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Climate Change and Agriculture: 
Subsistence Farmers’ Response to Extreme Heat†

By Fernando M. Aragón, Francisco Oteiza, and Juan Pablo Rud*

This paper examines how subsistence farmers respond to extreme 
heat. Using  microdata from Peruvian households, we find that high 
temperatures reduce agricultural productivity, increase area planted, 
and change crop mix. These findings are consistent with farmers 
using input adjustments as a  short-term mechanism to attenuate the 
effect of extreme heat on output. This response seems to complement 
other coping strategies, such as selling livestock, but exacerbates 
the drop in yields, a standard measure of agricultural productivity. 
Using our estimates, we show that accounting for land adjustments 
is important to quantify damages associated with climate change. 
(JEL O12, O13, Q11, Q12, Q15, Q54)

A growing body of evidence suggests that extreme temperatures have negative 
effects on crop yields.1 Based on these findings, current estimates suggest that 

climate change will bring dramatic shifts in agriculture: a global warming of 2°C, as 
in the most optimistic forecasts, would reduce agricultural output by almost 25 per-
cent (IPCC 2014). Among those exposed to this shock, the rural poor in developing 
countries are probably most vulnerable. They are located in tropical areas, where the 
changes in climate will occur faster and be more intense, and their livelihoods are 
more dependent on agriculture.

Given these potentially disruptive effects, it is extremely important to under-
stand possible margins of adjustment and the scope for mitigation. Some studies 
suggest that a possible response to climate change would be the  reallocation of 
economic activity in the form of migration, changes in trade patterns, or sectoral  

1 See, for instance, Schlenker, Hanemann, and Fisher (2005, 2006); Deschênes and Greenstone (2007); Lobell 
et al. (2011); Burke, Hsiang, and Miguel (2015); Carleton and Hsiang (2016); Chen, Chen, and Xu (2016); Zhang, 
Zhang, and Chen (2017). A review of the biological evidence is available at Wahid et al. (2007).
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employment (Feng, Oppenheimer, and Schlenker 2012; Costinot, Donaldson, and 
Smith 2016; Colmer 2018). Other studies, based on farmers’  self-stated adaptive 
strategies, emphasize changes in consumption and savings as potential tempo-
rary responses (Gbetibouo et al. 2010; Di Falco, Veronesi, and Yesuf 2011; Hisali, 
Birungi, and Buyinza 2011). Less is known, however, about the potential for pro-
ductive responses (i.e., changes in input use and agricultural practices) to attenuate 
the adverse effects of extreme temperatures.2

This paper examines how subsistence farmers respond to extreme temperatures. 
It has two main contributions. First, it examines a population that has been rela-
tively neglected in the literature, despite comprising a large fraction of the rural poor 
around the world. Second, it documents the role of  short-run productive responses, 
in particular the increase in land use, as a mechanism to mitigate the negative effects 
of extreme temperatures on agricultural output. To the best of our knowledge, this 
margin of adjustment has not been documented before. It has, however, significant 
implications for the quantification of climate change damages and for understanding 
the potential  long-term effects of weather shocks.

Our empirical analysis combines survey microdata from Peruvian farming 
households with weather data from satellite imagery. We examine the relationship 
between temperature and input demands (land and labor), as well as other agricul-
tural outcomes such as total factor productivity, yields, and output. Similar to recent 
studies of the effect of temperature, we use an approach that exploits  within-locality 
variation in weather.

By focusing on input use, our approach addresses some limitations of existing 
economic studies of the effect of temperature on agriculture. These studies focus on 
outcomes such as land prices, profits, and yields that can be informative of the costs 
associated to raising temperatures (Deschênes and  Greenstone 2007; Schlenker, 
Hanemann, and Fisher 2006). Moreover, since profits and yields already include 
farmers’ responses, they can be used to indirectly assess the scope for mitigation and 
adaptation.3 These approaches have, however, two important limitations. First, they 
are not informative of the mitigation and adaptive strategies used by farmers, only of 
their net effect. Second, because of their reliance on market prices, profits and land 
values are not very useful in contexts with incomplete agricultural markets or when 
revenues and costs are difficult to observe, for instance due to  self-consumption or 
the use of household inputs. This limitation is particularly relevant when studying 
subsistence farmers in less developed countries.

We find that extreme heat increases area planted. The magnitude is economi-
cally significant: one standard deviation increase in our measure of extreme heat 
is associated with a 6 percent increase in land used. Consistent with the additional 
land being planted with a different crop mix, we find that extreme heat increases the 

2 A recent paper that addresses this question is Jagnani et al. (forthcoming). Using data from Kenya, they find 
that farmers increase fertilizer use as a response to increased temperatures early in the growing season. They inter-
pret this finding as evidence that farmers undertake defensive investments to reduce the adverse impacts of warmer 
temperatures. 

3 For instance, Burke and Emerick (2016) find that the effect of extreme heat on crop yields in the United States 
has not changed over time. They interpret this finding as evidence of limited  long-run adaptation. Similarly, Taraz 
(2018) examines differences on the effect of temperature on crop yields by baseline climate to assess the scope of 
adaptation among Indian farmers.
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quantity harvested (in absolute and relative terms) of tubers. We also find suggestive 
evidence of increments in the use of domestic—including child—labor on the farm. 
The increase in input use occurs despite high temperatures reducing agricultural 
productivity and partially offsets the drop in total output. We interpret these findings 
as evidence that subsistence farmers respond to extreme temperatures by increasing 
input use within the growing season. This productive adjustment attenuates undesir-
able drops in output and consumption.

Our interpretation is consistent with agricultural household models with incom-
plete markets (de Janvry, Fafchamps, and Sadoulet 1991; Taylor and Adelman 2003). 
In these models, production and consumption decisions are not separable. Thus, at 
low consumption levels, farmers may resort to more intensive use of  nontraded inputs, 
like land and domestic labor, to offset the impact of negative income or productivity 
shocks. This margin of adjustment may be particularly relevant for farmers in less 
developed countries due to the presence of several market imperfections and limited 
coping mechanisms.

With this interpretation in mind, we also examine several ex post coping mech-
anisms previously identified in the literature on consumption smoothing, such as 
migration,  off-farm labor, and disposal of livestock (Beegle, Dehejia, and Gatti 2006; 
Bandara, Dehejia, and Lavie-Rouse 2015; Kochar 1999; Munshi 2003; Rosenzweig 
and Stark 1989; Rosenzweig and Wolpin 1993). Consistent with previous studies, 
we find that households reduce their holdings of livestock after a negative weather 
shock and seem to increase hours working off the farm. Interestingly, the increase 
in land use as a response to extreme heat occurs even among farmers who resort 
to other consumption smoothing strategies. This finding suggests that productive 
responses to extreme temperatures remain important to traditional farmers, even if 
they have alternative  risk-coping instruments at hand.

