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Abstract—The combination of simultaneous wireless informa-
tion and power transfer (SWIPT) and non-orthogonal multiple
access (NOMA) is a potential solution to improve spectral
efficiency (SE) and energy efficiency (EE) of the upcoming fifth
generation (5G) networks, especially in order to support the
functionality of the Internet of things (IoT) and the massive
machine-type communications (mMTC) scenarios. In this paper,
we investigate joint power allocation and time switching (TS)
control for EE optimization in a TS-based SWIPT NOMA
system. Our aim is to optimize the EE of the system whilst
satisfying the constraints on maximum transmit power budget,
minimum data rate and minimum harvested energy per-terminal.
The considered EE optimization problem is neither linear nor
convex involving joint optimization of power allocation and time
switching factors, and thus is extremely difficult to solve directly.
In order to tackle this problem, we develop a dual-layer algorithm
where Dinkelbach method is employed both in the inner-layer to
optimize the power allocation and in the outer-layer to control
the time switching assignment. Furthermore, a simplified but
practical special case with equal time switching factors in all
terminals is considered. Numerical results validate the theoretical
findings and demonstrate that significant performance gain over
orthogonal multiple access (OMA) scheme in terms of EE can be
achieved by the proposed algorithms in a SWIPT-enabled NOMA
system.

Index Terms—Energy efficiency (EE), non-orthogonal multiple
access (NOMA), simultaneous wireless information and power
transfer (SWIPT), time switching (TS).

I. INTRODUCTION

The exponential growth of wireless data services driven
by mobile internet and connected devices has triggered the

This paper was presented in part at the IEEE Global Communications
Conference (GLOBECOM), Abu Dhabi, UAE, 2018. This work has been
supported in part by the National Natural Science Foundation of China under
Grant 61601186, in part by the Natural Science Foundation of Guangdong
Province under Grant 2017A030313383, in part by the Guangzhou Science
Technology and Innovation Commission under Grant 201707010159, and
in part by the Open Research Fund of National Mobile Communications
Research Laboratory, Southeast University (No. 2019D06). (Corresponding
author: Mingqian Liu.)

J. Tang and J. Luo are with the School of Electronic and Information
Engineering, South China University of Technology, Guangzhou, China. (e-
mail: eejtang@scut.edu.cn; 201720110615@mail.scut.edu.cn).

M. Liu is with the State Key Laboratory of Integrated Services Networks,
Xidian University, China. (e-mail: mqliu@mail.xidian.edu.cn)

D. K. C. So and E. Alsusa are with the School of Electrical and Electronic
Engineering, University of Manchester, Manchester, United Kingdom. (e-mail:
d.so@manchester.ac.uk; e.alsusa@manchester.ac.uk).

K.-K Wong is with the Department of Electronic and Electrical Engi-
neering, University College London, London, United Kingdom. (e-mail: kai-
kit.wong@ucl.ac.uk).

G. Chen and J. Chambers are with the Department of Engineering,
University of Leicester, United Kingdom. (email: gaojie.chen@leicester.ac.uk;
jonathon.chambers@leicester.ac.uk).

investigation of fifth generation (5G) cellular networks. How-
ever, the available spectrum resources are far from enough
to support the communication systems with the increasing
demand for high data rate. This trend makes spectral efficiency
(SE) to be the main performance indicator for the design
and optimization of wireless systems, but at the same time
constitutes to ever-rising network power consumption which
has severe implications in terms of both economic and ecolog-
ical costs, and thus energy saving has been recognized as an
urgent issue worldwide. In order to meet these requirements,
the evolving 5G cellular wireless networks are envisioned to
provide higher efficiency of resource utilization, including both
SE and energy efficiency (EE) [1].

Orthogonal frequency division multiple access (OFDMA)
has served as the multiple access scheme in 4G owing to
its significant performance against multipath fading as well
as its higher SE compared to the previously used multiple
access schemes [2]. However, in an OFDMA-based system,
each subcarrier is only occupied by a single terminal in spite
of the channel conditions, which limits the achievable SE.
On the other hand, non-orthogonal multiple access (NOMA)
can further improve the SE as each subcarrier is allowed to
serve multiple terminals at the same time [3], and hence it
has received considerable attention as a promising candidate
for 5G [4]–[9]. Sharing the same spectrum among users leads
to a high mutual interference when decoding information.
However, by employing successive interference cancellation
(SIC) at the receivers, the information can be correctly decod-
ed and thus improve the throughput of the system. Several
research works have been conducted to compare the sys-
tem performance between NOMA and traditional orthogonal
multiple access (OMA) [10]–[12]. In [10], the throughput
maximization problem considering user fairness was addressed
for both NOMA and OMA systems, and it proved that the
proposed NOMA-based approach outperformed the OMA-
based solution mathematically and numerically. Similar results
for EE optimization problem were also observed in [11] for
a downlink single input single output (SISO) NOMA system
and in [13] for heterogeneous NOMA networks.

In addition to improving SE which is the motivation of
NOMA, another key objective of future 5G networks is to
maximize EE. The recent progress in the research on wireless
power transfer (WPT) provides possibility of improving EE
[14]. Furthermore, it is known that the radio frequency (RF)
signals are the carriers of both information and energy, which
makes it possible to combine WPT and wireless informa-
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tion transmission (WIT) in wireless communication systems.
Motivated by this, an advanced technology named simulta-
neous wireless information and power transfer (SWIPT), has
emerged recently in [15], aiming to prolong the battery-life of
devices by achieving the parallel transmission of information
and energy. As a result, SWIPT is regarded as a potential
energy-efficient solution for the forthcoming 5G [14], which
has attracted extensive attention in both academia and industry.
In [15], Varshney defined a capacity-energy function consid-
ering that the terminals could simultaneously complete infor-
mation decoding (ID) and energy harvesting (EH) without any
limitation. Particularly, the capacity region for a SISO SWIPT
system was studied. However, given that the receiver sensi-
tivity for information and energy are fundamentally different,
this capacity region cannot be achieved. Motivated by this, two
practical receiving schemes have been proposed in [16] where
ID and EH were separated through time domain and power
domain respectively. These practical receiving schemes have
promoted further development of SWIPT. In [17], Zhang and
Ho considered a sum-rate maximization problem for both time
switching (TS)-based and power splitting (PS)-based SWIPT
multiple input multiple output (MIMO) broadcast systems
and the optimal power transmission approach was developed.
Under this setup, Song et al. in [18] further investigated the
weighted mean squared error minimization problem. In [19],
the weighted sum-rate maximization problem for a SWIPT
multiple input single output (MISO) broadcast channel was
studied, where the maximum transmit power constraint as well
as the minimum harvested power constraint were considered.
The work in [20] investigated the throughput maximization
problem for an amplify-and-forward MIMO relay system by
jointly optimizing the relay matrix and the precoder scheme.
In particular, the sum-rate maximization problem was trans-
formed to the mean square error minimization problem. In
[21], the feasible rate-energy region was investigated for a
SWIPT-based SISO OFDM system. The work in [22] studied
SWIPT-based multi-user scenarios including TS-based time
division multiple access (TDMA) systems as well as PS-
based OFDMA systems. With the constraints of the minimum
harvested power per-user and the maximum transmitted power,
the optimal power allocation and the TS/PS ratio were investi-
gated in order to obtain the maximum weighted sum-rate of the
two systems. In [23], Shi et al. considered a quality of service
(QoS)-based power minimization problem for a SWIPT-based
multi-user MISO system by jointly optimizing the transmit
beamforming and the PS factor. Besides, the harvested energy
maximization problem with ID constraints was also studied
in [24] for OFDM systems and in [25] for multiuser MISO
systems. Furthermore, SWIPT enabled heterogeneous small
cell network is regarded as a promising technique in the future
mobile communication systems, and the resource allocation
scheme of it was investigated in [26] and [27] so as to
obtain the Nash equilibrium points. Most research works on
SWIPT systems focused on maximizing sum rate or harvested
energy. However, EE optimization for SWIPT systems has
also been investigated recently [2], [28]. The work in [2]
studied the optimal resource allocation for maximizing the
EE of the OFDMA-based SWIPT system. Energy efficiency

