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A B S T R A C T

Several studies have documented that older workers who live in areas with higher unemployment rates are more
likely to leave work for health and non-health reasons. Due to tracking of area disadvantage over the life course,
and because negative individual health and socioeconomic factors are more likely to develop in individuals from
disadvantaged areas, we do not know at what specific ages, and through which specific pathways, area un-
employment may be influencing retirement age.

Using data from the MRC National Survey of Health and Development, we use structural equation modelling
to investigate pathways linking local authority unemployment at three ages (4y, 26y and 53y) to age of re-
tirement (right-censored). We explored five hypothesized pathways: (1) residential tracking, (2) health, (3)
employment status, (4) occupational class, and (5) education. Initially, pathways between life course area un-
employment, each pathway and retirement age were assessed individually. Mediation pathways were tested in
the full model.

Our results showed that area unemployment tracked across the life course. Higher area unemployment at ages
4 and 53 were independently associated with earlier retirement age [1% increase=mean −0.64 (95% CI:
−1.12, −0.16) and −0.25 (95% CI: −0.43, −0.06) years]. Both were explained by adjustment for individual
employment status at ages 26 and 53 years. Higher area unemployment at age 26 was associated with poorer
health and lower likelihood of employment at aged 53; and these 2 individual pathways were identified as the
key mediators between area unemployment and retirement age.

In conclusion, these results suggest that interventions designed to create local employment opportunities for
young adults should lead to extended working through improved employment and health at mid-life.

1. Introduction

Aging populations in industrialized countries have prompted gov-
ernments to encourage increased labour market participation of
workers aged 50 and over. In the United Kingdom (UK), policies have
been implemented to reduce government financial challenges of in-
creasing life expectancy and demands on health and social care ser-
vices, as well as provide positive health and financial outcomes for
individuals (DWP, 2017). One of these policies is the raising of the State
Pension Age (SPA) for women from age 60 to 65 by April 2018, and

both genders to age 67 by 2028. However, most employees in the UK
already stop working before the SPA (ONS, 2013). Early retirement can
be a positive life change, reflecting a financial ability to stop paid work.
For others, early retirement is a consequence of adverse factors, such as
poor health or unemployment (Adams and Beehr, 2003), which can
reduce accumulated wealth and exacerbate inequalities at older ages.
Therefore, identification of adverse factors that lead to early exit from
the labour market could be beneficial to both individuals and govern-
ments.

One factor that may contribute to inequalities in retirement timing
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is geographical variations in the labour market. Older workers who live
in areas with higher levels of unemployment are more likely to be in
receipt of a disability pension (Laaksonen and Gould, 2014; McVicar,
2007; Reime and Claussen, 2013; Thorlacius and Olafsson, 2012) and
more likely to exit work for both health (Murray et al., 2016; Disney
et al., 2006) and non-health reasons (Murray et al., 2016). The primary
mechanism suggested to explain this relationship is local labour market
demand: an individual living in an area of higher unemployment will
have both a higher chance of losing employment and lower chance of
regaining employment after redundancy (McCormick and Sheppard,
1992); especially older workers who find it harder than younger
workers to regain employment after redundancy (Oldfield, 2014).

However, previous studies have only considered how local labour
market conditions immediately preceding retirement age are associated
with retirement outcomes. People residing in disadvantaged areas later
in life are likely to have lived in areas with similar levels of dis-
advantage throughout life (Murray et al., 2012; Van Ham et al., 2012).
Local labour market conditions earlier in the life course have been as-
sociated with individual factors that, in turn, influence retirement ages.
For example, poor health is associated with increased likelihood of
younger retirement age (van Rijn et al., 2014). Living in a dis-
advantaged area earlier in life, even in childhood, can influence later
life health (Murray et al., 2013; Curtis et al., 2004; Dundas et al., 2014);
most likely because health-harming (e.g. pollution) and health-pro-
moting (e.g. walkability) features are unequally distributed across
neighbourhoods (Diez Roux and Mair, 2010). Local area unemployment
is frequently used as proxy for area disadvantage (Pickett and Pearl,
2001). It is therefore logical to hypothesize that residence in an area
with higher unemployment earlier in life would be associated with
earlier age of retirement through poorer mid-life health.

Second, early retirement is more likely if an individual was not in
paid work in later adulthood (Visser et al., 2016), particularly for ex-
tended spells out of work (Radl, 2013; Visser et al., 2016). There is
strong evidence that periods of unemployment in young adulthood can
have a ‘scarring’ effect on the likelihood of employment later in life
(Gregg, 2001; Nilsen and Reiso, 2011). For various reasons, including
lower labour market demand, younger workers are particularly vul-
nerable to downturns in the local economy (Bell and Blanchflower,
2011; Freeman and Wise, 1982). Therefore, we hypothesize that re-
sidence in an area with higher unemployment in young adulthood is a
particularly sensitive period in the life course, and in keeping with
cumulative (dis)advantage theory, sets individuals on employment
trajectories that lead to higher levels of retirement age inequality
(Dannefer, 2003).

Third, individual occupational social class is also related to retire-
ment age, with occupations in the middle of the class ‘ladder’ more
likely to retire earlier than professional or unskilled manual workers
(Radl, 2013). Lower class individuals are more likely to remain in work
out of financial necessity, while higher class individuals retire later
because they have better health, are better educated, enter the labour
market later and are more likely to be sheltered from involuntary exit
forces (such as unemployment) (Blossfeld and Buchholz, 2011). Me-
chanisms linking area unemployment earlier in life to class include
unequal career development opportunities through unequal distribu-
tion of structural opportunities and resources in local areas (Dannefer,
2003). For example, an individual's ability to develop a higher social
class career, such as in finance, is less likely in the ‘North’ than ‘South’
of England, where historical forces of de-industrialization of dominant
mining and manufacturing industries have shaped persistently high
unemployment local labour markets (McVicar, 2007).