Our findings have two important implications. First, they suggest a potential 
dynamic link between weather shocks and  long-run outcomes. If the increase in land 
use comes at the expense of investments (such as fallowing), then this  short-term 
response could affect future land productivity. A similar argument could be made 
about child labor. While we are unable to examine these implications due to data 
limitations, future research should explore these links more closely. Second, this 
farmer response may affect estimations of the damages of climate change on agri-
cultural output. These estimates are usually based on the effect of temperature on 
crop yields (Deschênes and  Greenstone 2007). This is a correct approach under 
certain conditions—e.g., if land use is fixed. In that case, changes in crop yields are 
the same as changes in output. However, if area planted increases with temperature, 
then using crop yields would overestimate the resulting loss in output. To illustrate 
this point, we use our results to predict damages of climate change by the end of the 
century under two standard scenarios (RCP45 and RCP85). Using the effect of tem-
perature on yields, as in the existing literature, suggests output losses in the hotter 
coastal region of up to 26 percent under different scenarios. In contrast, taking into 
account changes in land use, we obtain smaller losses of up to 12 percent.

The rest of this paper is organized as follows. Section I describes the context and 
the analytic framework. Section  II discusses the data and the empirical strategy. 
Section III presents our main results and robustness checks. Section IV examines 
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other other coping mechanisms, while Section V discusses the implication of our 
findings for estimating climate change damages. Section VI concludes.

I. Background

A. Subsistence Farming in Peru

Our empirical analysis focuses on subsistence farmers from rural Peru. In 2017, 
the last year of our study, 24 percent of the working population was employed in 
agriculture, but the sector only accounted for 7 percent of the GDP (INEI 2018). It 
is, in other words, a sector of very low productivity, with many characteristics in 
common with subsistence farming in other developing countries: it is mainly com-
posed by small productive units (i.e., households), with low capital intensity, and 
low levels of technology adoption (Velazco et al. 2014).

Table 1 presents some key summary statistics of the farmers in our sample and 
defines the setting for our analysis.4 Most farmers are poor and depend on agriculture 

4 Data sources and variable definitions are described in Section IIA.

Table 1—Summary Statistics (INEI 2007–2015)

All Coast Highlands
(1) (2) (3)

Panel A. Household characteristics
Poor (percent) 51.14 26.55 55.10
Household size 4.34 4.41 4.33
Primary education completed by household head (percent) 50.93 58.48 49.71
Child works (percent) 21.82 9.65 23.79
At least one household member has off-farm job (percent) 47.54 56.45 46.10

Panel B. Agricultural characteristics
Value of agric. output (Y ) 1,049.9 3,263.2 693.4
Land used (T ), in ha. 1.99 2.41 1.92
Number of household members work on farm 2.31 2.21 2.33
Hire workers (percent) 48.85 57.08 47.52
Uncultivated land (percent of land holding) 40.30 11.81 44.89
Irrigated land (percent land holding) 36.05 82.00 28.65
Fruits (percent total output) 7.41 31.59 3.52
Tubers (percent total output) 31.35 5.54 35.50
Cereals (percent total output) 31.30 30.43 31.44
Own livestock (percent) 77.61 55.95 81.10
Value of livestock 682.11 461.85 717.59

Panel C. Weather during the last growing season
Average temperature (°C) 22.84 33.07 21.20
Average degree days 14.28 22.39 12.97
Average harmful degree days 0.73 2.69 0.41
Share of days with harmful degree days 0.136 0.383 0.097
Precipitation (mm/day) 3.16 0.93 3.51

Observations 53,619 7,439 46,180

Notes: Output and livestock value measured in 2007 US dollars. Land is measured in hectares. Temperature is mea-
sured in Celsius degrees.
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as their main source of livelihood. The incidence of poverty in our sample of farmers 
is around 50 percent. For comparison purposes, a similar methodology shows that 
poverty over the whole of Peru during the period of analysis was 21.6 percent. The 
average farm is around 2 hectares, has a low degree of specialization, and uses 
practices akin to traditional, rather than industrial, farming. They rely on domestic 
labor (including child labor), cultivate a variety of crops instead of monocropping, 
and leave some land uncultivated. Some of this uncultivated land is reported as fal-
lowing while the rest is covered with grasses, bushes, and forests. These last uses are 
also consistent with sectoral fallowing and crop rotation, but we can not rule out that 
part of this land is  nonagricultural.

Figure 1 shows the number of hectares planted by calendar month during years 
 2014–2017. As one can see, most planting occurs during  October–March. These 
months correspond to spring and summer in the Southern Hemisphere and are con-
sidered the main growing season in Peru. However, planting is not a  one-off activity 
as it persists throughout the year. This feature suggests that farmers have some margin 
to adjust their input use during the agricultural year. Figure 2 shows that planting is 
usually spread over several months, and not necessarily a  one-off event. For instance, 
around 50 percent of farmers engaged in planting in two or more months. This last 
observation suggests that farmers might have flexibility to adjust their decisions during 
the growing season. We note that the number of months in which farmers decided to 
plant could be endogenous to weather realizations, an issue we explore below.

Figure 1. Percentage of Annual Area Planted in a Month, by Climatic Region

Notes: Figure depicts the share of annual area planted in a given month, averaged over farmers in a climatic region. 
We consider only planting of transitory (annual) crops. 

Source: Data from the Instituto Nacional de Estadística e Informática (2014–2017).
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Our study concentrates on two climatic regions: the coast and the highlands.5 
These two regions exhibit different climate driven by their proximity to the sea and 
altitude. The coast is a narrow strip extending from the seashore up to 500 meters 
above sea level (masl). It has a  semiarid climate, with warm temperatures and little 
precipitation. The highlands extend from 500 up to almost 7,000 masl, albeit most 
agriculture stops below 4,000 masl. It has a much cooler and wetter climate, with 
seasonal precipitations in spring and early summer.

These climatic differences are associated with different agricultural practices: 
coastal farmers are more reliant on irrigation, while agriculture in the highlands is 
mostly rainfed. Coastal farmers are also less likely to be poor and have a different 
crop mix, cultivating a larger share of fruits and cereals. While these regional dif-
ferences do not affect the key results in our analysis (see Section IIID), they have 
important implications in terms of the potential effects of greater temperatures due 
to climate change.

5 Peru has three main climatic regions: the coast to the west, the Andean highlands, and the Amazon jungle to the 
east. We do not include observations from the jungle due to small sample size and poor quality of satellite data. We 
also drop 282 farmers from the coast and highlands reporting land holdings larger than 100 hectares.

Figure 2. Number of Months of Planting, by Climatic Region

Note: Figure depicts the proportion of farmers by the number of months in which they plant transitory crops. 

Source: Data from the Instituto Nacional de Estadística e Informática (2014–2017).
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B. Analytical Framework

This section develops a simple framework to examine how subsistence farmers 
adjust their production decisions as a response to extreme heat. To this end, we fol-
low standard agricultural  producer-consumer household models in the development 
literature (de  Janvry, Chen, and Xu 1991; Benjamin 1992; Taylor and  Adelman 
2003), where households make simultaneous, potentially interrelated, consumption 
and production decisions during the growing season.