optimization with SWIPT in MIMO broadcast channels for
internet of things (IoT) was studied in [28], where a practical
linear power model taking into account the entire transmit-
receive chain was proposed.

With the extensive fundamental studies on both SWIPT
and NOMA, the combination of these two techniques has
aroused great interest recently. In [29], authors studied SIC
in a bipolar ad hoc network from a SWIPT point of view,
and showed that SIC can significantly increase wireless power
transfer without affecting the information decoding. The work
in [30] considered both sum rate and data rate per-user
optimization for the SWIPT-enabled NOMA systems, where
two schemes for ID were proposed, namely “fixed decoding
order” and “time sharing”. It was demonstrated again that the
system performance could be significantly improved through
the integration of SWIPT and NOMA. Besides, both the
downlink and the uplink of a wireless powered network, in
the presence of interference, have been considered in [31].
Two different protocols were utilized for the downlink, i.e.,
NOMA and TDMA, while NOMA with time sharing was used
for the uplink. By utilizing corresponding priority weights,
authors fairly maximized the downlink/uplink users rates and
showed that a relatively high downlink rate can be achieved. In
[32], the secrecy sum-rate optimization problem for SWIPT-
enabled NOMA system has been investigated. Furthermore,
cooperative SWIPT-based NOMA has also attracted great
research interest. In [33], the application of SWIPT to NOMA
networks in which users are spatially randomly located is
investigated. A new co-operative SWIPT NOMA protocol
is proposed, where three user selection schemes based on
the user distances from the base station are proposed. The
results confirm that the opportunistic use of node locations for
user selection can achieve low outage probability and deliver
superior throughput in comparison to the random selection
scheme. In [34], authors studied the performance of a cell-edge
user in a two-user MISO-NOMA system, where a cellcenter
user acts as a relay to assist the cell-edge user and its relaying
operation is powered by a hybrid TS/PS SWIPT protocol. The
results demonstrate the achievable performance improvements
in terms of outage performance of the proposed schemes in
comparison to that of the OMA systems.

A. Motivation and Contributions
Since SWIPT and NOMA are two promising techniques

for the forthcoming 5G, many researchers have investigat-
ed the performance of the integrated systems. The existing
literatures indicate that SWIPT-enabled NOMA systems are
able to provide performance improvement in many aspects
compared to OMA systems, including energy harvesting [29],
total throughput [30], user fairness [31], secrecy sum-rate
[32], outage performance [33], [34], etc. To comply with
the global commitments for handling the so-called resource
crunch in a sustainable and economical manner, balancing the
requirements of low power consumption and high data rata
is significantly important. Hence, an alternative strategy is to
consider the EE performance of the communication systems.
On the other hand, the larger throughput is significantly
important for the conventional cellular network, because the
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applications of mobile internet is becoming increasingly abun-
dant, such as watching videos and playing online games, which
indeed require relatively large data rates to avoid intermission.
However, to support the functionality of the Internet of things
and the massive machine-type communications scenarios, EE
is important for small base stations with limited energy. In
addition, it has been demonstrated that SWIPT is regarded
as a potential energy-efficient solution for the forthcoming
5G/IoT, and the EE performance of the potential SWIPT-
enabled NOMA cellular networks remains unknown and it is
thus valuable to be investigated.

Motivated by the aforementioned observations, we consider
joint power allocation and TS control for QoS-constrained
EE optimization in the downlink of SWIPT-enabled NOMA
power-limited systems. The main contributions of this paper
can be summarized as follows:

• The aim of this paper is to optimize the EE whilst
satisfying the constraints on maximum transmit power
budget, minimum data rate and minimum harvested ener-
gy per-terminal. The considered EE optimization problem
is neither linear nor convex involving joint optimization
of power allocation and TS factors in the presence of
mutual interference, and thus is extremely difficult to
solve directly. In order to tackle this, we develop a
dual-layer iterative resource allocation algorithm where
power allocation and TS control are separated for possi-
ble implementation in practical SWIPT-enabled NOMA
systems. Specifically, the inner-layer is to optimize the
power allocation whilst the outer-layer is used to control
the TS assignment.

• In the inner-layer, the optimal power allocation was
derived based on the Dinkelbach method, where the
time switching factors are considered as constants. In
particular, we have proved that the power allocation prob-
lem (under a fixed Dinkelbach parameter q) is convex,
and hence it can be solved efficiently by applying the
Lagrangian dual algorithm. In the outer-layer, Dinkelbach
method is employed again to find out the optimal time
switching factors with fix power allocation. In each
iteration, the TS assignment problem is proved to be
linear programming and hence the optimal solution can
be achieved directly based on analytical property of linear
function.

• A simplified but practical special case with equal TS
factors is also considered. We have provide the computa-
tional complexity analysis for both the general case and
the special case, where the computational complexity for
the special case is remarkably lower.

• Numerical results demonstrate the EE performance of
the proposed strategy of jointly optimizing the power
allocation and the TS factors. More importantly, com-
pared to the conventional OMA approach, our findings
have illustrated that significant EE gain can be achieved
by our proposed algorithm, and this has confirmed the
advantages of integrating SWIPT into NOMA systems.

B. Organization and Notation

The remaining of this paper is structured as follows. The
SWIPT-enabled NOMA system model and the corresponding
EE maximization problem are presented in Section II. In
Section III, a dual-layer algorithm is developed to find out the
optimal joint power allocation and time switching assignment.
A special case with equal time switching factor is further
studied in Section IV. In Section V, the numerical results are
presented to demonstrate the theoretical findings. Finally, we
conclude this paper in Section VI.

The following notations are used throughout the paper.
Non-bold and bold case letters represent scalar and vector
respectively; [x]+ represents max(x, 0).

II. SYSTEM MODEL AND PROBLEM FORMULATION

In this section, the SWIPT-enabled NOMA system model
with TS-based terminals is presented first. Then we formulate
the EE optimization problem mathematically.

A. System Model

As shown in Fig. 1, the considered SWIPT-enabled NOMA
system with TS-based terminals includes one base station (BS)
and K different terminals; all are equipped with a single
antenna. The total transmit power of the BS is limited to Pmax.
We assume the power allocated to the kth terminal in NOMA
system is Pk. Furthermore, every terminal consists of an ID
circuit and an EH rectification circuit. TS scheme is adopted
to achieve ID and EH in two orthogonal time slots. For the kth

terminal, αk denotes the portion of transmission time allocated
to the ID time slot, and thus, 1 − αk corresponds to that for
the EH time slot.

