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A Pólya urn approach to information filtering
in complex networks
Riccardo Marcaccioli1 & Giacomo Livan1,2

The increasing availability of data demands for techniques to filter information in large

complex networks of interactions. A number of approaches have been proposed to extract

network backbones by assessing the statistical significance of links against null hypotheses

of random interaction. Yet, it is well known that the growth of most real-world networks

is non-random, as past interactions between nodes typically increase the likelihood of

further interaction. Here, we propose a filtering methodology inspired by the Pólya urn, a

combinatorial model driven by a self-reinforcement mechanism, which relies on a family

of null hypotheses that can be calibrated to assess which links are statistically significant

with respect to a given network’s own heterogeneity. We provide a full characterization of

the filter, and show that it selects links based on a non-trivial interplay between their local

importance and the importance of the nodes they belong to.
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A vast number of complex interacting systems can be
represented as networks1. Over the last 20 years, Network
Science has been successfully applied in a wide range of

disciplines, from Biology to Finance and the Social Sciences2–6.
One of the main reasons behind such a success is that oftentimes
network representations of seemingly very diverse systems share a
number of common characteristics. A recurrent feature of several
natural and social networks is the lack of a typical scale2,7, i.e. the
marked heterogeneity of major structural features such as the
degree or strength distributions.

Understanding which nodes and links represent a set of
structurally relevant interactions can be of crucial importance to
obtain parsimonious descriptions of complex networks, and,
indeed, has contributed to shed light on the functioning of a
variety of systems, ranging from biological8,9, social10,11, finan-
cial12 or even literature-related13,14 systems. Furthermore, the size
and, in some cases, the density of several real-world networks
often prevent any meaningful visualization, and represent a major
obstacle for clustering algorithms, which typically work well only
with sparse systems15,16. Because of such challenges, a number of
approaches to extract relevant information from complex net-
works have been developed over the years. Naturally, any filtering
technique hinges on a definition of what type of information
represents a signal as opposed to noise. As a result, the network
backbones obtained through different filtering techniques carry
different meanings and highlight different properties.

Early approaches to filtering focused on proximity networks,
and relied on retaining interactions fulfilling some topological
constraints. A seminal example of this kind of approach is the
minimum spanning tree17, which selects the tree with the highest
total strength embedded in a network. Less constrained general-
izations of such method are the planar maximally filtered
graphs18 and the triangulated maximally filtered graphs19, which
reduce topological complexity by forcing the embedding of net-
work backbones on a surface.

Most of the methodologies initially proposed to filter infor-
mation in weighted networks largely relied on discarding all links
whose weights are below a certain global threshold20–23, leading
to backbones not reflecting the multiscale nature of the under-
lying network24. This issue has been addressed by a different class
of techniques, which resort to hypothesis testing in order to assess
the statistical significance of each link in a network. The disparity
filter25, which arguably represents one of most widely used fil-
tering techniques, falls under this category, and relies on a null
hypothesis of uniform distribution of a node’s strength over its
links. Such a method has been adopted as one of the main
benchmarks against which the efficiency of filtering techniques
has been tested26–29.

More recently, a procedure based on a null hypothesis of
random connectivity (encoded as the urn problem described
by the hypergeometric distribution) has been put forward30–32.
Other recently proposed methodologies rely instead on frame-
works inspired by Statistical Physics, where the properties
of empirical networks are tested against those observed in
an ensemble of null network models constrained to preserve,
on average, the original networks’ degree and strength
sequences33,34.

The above procedures provide top-down approaches based
on well defined null hypotheses, against which all links in a
network are tested individually. While this certainly presents
advantages in terms of convenience, at the same time it can lead
to a lack of flexibility, as different networks may display dif-
ferent levels of heterogeneity, to which a ‘one-fits-all’ null
hypothesis cannot adapt. Furthermore, most of the above filters
are based on null hypotheses of partially random interactions.
Yet, interactions in most natural and social systems are far from

being random, as past activity naturally breeds further
activity35,36.

Here, we propose a filtering methodology based on a null
hypothesis designed to respond to the specific heterogeneity of a
network. We shall do so through a statistical test based on the
Pólya urn, a well known combinatorial problem driven by a self-
reinforcement mechanism according to which the observation of
a certain event increases the probability of further observing it.
Such a mechanism is governed by a single parameter a, which
allows to tune the null hypothesis’ tolerance to heterogeneity, and
to study a continuous family of network backbones Pa. In the
following, we shall detail how the Pólya filter works, both from an
intuitive standpoint and by providing a full analytical character-
ization of the family of backbones it generates. In doing so, we
shall show how the disparity filter can be recovered, with very
good approximation, as a special case of the Pólya filter for a= 1.
We shall complement our analyses with two case studies to
illustrate possible application of the Pólya filter to real-world
network data.

