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A B S T R A C T

The prolonged reaction times seen in Parkinson's disease (PD) have been linked to a dopaminergic-dependent
deficit in using prior information to prepare responses, but also have been explained by an altered temporal
processing. However, an underlying cognitive mechanism linking dopamine, temporal processing and response
preparation remains elusive.

To address this, we studied PD patients, with or without medication, and age-matched healthy individuals
using a variable foreperiod task requiring speeded responses to a visual stimulus occurring at variable onset-
times, with block-wise changes in the temporal predictability of visual stimuli.

Compared with controls, unmedicated patients showed impaired use of prior information to prepare their
responses, as reflected by slower reaction times, regardless of the level of temporal predictability. Crucially, after
dopamine administration normal performance was restored, with faster responses for high temporal predict-
ability.

Using Bayesian hierarchical drift-diffusion modelling, we estimated the parameters that determine temporal
preparation. In this theoretical framework, impaired temporal preparation under dopaminergic depletion was
driven by inflexibly high decision boundaries (i.e. participants were always extremely cautious). This indexes
high levels of uncertainty about temporal predictions irrespectively of stimulus onset predictability.

Our results suggest that dopaminergic depletion in PD affects the uncertainty of predictions about the timing
of future events (temporal predictions), which are crucial for the anticipatory preparation of responses.
Dopamine, which is affected in PD, controls the ability to predict the timing of future events.

1. Introduction

Our ‘beliefs’ about the external world allow for generating predic-
tions about the possible timing of future events (temporal predictions,
Nobre et al., 2007). However, temporal predictions carry a degree of
uncertainty (temporal uncertainty) that scales with the length and
variability (predictability) of the delay preceding an event (foreperiod;
Gibbon et al., 1997). When the onset of a stimulus is predictable, re-
action times (RT) speed-up (Niemi and Näätänen, 1981). But when the
length and/or variability of foreperiods increases, temporal predictions
become more uncertain, leading to slower RTs (Klemmer, 1956).

The neurotransmitter dopamine (DA) plays a central role in tem-
poral processing and the formation of temporal predictions (Coull et al.,
2011; Meck, 1996). Along its role in encoding uncertainty about the
occurrence of a stimulus, such as the delivery of a reward (de Lafuente

and Romo, 2011), dopaminergic activity might also signal the un-
certainty about when a stimulus occurs (e.g. time of reward delivery).
For example, when long fixed foreperiods precede reward delivery
(Bromberg-Martin et al., 2010; Nomoto et al., 2010), or when the
foreperiods are variable (variable foreperiod), dopamine midbrain cells
respond in relation to the temporal predictability of the reward delivery
time (Pasquereau and Turner, 2015). Crucially, suppression of dopa-
minergic neurotransmission impairs temporal judgments (Soares et al.,
2016) and the ability to form temporal predictions (Tomassini et al.,
2015), possibly through a dopamine-dependent increase in uncertainty
about the underlying temporal structure of events.

A role of dopamine for controlling temporal uncertainty (Fiorillo
et al., 2003) suggests that dopamine depletion should impair the ability
to form accurate temporal predictions (Friston et al., 2012). Here we
tested this in Parkinson's disease (PD) patients as a model for DA
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depletion, to elucidate the role of DA in regulating the levels of tem-
poral uncertainty. PD is a movement disorder characterized by degen-
eration of midbrain DA cells and among the cognitive impairments
observed in PD patients are the inability to combine past experience to
guide decisions (Perugini et al., 2016), along with altered processing of
time durations.

However, it is still unknown whether DA depletion in PD patients
impairs the ability to correctly represent temporal uncertainty and
hence to form temporal predictions about future events. This is crucial
because some impairments of movement control that characterize the
disorder have been attributed to either an inability to react to novel
events, or an over-reliance on new sensory information (Galea et al.,
2012; Perugini et al., 2016). We addressed this question by comparing
medicated (PD-on) and unmedicated (PD-off) PD patients, and aged-
matched controls using a variable foreperiod task that allows to prob-
abilistically predicting the timing of the stimulus onset (Gibbon et al.,
1997; Luce, 1986). We measured RT across a range of predictability
levels by manipulating the mean and variance of the foreperiod dis-
tributions in a block-wise fashion, thus linking actual stimulus-onset
predictability to experienced temporal uncertainty (Fig. 1A-B).