Since all the terminals are sharing the same bandwidth (B),
they will interfere with each other when decoding information.
Here SIC is applied to reduce mutual interference and improve
the performance of the system. It has been shown in [35]
that the capacity region of broadcast channels can be achieved
when successive decoding in the order of increasing channel
gains is applied. We denote the channel gains of the kth

terminal as hk, and let gk = |hk|2. Without loss of generality,
we assume that the channel gains satisfy the following con-
dition: g1 ≤ g2 ≤ . . . ≤ gK . In order to achieve the capacity
boundary, the decoding order is set to {1, 2, . . . ,K} in which
the terminal with the worst channel gain is decoded first.
Channel state information (CSI) is assumed to be perfectly
known at the BS and all the terminals. Note that the CSI at the
receivers can be obtained from the channel estimation of the
downlink pilots, while CSI at the transmitter can be acquired
via uplink channel estimation in TDD mode.

Based on the system model presented above, the observation
at the kth terminal is written as

yk = hk

K∑
i=1

√
Pisi + ωk, (1)

where sk is the transmit signal for the kth terminal, and ωk
is the additive Gaussian white noise (AWGN) with power σ2.
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Fig. 1: A downlink SWIPT-enabled NOMA system with TS-based terminals.

Successive interference cancellation (SIC) will be carried
out at the users. Therefore, the k-th user will detect the i-th
user’s message, i < k, and then remove the message from its
observation, in a successive manner. The message for the i-th
user, i > k, will be treated as noise at the k-th user. As a result,
the data rate achievable to the k-th user, 1 ≤ k ≤ (K − 1), is
given by

Rk = αkBlog2

(
1 +

gkPk

σ2 + gk
∑K
i=k+1 Pi

)
. (2)

conditioned on Rj→k ≥ R̄j , where R̄j denotes the targeted
data rate of the j-th user, and Rj→k denotes the rate for the
k-th user to detect the j-th users message, j ≤ k. It should
be noted that R̄k is determined opportunistically by the users
channel condition [4], i.e., Rj > R̄j , and hence it can be
easily verified that the condition Rj→k ≥ R̄j always holds
since gj ≤ gk for j < k. Consequently the sum rate achieved
by NOMA is given by

Rsum =
K−1∑
k=1

αkBlog2

(
1 +

gkPk

σ2 + gk
∑K
i=k+1 Pi

)

+αKBlog2

(
1 +

gKPK
σ2

)
. (3)

It should also be noted that, for the case R̄k is determined by
the users QoS requirements, we should examine the probability
of whether user can cancel others users messages or whether
the system can ensure the users QoS requirements to be
satisfied, and hence the outage performance is the primary
target which is out of scope for this work.

On the other hand, the power harvested by the kth terminal
can be expressed as

Ek = (1− αk) ηgk

K∑
i=1

Pi, (4)

where η is the power conversion efficiency of the EH receivers.
The total harvested power of the system can thus be expressed
as

Etotal =
K∑
k=1

Ek. (5)

B. Power Model

Generally, the power consumption of the conventional wire-
less communication system is defined as the following linear
model,

Ptotal1 = ζ
K∑
k=1

Pk + PC , (6)

where ζ accounts for the reciprocal of the power amplifier
drain efficiency, and PC denotes the power consumed by the
system hardware (circuit power).

Different from the conventional wireless communication
system, the power consumption in a SWIPT system can be
compensated by the transferred energy, i.e., harvested power
at all the receivers. As a result, similar to the approach in [28],
[36], the total power consumption of the mentioned system is
given by

Ptotal = ζ
K∑
k=1

Pk + PC − Etotal. (7)

C. Problem Formulation

According to [37], the EE of the system can be defined
as the ratio of the total achievable rates and the total power
consumption of the communication system. Therefore, the EE
of the considered SWIPT-enabled NOMA system with TS-
based terminals can be formulated as follows

λEE ,
Rtotal
Ptotal

=

∑K
k=1Rk

ζ
∑K
k=1 Pk + PC − Etotal

=
B
∑K
k=1 αk log2

(
1 + gkPk

σ2+gk
∑K
i=k+1 Pi

)
ζ
∑K
k=1 Pk + PC − η

∑K
k=1 (1− αk) gk

∑K
i=1 Pi

.

(8)

The objective of this work is to maximize the EE of the
TS-based SWIPT-enabled NOMA system with the constraints
of total transmitted power provided by BS as well as the
quality of service (QoS) demanded by the terminals, including
the minimum data rate constraint and the minimum harvested
energy constraint per terminal.
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Hence, the EE optimization problem can be mathematically
formulated as follows:

max
αk,Pk

B
∑K
k=1 αk log2

(
1 + gkPk

σ2+gk
∑K
i=k+1 Pi

)
ζ
∑K
k=1 Pk + PC − η

∑K
k=1 (1− αk) gk

∑K
i=1 Pi

(9)

s.t. αkB log2

(
1 +

gkPk

σ2 + gk
∑K
i=k+1 Pi

)
≥ Rmin,

∀k ∈ K, (10)

(1− αk) ηgk

K∑
i=1

Pi ≥ Emin,∀k ∈ K, (11)

K∑
k=1

Pk ≤ Pmax, (12)

0 ≤ αk ≤ 1, Pk ≥ 0,∀k ∈ K. (13)

where K = {1, 2, . . . ,K} denotes the set of all terminals.
Equation (10) corresponds to the minimum rate constraint
for each ID receiver while (11) corresponds to the minimum
harvested power constraint for each EH receiver, in which
Rmin and Emin denote the minimum rate target and the
minimum harvested power requirement respectively. In (12),
the total power budget is set to Pmax. Besides, 0 ≤ αk ≤ 1
and Pk ≥ 0 for any k ∈ K are requested. To satisfy
the minimum rate constraints per terminal (10), the system
require a minimum transmit power denoted as P̄ . Similarly,
the system require a minimum transmit power P̃ to meet the
minimum harvested energy constraints per terminal (11). Since
the total transmit power

∑K
k=1 Pk should not exceed Pmax,

min{P̄ , P̃} > Pmax would lead to the infeasibility of this
optimization problem.

We can observe that the objective function (9) is a rather
complicated fraction, and thus the problem is a non-linear
optimization problem. Besides, the problem involves two sets
of variables, i.e., the time switching factor α and transmit-
ted power allocation P , where α = [α1, α2, . . . , αK ] and
P = [P1, P2, . . . , PK ]. Jointly optimizing the two sets of
variables makes the optimization problem (9)-(13) non-convex
and therefore difficult to obtain the optimal solution directly.
In the following sections, we will develop resource allocation
schemes to jointly optimize α and P in order to maximize
EE. As stated in [38], for any optimization problems with
multiple variables, we can analyze and solve the problem over
some variables, regarding the rest as constants; and then solve
the problem over the remaining variables. Therefore, we will
separate α and P when developing the optimization algorithm
so as to overcome the difficulty. In other words, we firstly
optimize P with a fixed α (inner-layer process), and then turn
to deal with α with the updated power allocation (outer-layer
process).