Results
The Pólya filter. In the classic Pólya urn problem, we are given an
urn containing B0 black balls and R0 red balls. We randomly draw
a ball from the urn, we observe its colour and put it back in the
urn together with a new balls of the same colour. When this
process is repeated n times, the probability of observing x red
balls follows the Beta-Binomial distribution37 with probability

mass function Pðxjn; α; βÞ ¼ n
x

� �
Bðx þ α; n� x þ βÞ=Bðα; βÞ,

where B denotes the beta function and α= R0/a, β= B0/a. In the
following, we shall adapt this situation to a network setting.

Let us denote the N × N symmetric adjacency matrix of an
undirected weighted network with N nodes as W. An entry wij 2
N of such a matrix is the weight associated with the link
connecting nodes i and j, and wij=wji= 0 when there is no
connection between i and j. The degree ki ¼

PN
j¼1 1ðwijÞ (where

1 denotes the indicator function) quantifies the number of
connections between a node i and other nodes in the network,
while si ¼

PN
j¼1 wij denotes the strength of a node i, which is a

measure of its activity in the network.
With the above notation, we can now rewrite the Pólya urn

problem in network terms. Assume we are interested in assessing
the statistical significance of a certain weight w falling on one
of the links of a node with degree k and total strength s. Following
the above example, we can think of this as a drawing process from
a Pólya urn with 1 red ball and k− 1 black balls initially, where
we want to measure the probability of drawing w red balls in s
attempts. Such a probability reads

Pðwjk; s; aÞ ¼ s

w

� �
B 1

a þ w; k�1
a þ s� w

� �
B 1

a ;
k�1
a

� � : ð1Þ

The above equation fully describes our class of null hypotheses.
We shall assume that a node distributes the weights on its links
following a Pólya process whose reinforcement mechanism is
governed by the parameter a. The rationale of such assumption
lays in the flexibility introduced by such a parameter, which
naturally captures situations where the more two nodes have
interacted, the more further interactions between them become
likely. In Fig. 1 we provide a sketch of the Pólya process adapted
to a network setting.

Eq. (1) allows to assign a p-value to a link of weight w as the
sum over all possible ‘favourable’ outcomes such that at least
w red balls have been drawn from the Pólya urn after s draws.
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This reads

πPðwjk; s; aÞ ¼ 1�
Xw�1

x¼0

Pðxjk; s; aÞ; ð2Þ

and in Supplementary Note 1 we provide an explicit formula for
this quantity. Once the value of the free parameter a has been set,
two p-values can be assigned to the weight of each link in the
network by applying Eq. (2) from the viewpoint of the two nodes
it connects. The statistical significance of a weight is then assessed
by comparing its associated p-values with a significance level.
Since such a procedure involves testing all links in a network, it
requires setting a univariate significance level αu and applying a
multiple hypothesis test correction. The two main options
available in this respect are the Bonferroni38 and the false
discovery rate (FDR)39 corrections. The benefits and limitations
of the two methods have been largely debated40,41, and choosing
between them essentially boils down to the type of statistical error
one is more inclined to accept. The Bonferroni correction is much
stricter than the FDR and typically ensures very high precision,
leading to a low probability of accepting false positives, at the cost
of a potentially low accuracy, i.e. of rejecting true positives.
Following30, in this work we shall adopt the Bonferroni
correction: a link of weight w will be validated and included in
the Pólya network backbone whenever at least one of its
corresponding p-values will be such that πP < αu/L, where L is
the number of statistical tests performed, which in the case of
undirected network is given by twice the number of links in the
network (in the case of a link between a node with degree k= 1

and a node with k > 1 we keep the link only if πP < αu/L for the
node with degree greater than one.).

We have introduced the Pólya filter for weighted undirected
networks but it can be easily extended to weighted directed
networks (see Supplementary Note 2). In fact, the empirical
analyses performed in the following are done on directed
networks.

The backbone family. As mentioned above, the Pólya filter
generates a continuous family of network backbones Pa, which
we now seek to characterize as a function of the parameter a.

When a= 0, the Beta-Binomial distribution (Eq. (1)) reduces
to the Binomial distribution with parameters s and 1/k, i.e.

Pðwjk; s; a ¼ 0Þ ¼ s
w

� �
1
k

� �w
1� 1

k

� �s�w
. In the urn analogy, the

p-value associated with a weight w in this case corresponds to the
probability of drawing at least w red balls in s attempts with
simple replacement from an urn containing 1 red balls and k− 1
black balls.