By fitting RTs to a drift-diffusion model (DDM), we sought to
identify the specific decision processes relating to changes in temporal
uncertainty and their sensitivity to DA depletion. We applied a Bayesian

hierarchical estimation of DDM, which is particularly suited for studies
involving patients where trial counts are necessarily low (Wiecki et al.,
2013), and which has been successfully employed to investigate PD
(Cavanagh et al., 2011; Herz et al., 2017; Zhang et al., 2016). We
compared three principled variants of DDM that reflected competing
hypotheses about the link between DA and temporal uncertainty. One
variant posits that more certain temporal predictions about stimulus-
onset are reflected by lower boundaries. This leads to faster response
initiation and hence faster reaction times (Näätänen, 1970). Con-
versely, high temporal uncertainty is reflected by higher decision
boundaries, leading to more cautious, and hence slower responses
(Forstmann et al., 2010; Fig. 1D). An alternative model is that temporal
uncertainty influences the ability to deploy attention (Nobre et al.,
2007), as reflected by changes in the drift-rate of the accumulation
(Forstmann et al., 2011). Higher drift-rates thus occur with high at-
tentional engagement, and vice-versa. A third possibility is an interac-
tion between drift-rate and boundary across conditions, suggesting that
temporal uncertainty influences both response cautiousness and atten-
tion processes.

We tested this directly, hypothesizing that DDM parameters should
vary across levels of temporal predictability reflecting changes in
temporal uncertainty. We further hypothesized that dopaminergic de-
pletion increases temporal uncertainty about temporal predictions, thus

Fig. 1. Variable foreperiod task and the drift-diffusion model. (a) Following a warning stimulus (white circle), the onset of the imperative stimulus (colored arrows)
required participants to make a keypress as quickly as possible. The time between the warning and imperative stimulus (foreperiod) changed across trials following a
Gaussian distribution. (b) Mean and standard deviation of the foreperiod distribution were constant throughout a block of trials. Four different distributions were
used in a blocked factorial design: foreperiod duration (Short, Long) x foreperiod variability (Low, High). The formation of precise temporal predictions was thus
mainly limited by temporal uncertainty, which increased with foreperiod duration and foreperiod variability. (c) Example of a trajectory of the drift-diffusion model.
The two boundaries represent action-triggering boundaries for ‘LEFT’ and ‘RIGHT’ responses. The diffusion process, reflecting the accumulation of sensorial evidence,
starts at a point, z, between the two boundaries and after a non-decision time, t0, rising up to one of the two action-triggering boundaries with drift-rate, v. The
predicted RT is the sum of the duration of the diffusion process and t0. (d) Hypothetical effects of temporal uncertainty on parameters of the model: temporal
uncertainty may either modulate the sampling-rate of sensorial evidence accumulation (i.e. the drift-rate), increase the level of activation required to trigger an
action (i.e. boundaries), or a combination of both. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this
article.)
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slowing response preparation (as indexed by slow RT), regardless of the
actual predictability of stimulus onset. We further anticipate that the
dopamine-induced deficit in estimating temporal uncertainty should be
reflected by DDM parameters that do not adjust to changes of temporal
predictability.

2. Materials and methods

2.1. Participants

Our 32 participants included sixteen patients with idiopathic PD
and sixteen healthy controls. This sample size has proved powered
enough in similar behavioural studies involving PD patients (Bellebaum
et al., 2016; Hadj-Bouziane et al., 2012; Manohar and Husain, 2015).

PD patients and controls did not differ in age, education, gender
distribution, and general measure of cognition (Table 1). Experimental
protocols conformed to the guidelines of the Declaration of Helsinki and
were approved by the research ethics committee of the Institute of
Neurology at University College London.

Neurological and psychiatric symptoms were assessed using the
Hoehn-Yahr Scale (Hoehn and Yahr, 1967), the Unified Parkinson's
Disease Rating Scale (UPDRS; Lang and Fahn, 1989), the Hospital An-
xiety and Depression Scale (HADS; Zigmond and Snaith, 1983). Both
patients and healthy controls were administered the Mini Mental State
Examination Scale (MMSE; Folstein et al., 1975); a pre-defined cut-off
score of 25 represented a degree of cognitive impairment considered
too great for participation. Excluding PD medications for the patient
group, neither patients nor controls were under the effect of drugs
potentially interfering with central dopamine levels during the testing
period.

2.1.1. Parkinson's disease patients
PD patients were tested on and off (877 ± 220min withdrawn)

their usual dopaminergic medication. All patients were treated with

either L-dopa monotherapy (n= 3) or L-dopa in combination with
dopamine agonist (n= 13). L-dopa equivalent units (mean
713 ± 322) were calculated as described elsewhere (Tomlinson et al.,
2010). A comprehensive description of the patients’ demographic data
is provided in Table 1. Patients were assessed twice (days between
testing sessions 12.9 ± 5.2), once in medicated state (PD-on) and once
after overnight withdrawal (mean 14.7 ± 5.2 h) of dopamine medi-
cation (PD-off). To control for learning effects, the order of the as-
sessment was counterbalanced so that half (n= 8) of the patients
omitted their medication for the first session and the other half for the
second session. All the patients had a stable response to L-dopa and
showed no sign of dyskinesia during the experiment.

