 40 nm with a porous 

shell of around 50 nm thick. These carbon particles exhibit a high BET 

(Brunauer–Emmett–Teller) surface area of 1590 m2 g-1 and a large pore volume 

of 1.46 cm3 g-1 (see Table 1). Importantly, the porosity of the carbon layer is 

made up almost exclusively of mesopores, as calculated by means of the αs-

plot method applied to the N2 adsorption branch (see inset in Figure 2c), with 

the micropores representing only < 5 % of the total pore volume (Table 1). 

These mesopores have a uniform size centered at around 3.8 nm, as deduced 

by the Kruk-Jaroniec-Sayari (KJS) method applied to the N2 isotherm 

adsorption branch (Figure S1). 

The microstructure of the Fe-N-CC sample was investigated by X-ray 

diffraction (XRD). A sharp peak can be observed at 2θ = 26°, which 

corresponds to the (002) diffraction peak of graphite (see Figure S2a). This 

peak is superimposed on a broad profile corresponding to amorphous carbon, 

suggesting the presence of a certain amount of graphitized carbon embedded in 

an amorphous carbon matrix. The presence of these graphitic domains is 

attributable to the iron nanoparticles generated during the high temperature 

treatment (derived from the FeCl3 used for the oxidative polymerization of 

pyrrole), which act as a graphitization catalyst during the carbonization, 
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converting a certain amount of amorphous carbon into graphitic 

nanostructures.39-41 No peaks attributable to Fe/Fe3C nanoparticles can be 

observed, whereas the XRD pattern of the sample before the harsh acid 

washing showed the presence of a small amount of metal Fe and Fe3C (see 

Figure S2b). The existence of the graphitic domains was further confirmed by 

Raman spectroscopy performed in randomly selected regions. Thus, as can be 

seen in Figure S2c, the Raman spectrum corresponding to an amorphous 

carbon region is composed of two broad overlapping D and G bands (ID/IG = 

1.14, FWHM of G band = 68 cm-1), whereas that of the graphitic carbon regions 

exhibits a high-intensity sharp G band at 1575 cm-1 and a weak D band at 1350 

cm-1 (ID/IG = 1.2, FWHM of G band = 37 cm-1) associated to defects in the 

graphitic sp2 carbon structures. The amount of graphitic carbon in the Fe-N-CC 

sample is around 10 wt %, as deduced by means of thermogravimetric analysis 

(see Figure S2d). The electrical conductivity of the Fe-N-CC sample is 22 S m-1 

(see Table 1). This good value of conductivity can be attributed to the 

combination of N-doping and the presence of a certain amount of graphitic 

domains. 

The bulk nitrogen content of the Fe-N-CC sample -as determined by 

elemental analysis- is 5.88 wt % (Table 1). The analysis of the chemical nature 

of the nitrogen groups inserted within the carbon framework was performed 

through X-ray photoelectron spectroscopy (XPS) (Figure 2d). The high-

resolution N 1s XPS spectrum can be deconvoluted in two main peaks at 398.6 

and 400.9 eV, which are assigned respectively to pyridinic-N (N-6; 40.4%) and 

quaternary-N (N-Q; 53.7%), and a minor peak at 402.7 eV, which can be 

attributed to pyridine-N-oxides (N-O; 5.9 %).42, 43 The N/C atomic ratios 
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corresponding to the bulk -elemental analysis- (0.064) and the surface -XPS 

analysis- (0.068) (see Figure S3a) of the particles are similar, indicating that the 

nitrogen functionalities are homogeneously distributed throughout the particles. 