Without loss of generality, let us assume an agricultural production function with a 
single input. We call this input “land” but it can refer to any other  variable input such 
as labor. The household has an endowment of land,   T   e  . Land can be used for pro-
duction or “consumed” in  nonproductive activities (e.g., leisure).6 Household utility 
is  U(c, t) , where  c  is consumption of a market good, while  t  is the amount of land 
used in  nonproductive activities. Households obtain income by renting their land 
and by producing an agricultural good. Production is defined by function  F(A, T ) , 
where  T  is the amount of land used in agriculture, and  A  is farmer’s total factor 
productivity. Note that  A  is a productivity shifter that captures the idea that farmers 
using identical inputs can have different levels of output due, for instance, to dif-
ferent farming skills, soil quality, or exposure to weather shocks.7 Consistent with 
previous studies on the relation between crop yields and temperature, we assume 
that extreme heat has a detrimental effect on productivity.8

Each growing season, the household maximizes utility by choosing the amount 
of land allocated to productive and  nonproductive uses. We consider that land is a 
variable input. This assumption is driven by the observation that, among subsistence 
farmers, planting is not a  one-off activity, but instead it is spread throughout the year 
(see Figure 2).9 Finally, we assume that both the utility and the production functions 
are increasing and strictly concave.

Household Responses to Negative Productivity Shocks.—If input markets exist and 
are well functioning, we can study consumption and production decisions separately 
(Benjamin 1992). This separation result is driven by the possibility to trade. Thus, 
the household’s demand and supply of inputs for production and consumption need 
not be identical to its endowments. The farmer’s use of inputs on the farm can then 
be analyzed by solving the profit maximization problem   max 𝑇   π = pf (A, T ) − rT , 
where  p  and  r  refer to output and input prices.

6 The inclusion of land directly in the utility function is a modeling device to create a positive shadow price 
(i.e., an opportunity cost of using land) and should not be taken literally. Since land cannot be sold or rented 
out, without this device, the model would predict that farmers will always use all available land. This prediction 
is inconsistent with the empirical observation that around 40 percent of land is left uncultivated. An alternative 
way to generate a  nonzero shadow price is to include an intertemporal opportunity cost, for instance by allowing 
 productivity-enhancing fallowing.

7 In our context, we assume that capital such as irrigation, if used at all, is fixed.
8 See, for example, Schlenker and Roberts (2009); Burke and Emerick (2016); Auffhammer, Ramanathan, and 

Vincent (2012); Hsiang (2010, 2016), among others.
9 Note that  multicropping practices, combined with the availability of uncultivated land, implies that both inputs 

and outputs are flexible throughout the season, during which  A  is realized.
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The standard solution is the unconditional input demand   T   ∗ (A, p, w) . In this con-
text, a farmer’s response to negative productivity shock, such as extreme heat, is 
unequivocal: she will reduce the amount of land used in her farm.

This prediction can change in the case of incomplete markets. To illustrate this, 
consider a case in which there are no input markets. In this simplified setting, the 
farmer’s problem becomes

   max  
𝑇
  

 
   U (c, t)  ,

subject to

  c = pF (A, T)  ,

  T + t =  T   e  .

Solving this problem produces an unconditional demand for land that depends not 
only on prices and productivity, but also on land endowment,  T (A, p,  T   e  ) . Moreover, 
if utility is sufficiently concave (for instance if consumption levels are quite low or 
farmer has high risk aversion), then  dT/dA  can be negative.10

This result suggests that, in context with imperfect input markets, negative 
weather shocks, such as extreme heat, could result in an increase in input use. This 
occurs because the farmer uses more inputs to attenuate the fall in agricultural out-
put and reduce the drop in consumption. This response is akin to coping mecha-
nisms to smooth consumption, such as selling disposable assets. The key distinction 
is that it involves adjustments in productive decisions. This prediction is relevant 
because subsistence farmers in rural Peru (and other parts of the developing world) 
likely face severe imperfections in input markets (Gollin, Lagakos, and Waugh 
2013; Restuccia, Yang, and Zhu 2008).

This framework also points out to alternative explanations for a positive rela-
tion between extreme temperature and input use. For instance, this could occur if 
extreme temperatures have a negative effect on aggregate supply and raise output 
prices (  p ). Similarly, we would observe a positive relation if there are correlated 
productivity shocks, such as increase in precipitation; or changes in land endow-
ments (for instance, due to sample attrition of small landholders). We address these 
potential confounders in our identification strategy and examine the role of prices as 
an alternative explanation in Section IIID.

With this framework in mind, our empirical analysis focuses on examining the 
effect of extreme heat on input use, as well as on agricultural productivity. There 
are, however, other possible responses. For instance, recent work on climate change 

10 Taking total derivatives to first-order condition  p  U c    F T   =  U t   , we obtain that

    dT _ 
dA 

   ( F  T  2    U cc   +  U c    F TT   +  U tt  )  +  F T    F A    U cc   +  U c    F TA   = 0 .

Assuming strictly concave utility and production functions, this expression implies that a necessary and sufficient 
condition for inputs to increase with a negative productivity shock ( dT/dA < 0 ) is  − ( U cc  / U c  ) >  F TA  /( F T    F A  ) . 
Assuming a  Cobb-Douglas technology  f = A  T   α  , this condition simplifies to  −  U cc  / U c   > 1 .
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and adaptation has stressed changes in crop mix as a possible response (Burke 
and Emerick 2016; Costinot, Donaldson, and Smith 2016). Similarly, an influen-
tial literature highlights how households can smooth consumption by migrating, 
increasing  off-farm work, or selling cattle, among other strategies (see, for instance, 
Rosenzweig and Wolpin 1993 or Kochar 1999). In the empirical section, we also 
examine these additional potential responses.

II. Methods

A. Data

We combine household surveys with satellite imagery to construct a compre-
hensive dataset containing agricultural,  socioeconomic, and weather variables. The 
unit of observation is the  household-year. We restrict the sample to households with 
agricultural activities located in the coast and highlands. Our final dataset consists of 
around 53,000 observations and spans over the years 2007 to 2015. Table 1 presents 
some summary statistics for our sample.

Agricultural and Socioeconomic Data.—Our main data source is repeated  cross 
sections of the Peruvian Living Standards Survey (ENAHO), an annual household 
survey collected by the National Statistics Office (INEI  2007–2015). This survey is 
collected in a continuous, rolling basis. This feature guarantees that the sample is 
evenly distributed over the course of the calendar year.