2.1.2. Healthy participants
Age-matched controls (six females, eight males; mean age

67.5 ± 7.3) had no history of neurological disorder and none of them
were taking dopamine replacement medications.

2.2. Apparatus and procedures

2.2.1. Apparatus
Stimuli were presented using MATLAB (The MathWorks, Natick,

MA) and Cogent Graphics routines (http://www.vislab.ucl.ac.uk/
cogent.php) on a 19-in. LCD display (refresh rate 60 Hz) controlled by
a Dell Precision T3500 (Dell Computer Corp., Austin, TX).

2.2.2. Behavioural procedure
We examined temporal preparation using a variable foreperiod task

(Fig. 1a) in which the delay (foreperiod) between a warning stimulus
(white circle) and an imperative stimulus (colored arrow) was varied
across trials (Fig. 1A). Visual stimuli subtended approximately 5° of
visual angle at a viewing distance of 60 cm. Participants had to respond
to the appearance of the imperative stimulus as quickly and as accu-
rately as possible by pressing either the left or the right arrow key with

Table 1
Demographic and clinical characteristics of participants.

Controls Parkinson's patients Statistics
t df p-value

Gender (female / male) 10/6 9/7
Age (years) 67.5 ± 7.3 66 ± 7.6 0.564 30 0.57
Education (years) 15.3 ± 3 14.6 ± 3.5 0.563 30 0.58
Time since diagnosis (years) – 9.9 ± 4.9
Time between testing sessions (days) – 12.9 ± 5.2
Time overnight withdrawal (OFF; hours) – 14.7 ± 5.2
LEU – 712 ± 322
Hoehn-Yahr severity scorea –
OFF – 2.0 ± 0.7
ON – 1.7 ± 0.7

MMSE 29.2 ± 0.9
OFF – 28.5 ± 1.1 1.860 30 0.07
ON – 28.6 ± 1.7 1.301 30 0.20

HADS-A (Anxiety subscale) 5.1 ± 3.7
OFF – 6.6 ± 3 −1.274 30 0.21
ON – 6.1 ± 3.1 − 0.881 30 0.38

HADS-D (Depression subscale) 3.3 ± 2.6
OFF – 5.0 ± 3.7 − 1.440 30 0.16
ON – 4.6 ± 3.1 − 1.202 30 0.24

UPDRS subscale III (motor)b –
OFF – 36.9 ± 13.3
ON – 22.5 ± 10.9

Abbreviations: LEU, L-dopa equivalent units; MMSE, Mini-Mental State Examination; HADS, Hospital Anxiety and Depression Scale; UPDRS, Unified Parkinson's
Disase Rating Scale. Table shows mean± SD.

a Hoehn-Yahr ON was significantly lower than Hoehn-Yahr OFF (t(15)= 2.61, p=0.02).
b UPDRS ON was significantly lower than UPDRS OFF (t(15)= 6.19, p < 0.001).
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their dominant hand (Right handed patients: 15/16; Right handed
controls: 14/16). Here, the reaction times (RT) indicate the degree of
preparation, such that greater preparation generates faster reaction
times (Niemi and Näätänen, 1981).

On each trial, the foreperiod duration was randomly sampled from a
truncated Gaussian distribution (Fig. 1B). In a blocked 2×2 factorial
design, we manipulated mean foreperiod duration (Short: 1500ms;
Long: 3000ms) and foreperiod variability (i.e. standard deviation; Low:
100ms; High: 600ms). The two distributions for short foreperiods were
truncated at 500ms, here considered as the minimum time required for
preparation (Hackley et al., 2009), and at 2500ms (longest foreperiod)
to preserve the distribution's symmetry. To ensure comparable standard
deviations between short and long distributions, both tails were also
truncated to the long distribution at 2000ms and 4000ms.

Each experimental session consisted of 4 blocks of 120 trials each,
separated by a short rest. A training block of 40 trials was conducted
prior to the main experiment. The training block was identical to the
experimental counterparts, but with the foreperiod sampled from an
exponential (non-ageing) distribution with mean 1000ms (Niemi and
Näätänen, 1981). The order of conditions (blocks) was balanced across
sessions and participants following a Latin square design. The whole
experiment comprised one session for the controls and two sessions, one
on and another off medication, for the PD patients.