The XPS general spectrum in Figure S3a further evidences the presence of a 

small amount of Fe (~710 eV). Specifically, 0.2 at % Fe remains after four days 

of harsh acid washing with HF (48 %) which reveals the high chemical stability 

of the Fe-N-doped carbon capsules. ICP analysis also shows a bulk iron 

content of 0.2 at % (~ 0.7 wt %). Deconvolution of the high-resolution Fe 2p3/2 

XPS spectrum (Figure S3b) hints at the presence of iron coordinated to 

nitrogen, but no Fe3C can be detected (see further discussion in SI), both of 

which have been shown to be active in ORR. 44, 45 However, taking into account 

that only traces of iron are present, it is hard to accurately analyze the iron 

species by XPS (detection limit ~ 0.1-0.2 at %). Therefore, in order to get more 

insights into the kind of iron species present in the material, TEM/HRTEM 

studies were performed. The EDX-TEM mapping images in Figure S4 show that 

C, N, O and Fe in the Fe-N-CC sample are homogenously distributed.  It must 

be noted that no nanoparticles containing iron species are observable in the 

capsules in the TEM picture in Figure S4a, but EDX shows that this element is 

homogeneous distributed within the carbon framework. Further analysis was 

therefore performed by calculating the EDX concentration profiles of N and Fe 

along the line drawn on these carbon capsules (see Figure 3a). As can be seen 

in Figure 3b, the iron and nitrogen profiles perfectly correlate with each other, 

suggesting that the iron atoms are coordinated to nitrogen (Fe-Nx). However, 

this is not the only iron species found by HRTEM. As revealed by Figure S5a, 

Fe3C nanoparticles are found encapsulated by a graphitic layer. A closer look at 
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these nanoparticles reveals that they are coated by a graphitic carbon layer of 

around 15 nm (see Figure S5b), with an interlayer spacing of 0.336 nm, 

corresponding to the (002) plane of graphitic carbon. As shown in Figures S5c 

and S5d for a typical nanoparticle, the spacing of the crystalline lattices in two 

directions was 0.236 nm and 0.200 nm, which are incompatible with the iron 

phases, but can be assigned to Fe3C phase. It should be noted that the Fe3C 

particles constitute a minor amount as deduced by TEM inspection. The 

presence of a graphitic layer surrounding Fe3C explains why those particles are 

not detected by XPS, whose analysis depth is < 10 nm, and also why they are 

not removed after acid washing. It must be pointed out that, in order to test the 

reproducibility of this procedure, the synthesis was repeated several times. In all 

the cases, the chemical and the textural properties of the Fe-N-doped carbon 

capsules were similar.  

 

Electrocatalytic performance of the N-doped carbon capsules in the 

oxygen reduction reaction (ORR) 

The electrocatalytic activity of the Fe-N-doped carbon capsules towards 

ORR was assessed in both acidic and alkaline electrolytes. The ORR activity 

was first studied in a three-electrode cell configuration by using cyclic 

voltammetry in N2- and O2-saturated 0.1 M KOH and 0.5 M H2SO4 solutions. 

Figures S6a and S6b show the CV curves of Fe-N-CC in N2- and O2-saturated 

electrolytes at a scan rate of 100 mV s-1. In both cases, featureless 

voltammetric curves are observed in the N2-saturated solution. The 

voltammograms only exhibit capacitive charging currents associated with the 

surface area of the particles and pseudocapacitive currents attributable to the 
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N- and O- groups.46 In contrast, when the electrolyte is saturated with O2, a 

well-defined cathodic peak is observed at around 0.82 V in KOH (see Figure 

S6a) and 0.58 V in H2SO4 (see Figure S6b), which suggests pronounced ORR 

electrocatalytic activity. The value of peak potential obtained in basic medium is 

shifted to positive values when compared to some of the top-performing N-

doped carbon materials that can be found in the literature. 22, 47-51 These results 

highlight the outstanding electrocatalytic performance of Fe-N-CC, which may 

be attributable to a synergetic effect between N- and Fe-doping. Taking into 

account that carbon materials are less active in acid than in alkaline medium,2 

the pronounced cathodic peak found in 0.1 M KOH is less sharp in 0.5 M 

H2SO4. Nevertheless, it is still noticeable compared to other catalysts that can 

be found in the literature,52-54 which suggests also good catalytic activity in acid 

medium. 

A detailed investigation of the mass-transfer kinetics and electrochemical 

performance of the Fe-N-CC sample was carried out by experiments performed 

using a rotating disk electrode (RDE) and a rotating ring-disk electrode (RRDE). 

The polarization curves obtained from RDE (1600 rpm) linear sweep 

voltammetry in O2-saturated 0.5 M H2SO4 and 0.1 M KOH are shown in Figures 

4a and 4b, respectively. To provide a realistic picture, the results are compared 

with those of a commercial Pt/C catalyst (20 wt % Pt) using the same amount of 

each catalyst (0.1 mg cm-2). In 0.1 M KOH, the ORR polarization curve of Fe-N-

CC exhibits a high onset (ca. 0.94 V) and half-wave potentials (ca. 0.83 V), both 

values being higher than those of Pt/C (ca. 0.93 V and ca. 0.78 V respectively). 