The survey asks the farmer to report the quantity of crops harvested in the last 
12 months, as well as the size and use of parcels planted in that period. We use this 
information to construct measures of agricultural output and input use. To measure 
real agricultural output, we construct a Laspeyres index using quantity produced of 
each crop and baseline local prices.11 We calculate land used by adding the size of 
parcels dedicated to seasonal and permanent crops. We distinguish between domes-
tic and hired labor. We measure hired labor using  self-reported wage bill paid to 
external workers in the last 12 months. To measure domestic labor, we use informa-
tion on household members’ employment. In particular, we calculate the number of 
household members working in agriculture and build an indicator of child labor.12

This dataset has three relevant limitations. First, we do not observe the time of 
planting, only the total land used in the last 12 months. Second, we do not observe 
which specific crops are cultivated in each parcel.13 Since most farmers grow sev-
eral crops and practice  intercropping, we cannot calculate  crop-specific yields. 
Finally, the information on household employment is available only for the two 
weeks before the interview. Given that interviews can occur all year round and labor 
use is seasonal, our measures of domestic labor may not reflect actual input use 
during the whole year. While this measurement error does not affect estimates of the 

11 As local prices, we use the median price of each crop in a given department (N = 24) in 2007.
12 Child labor is defined as an indicator equal to one if a child living in the household aged  6–14 reports doing 

any activity to obtain some income. This includes helping in the family farm, selling services or goods, or helping 
relatives, but excludes household chores.

13 We only observe total area planted and, separately, total harvests of each crop.
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effect of temperature on land use, it can affect estimates of its impact on labor use. 
In those cases, we address this concern by restricting the sample to farmers inter-
viewed during the main growing season only.

The survey also provides information on  sociodemographic characteristics, agri-
cultural practices, and farm conditions (such as intercropping, access to irrigation, 
and use of fertilizers), and geographical coordinates of each primary sampling unit 
or survey block.14 In rural areas, this corresponds to a village or cluster of dwellings. 
We use this geographical information to link the household data to satellite imagery.

We complement the household survey with data on soil quality from the 
Harmonized World Soil Database (Food and Agriculture Organization of the United 
Nations 2012).15

Temperature and Precipitation.—We use satellite imagery to obtain 
 high-resolution measures of local temperature. We prefer to use satellite imagery 
instead of  ground-level measures or gridded products, such as  reanalysis datasets, 
due to the small number of monitoring stations (around 14 in the whole country).16 
We use the MOD11C1 product provided by NASA (Wan, Hook, and Hulley 2015). 
This product is constructed using readings taken by the MODIS tool aboard the Terra 
satellite. These readings are processed to obtain daily measures of daytime tempera-
ture on a grid of  0.05 × 0.05  degrees, equivalent to 5.6 km squares at the Equator, 
and is already cleaned of low-quality readings and processed for consistency.17

The satellite data provide estimates of land surface temperature (LST) not of 
surface air temperature, which is the variable measured by monitoring stations. For 
that reason, the reader should be careful when comparing the results of this paper to 
other studies using  reanalysis data or station readings. LST is usually higher than air 
temperature, and this difference tends to increase with the roughness of the terrain. 
However, both indicators are highly correlated (Mutiibwa, Strachan, and Albright 
2015).

We complement the data on temperature with information on local precipitation. 
We use data from the Climate Hazards Group InfraRed Precipitation with Station 
data (CHIRPS) product (Funk et al. 2015). CHIRPS is a  reanalysis gridded dataset 
that combines satellite imagery with monitoring station data. It provides estimates 
of monthly precipitation with a resolution of  0.05 × 0.05  degrees.

To link the weather and household data, we attribute to a given household the 
weather conditions in the cell overlapping its coordinates. Then, we aggregate 
weather data (which have daily and monthly frequency) to obtain measures of expo-
sure to weather during a given agricultural year. In our baseline specification, we 

14 There are around 3,800 unique coordinate points in our sample. Figure A.1 in the online Appendix depicts the 
location of clusters used in this study.

15 This dataset provides information on several soil characteristics relevant for crop production on a 9 km square 
grid. The soil qualities include nutrient availability and retention, rooting conditions, oxygen availability, excess 
salts, toxicity, and workability.

16 Note that reanalysis datasets use  ground-level readings as a main input and thus can be less precise in contexts 
with a low number of monitoring stations (Auffhammer et al. 2013).

17 MODIS validation studies comparing remotely sensed land surface temperature estimates and ground, in situ, 
air temperature readings found discrepancies within the 0. 1–0.4°C range (Coll et al. 2005; Wan and Li 2008; Coll, 
Wan, and Galve 2009).
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focus on exposure to weather during the last completed growing season. The grow-
ing season is the period in which most of planting and crop growth occurs. As shown 
in Section IA, even though planting is a  year-round activity, it is particularly con-
centrated in spring and summer. We use this period as our definition of growing 
season.18 Figure 3 shows the distribution of temperatures observed during the last 
completed growing season for our whole sample.19

B. Empirical Strategy

The empirical analysis aims to study how farmers respond to extreme heat. Based 
on the discussion in Section IB, we focus on productive adjustments, such as changes 
in input use. To study this response, we estimate  reduced-form unconditional factor 
demands linking input use to weather shocks.

In a standard production model, unconditional factor demands are a function of 
total factor productivity (TFP), and agricultural prices. In the presence of imper-
fect input markets, they could also be affected by household endowments.20 In this 

18 We define the growing season as October to March. In Section IIID, we check the robustness of our results to 
alternative ways to aggregate weather over time, such as by climatic season or during the last 12 months.

19 Figure A.3 in the online Appendix shows the average distribution of daily temperatures by growing season 
and shows that the distribution is mostly stable over the time of our study.

20 For instance, in the extreme case of no input markets, input use would be proportional to input endowments. 
See the discussion in Aragón and Rud (2016).

Figure 3. Distribution of Daily Average Temperature by Growing Season

Notes: Density of daily temperatures during the last completed growing season (i.e., October to March). The unit 
of observation is  farmer-growing season.
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 context, weather conditions, such as temperature and precipitation, enter into the 
factor demand through their effects on  A .

We approximate the  reduced-form factor demand using the following  log-linear 
regression model

(1)  ln  y ijt   = g (γ,  ω jt  )  + ϕ  Z ijt   +  ρ j   +  ψ t   +  ϵ ijt    ,

where the unit of observation is farmer  i  in district  j  and growing season  t . Here,  y  
is our measure of input use and  g(γ,  ω jt  )  is a  nonlinear function of temperature and 
precipitation (  ω jt   ). The parameter of interest is  γ  : the  reduced-form estimates of 
the effect of weather shocks on input use. Note that our specification exploits 
 within-district variation. Thus, we cannot estimate the effect of climate, but only of 
weather shocks. This approach is similar to the panel regressions used in recent stud-
ies of the effect of climate on economic outcomes (Dell, Jones, and Olken 2014).

The term   Z ijt    is a vector of farmer characteristics,   ρ j    is a set of district fixed 
effects, and   ψ t    are climatic  region-by-growing season fixed effects.21 These control 
variables proxy for both determinants of TFP as well as other drivers of input use. 
The   Z ijt    vector includes possible drivers of TFP such as indicators of soil quality, 
household head’s education, age, and gender, as well as measures of input endow-
ments like land owned and household size,   ψ t    controls for common productivity 
shocks but, to the extent that agricultural markets are national, also for agricultural 
prices. Similarly,   ρ j    accounts for  location-specific determinants of productivity, such 
as climate and soil quality, but can also control for other  time-invariant determinants 
of input use, like proximity to markets.22

Similar to previous work, we model the relation between weather and agricultural 
productivity as a function of cumulative exposure to heat and water.23 In particular, 
we construct two measures of cumulative exposure to heat during the growing sea-
son (i.e., spring and summer): average degree days (DD) and harmful degree days 
(HDD).