2.3. Data analysis

2.3.1. Reaction times
RT were calculated as the delay between the onset of the imperative

stimulus and the key press. Responses shorter than 100ms or exceeding
the individual median RT by more than 3 median absolute deviations
(MAD) were considered invalid and excluded from further analysis. A
Poisson regression characterized the relationship between RT and
temporal predictability in terms of intercept and slope of a linear
function fitted to the RT of each participant (Banca et al., 2014):

E RT Tp Tplog ( ( | )) 0 1= + (1)

Tp (temporal predictability) varies from 4 (high) to 1 (low). The
intercept (β0) corresponds to the expected RT when temporal predict-
ability is highest and quantifies absolute differences in temporal un-
certainty (indexed by RT) between groups not attributable to our ma-
nipulation. The slope (β1) measures the sensitivity of RT to variations in
temporal predictability and represents the strength of the relationship
between subjective temporal uncertainty and temporal predictability.
Specifically, positive slopes indicate that temporal uncertainty in-
creases when reducing temporal predictability whereas slopes close to
zero indicate no relationship.

In addition, we tested whether PD-off patients were able to mod-
ulate their RTs with the passage of time (foreperiod-effect; Luce, 1986)
showing faster RT for foreperiods near the end of the trial than for early
ones. A linear regression between foreperiod's length and RT quantified
the foreperiod-effect between groups, with negative slopes indicating
faster RT for longer foreperiods. This was to confirm that performance
in PD-off was not determined by impaired motor preparation or/and
temporal processing.

2.3.2. Drift-diffusion modelling
In the drift-diffusion models(DDM) the decision process is described

by four parameters (Fig. 1C): the separation between the two decisions
boundaries (b) corresponding to the two choice alternatives (e.g. left vs
right button), the rate of activity accumulation arising towards the
boundaries (v; drift rate), a priori bias towards one of the two decisions
(z), and non-decision time t0 representing the time used for stimulus
encoding and response execution latencies. The model predicts the RT

for each alternative as the latency for the accumulating activity to reach
the corresponding boundary.

Here, we used a stimulus-coding approach where the lower and upper
boundary correspond to left and right responses, respectively.

We applied a hierarchical Bayesian approach (http://ski.clps.
brown.edu/hddm_docs/, Wiecki et al., 2013) to fit the model to the
empirical RT. The hierarchical approach treats participants as random
variables drawn from the group-level distribution, and uses Bayesian
statistics to estimate the posterior distribution of the DDM parameters
at the group-level, while accounting for differences at the participant-
level (Wiecki et al., 2013). This approach is robust in estimating
parameters with limited data, and thus particularly well suited for
studies involving clinical populations given the substantial constraints
on the duration of the task for patients (Zhang et al., 2016).

To test such hypotheses, we first compared 3 variants of the DDM
varying systematically whether only the boundaries (Model 1), the
drift-rate (Model 2) or a combination of both (Model 3) were allowed to
change between levels of temporal predictability. We did not expect a
priori biases since the two alternatives were presented in random order,
and counterbalanced by condition. Non-decision time was kept con-
stant across levels of temporal predictability, given prior evidence of a
dissociation between motor performance (i.e. kinematic parameters)
and temporal uncertainty (Tomassini et al., 2015; Pasquereau and
Turner, 2015), but was allowed to vary across groups to reflect dopa-
mine-related changes. All parameters were estimated separately for
each group.

For all variants, Markov Chain Monte Carlo simulations were run to
generate 50,000 samples from the estimated joint posterior parameter
distribution and the first 5000 samples were discarded as burn-in.
Convergence was assessed by visual inspection of the Markov chains
and by calculating the R-hat Gelman-Rubin statistics (Krypotos et al.,
2015).

Model comparison was performed by comparing the deviance in-
formation criterion (DIC) value of each variant (lowest DIC indicates
the best fit; Spiegelhalter, 2002), and revealed that our data were best
fitted when only the boundary parameter varied across conditions (i.e.
Model 1; See results below for more details; See Table A1 in the ap-
pendix for the parameters of the winning model). Hence, from here
onward, we will only refer to this model. To further evaluate the quality
of model fitting, we ran posterior predictive checks by averaging 500
simulations generated from the model's posterior to confirm it could
reliably reproduce pattern in the observed data (see appendix Table A2
and appendix Fig. A1 for results of posterior checks).