A comparison of the value of onset potential of Fe-N-CC with that of state-of-

the-art N-doped and Fe-N-doped carbon materials evidences the outstanding 
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activity offered by Fe-N-CC in basic medium (see Table S1). On the other hand, 

in 0.5 M H2SO4, the Fe-N-CC sample possesses a similar onset potential (0.80 

V) to that of Pt/C (ca. 0.80 V, comparable to that found by other authors for 

analogous mass loading36, 55), although the half-wave potential is slightly 

decreased (ca. 0.52 V vs. 0.60 for Pt/C).36 This value of onset potential is 

comparable to the best N- and Fe-N-doped carbon catalysts reported so far in 

the literature (see Table S2). Especially remarkable is the behavior in basic 

medium in which the diffusion-limited current density is significantly improved 

(by 10 %) in relation to Pt/C (Note that the mass loadings of both catalyst are 

the same, 0.1 mg cm-2) and superior to many advanced N-doped and Fe-N 

doped carbon catalysts reported in the literature.48, 56-58 It is worth noting that 

the value of diffusion-limited current density measured for commercial Pt/C is in 

agreement with other reported values for the same mass loading of catalyst.22, 

23, 47, 59 

The ORR kinetics in acidic and alkaline media was also assessed by 

using the Koutecky-Levich equation. The rotation dependent currents in Figures 

S7a-S7b show a linear reciprocal square-root relationship according to the 

Koutecky-Levich plot (see Figure S7c-S7d), with a slope more similar to an 

ideal four-electron process than to an ideal two-electron process. More 

specifically, in 0.1 M KOH, the number of electrons thus calculated is 3.7 at 0.58 

V (see Figure S7c). This result suggests that Fe-N-CC catalyzes the direct four-

electron oxygen reduction reaction to OH-. The calculated electrochemical 

kinetic current density (JK) value of 18.3 mA cm-2 at 0.58 V is more than three 

times higher than that of commercially available Pt/C (5 mA cm-2 at 0.58 V, 

value similar to those reported in the literature for the same mass loading of 
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Pt/C47, 59) in basic medium. Furthermore, this value is superior to that of many 

nitrogen and Fe-N doped carbons found in the literature (see Table S1). In 

acidic medium, Fe-N-CC also catalyzes the four-electron  process (see Figure 

S7d) with a JK value of 4.85 mA cm-2 at 0.46 V, still superior to commercial Pt/C 

(4 mA cm-2, value again comparable to the literature60). These results reveal the 

high electrocatalytic activity towards ORR compared to Pt/C.  

A more in-depth study of the reaction pathway was performed with a 

RRDE, in which the amount of HO2
- can be accurately determined. Figures 4c-

4d provide a comparison of the number of electrons transferred along with the 

yield of peroxide formed for the Fe-N-CC carbon capsules and Pt/C in 0.1 M 

KOH and 0.5 M H2SO4 electrolytes. The Fe-N-CC sample shows an n value 

higher than 3.8 in basic medium and the HO2
- formation is lower than 10 % over 

the whole range of potentials, demonstrating its excellent electrocatalytic 

selectivity. In acidic medium, the H2O2 yield is even lower, i.e. < 8 %, while the 

number of electrons transferred is kept at ~ 3.8 (see Figure 4d). These results 

clearly indicate that ORR on Fe-N-CC carbon proceeds via the efficient four-

electron pathway.61 This is very important from an operation point of view, as 

the H2O2 produced on the two-electron process may degrade the catalyst layer 

and the membrane.62 

With the aim of assessing the role of iron on creating ORR catalytic active 

sites, we investigated the ORR activity of Fe-N-CC in 0.1 M KOH containing 10 

mM KCN. It is well known that CN− ions can coordinate strongly to iron and, 

therefore, poison the iron-centered catalytic sites for ORR,63 whereas the 

nitrogen active centers are inert to CN- ions.64 As can be seen in Figure 5, the 

addition of KCN negatively shifts the onset and half-wave potentials respectively 