III. JOINT POWER ALLOCATION AND TIME SWITCHING
CONTROL ALGORITHM

In this section, we consider the joint power allocation
and time switching control algorithm for the SWIPT-enabled
NOMA system with multiple TS-based terminals. Note that

the optimization problem in (9)-(13) belongs to a non-linear
non-convex fractional programming problem, which involves
two sets of variables and is rather difficult to obtain the
solution directly. As a consequence, we develop a dual-layer
iterative method where optimal power allocation P is obtained
in the inner-layer process and the time switching factor α is
controlled in the outer-layer process. The proposed dual-layer
iterative algorithm is shown as follows:
(i) Inner-layer process: to find out the optimal power alloca-

tion P of the optimization problem (9)-(13) under fixed
time switching factor α;

(ii) Outer-layer process: to update the time switching factor
α with the power allocation P obtained in inner-layer
process.

This process is repeated until convergence, i.e., there is no
further improvement in EE.

A. Power Allocation Approach under Fixed Time Switching
Assignment

In this section, the time switching factor αk (∀k ∈ K) is
considered as a constant in [0, 1] so that the EE maximiza-
tion problem (9)-(13) can be regarded as a power allocation
problem. The fractional objective function makes the problem
neither linear nor convex and thus difficult to solve straightfor-
wardly. Since Dinkelbach method [39] has been widely applied
to solve non-linear fractional optimization problem, we apply
it to tackle our EE maximization problem. Particularly, we
convert the fractional objective function into a subtractive form
of numerator and denominator on the basis of the following
proposition.

Proposition 1: For UR(P ) ≥ 0 and UT (P ) ≥ 0, the
maximum achievable EE q∗ = λ∗EE can be obtained supposing
that

max
P≥0

UR(P )−q∗UT (P ) = UR(P ∗)−q∗UT (P ∗) = 0, (14)

where

UR(P ) = B
K∑
k=1

αk log2

(
1 +

gkPk

σ2 + gk
∑K
i=k+1 Pi

)
, (15)

UT (P ) = ζ
K∑
k=1

Pk + PC − η
K∑
k=1

(1− αk) gk

K∑
i=1

Pi, (16)

q∗ =
UR(P ∗)

UT (P ∗)
. (17)

Proof: Please refer to [39] for the proof of Proposition 1.

Proposition 1 provides a necessary and sufficient condition
for developing the optimal power allocation approach. In
general, an equivalent optimization problem with an objective
function of subtractive form, such as UR(P )− q∗UT (P ), can
be found to replace the original EE maximization problem
with a fractional objective function, such that the solutions of
the two optimization problems are equivalent. Furthermore, it
is implied in [39] that the optimal solution can be obtained
according to the equality condition in (14). Thus, rather than
handling the original optimization problem (9)-(13) directly,
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we develop a power allocation algorithm for the equivalent
optimization problem while meeting the condition in Propo-
sition 1, which can be concluded in TABLE I.

It is necessary to prove the convergence of the Dinkelbach
method-based algorithm in order to demonstrate its feasibility.
Firstly, we prove that the EE (i.e., q) increases in each
iteration. Then we prove that q converges to the optimal
value q∗ if the number of iterations is large enough. Note
that q∗ meets the optimality condition in Proposition 1, i.e.,
UR(P ∗)− q∗UT (P ∗) = F (q∗) = 0. Suppose that P (n) is the
optimal power allocation in the nth iteration, q(n) 6= q∗ and
q(n+1) 6= q∗ denote the EE of the mentioned system in the nth

and the (n+ 1)
th iteration respectively. It has been proved in

[39] that F (q(n)) > 0 and F (q(n+1)) > 0 hold. On the other
hand, for our proposed algorithm, q(n+1) = UR(P (n))

UT (P (n))
. Thus,

we have the following expression

F (q(n)) = UR(P (n))− q(n)UT (P (n))

= q(n+1)UT (P (n))− q(n)UT (P (n))

=
(
q(n+1) − q(n)

)
UT (P (n)).

(18)

Since UT (P (n)) = ζ
∑K
k=1 P

(n)
k + PC −

η
∑K
k=1 (1− αk) gk

∑K
i=1 P

(n)
i > 0 always holds in practice

and F (q(n)) > 0, we can easily obtain q(n+1) > q(n).
Consequently, we can show that if the number of iterations n
is large enough, q(n+1) → q(n) and F (q(n+1))→ 0 hold, i.e.,
the optimality condition in Proposition 1 can be met.

As it can be seen from TABLE I, the crucial step for the
developed Dinkelbach method-based algorithm is to deal with
the following equivalent optimization problem with a given q
(step 3 in TABLE I)

max
Pk≥0

B

K∑
k=1

αk log2

(
1 +

gkPk

σ2 + gk
∑K
i=k+1 Pi

)

−q

(
ζ

K∑
k=1

Pk + PC − η
K∑
k=1

(1− αk) gk

K∑
i=1

Pi

)
(19)

s.t. αkB log2

(
1 +

gkPk

σ2 + gk
∑K
i=k+1 Pi

)
≥ Rmin,

∀k ∈ K, (20)

(1− αk) ηgk

K∑
i=1

Pi ≥ Emin,∀k ∈ K, (21)

K∑
k=1

Pk ≤ Pmax. (22)

Proposition 2: For a fixed parameter q, the objective
function (19) is strictly concave in Pk(∀k ∈ K).
Proof: See Appendix A.

Note that constraint (20) can be transformed as the follow-
ing equivalent form

σ2 + gk

K∑
i=k

Pi − 2
Rmin
αkB

(
σ2 + gk

K∑
i=k+1

Pi

)
≥ 0,∀k ∈ K,

(23)

TABLE I: PROPOSED ITERATIVE POWER ALLOCATION AL-
GORITHM BASED ON DINKELBACH METHOD.

1) Let n = 0 and q(n) = 0;
Set ε > 0 as the stopping criterion;

2) REPEAT
3) For a given q(n), solve (19)-(22) to obtain the power

allocation P (n);
4) IF UR(P (n))− q(n)UT (P (n)) ≤ ε
5) Convergence = TRUE;
6) RETURN P ∗ = P (n), q∗ = q(n);
7) ELSE
8) Convergence = FALSE;

9) Set n = n+ 1 and q(n) = UR(P (n−1))

UT (P (n−1))
;

10) END IF
11) UNTIL Convergence = TRUE.

which is clearly linear. Since constraints (21)-(22) are also
linear and the objective function (19) is concave, the equivalent
optimization problem based on Dinkelbach method (19)-(22)
is a convex maximization problem, and zero duality gap
exists. Lagrangian dual algorithm can be applied here to deal
with the above convex optimization problem. The associated
Lagrangian function of problem (19)-(22) can be given as

L (P ,µ,ν, ψ) = B

K∑
k=1

αk log2

(
1 +

gkPk

σ2 + gk
∑K
i=k+1 Pi

)

−q

(
ζ

K∑
k=1

Pk + PC − η
K∑
k=1

(1− αk) gk

K∑
i=1

Pi

)