When a →∞, instead, the Pólya filter loses its dependency on
the node strength s and on the weight w. This corresponds to a
situation where a≫ k balls of the same colour of the first drawn
ball are added to the urn, and, as a result, all following draws
produce balls of the same colour. Therefore, the probability of
drawing at least w red balls is the same of drawing one in the first
draw, i.e. 1/k. This, in turn, leads to an empty network backbone,
as the Bonferroni correction criterion cannot be met with such a
probability.

Between the two above limit cases, Pólya network backbones
monotonically shrink when the parameter a is increased while
keeping the statistical significance fixed, i.e.

w 2 Pa2
) w 2 Pa1

for a1 � a2: ð3Þ

In other words, the largest Pólya set is the one corresponding
to a= 0, and increasing a progressively removes links from this
set. This process is largely driven by a soft dependence of the
Pólya filter on the following ratio:

r ¼ w
s
k ¼ w

hwi ; ð4Þ

where 〈w〉= s/k is the average weight on the links of the node to
which the link under analysis is attached. For any fixed value of
the parameter a, the Pólya filter tends to validate links associated
with higher values of r. Moreover, higher values of a lead to the
progressive rejection of links with higher values of r, which in
turn leads to the property in Eq. (3). These results are illustrated
in Fig. 2 on two network datasets (the 2017 US Airports network
and the World Input-Output Database42, see Methods for a brief
description). Indeed, in the two bottom panels one can see that
higher values of r tend to be associated with a higher statistical
significance (and that such significance, in turn, decreases as a
increases), although this is not a strict relationship and there are
substantial exceptions. We show in Supplementary Note 4 that
these exceptions ensure that thresholding on r does not give a
backbone as topologically rich as the one obtained with the full
Pólya filter, and therefore the latter should be preferred. This
dependence on r is fully described in the Methods section (see Eq.
(7)), and is derived analytically in Supplementary Note 3.

In summary, the two quantities that drive the backbone
extraction process are a and r. First, the ratio r couples a
network’s local topology (through the degree k) to the activity of
nodes (through the strength s and weight w) in a non-trivial way.
The soft dependence of the Pólya filter on such quantity is what
ensures that its backbones retain the multiscale nature of the

C D

p = p =
1 2
3

p =

p =

p = p = p = p = p =

p = p = p =

p = p =1

1 1 3

1 1
6

10

15 15 5 15 3
4 111 2

5 10 5
2

3 2

3

1

a = 1

15
+ + =

1 1 62

15 5 15
�AB =

1

A

2

B

Fig. 1 Sketch of the Pólya urn process in a network setting. In the toy
example shown here, we aim to assess the statistical significance of the link
of weight w= 2 (highlighted in red) connecting nodes A and B, and we wish
to do so from the viewpoint of node A, whose degree is k= 3 and whose
strength is s= 4. In the Pólya urn analogy, this amounts to starting the urn
with one red ball and k− 1= 2 black balls, and computing the probability of
drawing at least w red balls in s draws (i.e. the probability that a node
distributing its strength s at random through a Pólya process will assign a
weight equal or larger than w on the link under consideration). The right
part of the Figure shows the possible configurations of the corresponding
Pólya urn (for a= 1, which entails adding to the urn one ball of the same
colour of the latest ball drawn) over the s draws, and their corresponding
probabilities computed via Eq. (1). The p-value associated to the link is
shown at the bottom of the Figure, and is computed as the sum over
‘favourable’ outcomes (see Eq. (2)), i.e. urns containing at least w= 2 red
balls (in addition to the one initially present in the urn) at the end of the
process
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networks they are extracted from. The parameter a, instead,
ensures the flexibility of the method thanks to the analytical
control we have over it (see Supplementary Note 5), which can be
exploited to tailor the backbone extraction process with respect
to the network’s own heterogeneity or other meaningful criteria.
This will be showcased in the following Section. Moreover, let
us mention that a can be directly related to the statistical
significance α used to assess the null hypothesis: the backbones
generated by taking a= a1 can approximately be considered
equivalent to those associated with a= a2 > a1, provided that a
higher statistical significance is set. This is discussed in the
Methods Section and numerical evidence for this is provided in
Supplementary Note 6.

Fixing the free parameter. The main benefit of the Pólya filter is
its flexibility, which allows to explore the network backbones
obtained when setting different levels of tolerance to hetero-
geneity, as quantified by the parameter a. We devote this section
to recommending possible criteria that would identify an optimal
value of such a parameter. Clearly, the notion of optimality
strongly depends on the specific application being considered.
Therefore, we will recommend three different criteria.