Page 12 of 37

ACS Paragon Plus Environment

ACS Nano

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



13 
 

by ~ 57 and ~ 60 mV. In addition, a 16 % decrease is recorded on the diffusion 

limited current. These results show that part of the activity of the Fe-N-doped 

carbon capsules is indeed attributable to the Fe-N coordination sites identified 

in the capsules (vide supra). Contribution of the Fe3C phase can be discarded 

taking into account that it is encapsulated in a graphitic carbon layer which does 

not allow penetration of the electrolyte. Anyway, Figure 5 also proves that the 

catalytic activity of the N-sites is not negligible at all. In fact, the Fe-N-carbon 

catalyst poisoned with CN- exhibits a limiting current density which is just ~ 8 % 

lower than that of commercial Pt/C and an onset potential of 0.89 V. 

Furthermore, these values are still higher or comparable to those of many top-

performing metal-free N-doped carbons. 48, 54, 59, 65, 66  Indeed, the carbon 

particles contain a great number of active sites (N-groups) that are well-

distributed along a large surface area, thereby providing numerous catalytic 

centers for O2 chemisorption and reduction.67, 68 Importantly, most of the N-

groups correspond to quaternary and pyridinic nitrogen, which are the two main 

contributors to the electrocatalytic activity.13, 69 Summarizing, the above results 

clearly show that there are two types of active sites coexisting in the Fe-N-

carbon capsules catalysts, i.e. Fe-N and N. Besides, the carbon particles exhibit 

an optimized pore structure made up of uniform mesopores of ca. 4 nm and 

short diffusional paths arising from an effective particle size ~ 50 nm, which 

ensure fast mass-transfer processes and maximize exposure of the nitrogen 

and iron active sites to the reactants/electrolyte enhancing their utilization.70  

The long-term stability of ORR catalysts is also a major concern in fuel-cell 

technology and, therefore, much attention has been paid recently to this 

feature.6 Accordingly, the durability of the Fe-N-CC catalyst was tested following 
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a US Department of Energy's accelerated durability test protocol based on 

cycling the catalysts between 0.6 and 1.0 V (vs. RHE) at 50 mV s−1 under N2 

atmosphere in 0.1 M KOH and 0.5 M H2SO4.
27, 31 Figures 6a-6b compare the 

linear sweep voltammetry curves at a rotation speed of 1600 rpm in O2-

saturated electrolyte before and after the accelerated durability test in KOH and 

H2SO4 electrolytes. In KOH, the Fe-N-CC catalyst exhibits a remarkable 

durability performance, in which the onset potential decreases by only ~20 mV 

after 3500 cycles, with no appreciable variation in the half-wave potential. On 

the contrary, commercial Pt/C exhibits a decrease of the onset and half-wave 

potentials of 10 and 90 mV respectively. Chronoamperometric testing was 

carried out to confirm the durability of the nitrogen-doped carbon capsules and 

commercial Pt/C in 0.1 M KOH. The results shown in Figure S8 reveal that the 

Fe-N-CC sample retains ca. 90 % of the initial current after 10,000 s, whereas 

commercial Pt/C retains only 70 % of the initial current. In H2SO4, after 3500 

continuous cycles, the half-wave potential of Fe-N-CC shows a negative shift of 

~40 mV and the onset potential slightly decreases from 0.80 V to 0.76 V (see 

Figure 6b). These values show improved resistance to performance decay 

when compared to Pt/C, which suffers a decrease of 70 mV on the onset 

potential and 140 mV on the half-wave potential. These results prove the 

robustness of the Fe-N and N catalytic sites regardless of the electrolyte used, 

which was already suggested by their resistance to the harsh acid washing. 