Fourth, higher educational achievement has also been linked to
older retirement ages through educated workers earning higher wages
(Leinonen et al., 2012), having better employment opportunities
(Leinonen et al., 2012) and health (Schuring et al., 2015). Educational
achievement has also been shown to vary according to local area so-
cioeconomic conditions, such as where individuals resided during

school age (Nieuwenhuis and Hooimeijer, 2016). Five interrelated
mechanisms have been proposed: shaping the type of role models
young people are exposed to outside the home, monitoring and sanc-
tioning of behaviour, helpful social networks, local perceptions of oc-
cupational opportunity and institutional characteristics (Ainsworth,
2002). Therefore, we hypothesize that lower educational achievement
could be a pathway through which higher area unemployment during
childhood could influence a lower retirement age.

In addition, individuals of pensionable age in the UK will have ex-
perienced fluctuations in area unemployment levels over their lifetimes
(Murray et al., 2012), both through residential mobility and secular
change (Lekkas et al., 2017). The selective migration literature has
consistently shown that characteristics of people, including socio-
economic and health status, can influence what areas people move to
(Van Ham et al., 2012). Therefore, it is important to account for se-
lective migration of individuals to determine whether associations be-
tween local area unemployment and retirement are not due to selection
bias.

Overall, we hypothesize that higher local area unemployment at
ages before mid-life are associated with earlier retirement age, and that
the association operates through health, employment status, occupa-
tional class and education. We analyse prospective longitudinal data
using structural equation modelling (SEM) to investigate not just single
pathways, but how each pathway operates within the larger complex
system (Rutter et al., 2017) that leads to inequalities in retirement age.
The age at which an individual retires is a result of not just one in-
dividual factor, but a push and pull of a myriad of factors (Adams and
Beehr, 2003). Negative individual health and socioeconomic factors are
highly correlated, and may all develop from early life disadvantage, but
individual responses to early life disadvantage vary (O’Rand, 2009).
Also, individuals who experience changes in local area unemployment
may experience alteration of only one, or a few, of these individual
factors later in life, depending on the structures and resources in their
geographic location (Van Ham et al., 2012). We therefore believe that a
systems life course approach is vital in planning interventions that will
effectively target the specific pathways and ages that will be most ef-
fective in reducing disparities in retirement ages.

2. Methods

2.1. Study population

The Medical Research Council National Survey of Health and
Development (NSHD) is a socially stratified sample of all births that
occurred during one week in March 1946 across England, Scotland, and
Wales (n=5362). The cohort has been followed prospectively 24 times
from birth onwards. At the most recent data collection in 2014 (age 68),
a total of 2453 study members (84.2% of target) completed a postal
questionnaire (Kuh et al., 2016). The current investigation uses data
from sweeps in 1950 (study members aged 4), 1972 (26 years), 1999
(53 years), 2006–2010 (60–64 years) and 2014 (68 years); chosen to
represent exposure in childhood, early adulthood and mid-life, and to
be close to census years. An additional 145 cohort members were in-
cluded in the sample that provided retirement age at the age 60–64 data
collection, but did not complete a postal questionnaire at the age 68
data collection. The current analyses are based on those with data on
retirement age, or who were in paid work at age 68 (n= 2526).

2.2. Retirement age

At ages 60–64 and 68 years, study members reported on postal
questionnaires whether they had retired from their main occupation
and, if so, at what age. If a cohort member reported at both ages that
they were retired from their main occupation, and not in paid work, the
age reported at age 60–64 was chosen. If a cohort member was retired
at 60–64, but in paid work (full or part-time) at age 68, they were
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considered to not be retired.

2.3. Life-course area socioeconomic measures

Place of residence was recorded at every data collection, plus yearly
updates past the age of 16 through postal reminders. Residential ad-
dresses at three different ages (4, 26 and 53 years) were previously
linked to local government district socioeconomic measures (Murray
et al., 2012). These ages were chosen to represent area socioeconomic
exposure during major life stages: childhood (age 4), early adulthood
(age 26) and midlife (age 53). If there was more than one data collec-
tion during a life stage, the data collection year closest to a census year
was used to reduce misclassification of area conditions. Local govern-
ment districts are subnational divisions of England and Wales used for
the purpose of local governance (ONS, 17a), and reflect sizes of local
labour markets in the UK (ONS, 17b). For this analysis, ‘area un-
employment’ refers to the percentage of all economically active persons
(men in 1951 census) in a local authority that were not employed.

2.4. Health

Health status was measured at ages 26 and 53 years based on self-
reports from postal questionnaires. At age 26, cohort members were
asked, “Would you say at the present time your state of health was …
Excellent/good/fair/poor?” At age 53 health status was based on a
derived number of doctor diagnosed health problems the cohort
member was experiencing from a list of cardiovascular, respiratory,
endocrine, and neurological disorders (Kuh et al., 2005). Both health
indicators were collapsed into dichotomous variables: Aged 26:
0= excellent/good, 1= fair/poor, and aged 53: 0= no health pro-
blems, 1=1 or more health problem(s).

2.5. Employment status over adulthood

At ages 26 and 53 years, study members reported whether they were
in paid work and, if so, whether it was full-time (> 30 h per week) or
part-time work (<=30 h per week).