We predicted that impaired behavioural performance should arise
from the inability to correctly map temporal uncertainty to different
levels of temporal predictability. Following the same logic of the RT
analysis, we characterized the relationship between temporal un-
certainty (indexed by the boundary parameter) and temporal predict-
ability in terms of intercept (β0) and slope (β1) of a linear function fitted
to the estimated boundary of each participant. Since the intercept oc-
curs when the predictability of stimulus-onset is highest, it represents
the expected boundary's value when temporal predictability is highest
and provides insight on the ‘baseline’ levels of temporal uncertainty
across groups. The slope quantifies the modulatory effect of temporal
predictability on temporal uncertainty, as reflected by the boundary
parameter, with slopes close to zero indicating a weak modulatory ef-
fect. The anonymised behavioural data, and source code used for the
analyses can be found at https://github.com/ale-tom/PD_HDDM.

2.3.3. Statistical analyses
Within group effects of medication (PD-on, PD-off) were assessed

using one-tailed paired t-tests. Between groups effects were tested using
one-way ANOVAs with post-hoc planned comparisons (Controls vs PD-
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on; Controls vs PD-off; Keppel, 1991). We report η2 as a measure of
main effect size and Cohen's dz (Cohen, 1988) for the effect size of t-test
comparisons. For all analyses, level of statistical significance was fixed
at 0.05.

Statistical inference on model parameters was made by comparing
the proportion (q) of the posterior distribution of each parameter that
overlaps between groups. Significance was assigned if less of the 16.7%
(q< 0.0167) of the distributions overlapped, corresponding to q= 0.05
(Wiecki et al., 2013) after applying Bonferroni correction (Banca et al.,
2014).

3. Results

3.1. Clinical assessments

Patients were in the mild to moderate stage of the disease, with
more pronounced symptoms when in the off state (Hoehn and Yahr
scale, t15 = 2.61, p=0.02). As expected, scores of the motor section of
the UPDRS were significantly higher (t15 = 6.19, p < 0.001) when
measured off compared to on medication. None of the patients had
dementia diagnoses (MMSE scores> 25) and none suffered from clin-
ical depression (HADS scores< 7). See Table 1 for further details.

3.2. Basic reaction time effects

Participants performed the task without difficulty as shown by the
small overall proportion of excluded trials (control: 2.5% PD-on: 8.6%,
PD-off: 9.3% of responses). Less errors were made by the control group
(mean 3% ± 2%) compared with the PD-off (mean 18% ± 25%)and
PD-on groups (mean 19% ± 24%), although patients and control
subjects did not differ significantly (ANOVA, F(2,44) = 3.14,
p=0.053). The data from one healthy volunteer were excluded due to
technical problems during data acquisition.

Our behavioural results show that although participants were not
aware of the different foreperiod distributions, PD-on and controls were
able to learn the underlying temporal structure of the task and used
temporal predictions in anticipation of forthcoming stimuli (Fig. 2
A–B). Indeed, our Poisson regression revealed that, in controls, RTs
were modulated by the temporal predictability of stimulus-onset (slopes
of Poisson regression, one-sample t-test against zero: control: t15
=2.588, p=0.002) with slower RT when the temporal predictability
was lowest. By contrast, PD-off patients showed slow RT regardless of
the level of predictability (slope of Poisson regression, one-sample t-test
against zero; PD-off: t15 = 0.562, p=0.582; between-group compar-
ison: β1: F2,46 =5.557, p=0.007, η2 = 0.187; controls vs PD-off post-
hoc; t24.33 =0.52, p= 0.002, dz =1.3; corrected for hetero-
scedasticity). Crucially, after dopaminergic administration, patients’
performance was restored to normality (regression slope. One-sample t-
test against zero: PD-on: t15 =5.369, p < 0.001; PD-on vs PD-off:
paired t-test: t15 =3.767, p=0.001, dz =0.96; Controls vs PD-on: two-
sample t-test: t29 =1.310, p= 0.2). Since we assume that the changes
in RT across levels of predictability index changes in temporal un-
certainty, our data suggests that temporal uncertainty has saturated
after DA depletion.

Poisson regression also revealed significant differences in the RT
intercept (β0: F2,46 =4.696, p=0.014, η2 = 0.173) between groups.
The intercept in Fig. 2A-B quantifies RTs when the stimulus onset can
be easily predicted and is consistent with PD-off patients being overall
slower than PD-on (paired t-test; t15 =3.767, p= 0.001, dz =0.96) and
controls (post-hoc; t24.33 =0.52, p= 0.002, dz =1.3; corrected for
heteroscedasticity). However, foreperiod analyses confirmed that PD-
off were still able to modulate their response speed depending on the
passage of time. Foreperiod effects were marginally weaker for PD
patients (both on and off medication) than controls (see inset Fig. 2C),
however such differences were not statistically significant (two sample
t-test: control vs PD-on, t29 = −0.572 p= 0.57; Control vs PD-off, t29