DD measures the cumulative exposure to temperatures between a lower bound, 
usually 8°C up to an upper threshold  τ , while HDD captures exposure to tempera-
tures above  τ . The inclusion of HDD allows for potentially different,  nonlinear 
effects of extreme heat. Formally, we define the average DD and HDD during the 
growing season as

  DD =   1 _ n     ∑ 
d=1

  
n

    (min ( h d  , τ)  − 8) 1 ( h d   ≥ 8)  ,

  HDD =   1 _ n     ∑ 
d=1

  
n

    ( h d   −  τ high  ) 1( h d   > τ ) ,

21 A district is the smallest administrative jurisdiction in Peru and approximately half the size of the average 
US county. Our sample includes 1,320 districts out of a total of 1,854.

22 A potential concern is that the inclusion of fixed effects could absorb a significant amount of weather variance 
and amplify measurement error (Fisher et al. 2012, Auffhammer and Schlenker 2014). We examine this issue and 
find that there is still relatively large weather variation even after including a rich set of fixed effects (see Tables A.2 
and A.3 in the online Appendix).

23 See, for instance, Schlenker and Roberts (2006) and Schlenker et al. (2006).
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where   h d    is the average daytime temperature in day  d  and  n  is the total number of 
days in a growing season with valid temperature data. Note that we do not calculate 
total degree days, but instead the average degree days. This  rescaling makes inter-
pretation easier and help us address the issue of missing observations due to satellite 
swath errors.

A key issue is to define the value of  τ . Previous studies in the United States 
set this value between  29°C and 32°C (Schlenker and  Roberts 2006; Deschênes 
and Greenstone 2007). These estimates, however, are likely to be crop and context 
dependent and hence might not be transferable to our case.24 For that reason, we 
prefer to use a  data-driven approach. To do so, we estimate a flexible version of 
equation (1) using log of output per hectare as outcome variable and replacing  g( ⋅ )  
with a vector of variables measuring the proportion of days in a growing season 
in which the temperature fell in a given temperature bin.25 The results, displayed 
in Figure 4, suggest that point estimates become negative for temperatures above 
33°C. We use this temperature as our preferred  τ  in our baseline specification.26

We measure exposure to precipitation using the average daily precipitation (PP) 
during the growing season and its square. With these definitions in mind, we parame-
trize the function relating weather to productivity  g(γ,  ω jt  )  as

  g (γ,  ω jt  )  =  γ 0   D D jt   +  γ 1   HD D jt   +  γ 2   P P jt   +  γ 3   P P  jt  
2    .

III. Main Results

This section presents our main empirical results on farmers’ responses to extreme 
heat. We start by documenting the relationship between temperature and our main 
outcomes: land productivity and land use. As a first glance at the data, we use a flex-
ible approach using temperature bins instead of degree days.

The results, shown in Figures  4 and  5, suggest that extreme temperatures are 
associated with reductions in land productivity, but increase in area planted. This 
negative relationship between productivity and input use is consistent with farmers 
using more inputs to attenuate the drop in agricultural output. Below, we examine 
these findings and interpretation in more detail.

24 In addition to differences in crop mix and agricultural technology, we use a different measure of temperature 
(i.e., land surface temperature). These factors make previous estimates not applicable to our case study.

25 This specification is similar to the one used by Burgess et al. (2017) to study the effect of weather on mor-
tality. Based on the distribution of temperatures in the Peruvian case, we define 11 bins:  < 6 °C,  ≥ 42 °C, and nine 
 4°C-wide bins in between. Our omitted category is the temperature bin  22–25°C.

26 As a robustness check, we also estimate  τ  using an iterative regression method similar to those used by 
Schlenker, Hanemann, and Fisher (2006). We ran 17 regressions with different DD/HDD thresholds ranging from 
26°C to 42°C and compared their model fit. The results in online Appendix Figure A.4 suggest optimal temperatures 
in the slightly lower  30–32°C range. To ensure that our choice of  τ  does not drive our main results, in Figures A.5 
and A.6 in the online Appendix we plot the point estimates of the HDD coefficients for the range of  τ  mentioned 
above. Reassuringly, point estimates are of similar size, magnitude, and precision between the  26–35°C interval.
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Figure 4.  Nonlinear Relationship between Temperature and ln(output per ha)

Notes: This figure displays the estimates of the effect of an increase of 1 percentage point in the proportion of 
 growing-season days in a given temperature bin on ln(output per ha). Circles represent point estimates, while lines 
indicate 95 percent confidence intervals. Standard errors are clustered at the district level. All specifications include 
same fixed effects and farmer controls as baseline regressions in column 1 of Tables 2 and 3.
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Figure 5.  Nonlinear Relationship between Temperature and ln(area planted)

Notes: This figure displays the estimates of the effect of an increase of 1 percentage point in the proportion of 
 growing-season days in a given temperature bin on ln(area planted). Circles represent point estimates, while lines 
indicate 95 percent confidence intervals. Standard errors are clustered at the district level. All specifications include 
same fixed effects and farmer controls as baseline regressions in column 1 of Tables 2 and 3.
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A. Temperature and Agricultural Productivity

We use two approaches to examine the relation between temperature and agricul-
tural productivity. First, we follow the existing literature and estimate our baseline 
specification (1) using yields (i.e., output per unit of land) as our measure of (land) 
productivity. This specification measures exposure to heat using degree days (DD) 
and harmful degree days (HDD) averaged over the main growing season (i.e., spring 
and summer). A limitation of this approach is that yields are a measure of partial 
productivity that reflect changes in TFP and land used. This is not an issue when 
land is fixed, but can overestimate the effect of extreme heat on productivity if farm-
ers adjust land.

As a second approach, we estimate a production function. Assuming a 
 Cobb-Douglas specification we modify our baseline specification by using log of 
output as outcome and controlling for log of input use.27 This approach allows us to 
estimate directly the effect of extreme heat on TFP. However, it comes at the cost of 
imposing parametric assumptions and potentially creating an endogeneity problem 
due to omitted productivity drivers affecting both input use and output. Consistent 
with the analytical framework proposed in Section  IB, we address this issue by 
using endowments, such as household size and owned land, as predictors for input 
use in an instrumental variable approach.28

Table 2 presents our results. The estimates suggest that extreme heat has a nega-
tive effect on agricultural productivity.29 The magnitude of the effect is economically 
significant: the most conservative estimate suggests that each additional average 
HDD results in a 7 percent decrease in agricultural productivity.30 To put this figure 
in perspective, note that climate change scenarios discussed in Section V envisage 
that by the end of this century, the average number of HDD over the growing season 
could increase between 0.30 and 0.95, while the already warm coast would experi-
ence increments between 1.2 to 2.9 HDD.31

27 Assuming a  Cobb-Douglas production function   Y ijt   =  A ijt    T  ijt  
α    L  ijt  

β   , applying logarithms, and defining  
A = exp(g(γ,  ω jt  ) + ϕ  Z ijt   +  ρ j   +  ψ t   +  ϵ ijt  ) , we obtain the following regression model:

  ln  Y ijt   = αln  T ijt   + β ln  L ijt   + g (γ,  ω jt  )  + ϕ  Z ijt   +  ρ j   +  ψ t   +  ϵ ijt     ,

where  Y  is agricultural output, and  T  and  L  are quantities of land and labor. 
28 Online Appendix Table A.4 presents first-stage estimates. The validity of this IV approach relies on the assump-

tion that any residual correlation between the error term and variable inputs would not carry to endowments. This could 
be violated, for instance, if there are other unobserved factors that drive both output and inputs endowments, such as 
political power (Goldstein and Udry 2008). Table A.5 in the online Appendix provides additional checks of the effect 
of temperature on productivity controlling by endowments and using a more flexible functional form.

