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Abstract

At this moment, databanks worldwide contain brain images of
previously unimaginable numbers. Combined with developments
in data science, these massive data provide the potential to better
understand the genetic underpinnings of brain diseases. However,
different datasets, which are stored at different institutions, cannot
always be shared directly due to privacy and legal concerns, thus
limiting the full exploitation of big data in the study of brain disor-
ders. Here we propose a federated learning framework for securely
accessing and meta-analyzing any biomedical data without sharing
individual information. We illustrate our framework by investigat-
ing brain structural relationships across diseases and clinical co-
horts. The framework is first tested on synthetic data and then ap-
plied to multi-centric, multi-database studies including ADNI, PPMI,
MIRIAD and UK Biobank, showing the potential of the approach for
further applications in distributed analysis of multi-centric cohorts.
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1 Introduction

Nowadays, a large amount of magnetic resonance images (MRI) scans
are stored across a vast number of clinical centers and institutions. Re-
searchers are currently analyzing these large datasets to understand
the underpinnings of brain diseases. However, due to privacy concerns
and legal complexities, data hosted in different centers cannot always
be directly shared. In practice, data sharing is also hampered by the



need to transfer large volumes of biomedical data with the associated
bureaucratic burden. This situation led researchers to look for an anal-
ysis solution within meta-analysis or federated learning paradigms. In
the federated setting, a model is fitted without sharing individual in-
formation across centres, but only model parameters. Meta-analysis
instead performs statistical testing by combining results from several
independent assays[1], for example by sharing p-values, effect sizes,
and/or standard errors across centers.

I

One of the best examples of such a research approach is the En-
hancing Neurolmaging Genetics through Meta-Analysis (ENIGMA) con-
sortium (enigma.usc.edu). With a large number of institutions world-
wide [2], ENIGMA has become one of the largest networks bringing to-
gether multiple groups analyzing neuroimaging data from over 10,000
subjects. However, most of ENIGMA's secure meta-analytic studies in
neuroimaging are performed using mass-univariate models.

The main drawback of mass-univariate analysis is that they can only
model a single dependent variable at a time. This is a limiting assump-
tion in most of the biomedical scenarios (e.g., neighboring voxels or
genetic variations are highly correlated). To overcome this problem,
multivariate analysis methods have been proposed to better account
for covariance in high-dimensional data.

In a federated analysis context, a few works proposed generaliza-
tion of standard neuroimaging multivariate analysis methods, such as
Independent Component Analysis [3], sparse regression, and paramet-
ric statistical testing [4], [5]. Since these methods are mostly based on
stochastic gradient descent, a large-number of communications across
centers may be required to reach convergence. Therefore, there is a
risk of computational and practical bottlenecks when applied to multi-
centric high-dimensional data.

Lorenzi et al.[6l [7] proposed a multivariate dimensionality reduction
approach based on eigen-value decomposition. This approach does not
require iteration over centers, and was demonstrated on the analysis of
the joint variability in imaging-genetics data. However, this framework
is still of limited practical utility in real applications, as data harmo-
nization (e.g., standardization and covariate adjustment) should be also
consistently performed in a federated way.

Herein we contribute to the state-of-the-art in federated analysis
of neuroimaging data by proposing an end-to-end framework for data
standardization, confounding factors correction, and multivariate anal-
ysis of variability of high-dimensional features. To avoid the poten-
tial bottlenecks of gradient-based optimization, the framework is based

*Data used in preparation of this article were obtained from the Alzheimer’s Disease
Neuroimaging Initiative (ADNI) database (adni.loni.usc.edu). As such, the investigators
within the ADNI contributed to the design and implementation of ADNI and/or provided
data but did not participate in analysis or writing of this report. A complete listing
of ADNI investigators can be found at: |http://adni.loni.usc.edu/wp-content/uploads/
how _to_apply/ADNI_Acknowledgement_List.pdf. Also, from the Parkinson’s Progression
Markers Initiative (PPMI) database (www.ppmi-info.org/data). For up-to-date information
on the study, visit www.ppmi-info.org. This research has been conducted using the UK
Biobank Resource.
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on schemes analysis through Alternating Direction Method of Multipliers
(ADMM) reducing the amount of iterations.