Fig. 2. Behavioural results (a) Modulation of RTs by temporal predictability. Average RTs are plotted against foreperiod variability (bottom abscissa) and segregated
by foreperiod duration (upper abscissa) in controls (green), PD-on (red) and PD-off (blue) patients. (b) Poisson regression. The relationship between RTs and temporal
predictability were characterized in terms of intercept (β0) and slope (β1) of a linear function fitted to the RTs of each participant. * p < 0.05; Error bars re-
present± 1 SEM. (c) Foreperiod analysis. RTs were averaged across subjects and conditions and plotted as a function of foreperiod duration. RTs were normalized
and smoothed only for illustrative purposes. The inset barplot shows the slopes of the linear regression between RTs and foreperiod duration. Negative slopes indicate
a normal foreperiod effect. No significant difference between groups was detected.
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= −0.277, p=0.78; paired t-test: PD-on vs PD-off: t15 = 1.398,
p=0.19. All comparisons Bonferroni corrected). Thus, the lack of
difference in RT across predictability levels contradistinctive of DA
depletion cannot be attributed to a general impairment of motor pre-
paration or to experience the passage of time.

Together these results indicate that PD patients were not per se
unable to form temporal predictions, but that this ability requires suf-
ficiently restored levels of DA, as after administration of dopamine
medication (see Table 2 for an overview).

3.3. Drift-diffusion model

Changes in boundary separation alone were able to account for
changes in RTs across different levels of temporal predictability and our
experimental groups, as reflected by lowest DIC values for this model
(Model 1; Fig. 3A). This result shows that the estimated boundary can
be considered as a proxy measure of the temporal uncertainty

experienced by the subject. Furthermore, no significant differences
between groups were observed in either drift-rate (Control vs PD-on: q
= 0.86; Control vs PD-off: q = 0.29; PD-on vs PD-off: q = 0.03) and
non-decision time (Control vs PD-on: q = 0.31; Control vs PD-off: q =
0.73; PD-on vs PD-off: q = 0.89). These results confirm that our be-
havioural observations on PD-off did not result from an unspecific effect
on alertness or the ability to move.

Following the same logic of the behavioural analysis, we char-
acterized the relationship between temporal predictability and DDM
boundaries in terms of intercept (β0) and slope (β1) of a linear function
fitted to the estimated boundaries of each participant. The results from
the linear fitting of boundaries paralleled the results from the beha-
vioural analysis (Fig. 3). Both intercept (F2,46 =8.497, p= 0.001, η2 =
0.278) and slope (F2,46 =5.856, p= 0.006, η2 = 0.209) differed sig-
nificantly between groups. Intercepts (β0) were significantly larger in
PD-off, compared to PD-on (paired t-test; t15 =2.826, p= 0.006, dz
=0.71) and controls (post-hoc: t44 =4.013, p < 0.001, dz =1),

Table 2
Behavioural and modelling results.

Statistics

Parameters Control PD-on PD-off Control vs PD-on Control vs PD-off PD-on vs PD-off

Behavioural Intercept (β0) 334 ± 1.11 354 ± 1.18 395 ± 1.20 p=0.15 p=0.002* p=0.001*

Slope (β1) 0.015 ± 0.02 0.023 ± 0.02 −0.004 ± 0.03 p=0.18 p=0.014* p=0.002*

Model Intercept (β0) 0.869 ± 0.16 0.931 ± 0.10 1.065 ± 0.14 p=0.21 p < 0.001* p=0.006*

Slope (β1) 0.040 ± 0.05 0.059 ± 0.05 0.001 ± 0.05 p=0.15 p=0.015* p=0.003*

Table shows mean±SD.
* p < 0.05.

Fig. 3. Model comparison and hierarchical
drift-diffusion modelling of variable foreperiod
task (a) Model comparison. The deviance in-
formation criterion (DIC) between the best
fitting model (Model 1 - free parameter:
boundary) and the two alternative models
(Model 2 - drift-rate; Model 3 – boundary and
drift rate) is shown. (b) Influence of predict-
ability on evidence accumulation. Intercept
and slope of a linear function were fitted to the
estimated boundary of each participant. (c)
Model fit. Estimated boundary values were
strongly correlated to empirical RT averaged
across trials within each predictability level
(Spearman correlation); * p < 0.05; Error bars
represent± 1 SEM.
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suggesting high levels of temporal uncertainty after dopamine deple-
tion even when stimulus-onset was highly predictable. Slopes (β1) were
significantly smaller in PD-off relative to PD-on (paired t-test; t15
=3.202, p= 0.003, dz =1.23) and controls (post-hoc: t44 = 2.259,
p=0.015, dz =0.81). There were no significant differences between
PD-on and controls (β0: t1.261, p= 0.21 β1: t1.035, p= 0.15). The lack of
difference between controls and PD-on groups suggests that a widening
of decision boundaries along with a failure to adjust to changes in
temporal predictability result from DA depletion.