−
K∑
k=1

µk

(
Rmin − αkB log2

(
1 +

gkPk

σ2 + gk
∑K
i=k+1 Pi

))

−
K∑
k=1

νk

(
Emin − (1− αk) ηgk

K∑
i=1

Pi

)

−ψ

(
K∑
k=1

Pk − Pmax

)
,

(24)

where µ ≥ 0, ν ≥ 0 and ψ ≥ 0 are the Lagrangian multipliers
corresponding to the minimum rate constraints, the minimum
harvested power constraints and the maximum transmitted
power constraint, respectively. Thus, the dual objective func-
tion is given by

g(µ,ν, ψ) = max
P
L (P ,µ,ν, ψ) , (25)

and the dual optimization problem is formulated as follows

min
µ,ν,ψ

g(µ,ν, ψ)

s.t. µ ≥ 0, ν ≥ 0 and ψ ≥ 0.
(26)

In this work, we firstly develop an iterative scheme based
on gradient descent algorithm so as to obtain the optimal
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P for the dual optimization problem (26). Particularly, Pk
can be updated successively according to the gradient of
the Lagrangian function (24) with respect to Pk, which is
formulated as follows

∇PkL

:=
B

ln 2
·

(
α1g1

σ2 + g1θ1
+

k∑
i=2

(
αigi

σ2 + giθi
− αi−1gi−1

σ2 + gi−1θi

))

+
B

ln 2
·

(
µ1α1g1

σ2 + g1θ1
+

k∑
i=2

(
µiαigi
σ2 + giθi

− µi−1αi−1gi−1

σ2 + gi−1θi

))

− q

(
ζ − η

K∑
i=1

(1− αi)gi

)
+ η

K∑
i=1

νi(1− αi)gi − ψ,

(27)

P
(n)
k = [P

(n−1)
k + t∇(n−1)

Pk
L]+, (28)

where θi =
∑K
j=i Pj( ∀i ∈ K) and particularly θK+1 = 0;

t denotes the iteration step size of Pk; P (n)
k and P

(n−1)
k

represent the power allocation of the nth and the (n − 1)th

iteration respectively.
After we find out the optimal P , now we turn to cope

with the dual optimization problem (26) so as to achieve the
optimal Lagrangian multipliers µ ≥ 0, ν ≥ 0 and ψ ≥ 0.
Note that the objective function as well as all the constraints
of the dual problem are all linear with respect to Lagrangian
multipliers. Thus, the dual problem is convex over the dual
variables µ, ν, ψ which can be optimized through a one-
dimensional searching algorithm. Nevertheless, the gradient
algorithm is not necessarily feasible owing to the fact that the
dual function (25) is not guaranteed to be differentiable. Here
we employ the well-known sub-gradient algorithm to update
the dual variables µ, ν, ψ, and the sub-gradient direction is
presented in the following Lemma.

Lemma 1. The subgradient of the dual function g(µ,ν, ψ)
is denoted as follows

∇µkg := αkB log2

(
1 + gkPk

σ2+gk
∑K
i=k+1 Pi

)
−Rmin,

∀k ∈ K, (29)

∇νkg := (1− αk) ηgk

K∑
i=1

Pi − Emin, ∀k ∈ K, (30)

∇ψg := Pmax −
K∑
k=1

Pk. (31)

Proof: Please refer to [40] for a proof of Lemma 1.

Therefore, the dual variables can be updated according to
the following expression

µ
(m)
k =

[
µ

(m−1)
k + ω(m−1)∇µkg

]+
,∀k ∈ K, (32)

νk(m) =
[
ν

(m−1)
k + ω(m−1)∇νkg

]+
,∀k ∈ K, (33)

ψ(m) =
[
ψ(m−1) + ω(m−1)∇ψg

]+
, (34)

TABLE II: PROPOSED ITERATIVE POWER ALLCATION
SCHEME BASED ON LAGRANGE DUAL THEORY.

1) Let m = 0; initialize µ(0) � 0, ν(0) � 0, ψ(0) ≥ 0 ;
set ε1 and ε2 as the stopping criterions;

2) REPEAT(I)
3) Let n = 1; initialize P (0)

1 , P (0)
2 , . . . , P (0)

K ;
4) REPEAT(II)
5) FOR k=1:K
6) Update P (n)

k according to (27)-(28);
7) END FOR
8) n = n+ 1;
9) UNTILL Pk converges, i.e., ‖∇PkL‖2 ≤ ε1;
10) m = m+ 1;
11) Update µ(m), ν(m), ψ(m) according to (29)-(34);
12)UNTILL µ, ν, ψ converge,

i.e., ‖µ(m) − µ(m−1)‖2 ≤ ε2,
‖ν(m) − ν(m−1)‖2 ≤ ε2,
and |ψ(m) − ψ(m−1)|2 ≤ ε2.

where ω denotes the iteration step size of dual variables.
Now we can conclude the approach to cope with the

optimization problem in (19)-(22) under a given parameter
q in each iteration, which is presented in TABLE II.

B. Time Switching Control Scheme under Fixed Power Allo-
cation

In the previous section, we have developed a Dinkelbach
method-based iterative approach to obtain the optimal power
allocation P under a fixed time switching assignment. How-
ever, the achieved EE λEE is not necessarily optimal since
the time switching factor α is regarded as a constant vector
and not guaranteed to be optimal. Therefore, in this section,
we will develop a scheme to optimize α under fixed P .

With a fixed power allocation P achieved in the inner-
layer process, the original optimization problem in (9)-(13)
is accordingly simplified as follows

max
0≤αk≤1

∑K
k=1Akαk

B +
∑K
k=1 Ckαk

(35)

s.t. Akαk ≥ Rmin, ∀k ∈ K, (36)
Ck(1− αk) ≥ Emin, ∀k ∈ K, (37)

where we denote

Ak = B log2

(
1 +

gkPk

σ2 + gk
∑K
i=k+1 Pi

)
≥ Rmin,∀k ∈ K,

(38)

B = ζ
K∑
k=1

Pk + PC − η
K∑
k=1

gk

K∑
i=1

Pi, (39)

Ck = ηgk

K∑
i=1

Pi,∀k ∈ K. (40)

According to (36) and (37), we have αk ≥ Rmin/Ak and
αk ≤ 1−Emin/Ck. Therefore, there is no feasible solution if
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Rmin/Ak > 1 − Emin/Ck. Here Dinkelbach method is em-
ployed again to cope with the fractional programming problem
in (35)-(37), and the corresponding Dinkelbach method-based
problem is given by

max
0≤αk≤1

ΛEE(α) ,
K∑
k=1

Akαk − β(B +
K∑
k=1

Ckαk) (41)

s.t. Akαk ≥ Rmin, ∀k ∈ K, (42)
Ck(1− αk) ≥ Emin, ∀k ∈ K. (43)

Thus, (35)-(37) is converted into a linear programming
problem, in which the optimal time switiching factor α can
be achieved according to the following Proposition.

Proposition 3: With a fixed power allocation P and a
given parameter β, the optimal time switiching factor can be
calculated as

α∗k =

{
max{0, 1− Emin

Ck }, if Ak − βCk ≥ 0

min{1, RminAk }, if Ak − βCk < 0
, (44)

where Ak − βCk is the first-order derivative of ΛEE(α) with
respect to αk, i.e., ∂ΛEE(α)

∂αk
.