2.6. Educational achievement

Highest qualification by age 26 was grouped into ‘no qualifications’,
‘lower secondary’ (‘O-levels or equivalent’, usually attained at 16
years), ‘advanced secondary’ (‘A-levels or equivalent’, usually attained
at 18 years), and ‘degree-level or equivalent’.

2.7. Occupational class

Occupational class at age 26 and 53 years was based on head of
household's occupation and coded according to Registrar General's
classifications: ‘professional (I)’, ‘managerial/technical (II)’, ‘skilled
non-manual (IIInm)’, ‘skilled manual (IIIm)’, ‘semi-skilled manual (IV)’
and ‘unskilled manual (V)’. For men, their own occupation was used to
derive class at both ages. For women at age 26, the resident male of the
house's occupation was substituted, if there was one present. At age 53,
women's own social class was used if it was the more advantaged of
their own and spouse's social class. Childhood social class was based on
the occupational class of the father or mother's husband when the co-
hort member was aged 4 years.

2.8. Statistical analysis

All analyses included participants with either a non-missing age of
retirement or those in paid work at age 68. Descriptive statistics, by
gender, were calculated using non-imputed data using Analysis of
Variance (ANOVA) for continuous variables and the chi-square statistic
for categorical variables. Missing data for covariates were imputed

using twenty data sets, obtained through the multiple imputation pro-
gram in Mplus 7 (Muthen and Muthen, 2015). The imputation models
included the outcome, all predictors, and gender; plus auxiliary vari-
ables predictive of missingness (childhood social class aged 4, home
ownership age 60–64 and other measures of age 4 local area socio-
economic characteristics [percentage employed in partly- or un-skilled
occupations, percentage overcrowded, percentage lacking household
amenities and percentage lacking higher education]) (Murray et al.,
2012).

To analyse potential pathways linking local area unemployment
across the life course with retirement age (censored for those still in
paid work at age 68), we used structural equation modelling (SEM) in
Mplus 7 (Muthen and Muthen, 2015). This enabled us to fit multiple
mediator models with a combination of binary and continuous vari-
ables. In all models, the final outcome was retirement age (continuous),
which was treated as censored (tobit) without inflation at the censoring
point (Tobin, 1958). This model supposes that there is a latent variable
that linearly depends on x via a parameter β, which determines the
relationship between the independent variable x and the latent variable
y. Estimates were calculated using a percentile bootstrap applied to
each imputed data set (Muthen, 2011; Preacher and Selig, 2012), with
overall estimates calculated using Rubin's rule (Rubin and Schenker,
1991). Within models, estimates are mean differences when the de-
pendent variable is continuous and odds ratios when the dependent
variable is categorical. The analysis proceeded in five parts.

In the first part, we wanted to know whether area unemployment at
ages other than mid-life were directly related to age of retirement.
Initially, associations of area unemployment at each age (4, 26 and 53)
with retirement age were fitted in separate models. Second, as tracking
of area unemployment has been identified to occur over the life time, a
saturated ‘area tracking’ model was fitted (see Supplementary Fig. 1a)
with area unemployment at age 4 fitted as the most distal and paths
specified for tracking of area unemployment across the life course, and
direct paths between ages 4 and 26 and 53 area unemployment to re-
tirement age that did not occur through area tracking. Third, to check
for robustness of the hypothesized model, changes in model fit statistics
were assessed when direct paths between area unemployment and re-
tirement age, at ages 4 and 26, were individually removed from the
saturated model. For all models, fit was assessed by the root mean
square error of approximation (RMSEA), comparative fit indices (CFI),
and the weighted root mean square residual (WRMR). Good overall
model fit was indicated by RMSEA ≤0.06, CFI ≥0.96, and WRMR
≤1.0 (Hooper et al., 2008).

In the second part of the analysis, we wanted to verify that the four
hypothesized mechanisms of health, employment status, occupational
class, and educational achievement were mediators of the relationships
between area unemployment and retirement age. Initially, we fitted
each mechanism separately. Each model was constructed to include the
following theory-driven pathways (See Supplementary Figs. 1b and 1c):

i. A direct ‘area tracking’ pathway (area unemployment at age 4 →
area unemployment age 26 → area unemployment age 53 → re-
tirement age).

ii. A direct path of the possible mechanism to retirement age (e.g.
health at age 26 → health at age 53 → retirement age).

iii. Direct paths leading from local area unemployment to the me-
chanism in future (e.g. area unemployment age 4 → health at age
26; area unemployment at age 26 → health at age 53).

iv. A pathway indicating that area unemployment in childhood leads to
retirement age through pathways other than the path specified in
the model (e.g. area unemployment age 4 → retirement age)

v. A pathway indicating that individual mechanisms at age 26 could
influence selection of individuals into local areas of certain un-
employment levels later in life (i.e. residential selection) (Jokela,
2015).
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Since educational achievement was measuring events that had oc-
curred prior to age 26, an additional pathway was added between
education → area unemployment at age 26 years (See Supplementary
Fig. 1c).

In the third part, to assess whether individual pathways identified in
the second part could be due to correlations between the hypothesized
mechanisms, the separate pathways were combined into pairs. This
included the addition of all potential pathways linking the mediators.
The inclusion of potential pathways was based on prior literature. For
example, when the health and occupational class pathways were
combined, additional paths were added between aged 26 health and
aged 53 occupational class (Radl, 2013), as well as aged 26 occupa-
tional class and aged 53 health (Bartley, 2016) (see Supplementary
Fig. 2). In the paired model, if no association was apparent between
area unemployment and the mediator, or the mediator and retirement
age, then this mechanism was dropped from the final model.