A strong correspondence between estimated boundary values and
the empirical RT (Fig. 3C; Control: rho = 0.82, p < 0.001; PD-on: rho
= 0.78, p < 0.001; PD-off: rho = 0.81, p < 0.001) confirmed that the
observed behavioural impairments were well explained by changes in
the sole boundary parameter of the DDM (see Table 2 for a compar-
ison).

Finally, the goodness of fit of the regression analyses was first
quantified for each individual using Pearson's correlation coefficient
and then Fisher transformed to meet distributional assumptions for
parametric tests across groups. A one-way ANOVA on the Fisher-
transformed correlation coefficients showed no difference in the
goodness of fit across groups for neither empirical reaction times (F(2,
44)< 0.001, p=1.00; mean R2± stdev: Controls = 0.83 ± 0.004,
PD-Off =0.83 ± 0.004, PD-On =0.83 ± 0.009) nor model boundary
parameter (F(2, 44) = 1.07, p= 0.35; mean R2± stdev: Controls
= 0.84 ± 0.007, PD-Off =0.83 ± 0.007, PD-On =0.84 ± 0.005).

4. Discussion

Parkinson's disease (PD) is characterized by an impaired use of prior
information to guide perceptual (Perugini et al., 2016) and value-based
decisions (Frank et al., 2004; Shiner et al., 2012). Here we demonstrate
that after DA medication withdrawal, PD patients are impaired when
using prior experience about the time of occurrence of events to prepare
responses in anticipation of an event. Critically, dopamine adminis-
tration restores performance to levels comparable to the control group.

PD is a movement disorder often accompanied by bradykinesia
(Sheridan and Flowers, 1990). A general inability to produce fast
movements in PD-off patients could alternatively explain our results.
However, most previous studies (Girotti et al., 1986; Jahanshahi et al.,
1992; Starkstein et al., 1989; but cfr Zappia et al., 1994) have shown no
difference in simple motor RT prior and after medication. Furthermore,
PD-Off patients were able to modulate their speed showing increasing
motor preparation with the passage of time. This suggests that brady-
kinetic symptoms in PD may result from a change in implicit ‘motor
motivation’, as opposed to a general inability to move fast (Mazzoni
et al., 2007). In previous work (Tomassini et al., 2015) adopting the
same temporal manipulation, dopamine blockage in healthy partici-
pants produced strikingly similar results on temporal processing as
observed here, without affecting the speed of reaching movements. In
the present study, we furthermore observed that non-decision times
estimated by the DDM (accounting for perceptual and motor processes)
did not differ between groups. Differences in performance across groups
were therefore neither driven by dopamine-related inability to produce
fast movements, nor by deficits in temporal processing per se. Instead,
our results indicate that DA depletion impairs the integration of prior
temporal information for the preparation of actions.

Here we used a Bayesian framework as a theoretically grounded
way to solve problems in the presence of uncertainty (Körding and
Wolpert, 2006), and in which to explain the impairments observed in
non-medicated patients. Within this framework, decisions rely more on
more precise (i.e. less uncertain) sources of information (Friston et al.,
2012; Mamassian and Landy, 2010; Stocker and Simoncelli, 2006).

More specifically, in conditions of high temporal predictability parti-
cipants will form reliable prior-beliefs about the most likely time of a
stimulus (Acerbi et al., 2012; Ahrens and Sahani, 2011; Jazayeri and
Shadlen, 2010), and use that information to prepare their responses.
When reducing this predictability, priors become more uncertain and
thus an optimal behaviour would require up-weighting the actual ap-
pearance of the stimulus rather than relying on one's temporal predic-
tions. Accordingly, if dopamine depletion causes the overestimation of
uncertainty about temporal predictions, a Bayesian agent will inflexibly
rely on the external stimulus to determine when to make a response
(Friston, 2014). This interpretation agrees with work (Perugini et al.,
2016) suggesting that PD patients rely less on prior information to make
decisions. Conversely, dopaminergic up-regulation should result in a
bias towards prior expectations (Cassidy et al., 2018). Hallucinations, a
cardinal feature of schizophrenia, are known to depend on excessive
striatal dopamine (Weinstein et al., 2017). A Bayesian model of hallu-
cinations posits that dopaminergic up-regulation can lead to a sys-
tematic underestimation of the uncertainty of predictions resulting in
hallucinatory percepts reflecting excessive biases toward sensory ex-
pectations (Friston, 2005). Such idea could also be extended to tem-
poral predictions, so that a Bayesian agent under hyper-dopaminergic
state would inflexibly rely on a priori expectations to determine when to
make a response. Future work on schizophrenic patients or pharma-
cological challenge (e.g. amphetamine) could assess such hypothesis.