Proof: The proof of Proposition 3 is not difficult to obtain
according to the analytical property of linear function, and
hence is omitted for brevity.

Similar to the previous, we update the Dinkelbach parameter
β with the following expression

β∗ =

∑K
k=1Akα∗k

B +
∑K
k=1 Ckα∗k

, (45)

and then continue to deal with the optimization problem in
(41)-(43), which is repeated until convergence, i.e.,

max
0≤αk≤1

K∑
k=1

Akαk − β∗(B +

K∑
k=1

Ckαk)

=Akα∗k − β∗(B +
K∑
k=1

Ckα∗k) = 0.

(46)

Note that the EE β increases in each iteration and the
proof of the convergence is similar to the previous Dinkelbach
method-based algorithm, and hence its feasibility can be
guaranteed.

C. Joint Power Allocation and Time Switching Solution

The joint power allocation and time switching strategy for
the original optimization problem (9)-(13) thus is summarized
as follows

P [0],α[0]→ λEE [0]︸ ︷︷ ︸
Initialization

→ · · · → P [t]→ α[t], λEE [t]︸ ︷︷ ︸
tth iteration

→ P [t+ 1]→ α[t+ 1], λEE [t+ 1]︸ ︷︷ ︸
(t+ 1)th iteration

→ · · · , (47)

where P [t], α[t] and λEE [t] are the power allocation, the
time switching assignment and the obtained energy efficiency
in the tth iteration, respectively. With the developed power
allocation algorithm and time switching control strategy, the

TABLE III: THE COMPLETE SOLUTION TO THE EE OPTI-
MIZATION PROBLEM FOR THE SWIPT-ENABLED NOMA SYS-
TEM.

1) Initialize P [0], α[0] and calculate λEE [0];
set a small ξ as the stopping criterion; t = 0;

2) REPEAT
3) t = t+ 1;
4) Let q(0)[t] = λEE [t− 1], solve the optimization

problem (19)-(22) under the fixed TS assignment
α[t− 1] according to TABLE I and II;
obtain the corresponding P [t] and q∗[t];

5) Let β(0)[t] = q∗[t], solve the optimization problem
(41)-(43) under the fixed power allocation P [t]
according to the analysis in (44)-(46);
obtain the corresponding α[t] and β[t];

6) λEE [t] = β[t];
7) UNTIL converge, i.e., | λEE [t]− λEE [t− 1] |2≤ ξ.

update process is repeated until no further improvement in EE
can be obtained, i.e., λEE [t + 1] = λEE [t]. To summarize,
the complete solution to the EE optimization problem in (9)-
(13) for the SWIPT-enabled NOMA system with TS-based
terminals is concluded in TABLE III. We can also prove that
the energy efficiency λEE increases in each iteration shown
in TABLE III and the convergence of the complete algorithm
exists.

We provide a complexity analysis for the proposed dual-
layer iterative process. In SIC, we successively cancel the
interference of each terminal so that the computational com-
plexity depends on the number of terminals, which is approxi-
mately of order O(K2.376) [41]. Moreover, the computational
complexity for the Dinkelbach method-based algorithm with
stopping criteria ε is O

(
1
ε2 log(K)

)
[39]. Note that Dinkelbach

method is employed both in the inner-layer and the outer-
layer iterative process. Hence, the computational complexity
of the proposed dual-layer iterative algorithm is approximately
of order O

(
1
ε21

1
ε22

(log(K))2K2.376
)

, assuming that ε1 and ε2
are the stopping criteria in the inner-layer and the outer-layer
iterative process respectively.

IV. SPECIAL CASE WITH EQUAL TIME SWITCHING
FACTORS

In the previous section, we focus on the case that the
terminals are equipped with different SWIPT-receivers, and
accordingly the optimal time switching factors are usually
different among terminals, which causes that the proposed
joint resource allocation algorithm is extremely complex. In
this section, we consider a special case where α1 = α2 =
. . . = αK = α, and then propose an efficient algorithm for
jointly optimizing the power allocation and the time switching
assignment.

Note that Proposition 2 still holds when supposing α1 =
α2 = . . . = αK = α, and the power allocation approach
under fixed time switching assignment proposed in the pre-
vious section is also appliable in this case. However, the
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time switching control scheme under fixed power allocation
can be further simplified. With equal time switching factors
α1 = α2 = . . . = αK = α and a given power allocation P ,
the optimization problem (9)-(13) can be rewritten as follows

max
0≤α≤1

αB
∑K
k=1 log2

(
1 + gkPk

σ2+gk
∑K
i=k+1 Pi

)
ζ
∑K
k=1 Pk + PC − (1− α) η

∑K
k=1 gk

∑K
i=1 Pi

(48)

s.t. αB log2

(
1 +

gkPk

σ2 + gk
∑K
i=k+1 Pi

)
≥ Rmin,

∀k ∈ K, (49)

(1− α) ηgk

K∑
i=1

Pi ≥ Emin,∀k ∈ K. (50)

Proposition 4: The objective function in (48) is monotoni-
cally increasing with respect to α.
Proof : See Appendix B.

According to the constraints in (49) and (50), we have

α ≥ max
k
{ Rmin

B log2

(
1 + gkPk

σ2+gk
∑K
i=k+1 Pi

)} , αmin, (51)

and

α ≤ min
k
{1− Emin

ηgk
∑K
i=1 Pi

} = 1− Emin

ηg1

∑K
i=1 Pi

, αmax.

(52)
There is no feasible solution to the optimization problem

(48)-(50) if αmin > αmax; otherwise, the optimal time
switching factor for the problem (48)-(50) can be formulated
according to Proposition 4 as

α∗ = 1− Emin

ηg1

∑K
i=1 Pi

. (53)

A. Computational Complexity Analysis

In this subsection, we analyze the computational complexity
of the proposed joint optimization algorithms for both the gen-
eral case and the special case, which are the key components
of our dual-layer resource allocation framework.

1) Complexity analysis for the general case: The inter-
ference of each terminal is successively cancelled in SIC
process, and hence the computational complexity depends on
the number of terminals which is approximately of order
O(K2.376) [41]. In the inner-layer process, the computational
complexity for Dinkelbach method with stopping criteria ε
is O

(
1
ε2 log(K)

)
[39]. Furthermore, each iteration in the

proposed Dinkelbach method can be regarded as a convex op-
timization problem, and thus the computational complexity for
solving this problem is O (log(1/ε)) [42], where ε is the error
tolerance for algorithm termination. In the outer-layer process,
the Dinkelbach method is adopted again with the complexity
of O

(
1
ε2 log(K)

)
. Each iteration is required to compute the fist

order derivative of ΛEE(α) with respect to αk, i.e., ∂ΛEE(α)
∂αk

,
and thus has a complexity of O(K). To sum up, the total
computational complexity for the proposed dual-layer process
is approximately O

(
1
ε4 log( 1

ε )K3.376(log(K))2
)
.