● Sweeping: The Pólya filter’s monotonicity can be exploited to
fix a desired level of sparsity of the resulting backbone with
respect to the original network, and to identify the value of a
that achieves it. Namely, as a consequence of the property in
Eq. (3), the fraction of nodes, of edges, and of total strength
retained in the Pólya backbones are all monotonically non-
increasing functions of the parameter a. Hence, starting from
a= 0, one can scan the backbone family Pa for increasing
values of a until a desired level of sparsity has been reached
(e.g. 5% of the nodes in the original network).

● Maximum likelihood: Eq. (1) can be used to define a log-
likelihood function, which can in turn be shown to have a
maximum (see Supplementary Note 5). By definition, such a
value corresponds to the Pólya process whose self-
reinforcement mechanism is the most likely to generate the
network under study. Effectively, this amounts to identifying
the value aML corresponding to the ‘nullest’ model in the
Pólya family or, in other words, the Pólya process that best
captures the heterogeneity of the network under considera-
tion. We further convey this point in Supplementary Figure 3
by showing on synthetic networks that the maximum
likelihood estimates of the parameter a are indeed sensitive
to changes in the network’s heterogeneity. As such, this
criterion is particularly suited to applications where validating
the backbone as a whole is a priority. As an example, we
report here the values of aML of the two networks we study in
this paper. We find aML= 4.5 for the US Airports network
and aML= 3.4 for the WIOT network.

● Salience: Lastly, we are going to propose an ad-hoc criterion
based on a compromise between the information retained in a
backbone and the information lost by filtering the network it
is extracted from. We shall quantify the former in terms of
salience43, a recently proposed yet well established measure of
link importance, which can be loosely defined as the fraction
of weighted shortest-path trees a link participates in. This is a
non-local measure that has been shown to account for both
the topological position of a link and for the magnitude of its
associated weight (somewhat in analogy to the quantity in Eq.
(4)), and captures several essential transport properties. In
Supplementary Note 7 we show that, as a increases, the links
removed from Pólya backbones are generally those with a
lower salience. As a result, the average salience 〈S(a)〉 retained
in the backbones Pa increases with a.
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Fig. 2 Role of the parameter r in the Pólya backbone extraction process. a Evolution of the minimum, maximum, and average value of r computed in Pólya
backbones for increasing values of a with a univariate significance level αU= 0.05 in the US Airports network. b Same quantities computed in the WIOT
network. c Scatter plots of the p-values associated with each link in the US Airports network against the corresponding value of the ratio r for two different
values of a at a univariate significance level αU= 0.05. High values of r are associated with p-values below the Bonferroni threshold αB (solid black line),
while the opposite is not always true. The black dashed lines illustrate the soft dependence on r described by Eq. (7). d Same plot for the WIOT network
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Measuring the quality of a backbone just in terms of
average salience could lead, in most cases, to an excessive
depletion of the network under study. This tendency can be
contrasted by penalizing large differences between backbones
and their original networks. We do so by introducing the two
following optimality measures

O1 ¼ JðW;PaÞ � hSðaÞi; O2 ¼ FnðaÞ � hSðaÞi; ð5Þ

where we are weighting the average salience against the
Jaccard similarity JðW;PaÞ between the weights in the
original network and those in the backbone, or against
the fraction Fn(a) of nodes retained in Pa, respectively.
Figure 3 shows the behaviour of the above metrics as
functions of a in the two networks we study. As it can be seen,
both metrics achieve a maximum a*, which represents the
optimal compromise between high salience and similarity
with respect to the original network.

Comparisons with other network filters. In this Section and in
Supplementary Note 8 we further characterize the Pólya filter’s
family of backbones through the comparison with some of the
other available filtering techniques. In a nutshell, this will allow us
to show that Pólya backbones are typically sparse, salient and
heterogeneous.

Figure 4 shows different properties of the Pólya backbones of
the US Airports and WIOT networks obtained for different
multivariate significance levels α with those of the backbones
obtained at the same statistical significance with the Hypergeo-
metric Filter (HF)30, the Maximum-Likelihood filter (MLF)33, the
Enhanced Configuration Model (ECM) based on the canonical
ensemble constrained both on degrees and strengths34, the Noise-
Corrected (NC) Bayesian filter proposed in44, and the Disparity
Filter (DF)25, which in the Methods Section and in Supplemen-
tary Note 3 we show to correspond to a large-strength
approximation of the Pólya filter for a= 1. Comparisons with
the GloSS filter28 were also performed, but their results are not
reported due to the excessive sparsity of the backbones produced
by such method when accounting for multiple hypothesis testing.