29 These results are consistent with previous findings of negative effects of high temperatures on yields. See, for 
instance, Auffhammer, Ramanathan, and Vincent (2012); Guiteras (2009); Burgess, Hsiang, and Miguel (2017); 
Burke et al. (2015); Burke and Emerick (2016); Schlenker and Roberts (2009); Lobell et al. (2011).

30 The estimates in Table 2 and Figure 4 are not directly comparable since they come from different specifica-
tions. However, a  back-of-the-envelope calculation suggests that their magnitudes are not implausibly different. 
To see this, note that the proportion of days with HDD is 13.9 percent and the average HDD is 0.73 (see Table 1). 
Thus, an increase of 1 HDD is approximately equal to an increase in the share of days above 33°C of 19 percentage 
points (= 0.139/0.73). For a change of this magnitude, estimates in Figure 4 suggest a decrease in yields of around 
19 percent while Table 2 would suggest a reduction of 11 percent. The difference probably reflects the proportional 
allocation of additional hot days to all bins above the threshold.

31 Note that our measures of DD and HDD represent the temperatures in an “average” day in the growing 
season. Thus, an additional HDD represents an average increase of 1 harmful degree (i.e., above 33°C) for all the 
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What happens with total output? Consistent with a negative productivity shock, 
we find that extreme heat reduces agricultural output (column  4). However, the 
magnitude of this effect is smaller than for TFP or yields, and we cannot reject 
the null hypothesis at standard levels of confidence. This finding is suggestive of 
responses (such as changes in production decisions) that attenuate the effect of the 
productivity shock on total output.

B. Productive Responses: Changes in Input Use

We examine changes in input use as a potential margin of adjustment to high 
temperatures. In our main set of results, we focus on changes in land use, both in 
terms of area planted and crop mix. Our focus on land stems from its importance as 
an agricultural input and because, in many contexts, it is subject to severe market 
imperfections, such as  ill-defined property rights. Moreover, we have reasonably 
good measures of land use, but more limited information on other inputs, such as 
labor.

Table 3 presents our main results. We find a positive and statistically significant 
effect of HDD on area planted (column 1). An increase in HHD of 1 degree is asso-
ciated with an increase of almost 6 percent in the total area planted. This estimate 
already controls for endowments, such as the total area of land available, and thus 
is not simply picking up changes in the size composition of farmers. The increase 
in land used is sizable and partially explains why, despite its documented negative 

days in the growing season. Clearly, there are multiple ways to obtain the same average increase. For example, an 
increase of 1 HDD could occur if the temperature for 50 percent of the days in the growing season increase from 
33°C to 35°C (2 harmful degrees), or if the daily temperature for 25 percent of days increase from 33°C to 37°C 
(4 harmful degrees). An increase of 1 HDD is a sizeable change. To put this number in perspective, note that the 
mean and standard deviation of HDD in our sample are 0.7 and 1.33, respectively. 

Table 2—Temperature, Agricultural Productivity, and Output

Y/T TFP Y

ln(output/ha) ln(output) ln(output) ln(output)
Dependent variable: (1) (2) (3) (4)

Average DD in growing season 0.020 0.014 0.015 0.011
(0.011) (0.007) (0.007) (0.009)

Average HDD in growing season −0.114 −0.064 −0.069 −0.042
(0.038) (0.033) (0.033) (0.041)

Inputs controls No Yes Yes No
Method OLS OLS 2SLS OLS

Observations 53,493 53,487 53,487 53,619
R2 0.335 0.549 0.359 0.348

Notes: Standard errors (in parentheses) are clustered at the district level. All specifications include district, month of 
interview, climatic region-by-growing season fixed effects, and farmer controls such as: household head characteris-
tics (age, age      2  , gender, and level of education), indicators of soil quality from Food and Agriculture Organization of 
the United Nations (2012) (nutrient availability, nutrient retention, rooting conditions, oxygen availability, salinity, 
toxicity, and workability), and the share of irrigated land. Input controls: log of area planted, number of household 
members working in agriculture, and amount spent on hired labor. Instruments for domestic labor and area planted: 
log of household size and area of land owned. First-stage joint significance F-test is 466.7.
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effects on agricultural productivity, extreme heat has a small and insignificant effect 
on total output. It also explains why the estimated effect of HDD on yields (Y/T) is 
larger than on total factor productivity (TFP) (see Table 2).

Columns  2 to  4 examine the effect of extreme heat on crop mix. In our con-
text, farmers practice  multicropping: the average farmer grows almost six different 
crops.32 To study effects on crop mix, we group crops in two categories: tubers 
(mostly potatoes) and other crops. Tubers are the most important crop among 
Peruvian subsistence farmers and account for almost 30 percent of the value of agri-
cultural output and 15 percent of the area planted.

We find that extreme heat increases the quantity (in absolute and relative terms) 
of tubers harvested. Coupled with the evidence in the previous section that farmers 
adjust their land during the growing season, we interpret these findings as suggestive 
evidence that the additional land is planted with a higher share of tubers. Hence, 
farmers adjust their use of land, both in terms of area planted and crop composition, 
as a response to extreme heat. These results complement recent studies that examine 
the role of changes in crop mix as a possible way to increase food security and adapt 
to climate change (Harvey et al. 2014, Burke and Emerick 2016, Colmer 2018).

There are, however, two important caveats. First, we do not observe the area 
planted with different crops, only the amount harvested. Thus, we are unable to 
disentangle the effect of extreme heat on planting decisions from different crop sen-
sitivities to temperature. That said, we can rule out that our results are only reflecting 
less sensitivity of tubers to extreme heat: in that case, we would observe an increase 
in output share, but a reduction in absolute terms.

Second, our results do not necessarily mean that tubers are more resilient to heat 
than other crops.33 Farmers could prefer tubers for several reasons other than heat 

32 In our sample, fewer than 10 percent of farmers report growing only one crop.  Multicropping is a com-
mon practice among subsistence farmers across the developing world and is in stark contrast with the modern 
agricultural practices of the United States and other developed countries, which mostly practice  monocropping.