In the fourth part, the final model only included combined pathways
where statistically significant associations had previously been identi-
fied leading from area unemployment to retirement age through a
mediator. To reduce the possibility that identified pathways between
area unemployment and retirement age were not entirely due to con-
founding by gender and childhood social class, model fit was assessed
before and after adding all potential pathways from the confounder to
all variables in the analysis, separately for the two potential con-
founders. Effect modification between area unemployment and med-
iators by gender was also tested by inclusion of interaction terms in the
final model, as well as re-running the model separately for men and
women. Mediation was examined by creating and testing individual
mechanism parameters that linked area unemployment to retirement
age, using the model constraint function in Mplus.

In the fifth part of the analysis, a number of sensitivity analyses
were conducted to check for robustness of findings. First, we assessed
the influence of sample attrition by fitting the single path associations
(i.e. Part 1) before and after exclusion for missing outcome data.
Second, to justify the decision to right-censor retirement age, rather
than adjusting for clustering within areas, we assessed associations of
the area tracking model when (i) not censored and (ii) not censored
with a cross-classified data structure. Third, robustness of the final
model was assessed by comparing model fit when a dropped pathway or
hypothesized mechanism was added to the final model. Fourth, to as-
sess robustness of associations between area unemployment with po-
tential mediators, we calculated “E-values”. These represent the
minimum strength of association an unmeasured confounder would
need to have with both area unemployment and each mediator to fully
attenuate each association (Vanderweele, 2017).

3. Results

The distributions of sample characteristics, by gender, are sum-
marized in Table 1. At the age of 68 years, 76.1% of men and 86.6% of
women had retired from their main occupation; with a mean retirement
age of 59.9 (SD=5.7) and 58.7 (SD=5.6), respectively. Mean local
authority unemployment was 1.2% when cohort members were aged 4
(1950), 2.3% when aged 26 (1972) and 4.6% when aged 53 years
(1999), with no differences by gender. Men were more likely than
women to self-report their health as ‘excellent or good’ aged 26, but
there were no gender differences in reporting at least one health con-
dition aged 53 years. Men were also more likely than women to have
achieved higher educational qualifications by age 26, be employed full-
time, and more likely to work in professional occupations at both ages
26 and 53.

3.1. Part 1: single path models

Area tracking (Table 2). In unadjusted models, a 1% increase of area
unemployment at age 4, 26 or 53 was associated with earlier retirement

[regression coefficients 0.78 (95% CI: 1.25, 0.32), 0.54 (0.92, 0.15) and
0.29 (0.46, 0.13) years earlier, respectively] (Model 1). When the sa-
turated residential tracking model was fitted (Supplementary Fig. 1a),
area unemployment did track across the life course. For example, a 1%
higher aged 4 area unemployment was associated with 0.47 (95% CI
0.43, 0.51) percentage point higher aged 26 area unemployment. In the
saturated model all three area associations with retirement age were
reduced, with only direct associations between area unemployment at
ages 4 and 53 not attenuated (model 2). Model fit was improved by
dropping the pathway between area unemployment at age 26 and re-
tirement age (RMSEA 0.09 to 0.06). This path was dropped from further
analysis, because there was also no significant association in any further
model (data not shown). In sensitivity analyses, excluding individuals
who were right-censored reduced all associations in this model, com-
pletely attenuating the relationship between age 53 area unemploy-
ment and retirement age (Supplementary Table 1, model 2). Adding a
cross-classified data structure to the un-censored model did not change
results substantially (Supplementary Table 1, model 3).

Health (Table 3a, model 2). Cohort members who reported a health
problem aged 53, compared to those who did not, retired on average
1.27 (1.67, 0.86) years earlier. The odds of reporting a health problem
aged 53 was 1.42 times higher (1.26, 1.59) for those who reported
poorer health aged 26. Inclusion of the health pathway within the area
tracking model reduced, but did not entirely explain, the association
between mid-life area unemployment and retirement age [-0.20
(−0.38, −0.01)]. Higher area unemployment aged 26 was related to
poorer health aged 53 [odds ratio= 1.09 (1.01, 1.18)], and poorer
health aged 26 was associated with residence in an area with higher
unemployment aged 53 [mean= 0.14 (0.01, 0.26)]. There was no as-
sociation between area unemployment at age 4 and health status at age
26.

Employment status (Table 3a, model 3). Not being in work at age 53
was associated with earlier retirement (regression coefficient 4.65 (95%
CI 4.34, 4.96) years) compared with cohort members who were in full-
time work aged 53. There was no association of part-time work aged 53
with retirement age. Employment status aged 26 was related to em-
ployment status aged 53. Inclusion of the employment status pathways
in the area tracking model explained the association between area
unemployment at age 4 and aged 53 and retirement age [mean change
per 1% increase area=−0.11 (−0.28, 0.06) and−0.48 (−0.97, 0.01)
respectively]. Living in an area with higher unemployment aged 26 was
associated with increased odds of not being in work aged 53 [1.11
(1.03, 1.20)], and decreased odds of being in part-time work aged 53
[0.90 (0.82, 0.99)], compared to those in full-time work. There was no
association between area unemployment at age 4 and employment
status at age 26, nor did employment status at age 26 predict area
unemployment at age 53.