As it can be seen from the two upper panels (see also
Supplementary Note 8), Pólya backbones are considerably more
parsimonious than those provided by the other filters considered.
This is especially true when correcting for multiple hypothesis
testing (the black vertical lines in each plot correspond to a
Bonferroni-corrected univariate significance level of 0.05, which is
crucial to reduce the number of false positives retained in the
backbones. In addition, when setting a≃ aML (see previous
Section), the Pólya filter generates ultra-sparse backbones whose

links are statistically significant with respect to the network’s own
heterogeneity. This will be further illustrated with a case study in
the following Section.

The two middle panels show values of the optimality measure
O1 as a function of statistical significance. As it can be seen, for a
wide range ot the parameter a the Pólya filter is able to strike a
good balance between sparsity and salience, a property that is not
shared by any other of the methods considered.

The two bottom panels demonstrate the heterogeneity of Pólya
backbones, by showing the Jaccard similarity between the B weights
retained in a backbone and the top B weights in the original
network. This essentially amounts to assessing how heterogeneous a
network backbone is with respect to a ‘naive’ backbone obtained
simply by thresholding on weights. As one can see, the Pólya filter
generates backbones that are considerably more heterogeneous than
those provided by the other methods, with the exception of the NC
filter when applied to the WIOT network, where, however, such
filter ends up discarding the more salient links.

The two bottom panels also show that the Pólya filter is more
responsive to statistical significance than the other methods.
Indeed, Pólya backbones are built around complex and sparse
cores that correspond to links associated with very low p-values.
As the threshold α increases, such cores are enriched by links with
heavier weights which are structurally important for the network
but classified as less statistically significant. Diversely, the other
methods are much less responsive to α, even when varied across
several orders of magnitude.

The above properties are inherited by the disparity filter,
which, as demonstrated in the Methods Section and in
Supplementary Note 3, is a large-strength approximation of the
Pólya filter for a= 1. In most cases (see also those in
Supplementary Note 8), the disparity filter generates rather
parsimonious backbones that are more salient and heterogeneous
than most of the backbones produced by the other methods
considered above. Yet, depending on the specific application or
network, the disparity filter might be far from optimal within the
Pólya family. This is the case, for example, in the US Airports
network, where the disparity filter backbone is rather sub-optimal
in terms of salience, as demonstrated by the comparatively low
value of O1 it achieves within the Pólya family.

All in all, the above results reiterate that the Pólya filter’s main
advantage lies in its flexibility, which allows to tune the filter to
the specific network or application under consideration. More-
over, the filter’s ability to ‘compress’ the salience and hetero-
geneity of the original networks in ultra-sparse backbones is
unmatched by the other methods we considered. In the next
section we show how these properties can be exploited in order to
gain insight on real-world networks.
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Fig. 3 Optimality measures O1 and O2. These are calculated on the extracted backbones (at a univariate significance level αu= 0.05) as a function of a. The
optimal values are highlighted with a cross. a Optimality measures for the US Airports network. The optimal values are a*= 0.2 for O1 and a*= 0.8 for O2,
respectively. b Same plot for the WIOT network. The optimal values are a*= 2.8 for both O1 and O2

NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-019-08667-3 ARTICLE

NATURE COMMUNICATIONS |          (2019) 10:745 | https://doi.org/10.1038/s41467-019-08667-3 |www.nature.com/naturecommunications 5

www.nature.com/naturecommunications
www.nature.com/naturecommunications


The above observations can be largely replicated based on the
additional comparisons shown in Supplementary Note 8 between
the above methods and the Pólya filter.

The short-haul backbone of the US Airports network. In the
following we show how the Pólya filter can be used to gather
unique insights on the US Airports network.

Figure 5 shows the Pólya filter’s backbones of the US Airports
network obtained for different values of the filter’s parameter a.
Thicker lines correspond to ‘heavier’ links (i.e. routes with more
passengers), while lines in blue, orange, and purple correspond,
respectively, to short, medium, and long-haul flights according to
the US Bureau of Transportation’s classification.

As per Eq. (3), higher values of a lead to sparser backbones.
The backbone in the top-left panel corresponds to a= 0.4 (which
is between the two values of a that optimize the metrics defined in

Eq. (5)), and is the most salient one. As such, it features the most
crucial long-haul connections between hubs and/or the more
geographically remote states (Alaska, Hawaii, and Puerto Rico).
Most, although not all, of such connections are retained when
setting a= 1, which approximately corresponds to the disparity
filter’s backbone, shown in the top-right panel.