33 There is some evidence that sweet potatoes and cassava are more drought tolerant than other food crops, such 
as maize (Braimoh et al. 2018; Motsa, Modi, and Mabhaudhi 2015). However, the agronomic literature is less clear 
about the general heat tolerance of a crop. A main reason is that heat tolerance depends on several  context-specific 

Table 3—Temperature and Land Use

ln(area 
planted)

ln (output)
Tubers

percent outputTubers Other crops
Dependent variable: (1) (2) (3) (4)

Average DD in growing season −0.006 −0.197 0.126 −0.029
(0.009) (0.028) (0.016) (0.003)

Average HDD in growing season 0.055 0.093 −0.160 0.022
(0.018) (0.043) (0.042) (0.004)

Endowment controls Yes Yes Yes Yes

Observations 53,493 53,493 53,493 53,493
R2 0.443 0.454 0.463 0.525

Notes: Standard errors clustered at the district level (in parentheses). All specifications include district, month of 
interview, climatic region-by-growing season fixed effects, and the same farmer controls as baseline regression in 
Table 2. Endowment controls: log of household size and area of land owned.
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tolerance. Studies on food security highlight several advantages of tubers (like pota-
toes, cassava, and sweet potatoes) over other crops, such as short maturity, sequen-
tial harvesting, low water and fertilizer requirements, more reliability, and high 
nutritional content (Woolfe 1992; Devaux, Kromann, and Ortiz 2014; Motsa, Modi, 
and Mabhaudhi 2015). These features could made them relatively more attractive 
than other crops, especially in the presence of negative productivity shocks. For 
instance, Dercon (1996) documents that Tanzanian farmers manage risk by planting 
less profitable but more reliable crops like sweet potatoes. Similarly, in a study of 
small farmers in Madagascar, Harvey et al. (2014) find that a common coping strat-
egy to productivity shocks is to adjust their diet by replacing rice for tubers.

Timing.—Do the effect and responses to extreme heat vary according to the time 
at which extreme temperatures are experienced? Answering this question is rele-
vant to understanding the observed phenomena better and predicting impacts more 
accurately. For instance, effects could vary if crops are more sensitive to extreme 
heat at some stages of development (sowing, harvesting) than others, or if farmers 
face  time-varying constraints to adjust to these shocks (i.e., due to seasonal crop 
or input suitability). Alternatively, we might be observing a delayed response from 
farmers to extreme temperatures in previous agricultural seasons, not a response to 
a contemporaneous shock.

To examine this issue, we first restrict our sample to those farmers interviewed 
during the fall or winter months (April to September, in the Southern Hemisphere). 
As mentioned before, although planting and harvesting are  year-round activities, 
the most important planting period (in terms of area) corresponds to spring and 
summer, the growing season months. Thus, our sample restriction allows us to 
focus on those farmers who have already completed most of their annual land use 
decisions.34 Then we construct separate measures of weather for each of the last 
four seasons (i.e., fall, winter, spring, and summer). Specifically, if a household is 
interviewed during the fall or winter of year  t , we match each observation with the 
weather outcomes in that location during the fall, winter, and spring of year  t − 1  
(April to December), and for the summer of year  t  (January to March). This proce-
dure effectively summarizes the weather conditions over the 12 months previous to 
the end of the last growing season.

Figures 6 and 7 depict the effect of average HDD in different seasons on our 
measures of productivity (Y/T) and land used (T). The main observation is that the 
effect of extreme heat on productivity and land use is driven by shocks that occur 
during the spring. This timing is consistent with the biological response (and the 
human reaction) to heat experienced during a sensitive period in the agricultural 

factors, such as water availability,  preconditioning to heat, and developmental stage (Miller, Lanier, and Brandt 
2001; Wahid et al. 2007). For instance, potatoes are more sensitive to heat at earlier stages (seeding) while maize 
is more susceptible to heat damage at later stages (flowering and grain filling). Damage to potato yields can also be 
offset by increased soil humidity, but this mechanism does not attenuate the negative effects of heat on maize (Basu 
and Minhas 1991; Rykaczewska 2013; Edreira and Otegui 2012). There is also a large variation in heat tolerance 
between different varieties of the same crop. For instance, the heat tolerance of some potato cultivars can be twice 
as large than that of less resilient varieties (Ahn, Claussen, and Zimmerman 2004). Note that in our data, we can 
only identify crops, not cultivars or varieties.

34 Recall that interviewers ask about the total land used in agriculture over the past 12 months.
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 calendar. Previous studies show that, while plants are vulnerable to high tempera-
tures throughout their  life cycle, the potential harm is highest during the sowing 
period (Slafer and Rawson 1994). Moreover, it suggests that the observed changes 
in land use are a response to productivity shocks within the agricultural season.

Figure 6. Effect of Exposure to HDD by Season on ln(output per ha)

Notes: Figure displays the estimates of the effect of HDD in different seasons on ln(yields). Circles represent point 
estimates, while lines indicate 95 percent confidence intervals. Standard errors are clustered at the district level. All 
specifications include same fixed effects and farmer controls as baseline regression in Table 2.

Figure 7. Effect of Exposure to HDD by Season on ln(area planted)

Notes: Figure displays the estimates of the effect of HDD in different seasons on ln(yields). Circles represent point  
estimates, while lines indicate 95 percent confidence intervals. Standard errors are clustered at the district level. All 
specifications include same fixed effects and farmer controls as baseline regression in Table 2.
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To explore the possibility of  within-growing season responses by farmer in area 
planted, we make use of data from the Peruvian National Agricultural Survey, avail-
able for four years, between 2014 and 2017 (INEI  2014–2017). This is a longitudi-
nal dataset that has  farm-level data of monthly planting over a  12-month period. In 
Figure A.2 and Table A.1 in the online Appendix, we show the results of regressing 
the area planted on a given month on monthly HHD realizations (contemporaneous 
and lagged values), using farmer fixed effects. Thus, we use  within-farmer variation 
to explore how planting by a farmer responds to temperature shocks during the 
agricultural season. Results show that farmers increase their planting one and two 
months after they were exposed to harmful temperatures. These findings support the 
idea that farmers indeed respond during the growing season to extreme heat, and 
reduce concerns such that the increase in land is picking up differences in timing of 
planting across different farmers or locations.

Changes in Labor Use.—Finally, we examine the effect of extreme heat on labor. 
We distinguish two types of labor: domestic and hired. In contrast to land use, we do 
not have good proxies for labor used during the agricultural season. We only observe 
the wage bill of hired workers in last 12 months, not actual number of workers. 
More importantly, we only have information on labor outcomes of household mem-
bers during the last two weeks before the interview, not for the whole agricultural 
year. Because of these limitations, the results on labor use should be interpreted with 
caution.