One of the disadvantages of platinum-based electrocatalysts in direct 

methanol fuel cells (DMFC), is methanol crossover from the anode to the 

cathode.71 To analyze this issue, the chronoamperometric response was 

measured by injecting methanol into the O2-saturated 0.1 M KOH electrolyte 
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(see Figure 6c). Both Fe-N-CC and Pt/C catalysts show ORR activity when 

oxygen is bubbling. However, after the injection of methanol (t = 160 s), a 

dramatic loss of cathodic current is registered in the platinum catalyst, indicating 

rapid degradation of its ORR activity.25, 72 In contrast, Fe-N-CC catalyst does not 

show any sensitivity towards the presence of methanol, the cathodic current 

remaining relatively stable after methanol injection. Similar results were 

obtained in acid medium. Thus, Fe-N-CC electrocatalyst shows excellent 

tolerance to methanol crossover with an equally good ORR performance with or 

without methanol (see Figure 6d). These results clearly show that the Fe-N-

doped carbon particles constitute an outstanding catalyst in the ORR process 

regardless of the type of electrolyte or fuel used.   

Alkaline anion exchange membrane fuel cell (AAEMFC) assembly  

The real applicability of the Fe-N-CC catalyst was assessed by using with 

Fe-N-CC and Pt/C as cathode catalysts in AAEMFC. The polarization curves in 

Figure 7 show that commercial Pt/C performs better than Fe-N-CC at low 

current density (< 100 mA cm-2), but worse at high current density. However, 

overall, Fe-N-CC produces a higher power density than Pt/C. EIS analysis was 

carried out to determine the exact contribution of the catalyst with respect to 

other factors, such as Ohmic resistance and mass transport, to the overall 

performance of the cell. Half-cell impedance spectra of the anode and cathode, 

in addition to the whole cell, were also measured. Figure S9 shows the Nyquist 

plots corresponding to the cathode and the whole cell measurements at various 

current densities.  The contribution from the anode is insignificant in all cases, 

especially at low current density. Therefore, it can be assumed that cathode 

kinetics are the dominant factor affecting the overall performance. Regardless 
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of the current density, the charge transfer resistance of Fe-N-CC is significantly 

lower than that of Pt/C, which confirms the RDE results. However, the low 

charge transfer resistance shown by the EIS measurements is not reflected in 

an improved performance in the polarization curve at low current densities as 

shown by Figure 7. This is mainly due to the lower starting potential (0.96 V vs. 

1.01 V) of the Fe-N-CC fuel cell at open circuit voltage (OCV). The low OCV 

could be caused by other reasons such as mixed potential or gas crossover.62, 

73 However, as more current is drawn from the fuel cell, the improved 

performance expected from the EIS and RDE measurements manifests itself in 

lower voltage losses compared to Pt/C. These results suggest that Fe-N-CC 

could serve as a good substitute for Pt/C as cathode catalyst. Improvements in 

the CCM fabrication method would further enhance the fuel cell performance. 

Conclusions 

In summary, a highly efficient ORR iron and nitrogen doped hollow carbon 

electrocatalyst has been synthesized using the nanocasting approach and 

pyrrole as N-rich carbon precursor. The resulting carbon particles possess iron 

traces mainly in the form of Fe-N coordination sites (~ 0.7 wt %) and a high 

content of nitrogen moieties (~ 6 wt %) comprising mainly quaternary and 

pyridinic groups. The structure of these hollow particles consists of a highly 

porous (SBET ~ 1500 m2 g-1), curved, thin carbon layer (thickness ~ 50 nm) 

containing pores with a size centered at around 4 nm. This remarkable 

combination of chemical and structural properties gives rise to an active ORR 

electrocatalyst with numerous and easily accessible catalytic centers. 

Importantly, it has been shown that both N-sites and Fe-N coordination sites are 
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contributing to the catalytic activity. Thereby, the Fe-N-doped hollow carbon 

particles exhibit an outstanding activity in basic media and an excellent 

(comparable to Pt/C) performance in acidic media, with a peroxide yield lower 

than 10 %, an electron transfer number close to 4, and onset and half-wave 

potentials superior (basic media) or similar (acid media) to those of commercial 

Pt/C. Furthermore, these nitrogen-doped carbon capsules with iron traces 

exhibit an excellent resistance to methanol crossover and a superior long-term 

durability, beating the platinum supported carbon in both electrolytes (i.e. KOH 

and H2SO4). The practical applicability of the Fe-N-doped catalyst has been 

shown by assembling an AAEMFC with a performance matching that of another 

AAEMFC based on a Pt/C cathode catalyst. 