Things change considerably when increasing the filter’s
tolerance to heterogeneity through higher values of a. The
backbone in the bottom-left panel is the one obtained for the
highest value of a that still allows to retain both connections
between New York and Los Angeles (a= 2.6), i.e. the two largest
American cities. Notably, these are the only two long-haul
connections remaining. Finally, when tuning the filter’s tolerance
to the network’s own heterogeneity (a= aML= 4.5), we obtain an
ultra-sparse backbone, shown in the bottom right panel, where all
long-haul flights and almost all connections between major cities
and hubs have been filtered out. In Supplementary Note 9 we
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Fig. 4 Comparisons between the backbones generated by the Pólya filter (PF) and other network filtering methods. The methods we consider are the
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retained in the backbones with respect to the total number of links in the original networks. c, d Value of the salience-related measure O1 defined in Eq. (5).
e, f Jaccard similarity between the B weights retained in the backbones and the top B weights in the original networks. In all plots the light blue band
correspond to all values measured in the Pólya backbone family for a∈[0.2,7], with the light blue solid (dashed) line corresponding to a= 0.2 (a= 7);
vertical dashed lines correspond to the Bonferroni-corrected 5% significance level

ARTICLE NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-019-08667-3

6 NATURE COMMUNICATIONS |          (2019) 10:745 | https://doi.org/10.1038/s41467-019-08667-3 | www.nature.com/naturecommunications

www.nature.com/naturecommunications


further characterise such a backbone by showing its projection
onto US states, and showing that it is mostly made of two-way
links between bordering or geographically close pairs of states.
This is because long-haul connections are precisely those that
determine the network’s heterogeneity, while the links retained
are those identified as statistically significant with respect to it.
The only major hub still involved in a large number of
connections is Atlanta, which is the busiest airport in the world
and serves almost 20% more passengers than the second busiest
US airport. Notably, the links retained form a network of mostly
regional and short-haul flights connecting airports that are often
of secondary importance on the national scale. Yet, these flights
provide vital connections, carrying very large numbers of
passengers relative to the overall heterogeneity of the broader
transport system they are embedded in. This is well exemplified
by Alaska, where a very large number of internal flights are
validated.

Predicting trade in the WIOT network. As an example of a
practical use of our methodology, we show how the out-of-sample
performance of a simple econometric model aimed at predicting
trades in the WIOT network can be improved by using the Pólya
filter.

Understanding technological innovation ultimately hinges on
the ability to foresee structural changes in the relationships
between economic actors. Several studies have recently looked at

this issue from a network perspective, where firms purchase
goods from each other and combine them into more technolo-
gically sophisticated products (see, e.g.45). Within this framework,
being able to predict changes in trading relationships can be of
crucial importance in order to anticipate technological shifts and
allow for an efficient allocation of investments.

Here, we follow45,46 and build a simple model to predict
trading relationships in the WIOT dataset based on its network
properties. We refer to Supplementary Note 10 for a detailed
description of the model. In short, it is a linear regression model
aimed at predicting the future trading volume between two
industrial sectors based on the relative importance of their past
trading volume (with respect to their overall trading volume) and
on their proximity in the network computed via the Leontief
input–output matrix47.

We exploited such model to assess the potential benefits gained
in terms of prediction accuracy when employing the Pólya filter.
Namely, we constructed Pólya backbones of the annual WIOT
networks from 2006 to 2010 both for a= 1 (which essentially
corresponds to the disparity filter) and for a= aML= 3.2. We
used such backbones to calibrate the model (see Supplementary
Table 1 for the model’s coefficients and their significance) and to
make out-of-sample predictions of the trading volumes of the
links marked as significant in the three following years. We
compared the predictive power of such models with that of the
model calibrated on the full unfiltered WIOT network.

a b

c d

Fig. 5 Pólya backbones of the US Airports network for different values of the filter’s parameter a. a Backbone for a= 0.4 (which is an intermediate value
between the two that optimise the salience metrics in Eq. (5)), where most long-haul flights between hubs are retained. b Backbone for a= 1,
approximately corresponding to the one obtained via the disparity filter. c Backbone for a= 2.6, which is the highest value of the filter’s parameter where a
long-haul flight (New York–Los Angeles) is retained. d Backbone for a= aML= 4.5, where all long-haul flights and all connections between hubs have been
filtered out
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In Table 1 we compare the predictive power of the model when
calibrated on Pólya backbones and on the full, unfiltered, WIOT
network in terms of out-of-sample R2 coefficients. As it can be
seen, applying the Pólya filter substantially improves the
percentage of variance in the data explained by the model, with
the best results being obtained when applying the filter for a=
aML.

These results further testify that the information contained in
Pólya backbones is substantial. Indeed, the full WIOT network
contains 2.68 × 106 links, whereas the two Pólya backbones
employed above contain 4.89 × 104 and 1.48 × 104 links for a= 1
and a= aML, respectively (see Supplementary Table 1). This, in
turn, means that the information lost by reducing the number of
links by two orders of magnitude is more than offset by the higher
overall informativeness of the networks generated by the filter.