Occupational class (Table 3b, model 4). Cohort members who
worked in semi- or un-skilled manual occupations aged 53 retired on
average 0.69 (0.04, 1.34) years earlier than professional occupations,
but there were no differences in retirement age for managerial/tech-
nical or skilled non-manual employees compared to professional oc-
cupations. Lower occupational class at age 26 was generally related to
lower occupational class aged 53. Inclusion of the occupational class
pathway in the area tracking model did not alter associations between
aged 4 or aged 53 area unemployment and retirement age. Higher area
unemployment at age 26 was associated with higher odds of being in
the lowest class at age 53 [OR=1.22 (1.01, 1.49)], and occupational
class at age 26 was related to area unemployment at age 53 [Partly- and
un-skilled vs professional=mean 0.11 (0.03, 0.19)]. Again, aged 4
area unemployment was not associated with aged 26 occupational
class.

Educational achievement (Table 3b, model 5). Educational achieve-
ment by age 26 was not directly associated with retirement age. It was,
however, indirectly related to retirement age through aged 26 and aged
53 area unemployment. For example, not obtaining any educational
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qualifications by age 26 (compared to degree-level) was associated with
0.11 (0.07, 0.16) and 0.19 (0.11, 0.27) higher mean area unemploy-
ment at ages 26 and 53 years, respectively. There was no association
between area unemployment at age 4 and educational achievement at
age 26, and hence no direct path linking area unemployment to

retirement age. Educational achievement was therefore dropped from
further analysis.

Table 1
Characteristics of the analytical sample.

Variables All Men Women p-value gender difference

N % N % N %

TOTAL 2526 100.0 1243 100.0 1283 100.00 –
Retirement status 68y
Retired main occupation 2057 81.4 946 76.1 1111 86.6
Paid work 469 18.6 297 23.9 172 13.4 < 0.001
Mean Retirement Age (SD) 2057 59.3 (5.7) 946 59.9 (5.7) 1283 58.7 (5.6) < 0.001
Mean Area Unemployment (SD)
Mid-life (aged 53) 2407 4.6 (1.9) 1189 4.7 (1.9) 1218 4.6 (1.9) 0.52
Early Adulthood (aged 26) 2337 2.3 (0.8) 1153 2.3 (0.8) 1184 2.3 (0.9) 0.77
Childhood (aged 4) 2470 1.2 (0.7) 1215 1.2 (0.6) 1255 1.2 (0.7) 0.59
Health status–mid-life
1 + Health problems 553 21.9 265 21.3 288 22.4
0 Health problems 1708 67.6 824 67.7 884 68.9 0.88
Missing 265 10.5 154 12.4 111 8.7
Health status–early adulthood
Fair/Poor 157 6.2 49 3.9 108 8.4
Excellent/Good 2098 83.0 1052 84.6 1046 81.5 < 0.001
Missing 271 10.7 142 11.4 129 10.1
Employment Status-mid-life
Full time 1421 56.2 876 70.5 545 42.5
Part-time 473 18.7 73 5.9 400 31.2
Not in paid work 367 14.5 140 11.3 227 17.7 < 0.001
Missing 265 10.5 154 12.4 111 8.7
Employment status–young adulthood
Full time 1532 60.7 1089 87.6 442 34.5
Part-time 148 5.9 5 0.4 143 11.2
Not in paid work 635 25.1 40 3.2 593 46.3 < 0.001
Missing 211 8.4 109 8.8 102 8.0
Occupational class–mid-life
Professional 248 9.8 150 12.1 98 7.6
Managerial/Technical & Skilled NM 1222 48.4 569 45.8 653 50.9
Skilled Manual 509 20.2 257 20.7 252 19.6
Partly skilled & Unskilled M 243 9.6 93 7.5 150 11.7 < 0.001
Missing 304 12.0 174 14.0 130 10.1
Occupational class-early adulthood
Prof & Managerial/Technical 893 35.4 447 36.0 446 34.8
Skilled Non-manual & Manual 1070 42.4 519 41.8 551 42.9
Partly skilled & Unskilled M 304 12.0 131 10.5 173 13.5 0.110
Missing 259 10.3 146 11.7 113 8.8
Educational achievement 26y
Degree/higher 289 11.4 204 16.4 85 6.6
A level 657 26.0 344 27.7 313 24.4
O level 502 19.9 169 13.6 333 26.0
None/sub GCE 942 37.3 455 36.6 487 38.0 < 0.001
Missing 136 5.4 71 5.7 65 5.1

Table 2
Direct effects using data obtained from multiple imputation (n= 2526), National Survey of Health and Development. The variables are retirement age (RetireA) and
area unemployment (Area) at 3 ages − 4, 26 and 53.

Model 1.
Crude*

Model 2.
Residential tracking + All

Model 3.
Residential tracking, age 4 & 53 only

Model 4.
Residential tracking, age 26 & 53 only

Β CI Β CI Β CI Β CI

Area53→RetireA −0.29 −0.46,-0.13 −0.21 −0.42,0.00 −0.25 −0.43,-0.06 −0.15 −0.37,0.08
Area26→RetireA −0.54 −0.92,-0.15 −0.11 −0.63,0.41 – – −0.41 −0.90,0.08
Area4→RetireA −0.78 −1.25,-0.32 −0.61 −1.12,-0.10 −0.64 −1.12,-0.16 – –
Area26→Area53 – – 1.26 1.19,1.34 1.27 1.19,1.34 1.27 1.19,1.34
Area4 →Area26 – – 0.47 0.43,0.51 0.47 0.43,0.51 0.47 −0.90,0.08
Model fit:
df - 1 2 2
RMSEA - 0.09 0.06 0.06
CFI - 0.99 0.99 0.99
WRMR – 0.88 0.90 1.10
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3.2. Part 2: combined path models

Area unemployment, health and occupational class When health
pathways were added to the area tracking and occupational class
model, associations between occupational class and retirement age
were fully attenuated. Occupational class pathways were therefore
dropped from subsequent analyses (Supplementary Fig. 2).