The boundary parameter of our model captured the internal un-
certainty about temporal predictions: Large boundaries under condi-
tions of high temporal uncertainty index more cautious, and thus
slower, responses (Forstmann et al., 2010). In agreement with our re-
sults, the effect of dopaminergic depletion on changes in DDM bound-
aries has been linked to basal ganglia function (Bogacz et al., 2010;
Forstmann et al., 2008; Frank and O’Reilly, 2006; Hanks et al., 2014;
Heitz and Schall, 2012; Herz et al., 2017). Accordingly, inflexibly large
boundaries in PD-off indicate a dopamine-sensitive increase in un-
certainty about when a stimulus is bound to appear (Tomassini et al.,
2015). These results agree with previous work demonstrating a failure
in adjusting the amount of sensory evidence needed to make a decision
in PD (Perugini et al., 2016). They further echo earlier findings using
healthy ageing as model for dopamine depletion, demonstrating in-
flexible decision boundaries in older relative to younger adults
(Forstmann et al., 2011) performing speed-accuracy-trade-off tasks.

In older adults, adopting conservative decision criteria is presumed
to be a compensatory strategy to prevent errors (Ratcliff et al., 2007,
and references therein). One possible interpretation to our results is that
dopamine-deficient individuals try to balance their performance by
reducing temporal uncertainty with associated costs in terms of RT. In
other words, an agent accumulates as much information as possible to
reduce its internal uncertainty (Tajima et al., 2016), at the cost of
slower responses.

In conclusion, we show that DA depletion increases the subjective
levels of temporal uncertainty damaging the ability to use prior in-
formation in order to prepare to future events.

A better understanding of the mechanism linking temporal un-
certainty and motor preparation may enable new therapeutic ap-
proaches to deal with impairments of movement control that char-
acterize PD.
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Appendix

See Table A1
Model parameters for the winning model

See Table A2

Table A1
Model parameters.

Parameters Control PD-on PD-off

Boundary (a) 0.9709 ± 0.15 1.078 ± 0.14 1.067 ± 0.12
a standard deviation 0.1455 ± 0.01 0.1455 ± 0.01 0.1455 ± 0.01
Drift-rate (v) 0.026 ± 0.039 0.085 ± 0.033 0.002 ± 0.032
v standard deviation 0.0331 ± 0.023 0.0331 ± 0.023 0.0331 ± 0.023
Non decision time (t0) 0.232 ± 0.009 0.226 ± 0.008 0.240 ± 0.009
t0 standard deviation 0.0353 ± 0.004 0.0353 ± 0.004 0.0353 ± 0.004
Bias (z) 0.70 ± 0.008 0.70 ± 0.008 0.70 ± 0.008
z standard deviation 0.143 ± 0.032 0.143 ± 0.032 0.143 ± 0.032

Table shows mean± SD.

Table A2
Posterior predictive checks.

Reaction times (sec)

Observed Predicted MSE Credible

Left stimulus Mean 0.372 0.494 0.031 Yes
Std 0.105 0.202 0.016 Yes
10th quantile 0.271 0.316 0.007 Yes
30th quantile 0.315 0.376 0.012 Yes
50th quantile 0.35 0.431 0.021 Yes
70th quantile 0.395 0.521 0.042 Yes
90th quantile 0.494 0.742 0.111 Yes

Right stimulus Mean 0.376 0.494 0.03 Yes
Std 0.111 0.202 0.008 Yes
10th quantile 0.272 0.316 0.001 Yes
30th quantile 0.316 0.367 0.002 Yes
50th quantile 0.352 0.431 0.006 Yes
70th quantile 0.397 0.531 0.018 Yes
90th quantile 0.502 0.744 0.058 Yes
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Comparison between statistics of the observed RT and statistics of the data predicted by the winning model. The mean-squared error (MSE) is a
measure of how far the summary statistics of the observed data differ from the predicted data. MSE values close to zero indicate a good match
between observed and simulated data. The Credible column shows whether the predicted data lie within the 95% credible interval from the observed
data.

See Fig. A1
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