Experimental Section 

Preparation of mesoporous Fe-N-doped carbon capsules  

The N-doped carbon capsules were fabricated as reported first by our group.46 

Briefly, silica particles with a hollow core and a mesoporous shell (SCMS) were 

synthesized as reported by Unger et al.74 Afterwards, the SCMS particles were 

impregnated by the drop-wise impregnation technique with a 2 M FeCl3 ethanol 

solution (around 0.27 g FeCl3 / g silica). Then, the impregnated sample was 

exposed to pyrrole (Aldrich, 99%) vapors at 25 ºC for 22 h in a closed vessel. 

The dark solid thus obtained was heated under N2 to 850 ºC (3 ºC min-1) for 1 h. 

Finally, the carbonized composite was treated with hydrofluoric acid for four 

days to dissolve the silica framework. The carbon residue was collected by 

filtration, washed with distilled water, and dried at 120 ºC for several hours. The 
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carbon capsules with nitrogen functionalities have been designated as Fe-N-

CC. 

Characterization of materials  

The morphology of the powders was examined by scanning (SEM, Zeiss DSM 

942) and transmission (HRTEM, JEOL (JEM 2100-F)) electron microscopy. 

Nitrogen sorption isotherms were performed at -196 ºC in a Micromeritics ASAP 

2020 volumetric adsorption system. The Brunauer-Emmett-Teller (BET) surface 

area was deduced from an analysis of the isotherm in the relative pressure 

range of 0.04-0.20. The total pore volume was calculated from the amount of 

nitrogen adsorbed at a relative pressure of 0.90. The mesopore size distribution 

was calculated by means of the Kruk-Jaroniec-Sayari (KJS) method.75 The 

primary mesopore volume (Vm) and external surface area (Sext) were estimated 

using the αs-plot method. The reference adsorption data used for the αs analysis 

of the carbon sample correspond to a non-graphitized carbon black sample.76 

The thermogravimetric analysis was performed on a CI Electronics system. 

Raman spectra were recorded on a Horiva (LabRamHR-800) spectrometer. The 

source of radiation was a laser operating at a wavelength of 514 nm and at a 

power of 25 mW. Calculation of the parameters ID/IG (integrated intensity ratio) 

and width at half maximum (FWHM) of the G band was done by the 

deconvolution of the spectra. The curve fitting was performed with the 

combination of Gaussian-Lorentzian line shaped that gave the minimum fitting 

error. X-ray photoelectron spectroscopy (XPS) was performed on a Specs 

spectrometer, using Mg Kα (1253.6 eV) radiation from a double anode at 150 

W. Binding energies for the high resolution spectra were calibrated by setting C 
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1s to 284.4 eV. X-ray diffraction (XRD) patterns were obtained on a Siemens 

D5000 instrument operating at 40 kV and 20 mA and using Cu Kα radiation 

(λ=0.15406 nm). Bulk elemental analysis (C, H, N and O) of the samples was 

carried out on a LECO CHN-932 microanalyzer. The bulk Fe content in the 

catalysts was obtained by ICP-MS analysis in a 7700x equipment (Agilent). 

The electrical conductivity of the carbon materials was determined by pressing 

the powdered material at 7.1 MPa.  

Electrochemical measurements 

Electrochemical measurements were conducted using an AUTOLAB PGSTAT 

101 and a Multi AUTOLAB M101 (CH Instruments). Fe-N-CC catalyst inks were 

prepared by ultrasonically dispersing 1.5 mg of Fe-N-CC catalyst in a solution 

containing 100 µL Nafion (5 wt %) solution and 900 µL deionized water. For 

comparison, the Pt/C catalyst (20 wt % Pt on graphitized carbon, Sigma-Aldrich) 

ink was prepared in the same way, using the same amount of catalyst (i.e. 1.5 

mg). The mass loading of both catalysts is the same, i.e. 0.1 mg cm-2. The 

above prepared catalyst inks were deposited onto a polished glassy carbon 

electrode (α-Al2O3 slurry, 50 nm) and dried under room temperature. A 

conventional three-electrode cell was employed, incorporating Ag/AgCl (3 M 

KCl) as the reference electrode, a Pt wire as the counter electrode and a 

rotating disk electrode (RDE) or rotating ring-disk electrode (RRDE) coated with 

the catalyst film as the working electrode. The electrolyte was 0.5 M H2SO4 

solution or 0.1 M KOH solution. All the experiments were carried out at 20 ºC. 