2) Complexity analysis for the special case: The differ-
ence of the complexity between the general and the spe-
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Fig. 2: Convergence performance of the proposed joint power allo-
cation and time switching assignment algorithm.

cial case lies in the outer-layer. In particular, the calcula-
tion for the first order derivative with respect to TS factors
is not needed and thus the computational complexity for
the proposed dual-layer approach can be further reduced to
O
(

1
ε4 (log(K))2log( 1

ε )K2.376
)
.

V. SIMULATION RESULTS

In this section, numerical results are presented to demon-
strate the performance of the theoretical findings and the
superiority of the proposed algorithms in terms of EE. The
distance-dependent path-loss is given by 128.1 + 37.6log10d
[43], in which d is the distance between the terminal re-
ceiver and the transmitter in km. Log-Normal shadowing
with standard deviation of 8 dB is considered. Besides, for
the small-scale fading, each terminal experiences independent
Rayleigh fading with unit variance. In other words, the small-
scale fading is an independent and identically distributed
zero mean circularly symmetric complex Gaussian (ZMCSCG)
random variable with variance of 1. In particular, all terminals
are considered to be randomly located within 20m to the
corresponding BS and all the results are averaged over various
random locations of terminals. In our simulations, the channel
noise is considered as AWGN with power σ2 = 0.001W ; the
drain efficiency of the power amplifier ζ is set to 38% whereas
the EH efficiency is taken to be η = 10%; the bandwidth of
the system is set to B = 1MHz [44]. In addition, the static
circuit power at the transmitter PC is assumed to be 5W .
It should be noted that these system parameters are merely
chosen to demonstrate the EE performance in an example and
can easily be modified to any other values depending on the
specific scenario under consideration.

In the first simulation, the convergence performance of the
proposed joint power allocation and time switching assignment
algorithm is studied. We take the case of three terminals for
example. Besides, we set Pmax = 20W , Rmin = 2Mbits/s
and Emin = 0.2W . The EE achieved by the proposed
joint resource allocation scheme is compared with the EE
performance obtained through the exhaustive search method.
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Fig. 3: The performance of the proposed algorithm with different
number of terminals and PC (EE vs number of terminals and PC ).

As shown in Fig. 2, it can be observed that the EE converges
to a stable value (optimal EE based on exhaustive searching).
This result is in line with our theoretical analysis where the
proposed joint scheme is efficient compared to the exhaustive
search method for obtaining the optimal power allocation as
well as the optimal time switching factor.

Then we investigate the EE performance of the proposed
algorithm with different number of terminals as well as
different circuit power PC . In this simulation, the parameters
of constraints are similar to the previous. The number of
terminals varies from 1 to 7 whereas PC is set to 5W , 10W
and 15W . From Fig. 3, it is obvious that EE decreases as
PC increases. This is because the increasing circuit power
directly increases the total power consumption without having
any further impact on ID or EH. On the other hand, for a fixed
circuit power PC , we can draw a conclusion that EE is non-
increasing with respect to the number of terminals. In fact, the
non-orthogonality of the channel access is the main reason for
this observation. In NOMA systems, the inter-user interference
would enhance with the increasing number of terminals. This
reveals that a considerably higher transmit power is needed so
as to achieve the minimum rate requirement for each terminal.
On the other hand, the power conversion efficiency of the EH
receiver η is usually not very high (e.g. η = 10%) due to the
limitation of the practical hardware. Consequently, the increase
in total transmit power is much larger than the total harvested
power when the number of terminals is large, resulting in a
significant increase in the actual power consumption and hence
a poor EE performance. Besides, a big drop in EE occurs
when the number of terminals exceeds six. This is because the
considered power-limited system is most likely to fail to meet
the QoS requirements of all terminals, and the corresponding
EE is set to zero in this case. Therefore, this leads to a big
drop in the EE averaged over randomly generated channels.

In the next simulation, the EE performance of the proposed
joint power allocation and time switching assignment algo-
rithm under various constraints are evaluated and presented

Transmit Power Constraint P
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Fig. 4: The performance of the proposed algorithm with different
power budget constraints (EE vs transmitted power budget).

in Fig. 4, Fig. 5 and Fig. 6. The circuit power is fixed to
PC = 5W and the number of terminals is set to 1, 3 and 5
for comparison. We first investigate the EE performance of
the proposed solutions with different power budgets Pmax. In
particular, we assume that the power budget varies within a
range of 1W ≤ Pmax ≤ 20W , and the constraints of the
minimum rate and the minimum harvested power are set to
Rmin = 2Mbits/s and Emin = 0.2W respectively. As shown
in Fig. 4, the optimal EE achieved by the proposed scheme
are monotonically non-decreasing in the total transmit power
constraint. Particularly, the EE increases dramatically with
a smaller power budget, and then approaches an asymptotic
value where a balance among the achievable rates and the total
power consumption is obtained. In other words, the additional
power budget does not constitute to extra gain in EE, and
similar results are observed in the conventional single-cell
systems [45], multi-cell systems [46], and two-tier HetNets
[47]. Besides, if there are more terminals in the network,
the power budget Pmax to reach the stable EE is required
to be higher. These two results make sense when we expect to
achieve better EE performance with a limited transmit power.
We next show in Fig. 5 the maximum EE as well as the
optimal TS ratio under different harvested power requirements.
We set the harvested power constraint within the range of
0.2W to 2W , and the constraints of power budget and the
minimum rate are set to Pmax = 20W and Rmin = 2Mbits/s
respectively. It can be seen in Fig. 5 that the maximum EE as
well as the optimal TS ratio drops as the demanded harvested
power increases. To satisfy a higher harvested energy demand,
a higher ratio of transmit time for EH is required, which
leads to a decline in α∗. Moreover, extra transmitted power is
needed to guarantee the quality of data rate, which leads to
an imbalance between the numerator (transmission rate) and
the denominator (power consumption) of the EE metric. Note
that α∗ = 0 means that the system fails to satify the QoS of
the all terminals, and hence the energy efficiency λEE = 0.
At last, the maximum EE as well as the optimal TS ratio
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Fig. 5: The performance of the proposed algorithm with different
harvested power constraints (EE vs harvested power constraint).

under different minimum rate constraints is presented in Fig.
6. Similarly, an increase in optimal TS ratio is required to
achieve a high data rate demand, and thus more transmitted
power is necessary so as to guarantee the quality of harvested
power. Therefore, a similar trend can also be seen for the case
of varying the minimum rate constraint, where the optimal
EE achieved by the proposed approach remains unchanged
up to a certain minimum transmission rate requirement, but
decreases thereafter. Furthermore, we can conclude from Fig. 4
to Fig. 6 that EE is always decreasing with increasing number
of terminals, regardless of the constraints of minimum rate,
minimum harvester energy or maximum transmission power.
This phenomenon is in consistence of the result in Fig. 3, and
the reason for this has been discussed.