Area unemployment, health and employment status When both mid-life
health and employment status pathways were included in the model,
both were associated with retirement age. Area unemployment at age
26 was related to age 53 area unemployment, health and employment
status. Health at 26 was related to age 53 health and employment
status, as well as age 26 employment status related to age 53 health and
employment status. There was no association between area un-
employment at age 4 and health or employment status age 26
(Supplementary Fig. 3).

Full model (Fig. 1). Therefore, the full model contained just the area
tracking, health and employment status pathways (Model fit: RMSEA
0.06, CFI 0.92, WRMR 1.94). Regarding gender, we found women,
compared to men, reported poorer health aged 26 and 53, and higher
odds of being unemployed or working part-time (compared to full-time)
at both age 26 and 53 [See Supplementary Figs. 4 and 5]. Model fit was
improved when gender pathways were included [see Supplementary
Table 2], but worsened considerably when childhood social class
pathways were included [see Supplementary Table 3]; therefore only
the significant gender pathways were included in the final model (see
Fig. 1).

In the final model, both mid-life health and employment status still
mediated the relationship between aged 26 area unemployment and
retirement age (p-values for all 20 imputations= 0.001). Interaction
tests showed that while area unemployment at age 26 was associated

with health and working status at age 53 for both women and men,
these associations were slightly stronger for women compared to men
(p-values= 0.013 and 0.006). Sensitivity analyses showed that both
adding back in the dropped pathway between age 26 area unemploy-
ment and retirement age (see Supplementary Table 4, model 3), as well
as inclusion of dropped occupational status and educational achieve-
ment pathways (see Supplementary Table 4, models 4 to 5), worsened
model fit for all indices. Therefore, the final model included both
women and men with inclusion of the significant gender pathways, but
not childhood social class, pathways (see Fig. 1). For the pathways
between mid-life health and employment status with age 26 area un-
employment, E-values for unmeasured confounders were 1.26 (95%CI:
1.08, 1.39) and 1.39 (1.24, 1.53), respectively.

4. Discussion

Using data from a prospectively-collected nationally-representative
cohort of white British pensionable aged men and women, we have
shown for the first time that early adulthood is a key life stage where
local labour market conditions are related to retirement age. This re-
lationship occurred through higher area unemployment at age 26 being
related to worse health and more individual unemployment at age 53,
which in turn were both related to earlier retirement ages. These
findings imply that government strategies to extend the working lives of
future generations would be most effective if they addressed youth
unemployment, rather than focused on older workers in areas with high
unemployment.

Our analysis highlights the importance of incorporating life course
residential exposure histories when examining labour market influences
on retirement age. In Sociology and Life Course Epidemiology there is a
strong tradition of showing that factors earlier in life can effect later life

Table 3a
Direct effects using data obtained from multiple imputation (n= 2523), National Survey of Health and Development. The variables are retirement age (RetireA), area
unemployment (Area), Health (Hlth), Not working (WKN), working part-time (WKP), occupational socio-economic position (SEP) and educational achievement (EA),
at 3 pre-retirement ages – 4, 26 and 53.

Model 1.
Residential tracking

Model 2.
Health

Model 3.
Employment status

Β CI Β CI Β CI

Area unemployment:
Area53→RetireA −0.25 −0.43, −0.06 −0.20 −0.38, −0.01 −0.11 −0.28, 0.06
Area4→RetireA −0.64 −1.12, −0.16 −0.67 −1.16, −0.19 −0.48 −0.97, 0.01
Area26→Area53 1.27 1.19, 1.34 1.28 1.20, 1.35 1.27 1.20, 1.35
Area4 →Area26 0.47 0.43, 0.51 0.47 0.44, 0.51 0.47 0.43, 0.51
Health retirement:
Hlth53→RetireA – – −1.27 −1.68, −0.87 – –
Hlth26→Area53 – – 0.14 0.01, 0.26 – –
Area26→Hlth53 – – 1.09a 1.01, 1.18 – –
Hlth26→Hlth53 1.42a 1.26, 1.59
Area4→Hlth26 – – 0.90a 0.81, 1.01 – –
Employment:
WKP53→RetireA – – – – −1.43 −0.28, 0.06
WKN53→RetireA – – – – −4.65 −4.96, −4.34
WKP26→WKP53 – – – – 1.95a 1.32, 2.88
WKP26→WKN53 – – – – 0.74a 0.55, 0.99
WKN26→WKN53 – – – – 1.09a 0.98, 1.22
WKN26→WKP53 – – – – 0.74a 0.55, 0.99
Area4→WKP26 – – – – 0.91a 0.81, 1.01
Area4→WKN26 – – – – 1.04a 0.96, 1.13
Area26→WKP53 – – – – 0.90a 0.82, 0.99
Area26→WKN53 – – – – 1.11a 1.03, 1.20
WKP26→Area53 – – – – −0.05 −0.12, 0.03
WKN26→Area53 – – – – 0.05 −0.05, 0.16
Model fit:
df 2 6 12
RMSEA 0.06 0.03 0.10
CFI 0.99 0.99 0.89
WRMR 0.90 0.87 2.57