Discussion
In the era of Big Data, information filtering methods are needed
more than ever to handle the dazzling complexity of both social
and natural networked systems. In this paper, we have proposed a
technique based on the Pólya urn model to extract backbones of
statistically relevant interactions between pairs of nodes in a
network. In the network context, the parameter a tuning the
Pólya model’s self-reinforcement mechanism effectively becomes
a tolerance to a network’s heterogeneity. This, in turn, introduces
an element of flexibility, which, to the best of our knowledge,
other network filtering techniques do not provide.

Indeed, we have shown that the Pólya filter generates a con-
tinuous family of network backbones. Depending on the specific
application, the null hypothesis underpinning the filter can be
chosen so as to have a different tolerance to heterogeneity. The
low-tolerance regime (a < 1) corresponds to a rather loose filter-
ing, suited to situations where the main goal is to filter out
interactions that can be unquestionably identified as noise. On
the other hand, the high-tolerance regime (a > 1) corresponds to
increasingly restrictive tests, where only links of substantial
structural importance survive.

As we have shown, the link selection criterion underpinning
the Pólya filter is based on the interplay between topology and the
local relative importance of a link, quantified by the parameter r.
This, in turn, guarantees that the filter does not perform a naive
link selection merely based on retaining high strength links
connecting hubs, but instead ensures a non-trivial scanning of all
the relevant scales of a network.

Methods
Data. In the following we provide a short description the datasets we employed to
illustrate the Pólya filter.

World Input-Output Database: The Database contains yearly aggregate
economic transactions, measured in millions of dollars, between the industrial
sectors of different countries from 2000 to 2014. The database features transactions
between 64 sectors in 45 countries42,48. The resulting series of networks and their
properties have been analysed extensively in a number of studies49–51. The dataset

we are going to use in this paper is the 2014 network, which features 2464 nodes
and 738,374 edges.

US Airports network: The dataset contains information on the flights between a
number of US airports during the year 2017. Each link represents a connection
between airports, with the weight representing the number of passengers on all
flights on that route in the given direction. The system contains 1151 airports and
20,580 different connections. The same network with data coming from different
years has already been used in network filtering literature25,34.

In Supplementary Note 8 we show comparisons between the Pólya filter and
other filtering techniques on the two following additional datasets.

High School network: This dataset reports face-to-face interactions between
students recorded in 2013 in a Marseille high school throughout a period of five
days52. The weights on the network’s links correspond to the number of
interactions recorded during the experiment, and interactions were recorded every
20 s. The network is made of 5818 weighted interactions among 1567 students.

Florida ecosystem network: Weights in this network represent the carbon
exchanges between taxa in the cypress wetlands of South Florida during its dry
season53. The network is formed of 128 nodes and 2137 links.

Approximations of the Pólya filter’s p-values and relationships with the dis-
parity filter. Eq. (2) can be considerably simplified assuming s≫ k/a, and w≫ 1. In
this regime, the p-value the Pólya filter associates to a weight w on a link belonging
to a node with degree k and strength s reduces to

πPðwjk; s; aÞ �
1

Γ 1
a

� � 1� w
s

� 	k�1
a wk

sa

� �1
a�1

; ð6Þ

where Γ is the Gamma function. The rigorous derivation of the above approx-
imation is provided in Supplementary Note 3, where we also show numerically that
the approximations used to derive Eq. (6) hold for large fractions of edges. If we
further approximate Eq. (6) by expanding it around w/s≈0 we obtain

πP � e�
r
a r

a

� �1
a�1

Γ 1
a

� � ; ð7Þ

where r was introduced in Eq. (4). This result demonstrates the soft dependence
of the Pólya filter on the ratio r mentioned in the main text and shown in
Fig. 2.

Notably, when Eq. (6) holds, the Pólya filter does not depend on w and s
separately (as it normally does, as per Eqs. (1) and (2)), but only depends on such
quantities through the ratio w/s and the p-value loses its ability to discriminate
between nodes with different heterogeneity. As we shall see in the following
section, this allows to extend the applicability of the Pólya filter to networks with
non-integer weights.

Setting a= 1 in Eq. (6) gives πP= (1− w/s)k−1, which coincides with the p-
value prescribed by the disparity filter25, i.e.

πDðwjk; sÞ ¼ 1� ðk� 1Þ
Z w=s

0
ð1� xÞk�2dx ¼ 1� w

s

� 	k�1
: ð8Þ

We can therefore conclude that the disparity filter corresponds to a large
strength approximation of the Pólya filter in a special case (a= 1). This is
demonstrated in Fig. 6, where we plot the relationship between the p-values
assigned by the Pólya and disparity filters to the same links. As it can be seen, the
two sets of values are indeed very close when a= 1. This should not come as a
surprise. Indeed, the null hypothesis underlying the disparity filter is ruled by a
particular case of the Dirichlet distribution, which is known to be a limit case of the
Beta-Binomial distribution as the number of draws goes to infinity54.