We illustrate the framework leveraging on the ENIMGA Shape tool,
to provide a first application of federated analysis compatible with the
standard ENIGMA pipelines. It should be noted that, even though this
work is here illustrated for the analysis of subcortical brain changes in
neurological diseases, it can be extended to general multimodal multi-
variate analysis, such as to imaging-genetics studies.

The framework is benchmarked on synthetic data (section [3.1). It
is then applied to the analysis of subcortical thickness and shape fea-
tures across diseases from multi-centric, multi-database data includ-
ing: Alzheimer’s disease (AD), progressive and non-progressive mild
cognitive impairment (MClc, MCInc), Parkinson’s disease (PD) and healthy
individuals (HC) (section [3.2).

2 Methods

Biomedical data is assumed to be partitioned across different centers
restricting the access to individual information. However, centers can
individually share model parameters and run pipelines for feature ex-
traction.

We denote the global data (e.g., image arrays) and covariates (e.g.,
age, sex information) as respectively X and Y, obtained by concatenat-
ing respectively data and covariates of each center. Although these data
matrices cannot be computed in practice, this notation will be used to
illustrate the proposed methodology. In the global setting, variability
analysis can be performed by analyzing the global data covariance ma-
trix S.

For each center ¢ € {1,...,C} with N, subjects each, we denote by
X, = (x;)Ye, and Y. = (y;)*, the local data and covariates. The feature-
wise mean and standard deviation vectors of each center are denoted
as x. and o..

The proposed framework is illustrated in Figure [1| and discussed in
section It is based on three main steps: 1) data standardization, 2)
correction from confounding factors and 3) variability analysis.

Data standardization is a data pre-processing step, aiming to en-
hance the stability of the analysis and easing the comparison across
features. In practice, each feature is mapped to the same space by cen-
tering data feature-wise to zero-mean and by scaling to unit standard
deviation. However, this is ideally performed with respect to the statis-
tics from the whole study (global statistics). This issue is addressed by
proposing a distributed standardization method in section(2.1.1

Confounding factors have a biasing effect on the data. To correct
for this bias, it is usually assumed a linear effect of the confounders
X = YW, that must be estimated and removed. However, for a dis-
tributed scenario, computing W is not straightforward, since the global
data matrix cannot be computed. We propose in section to use
Alternating Direction Method of Multipliers (ADMM) to estimate a matrix
W shared among centers, closely approximating W. In particular, we
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show that W can be estimated in a federated way, without sharing local
data X, nor covariates Y..

Finally, through federated principal component analysis (fPCA), we
obtain a low dimensional representation of the full data without ever
sharing any center’s individual information X, Y. (section [2.1.3).

2.1 Federated Analysis Framework
2.1.1 Standardization

The mean and standard deviation vectors can be initialized to xg = 0
and 6o = 0. They can be iteratively updated with the information of
each center by following standard forms [8], by simply transmitting the
quantities x. and o, from center to center. For each center the scaled
data is denoted as X, and keeps the dimensions of X..

2.1.2 Correction from confounding factors

Under the assumption of a linear relationship between data and con-
founders, the parameters matrix W can be estimated via ordinary least

~ 1|2
squares, through the minimization of the error function f(W) = HY — XWH .

In a distributed setting, this approach can be performed locally in
each center, ultimately leading to C' independent solutions. However,
this would introduce a bias in the correction, as covariates are ac-
counted for differently across centers.

To solve this issue, we propose to constrain the local solutions to a
global one shared across centers. In this way, the subsequent correc-
tion can be consistently performed with respect to the estimated global
parameters. Thus, we can formulate the problem of constrained regres-
sion via ADMM [9].

~ 2
For a given error function f.(W.) = HYC - XCWC‘
each center ¢ and constrained to a estimated global matrix of weights
W we can pose:

associated with

c
minimize ) f.(W.), subject toW.=W, V.
c=1
As this is a constrained minimization problem, the extended La-
grangian can be calculated as a combination of the parameters from
each center (eqn. [I).

LP(W>W7 Oé) = Z (fc(wc) + <acaWc - W>

c=1
B _ —_— 2
w5 [we-w[,)
Where p is a penalty factor (or dual update step length) regulating the

minimization step length for W and W. « is a dual variable to decouple
the optimization of W and W.