a Β has been exponentiated, interpret as odds ratio.
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outcomes (Ben Shlomo and Kuh, 2002; Dannefer, 2003; O’Rand, 2009),
but area effects research has lagged behind. Previous research has
found that work exit outcomes are associated with features of older
workers' local labour markets, including employment rates (Laaksonen
and Gould, 2014; McVicar, 2007; Reime and Claussen, 2013; Thorlacius
and Olafsson, 2012). What we show here is that while there is a cor-
relation between area unemployment at age 53 and retirement age, the
dynamics - between local labour markets and retirement age - occur
earlier in people's careers, and specifically through pathways of health
and employment status. Previous literature, including on this same
cohort, has shown that relationships exist between area socioeconomic
factors and health (Lekkas et al., 2017; Diez Roux et al., 2010; Galster,
2012; Murray et al., 2013) and employment status (Bell and
Blanchflower, 2011; Freeman and Wise, 1982); between mid-life health
and employment status and retirement outcomes (van Rijn et al., 2014;
Reeuwijk et al., 2017; Stafford et al., 2017); and between lower occu-
pational class and poor health (Bartley, 2016). Our findings bring all of
these relationships together into a cumulative advantage theory struc-
ture (Dannefer, 2003). We expand on earlier work showing that living
under depressed national labour market conditions can predict negative
career trajectories and socioeconomic achievement (Spilerman, 1977),
by highlighting that even in times of high national employment (1971),

geographic variations in local labour market conditions can have ne-
gative influences further along the career chain – for example, on the
age at which people decide to end their working lives.

Moreover, by incorporating these relationships into a more com-
prehensive model, we were able to clarify that in mid-life it is health
and employment status, rather than occupational class, which matters
for retirement age. This is not to say that lower occupational class at age
26 is not associated with poorer health at mid-life; rather the re-
lationship between mid-life occupational grade and retirement age was
explained by health. Similarly, previous literature has been consistent
in showing that early life neighbourhood conditions are related to
educational achievement (Nieuwenhuis and Hooimeijer, 2016) and
employment outcomes (Bell and Blanchflower, 2011; Freeman and
Wise, 1982); with a growing body of literature showing associations
with later life health (Murray et al., 2013; Curtis et al., 2004; Dundas
et al., 2014). Our life course model showed that childhood area un-
employment was related to retirement age, but only through tracking of
area unemployment across the life course. A direct association was
initially identified, but inclusion of the employment status pathway
attenuated the relationship. We did not see any direct association be-
tween childhood area unemployment and any of the aged 26 individual
factors that we examined in the study. Recent literature has also

Table 3b
Direct effects using data obtained from multiple imputation (n= 2523), National Survey of Health and Development. The variables are retirement age (RetireA), area
unemployment (Area), Health (Hlth), Not working (WKN), working part-time (WKP), occupational class (OC) and educational achievement (EA), at 3 pre-retirement
ages – 4, 26 and 53.

Model 1.
Residential tracking

Model 4.
Occupational SEP

Model 5.
Educational achievement

Β CI Β CI Β CI

Area unemployment:
Area53→RetireA −0.25 −0.43, −0.06 −0.25 −0.46, −0.04 −0.26 −0.45, −0.07
Area4→RetireA −0.64 −1.12, −0.16 −0.64 −1.13, −0.16 −0.65 −1.13, −0.17
Area26→Area53 1.27 1.19, 1.34 1.27 1.19, 1.35 1.23 1.15, 1.31
Area4→Area26 0.47 0.43, 0.51 0.47 0.43, 0.51 0.47 0.43, 0.51
Occupational social class:
OC53_2→RetireA – – −0.06 −2.63, 2.51 – –
OC53_3→RetireA – – −0.44 −1.05, 0.17 – –
OC53_4→RetireA – – −0.69 −1.34, −0.04 – –
OC26_2→Area53 – – 0.16 0.07, 0.25 – –
OC26_3→Area53 – – 0.11 0.03, 0.19 – –
OC26_2→OC53_2 – – 0.00a 0.00, > 10 – –
OC26_2→OC53_3 – – 0.00a 0.00, > 10 – –
OC26_2→OC53_4 – – 6.00a 3.62, 9.95 – –
OC26_3→OC53_2 – – 6.89a 4.25, 11.18 –
OC26_3→OC53_3 – – 1.10a 0.99, 1.22 – –
OC26_3→OC53_4 – – 1.96a 1.67, 2.31 – –
Area26→OC53_2 – – 0.07a 0.00, > 10.0 – –
Area26→OC53_3 – – 1.16a 0.95, 1.41 – –
Area26→OC53_4 – – 1.22a 1.01, 1.49 – –
Area4→OC26_2 – – 1.00a 0.93, 1.08 – –
Area4→OC26_3 – – 1.02a 0.95, 1.10 – –
Education:
EA26_O→RetireA – – – – −0.02 −0.44, 0.41
EA26_A→RetireA – – – – −0.34 −0.79, 0.11
EA26_N→RetireA – – – – −0.08 −0.56, 0.41
EA26_O→Area53 – – – – −0.05 −0.14, 0.04
EA26_A→Area53 – – – – −0.14 −0.25, −0.03
EA26_N→Area53 – – – – 0.19 0.11, 0.27
EA26_O→Area26 – – – – −0.07 −0.11, −0.03
EA26_A→ Area26 – – – – −0.04 −0.09, 0.01
EA26_N→Area26 – – – – 0.11 0.07, 0.16
Area4→EA26_O – – – – 0.99a 0.92, 1.08
Area4→EA26_A – – – – 0.98a 0.95, 1.10
Area4→EA26_N – – – – 1.02a 0.95, 1.10
Model fit:
df 2 16 5
RMSEA 0.06 0.26 0.71
TLI 0.90 0.40 −3.53
WRMR 2.00 6.85 13.41

a Each path fitted as separate models.
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documented that health inequalities emerge in early adulthood and
widen until the early 60s (Norman and Boyle, 2014). In this cohort,
83.0% of the study members were in excellent or good health, and
87.6% of men were in full-time employment aged 26. This suggests that
heterogeneity in health and employment status by childhood area un-
employment may not have been wide enough in early adulthood to
detect a difference with this population. Individuals of lower social
class were also more likely to leave the study (Stafford et al., 2013),
potentially further reducing our ability to detect area effects during this
age period.