The relationship between the Pólya and disparity filters is further investigated in
Supplementary Notes 3 and 6.

Equivalence of Pólya backbones. In this Section we are going to show that the
backbones produced by the Pólya filter for different values of a can be made
approximately equivalent by tuning the filter’s statistical significance.

Assessing the statistical significance of a link with weight w (or associated to a
value r of the ratio in Eq. (4)) entails determining whether it is compatible with the
assumed null hypothesis. Using a Gaussian analogy, we can say that a value r is
compatible with the null hypothesis if μr(a)− bσr(k, s, a) < r < μr(a)+ bσr(k, s, a),
where b ≥ 0 is inversely proportional to the statistical significance α, while μr and σr
denote the expected mean and standard deviation of the ratio r under the Pólya
null hypothesis. These read:

μrðaÞ ¼ E r½ � ¼ 1 ð9Þ

σ2r ðk; s; aÞ ¼ E ðr � μrÞ2
� � ¼ k� 1

s
kþ as
aþ k

: ð10Þ

Let us then consider the null hypothesis associated with two different values a1
and a2 of the parameter, such that a2 ≥ a1, and look for a scaling parameter c that

Table 1 R2 coefficients of the model calibrated on the three
different datasets when used to make out-of-sample
predictions

Out-of-sample R2

2011 2012 2013

Unfiltered Networks 0.1349 0.1371 0.1367
Backbones Pa¼1 0.1960 0.1989 0.1972
Backbones PaML

0.2242 0.2181 0.2127
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makes them equivalent. In order to do so we just need to impose:

μrða1Þ± σrðk; s; a1Þ ¼ μrða2Þ± cσrðk; s; a2Þ; ð11Þ

for c ≥ 0. Using μr(a1)= μr(a2)= 1, and setting a2= da1 (with d ≥ 1), we can solve
the above equation for c and get

c ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a1 þ k=d
a1 þ k

a1sþ k
a1sþ k=d

s
; ð12Þ

which is a monotonically decreasing function of d. This means that the same
backbone produced by the Pólya filter for a= a1 can be approximately
reproduced with a= a2 ≥ a1 and a smaller region of compatibility with the null
hypothesis (i.e. a higher statistical significance). In other words, in the Pólya
filter family of backbones, tolerance to heterogeneity and statistical significance are
closely related.

Networks with non-integer weights. The Pólya filter is encoded in Eq. (1),
which depends on w and s individually. This means, that Eq. (1) is able to dis-
criminate between nodes with different heterogeneity (given a fixed value of k),
e.g. between two nodes characterised by the pairs (w, s)= (10,100) and (w, s)=
(100,1000), respectively. This feature is naturally suited to deal with integer
weights, such as those coming from counting experiments (e.g. as in the US
Airports network).

The above property vanishes when s≫ k/a and w≫ 1, leading to Eq. (6), which
only depends on the ratio w/s and, in fact, should be exploited to apply the Pólya
filter when dealing with networks with non-integer weights, even in cases when
such approximations do not hold. Of course, doing so will change the underlying
null hypothesis: indeed, Eq. (6) does not assign a p-value to a weight w, but rather
to a rate of interaction w/s. In most cases the p-values given by Eq. (1) and (6) are
practically the same (see Supplementary Fig. 1), and can be used interchangeably
when dealing with integer weights. Conversely, Eq. (1) cannot assign p-values to
non-integer weights, but in such cases one can always assign a p-value to the
interaction rate w/s through Eq. (6).

We can further justify the use of Eq. (6) by thinking of an overall rescaling of
the weights by a large factor c. For example, let us consider a network whose lowest
weights are of order 10−4. Applying Eq. (1) to such a network would entail
rescaling its weights by a factor c ≥ 104 before filtering. Doing so, however,
automatically takes us to the regime under which Eq. (6) holds (i.e. s≫ k/a and
w≫ 1), which therefore becomes the Pólya filter’s analytical expression for non-
integer weights.

Code availability. The MATLAB code used to implement the Pólya filter in this
study is available at http://mathworks.com/matlabcentral/fileexchange/69501-
polya-filter.

Data availability
The US Airports network data used in this study are available at https://www.bts.gov/;
the World Input-Output database is available at http://www.wiod.org/home; the Florida
ecosystem network is available at http://konect.uni-koblenz.de/; the high school network
is available at http://www.sociopatterns.org.
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