Before testing, O2/N2 gas was bubbled through the electrolyte in the cell for 30 

min to saturate it with O2/N2. The measured potentials vs. Ag/AgCl (3 M KCl) 
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were converted to the reversible hydrogen electrode (RHE) scale according to 

the Nernst equation: 

ERHE = EAg/AgCl + 0.059 pH + Eo
Ag/AgCl                 (1) 

where EAg/AgCl is the experimentally measured potential vs. Ag/AgCl reference 

and Eo
Ag/AgCl = 0.21 V at 20 ºC. The values of potential provided along the text 

are referenced against RHE unless otherwise stated. 

Cyclic voltammetry (CV) was performed from 0 to 1.2 V vs. RHE in O2- 

and N2-saturated 0.1 M KOH and 0.5 M H2SO4 electrolytes, with a sweep rate 

of 100 mV s-1.  

RDE linear sweep voltammetry (LSV) measurements were conducted 

from 1.2 to 0 V vs. RHE in O2-saturated 0.1 M KOH and 0.5 M H2SO4 

electrolytes at a scan rate of 10 mV s-1 under disk rotation rates of 400, 800, 

1200, 1600, 2000 and 2400 rpm. The working electrode was a 3.0 mm diameter 

GC rotating disk electrode. 

The apparent number of electrons transferred during ORR on the carbon 

catalysts was determined by the Koutechy-Levich equation given by: 

1

J
=

1

JL
+

1

JK
=

1

Bω1 2⁄
+

1

JK
      (2) 

B=0.62nFC0�D0�
2 3⁄ v

1

6     (3) 

where � is the measured current density, �� is the kinetic current density, �� is 

the diffusion-limited current density, ω is the electrode rotation rate, F is the 

Faraday constant (96485 C mol-1), C0 is the bulk concentration of O2 (1.1 x10-3 

mol L-1 for 0.5 M H2SO4 solution and 1.2 x10-3 mol L-1 0.1 M KOH solution), D0 

is the diffusion coefficient of O2 (1.4 x 10-5 cm2 s-1 for 0.5 M H2SO4 solution and 

1.9 x 10-5 cm2 s-1 for 0.1 M KOH solution) and ν is the kinetic viscosity of the 
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electrolyte (0.01 cm2 s-1 for both 0.5 M H2SO4 solution and 0.1 M KOH 

solution).77-79  

For the RRDE tests, the disk potential was scanned at 10 mV s-1, while 

the ring potential was held at 1.5 V vs. RHE in order to oxidize any H2O2 

produced.8, 80 The working electrode was a 5 mm GC disk electrode and a Pt 

ring electrode (375 µm gap). The H2O2 collection efficiency at the ring 

(N=0.249) was provided by the manufacturer. The following equations were 

used to calculate n (the apparent number of electrons transferred during ORR) 

and % H2O2 (the percentage of H2O2 released during ORR): 81 

� =
�	��

������/!�
      (4) 

%	#$%$ = 100
$	��/!

������/!�
     (5) 

where &'is the Faradaic current at the disk, &( is the Faradaic current at the ring, 

N is the H2O2 collection coefficient at the ring.  

The stability of the catalyst was assessed by means of an US 

Department of Energy's accelerated durability test protocol by cycling the 

catalysts between 0.6 and 1.0 V (vs. RHE) at 50 mV s−1 under N2 atmosphere in 

0.1 M KOH and 0.5 M H2SO4.
27, 31 

Fuel cell assembly. The electrodes were prepared by spray-coating the 

catalyst ink on A201 alkaline membrane (Tokoyama, anion exchange capacity: 

1.7 mmol g-1, thickness: 28 µm) at 40°C. The catalyst ink was prepared by 

ultrasonicating the desired amount of catalyst in 2-propanol solution (Sigma-

Aldrich) and AS-4 ionomer (Tokuyama, 5 wt % solution, anion exchange 

capacity: 1.5 mmol g-1) for 30 minutes. The amount of AS-4 ionomer was kept 

at 20 wt % for Fe-N-CC catalyst and 15 wt % for commercial Pt/C (Sigma 
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Aldrich, 20 wt % Pt on graphitized carbon). The catalyst loading was calculated 

by weighing the membrane before and after spray-coating, and kept at 0.2 mg 

cm-2 (total catalyst). Commercial Pt/C (Alfa Aesar, Pt 40 wt %) catalyst was 

used as the anode catalyst with the loading fixed at 0.4 mgPt cm-2. The effective 

electrode area was 5.29 cm2. The catalyst coated membrane (CCM) was 

soaked in 0.1 M KOH overnight before testing.  