4.1. Strengths and limitations

NSHD is the only representative population-based data set that
contains prospectively collected individual employment and health
data from childhood to retirement age, linked to local area un-
employment data. This allowed us to investigate when in the life course
local area employment is important for retirement age; crucial for
planning effective interventions. Another strength of this study was the
use of structural equation models, which allowed us to explore multiple
potential pathways linking area unemployment across the life course to
retirement age and to model residential selection bias – a known issue
in neighbourhood effects research. At time of writing, neither Mplus nor
Stata could simultaneously estimate multiple imputed, censored, mul-
tilevel SEM models, which led us to dropping the multilevel structure
from the full SEM models. Sensitivity analyses showed that adding a
multi-level data structure hardly changed our results, whereas not in-
cluding censored individuals in the analysis would have led to the
conclusion that there was no association between area unemployment
and retirement age.

One major challenge in this study was that due to data constraints,
retirement ages were based on the cohort member's self-reported year
of retirement from their main occupation. It would have been prefer-
able if retirement age was more reliably determined, for example,

through receipt of national insurance payments or using national or
occupational employment registers. Our results could be biased if an
individual's date of ‘retirement’ was different to their date of ‘work exit’
(e.g. homemakers or long-term unemployed), or if a high percentage of
cohort members returned to work after age 68. To account for the latter
possibility, we re-classified individuals from retired to not retired if
they had returned to work by age 68 years (5.0% of sample). While
individuals in our study may have returned to work after age 68, the
proportion doing so is likely to be very low and occurring pre-
dominantly among the highly educated and healthy (Kanabar, 2015). If
anything, our results are therefore likely to slightly underestimate the
true relationships between the tested mechanisms and retirement age.

Second, another constraint of the data was that our definition of
health was not congruent at the two ages studied; at age 26 a self-
reported Likert scale measuring general health, and at age 53 a self-
report of doctor diagnosed health problems. In our analysis, the two
health measures were associated, with cohort members who reported
fair or poor health, as opposed to excellent or good, having a 42%
higher odds of reporting at least one doctor-diagnosed health problem
at age 53. Earlier studies have identified that subjective, rather than
objective, health measures are a better predictor of retirement (Dwyer
and Mitchell, 1999), suggesting that we are underestimating the re-
lationships between mid-life health and other factors. Contrarily, a
Canadian study (Lindeboom and van Doorslaer, 2004) showed that
younger respondents tended to rate their health lower than older re-
spondents with a similar objective health assessment, suggesting any
relationships with our aged 26 health measure might be conflated.
Third, head of household occupation was used instead of the cohort
member's own social class to minimize bias in coding men's versus
women's occupations. Repeating these analyses with each individual's
own social class did not change results (results not shown).

Fourth, as in any longitudinal observational study, study attrition of
the sample occurred, despite high response rates. Prior studies on this
cohort have shown that health, occupation, education and area

Fig. 1. Full structural equation model with health and employment status paths between area unemployment across the life course and retirement age, plus gender
(n=2526). Dotted line indicates non-significant path (p > 0.05). Bolded line indicates mediation test conducted.
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unemployment, but not employment status, predict attrition at the age
60–64 (Stafford et al., 2013) and age 68 (Kuh et al., 2016) sweeps; all
factors associated with younger retirement ages. While the age 60–64
sample of this cohort has been shown to be representative of the white-
British population (Stafford et al., 2013), these studies suggest that
strengths of effect in our study may be underestimated. The average
retirement age of 59.0 in this study is lower than national estimates of
64.4 for men and 61.9 for women in 2008 (ONS, 2013). In addition, the
low rate of employment at age 68 (e.g. 18.6% vs 31.6% nationally
[ONS, 2013]) implies that this cohort left work at earlier ages than the
national average; but censoring of the outcome was done to account for
this bias in the data. Additionally, like all observational studies, re-
lationships seen are based on observed data, with the potential for
unmeasured confounders explaining relationships. Calculated E-values
indicated that hypothetical unmeasured confounders would only need
to be moderately related to area unemployment at age 26 and mid-life
health and employment status to explain relationships. However, we
believe that we have accounted for the major potential confounders in
our analysis, with potential missing confounders, such as family wealth
or income, likely partly or completely explained by correlations with
included variables. To check for robustness of findings, we recommend
that major mediating pathways be replicated in other data sets that
contain additional potential confounders.

In conclusion, we provide evidence that policies to extend working
life should focus not just on individuals, but also on the wider labour
market context in which individuals reside. If these relationships are
causal, providing assistance with maintaining employment and good
health in mid-life are key to ensuring individuals are able to work
longer. This is vital given that the SPA in the UK is rising and a sig-
nificant number of older people still leave the labour market before the
current SPA. Policies should recognise that individuals' health and
employment in mid-life may reflect the employment opportunities and
adversities that individuals have encountered earlier in life. Large scale
interventions that create new jobs in areas with high youth un-
employment may therefore have long-term positive consequences for
future generations’ extended working lives.
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