Optimization is performed as follows: i) Each center independently
calculates the local parameters W, and a. (eqn.[2|and ; ii) the param-
eters W, and «. are shared to estimate the global parameters W (eqn. .
We note that this last step is performed without sharing either local

data or covariates. The parameters W are subsequently re-transmitted
to the centers and the whole procedure is iterated until convergence:

W£k+1) = arg r‘r}‘}n LP(WC,W(k’), a&’f))

I —1 ., 1 -
= (XX +21) (RiYe—sa® +2W0) @
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After convergence, W is shared across centers, and used to consis-
tently account for covariates by subtracting their effect from the struc-
tural data to obtain the corrected observation matrix: E. = X, - Y .W.

2.1.3 Federated PCA (fPCA)

Principal components analysis (PCA) is a standard approach for dimen-
sionality reduction assuming that the largest amount of information is
contained in the directions U (components) of greater variability. Data
can be thus represented by projecting on the low-dimensional space
spanned by the main components: E=EU.

From the eigen-value decomposition of the global covariance ma-
trix S = UX?U’, the first m-eigen-modes U = (u;)}, provide a low-
dimensional representation of the overall variation in E. In our feder-
ated setting, we note that S is the algebraic sum of the local covariance
matrices S = EE' = Zle E.E.. Based on this observation, Lorenzi et
al. proposed to share only the eigen-modes and values of the covari-
ance matrix of each center avoiding the access to individual data [6].
However, sharing the local-covariance-matrices can still be prohibitive
as the dimension is (Ngeatures X Neatures). FOr this reason, it was proposed
to further reduce the dimensionality of the problem by sharing only the
principal eigen-components associated with the local covariance ma-
trices: S = ch=1 U.X2U’. From the practical point of view, computing
the eigen-components can be efficiently performed by solving the eigen-
problem associated with the matrix (X.X’)? which is usually of much
smaller dimension (N, x N.) [10].

In what follows, the number of components shared across centers
is automatically defined by fixing a threshold of 80% on the associated
explained variability contained in X..



Figure 1: Data flow to obtain: (a) the global statistics x and o, (b) the
shared parameter matrix W to correct from covariates and (c) the ap-
proximated global covariance matrix S. Red node: master; blue nodes:
local centers. Arrows denote the data flows from centers (blue) and from
the master (red).

Database (total) ADNI (802) MIRIAD (68) PPMI (232) | UK Biobank (208)
Group HC MCInc MClc AD HC AD PD HC

N (females) 109 (115) 62 (119) 78 (130) 89 (100) 11 (12) 26 (19) 85 (147) 116 (92)

Age + sd 75.79 (4.99) 74.93 (7.72) 74.54 (7.09) 75.19(7.48) | 69 (7.18) 69.17 (7.06) | 60.69 (8.95) 60.72 (7.52)

Table 1: Data used in this study. Each study here represents an inde-
pendent center. The centers are jointly analyzed through the federated
analysis proposed in Section

3 Experiments

3.1 Synthetic Data

We randomly generated Y and W matrices. The data matrix was sub-
sequently computed as X = YW, and corrupted with Gaussian noise
N(0,0), with o set to 20% of || X||. Then, X and Y were split in C cen-
ters of equal sample size. Our federated framework was then applied
for each scenario across 200 folds, and convergence analyzed as shown
in Figure [2]

3.2 Real Data: Neuroimaging

Data. T1-weighted MRI scans at baseline were analyzed from several
research databases (table[I). In total, we included data for 455 controls
(HC), 181 with non-progressive MCI (MClInc), 208 progressive (MClIc),
234 Alzheimer’s disease (AD), 232 with Parkinson’s disease (PD).

Feature extraction. ENIGMA Shape Analysis was applied to the
MRI data of each center [11,[12]. In our analysis we extracted: a) radial
distance (an approximate measure of thickness) and, b) the log of the Ja-
cobian determinant (surface area dilation/contraction) for each vertex
of the following subcortical regions: hippocampi, amygdalae, thalami,
pallidum, caudate nuclei, putamen and accumbens nuclei. The overall
data dimension is of 54,240 features.