In the last simulation, we compare the EE performance
among different approaches. Without loss of generality, we
analyse the case where there are three terminals in the network.
The curve marked as “Proposed SWIPT-enabled NOMA EE-
opt” denotes the EE performance of the proposed joint power
allocation and time switching control scheme for SWIPT-
enabled NOMA system. The curve “SWIPT-enabled NOMA
Rate-opt” represents the sum rate maximization scheme in
the considered SWIPT-enabled NOMA system, where the
objective function has been changed to maximizing the sum
rate. It can be observed that with the increasing total transmit
power budget Pmax, the EE achieved by “SWIPT-enabled
NOMA Rate-opt” first increases and then decreases with
Pmax. That is because for the rate maximization approach, the
whole transmit power will be allocated for all the terminals
to obtain the maximum data rate. However, when the transmit
power is increased to a certain extent, the effectiveness on the
improvement of data rate is not significant due to the property
of log function. Therefore, the achieved EE drops after certain
power level. On the other hand, since the additional power
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Fig. 6: The performance of the proposed algorithm with different
minimum rate constraints (EE vs minimum rate constraint).
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Fig. 7: Impact of the maximum transmit power on the EE perfor-
mance under different resource allocation approaches.

budget does not contribute to extra gain in EE, the EE
achieved by the proposed joint power allocation and time
switching control algorithm is monotonically non-decreasing
in the total transmit power constraint Pmax (similar to the
results in Fig. 4). In addition, the EE performance of OMA
system is also presented for comparison. In particular, we
take into account the approach that maximize the EE in
SWIPT-enabled OFDMA system [2] and the approach that
maximize the EE in a conventional OFDMA system [48],
which are marked as “SWIPT-enabled OFDMA EE-opt [2]”
and “conventional OFDMA EE-opt [48]” respectively. It is
clear that the EE achieved by the proposed SWIPT-NOMA
scheme outperforms both the SWIPT-OFDMA scheme and the
conventional OFDMA-based scheme, which has demonstrated
the applicability of our proposed approach and confirmed the
advantages of integrating SWIPT into NOMA system.
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VI. CONCLUSIONS

In this paper, we have addressed the EE optimization
problem for a SWIPT-enabled NOMA system with TS-based
terminals. Our goal is to maximize the EE whilst satisfying
certain constraints in terms of maximum transmitted power
budget, minimum rate and minimum harvested power. The
corresponding EE optimization problem, which involves joint
optimization of the TS factors and power allocation, is non-
linear and non-convex and thus the solution is non-trivial and
cannot be derived directly. In order to obtain a feasible solution
for this problem, we develop a dual-layer iterative resource
allocation algorithm to tackle the multivariable optimization
problem. In particular, Lagrangian dual algorithm for the
Dinkelbach method-based convex programming is proposed
in the inner-layer to obtain the optimal power allocation, and
Dinkelbach iterative method is applied again in the outer-layer
for an optimal TS control strategy. A simplified but practical
special case with equal time switching factor is also consid-
ered, where a low complexity joint resource allocation algo-
rithm has been developed. Numerical results demonstrate the
EE performance of the proposed strategy of jointly optimizing
the power allocation and the TS factors. More importantly,
compared to the conventional OMA approach, our findings
have illustrated that significant EE gain can be achieved by
our proposed algorithm, and this has confirmed the advantages
of integrating SWIPT into NOMA systems. In addition, it has
been shown in literature that the energy efficiency of NOMA
cellular networks could be further improved with multi-carrier
techniques, i.e., OFDMA. Therefore, it is worthy of studying
the joint subcarrier scheduling and resource allocation for
SWIPT-based multi-carrier NOMA cellular networks in the
future.

APPENDIX A

PROOF OF PROPOSITION 2

To demonstrate the concavity of the objective function
shown in (19), we firstly suppose that θk =

∑K
i=k Pi (∀k ∈

K), θk+1 =
∑K
i=k+1 Pi (k = 1, 2, . . . ,K− 1) and θK+1 = 0.

Thus, the objective function in (19) can be rewritten as

ΛEE(P )

=B
K∑
k=1

αk log2

(
σ2 + gkθk
σ2 + gkθk+1

)

−q

(
ζθ1 + PC − η

K∑
k=1

(1− αk) gkθ1

)

=B
K∑
k=2

(
αklog2

(
σ2 + gkθk

)
− αk−1log2

(
σ2 + gk−1θk

))
−q

(
ζθ1 + PC − η

K∑
k=1

(1− αk) gkθ1

)
−αKBlog2(σ2) + α1B log2(σ2 + g1θ1).

(54)

Then the first-order derivative of ΛEE(P ) can be denoted
as follows
∂ΛEE(P )

∂Pm

=
B

ln 2
·

(
α1g1

σ2 + g1θ1
+

m∑
k=2

(
αkgk

σ2 + gkθk
− αk−1gk−1

σ2 + gk−1θk

))

−q

(
ζ − η

K∑
k=1

(1− αk)gk

)
.

(55)

Furthermore, we can acquire the second-order derivative of
ΛEE(P ) as follows

∂2ΛEE(P )

∂Pm∂Pl

=− B

ln 2
·
j∑

k=2

(
αkg

2
k

(σ2 + gkθk)2
−

αk−1g
2
k−1

(σ2 + gk−1θk)2

)
− B

ln 2
· α1g

2
1

(σ2 + g1θ1)2
,

(56)

where j = min{m, l}.

Let Hm = ∂2ΛEE(P )
∂P 2

m
. According to (56), it’s obvious that

∂2ΛEE(P )
∂Pm∂Pl

= Hm if l ≥ m and ∂2ΛEE(P )
∂Pm∂Pl

= Hl if l ≤ m.
Therefore, the Hessian matrix H can be denoted as

H =


H1 H1 · · · H1

H1 H2 · · · H2

...
...

...
H1 H2 · · · HK

. (57)

Then we define Q = −H. According to (57), the k-th order
principal minor of Q is shown as follows

Qk =

∣∣∣∣∣∣∣∣∣
−H1 −H1 · · · −H1

−H1 −H2 · · · −H2
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(58)

According to (56), we have −H1 = B
ln 2 ·

α1g
2
1

(σ2+g1θ1)2 ≥ 0.

For 2 ≤ i ≤ K, we have
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(59)
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Since every terminal has the same harvested power con-
straint, we can infer that αi−1 ≤ αi based on the constraint
condition (21) and the assumption mentioned above, i.e.,
g1 ≤ g2 ≤ . . . ≤ gK . Therefore, in (59) Hi−1−Hi ≥ 0 holds
and thus Qk ≥ 0 (∀k ∈ K), which implies that Q = −H � 0
and H � 0 [38]. As a consequence, we can conclude that the
objective function (19) is concave in P . �

APPENDIX B

PROOF OF PROPOSITION 4

To demonstrate the EE in objective function (48) is monoton-
ically increasing with respect to the time switching factor α,
we firstly let

X = B
K∑
k=1

log2

(
1 +

gkPk

σ2 + gk
∑K
i=k+1 Pi

)
, (60)

Y = ζ
K∑
k=1

Pk + PC − η
K∑
k=1

gk

K∑
i=1

Pi, (61)

Z = η
K∑
k=1

gk

K∑
i=1

Pi. (62)

And thus, (48) is simplifed as

λEE(α) ,
Xα
Y + Zα

=
X

Y
α + Z

(63)

Obviously, X ≥ 0 and Z ≥ 0 always hold; and in practice,
we have Y > 0. Based on these, Yα as well as Yα +Z decreases
with respect to α, and thus X

Y
α+Z , i.e., the objective function

in (48), is monotonically increasing with respect to α. This
complete the proof of Proposition 4. �
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