Each CCM was tested by fitting it between two gas diffusion layers and 

mounted in single-cell hardware with a built-in reference electrode (Fuel Cell 

Technologies Inc.). Fuel cell measurements were carried out using Scribner 

890e test station (Scribner Associates). Electrochemical impedance 

spectroscopy (EIS) measurements were carried out using Gamry Reference 

3000AE (Gamry Instruments) in a three-electrode configuration to monitor both 

the anode and cathode individually. The cell temperature was set at 50°C, and 

the anode and cathode were fed with humidified (95% relative humidity) H2 and 

O2 at 0.5 L min-1 and 1 L min-1, respectively. Prior to measurements, the CCM 

was activated by maintaining the cell voltage at ~0.3 V for 1 hour. The EIS was 

done at 10, 25, 50, and 100 mA cm-2 in a frequency range of 0.1 – 10 kHz with 

applied AC amplitude of 10% of the actual current. 
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List of Tables and Figures 

Table 1. Physico-chemical properties of the N-doped carbon capsules.  

    αs-plot results     
Sample 

code 

SBET      

(m2 g-1) 

Vp      

(cm3 g-1)a 

Pore 
size 
(nm)b 

Vm      
(cm3 g-1)c 

Sext      
(m2 g-1)d 

C   
(wt %) 

N    
(wt %) 

O    
(wt %) 

σ  
(S m-1) 
 

Fe-N-CC 1590 1.46 3.8 1.28 92 83.28 5.88 10.04 22 
a Pore volume determined at p/p0=0.90. b Maximum of the KJS pore size 
distribution. c Volume of framework-confined mesopores. d External surface 
area. 

 

 

 

 

Figure 1. Schematic illustration of the synthesis procedure. 
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Figure 2. (a) SEM image of the hollow carbon capsules (inset: particle diameter 

distribution determined over 200 particles), (b) high-magnification TEM images 

of the hollow carbon capsules, (c) KJS pore size distribution and αs-plot method 

applied to the N2 adsorption branch (inset) and (d) XPS N 1s core level spectra 

of the Fe-N-doped carbon capsules (Fe-N-CC). 
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Figure 3. (a) TEM image of the Fe-N-CC carbon material and (b) its 

corresponding line profile concentration for nitrogen and iron. 

a) b) 
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Figure 4. Comparison of the RDE polarization curves at 1600 rpm for Fe-N-CC 

and Pt/C catalysts in (a) 0.1 M KOH and (b) 0.1 M H2SO4, and number of 

electrons transferred and peroxide yield of the Fe-N-CC carbon capsules and 

Pt/C catalysis in (c) 0.1 M KOH and (d) 0.5 M H2SO4. The catalyst loadings 

were 0.1 mg cm-2 for both Fe-N-CC and Pt/C catalysts.  
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Figure 5.  LSVs at 10 mV s-1 in the presence of oxygen at 1600 rpm in 0.1 M 

KOH without and in presence of cyanide ions (10 mM KCN). 
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Figure 6. LSVs for Fe-N-CC and Pt/C at 1600 rpm in O2-saturated (a) 0.1 M 

KOH and (b) 0.5 M H2SO4 before and after 3500 potential cycles, (c) 

comparison of the chronoamperometric response over 1000 s at a constant 

rotation speed of 1600 rpm in O2-saturated solution at 0.68 V for Fe-N-CC and 

Pt/C catalysts in 0.1 M KOH (the arrow indicates the addition of methanol) and 

(d) polarization curves of Fe-N-CC in O2-saturated 0.5 M H2SO4 with (black) 

and without (red) 2 M methanol. 
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Figure 7. Polarization curve and power density of alkaline exchange membrane 

fuel cells operating at 50°C with Fe-N-CC and Pt/C as cathode catalysts (0.2 

mg cm-2).  
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