Federated analysis. Each database of table [I] was modeled as an
independent center. Sex, Age and Age? were used to correct the vertex-
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Figure 2: Top-left: Mean square error (MSE) between W and W for
different numbers of centers. N = 2400, Nfeatures = 50,000 and dim(y) =

20. Top-right: Single-column of W vs W for C = 100. Bottom: Principal
components (PC) vs federated ones (PC*) for 100 centers.

wise shape data according to[2.1.1]and [2.1.2] For ADMM, convergence
was ensured through 10 iterations. Finally, the analysis of the variabil-

ity was performed according to
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Figure 3: Data projected on the first 4 components. AD vs controls from
different centers (top). MCI progressive and stable from ADNI (bottom).
Federated PCA was performed on the whole data obtained from the 4
centers (table .

Results. The projection in the latent space spanned by the federated
principal components is shown in Figure [3] To ease visualization, the
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Figure 4: First principal component estimated with the proposed fed-
erated framework. The component maps prevalently hippocampi and
amigdalae. Left: Thickness. Right: Log-Jacobians.

projection for MCI converters and those who remained stable is shown
in the bottom panel. Figure shows the weight maps associated to
the first principal component. We note that principal components 1 to
3 identify a variability from healthy to AD consistent across centers.
Moreover, healthy ADNI participants are in between the AD subjects
and the rest of the population. This result may denote some residual
effect of Age on the resulting imaging features, even after correction.
Interestingly, the issue of “leaking” spurious variability of confounders
after correction has been already reported in a number of multi-centric
studies, and is matter of ongoing research [13, [14]. Finally we note that
PD subjects are generally similar to the healthy individuals with respect
to the modelled subcortical information.

4 Conclusions

In this work we proposed, tested, and validated a fully consistent frame-
work for federated analysis of distributed biomedical data. Further de-
velopments of this study will extend the proposed analysis to large-scale
imaging genetics data, such as in the context of the ENIGMA meta-
study.
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6.2 The Alzheimer’s Disease Neuroimaging Initiative
(ADNI)

Data used in preparation of this article were obtained from the Alzheimer’s
Disease Neuroimaging Initiative (ADNI) database (adni.loni.usc.edu). As
such, the investigators within the ADNI contributed to the design and
implementation of ADNI and/or provided data but did not participate in
analysis or writing of this report. A complete listing of ADNI investiga-
tors can be found at: http://adni.loni.usc.edu/wp-content/uploads/
how _to_apply/ADNI_Acknowledgement_List.pdf

6.3 The Parkinson’s Progression Markers Initiative (PPMI)

Data used in the preparation of this article were obtained from the
Parkinson’s Progression Markers Initiative (PPMI) database (www.ppmi-
info.org/data). For up-to-date information on the study, visit www.
ppmi-info.org.

PPMI - a public-private partnership - is funded by the Michael J. Fox
Foundation for Parkinson’s Research and funding partners, including
[list the full names of all of the PPMI funding partners found at www.
ppmi-info.org/fundingpartners.

6.4 UK Biobank

This research has been conducted using the UK Biobank Resource. Ad-
ditional information can be found at: https://www.ukbiobank.ac.uk.

11


http://adni.loni.usc.edu/wp-content/uploads/how_to_apply/ADNI_ Acknowledgement_List.pdf
http://adni.loni.usc.edu/wp-content/uploads/how_to_apply/ADNI_ Acknowledgement_List.pdf
www.ppmi-info.org
www.ppmi-info.org
www.ppmi-info.org/fundingpartners
www.ppmi-info.org/fundingpartners
https://www.ukbiobank.ac.uk

	1 Introduction
	2 Methods
	2.1 Federated Analysis Framework
	2.1.1 Standardization
	2.1.2 Correction from confounding factors
	2.1.3 Federated PCA (fPCA)


	3 Experiments
	3.1 Synthetic Data
	3.2 Real Data: Neuroimaging

	4 Conclusions
	5 Acknowledgments
	6 Supplementary material: Acknowledgements
	6.1 Funding
	6.2 The Alzheimer's Disease Neuroimaging Initiative (ADNI)
	6.3 The Parkinson's Progression Markers Initiative (PPMI)
	6.4 UK Biobank