Table 4 presents our findings. Columns 1 to 4 examine the effect on two measures 
of domestic labor: number of household members working on the farm, and an indi-
cator of child labor. We estimate the effect of HDD using the baseline specification 
(columns 1 and 2) as well as an alternative specification restricting the sample to 
farmers interviewed in spring and summer, and using average HDD in spring as a 
measure of exposure to extreme heat. By focusing on households interviewed at the 
moment when most of the productivity shock occurs, we can partially address the 
data limitations mentioned above. Column 5 examines the effect on wage bill: our 
proxy for hired labor.

Similar to the results on land used, we find that HDD has a positive and, in most 
cases, significant effect on measures of domestic labor. Interestingly, extreme heat 
seems to increase the likelihood of child labor. This last result is consistent with 
findings in the literature on child labor showing that poor households may resort to 
employing children in productive activities when subject to negative income shocks 
(Beegle, Dehejia, and Gatti 2006; Bandara, Dehjia, and Lavie-Rouse 2015). In con-
trast, the coefficient of HHD on hired labor’s wage bill is negative, albeit also insig-
nificant. These findings suggest a slight tendency of farms to use more intensively 
domestic labor as a response to extreme heat.

C. Discussion

Our findings are hard to reconcile with predictions from a standard production 
model. As discussed in Section IB, a standard production model would predict a 
weakly negative relation between HDD and input use, as well as a negative effect 
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on output. The reduction in productivity would drive the negative effect on input 
use. However, if extreme heat shocks occur after input decisions are sunk (i.e., after 
planting), there would be no effect of HDD on area planted.35

Instead, our findings are consistent with models of subsistence farmers in a 
context of incomplete markets (de Janvry, Fafchamps, and Sadoulet 1991; Taylor 
and Adelman 2003). In this scenario, production and consumption decisions are not 
separable (Benjamin 1992). Thus, farmers exposed to negative shocks may need to 
resort to more intensive use of  nontraded inputs, like land and domestic labor, to off-
set undesirable drops in output and consumption. In this sense, changes in input use 
are akin to other consumption smoothing mechanisms, such as selling disposable 
assets or increasing  off-farm work (Rosenzweig and Wolpin 1993; Kochar 1999).

To the best of our knowledge, this margin of adjustment, namely increasing land 
use on the extensive margin, has not been previously documented in the consump-
tion smoothing literature, nor in existing studies of the effect of temperature on 
agriculture. However, it may be particularly relevant for farmers in less developed 

35 A model with factor-biased productivity shocks (i.e., extreme temperatures relatively affecting one factor 
of production more than others) could also generate changes in input ratios and, potentially, increase use of some 
inputs. However, it is unlikely to explain the observed increase in land and domestic labor. To see this, consider an 
alternative model with competitive input and output markets, two inputs (land and labor), and a CES production 
function  f (T, L) =  [A T   ρ  + B  L   ρ  ]   γ/ρ  , where  T  and  L  refer to land and labor, and  A  and  B  are  factor-specific produc-
tivity shifters.  Cost-minimization requires that the input ratio ( T/L ) is equal to   (Aw/Br)   1/(1−ρ)  , where  w  and  r  are 
the input market prices. Note that if extreme temperature affects only land then the  land-labor ratio would decrease 
(because of a drop in  A/B ). This prediction, together with the reduction in output (due to higher costs), implies a 
reduction in land,  T . The effect on labor is, however, ambiguous.

Table 4—Temperature and Labor Use

Domestic labor

Number of 
household 
members 

work in farm

 
 

Child labor

Number of 
household 
members 

work in farm

 
 

Child labor
Hired labor

ln(wage bill)
Dependent variable: (1) (2) (3) (4) (5)

Average DD in −0.015 −0.017 0.021
 growing season (0.005) (0.004) (0.015)
Average HDD in 0.033 0.017 −0.067
 growing season (0.017) (0.009) (0.056)
Average DD in spring −0.014 −0.018

(0.007) (0.004)
Average HDD in spring 0.027 0.028

(0.020) (0.010)
Sample Full sample Spring and summer Full sample
Endowment controls Yes Yes Yes Yes Yes

Mean outcome 2.311 0.407 2.294 0.432 2.536
Observations 53,619 28,744 26,714 14,352 53,618
R2 0.448 0.271 0.464 0.312 0.244

Notes: Standard errors clustered at the district level (in parentheses). All specifications include district, month of 
interview, climatic region-by-growing season fixed effects, and the same farmer controls as baseline regression in 
Table 2. Columns 2 and 4 restrict the sample to farmers interviewed during the growing season (spring and sum-
mer). Columns 2 and 4 also restrict the sample to households with at least one child aged 6 to 15 years.
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countries due to the presence of several market imperfections and limited coping 
mechanisms, such as crop insurance or savings.36

Our findings have at least two important implications. First, it suggests a poten-
tial dynamic link between weather shocks and  long-run outcomes. Leaving land 
uncultivated (i.e., fallowing) is a common practice in traditional agriculture to 
avoid depleting soil nutrients, recover soil biomass, and restore land productivity 
(Goldstein and Udry 2008). If the increase in area planted as a response to extreme 
temperature comes at the expense of fallow land, then this  short-term response could 
affect land productivity in the medium- or  long-term. To explore this hypothesis, 
we evaluate whether past weather shocks affect current agricultural yields. We do 
so by adding to our baseline regression values of HHD from the last eight previous 
years (see Table A.9 in the online Appendix).37 For most lags, we cannot rule out 
that their effects are statistically insignificant. However, the effect of HDD lagged 
seven years is negative and marginally significant (  p-value = 0.083). While sug-
gestive of  medium-term effects, we interpret these findings cautiously. We do not 
have information on the fallow history of a plot or a farm, so we cannot directly link 
changes in fallowing in the past to current productivity. Similarly, we do not have 
reliable information on the use of uncultivated land.38 Thus, we cannot satisfactorily 
examine the effects of temperature on fallow duration or extent.

Second, this farmer response may affect estimations of the damages of climate 
change on agricultural output. These estimates are usually based on the effect of 
temperature on crop yields ( Y/T ). This is a correct approach if land use is fixed. In 
that case, changes in crop yields are the same as changes in output. However, using 
crop yields may be less informative in contexts in which farmers respond to weather 
shocks by changing land use. As we show in Section V, taking into account this 
adaptive response reduces, in a  nontrivial magnitude, the predicted damages.

D. Additional Checks

Alternative Specifications.—Table  5 presents several checks of the robustness 
of our main results to alternative model specifications. We report only the estimate 
associated with the measure of extreme heat (HDD). Each row uses a different 
specification.

Row 1 restricts our sample only to farmers interviewed in fall and winter. By that 
time, the main growing season has passed and farmers have reaped the main har-
vest of the year. This specification drops almost half of the baseline sample, but it 

36 We examine the importance of market imperfections in Table A.10 in the online Appendix. This table esti-
mates heterogeneous effects of HDD on area planted by several indicators of market development, such as share of 
output sold in market, share of farmers hiring workers, and number of branches of agricultural banks. The evidence 
is consistent with the positive effect driven by market imperfections. However, we recommend caution to the reader 
when interpreting these results due to potential endogeneity of the indicators of market development.

37 We choose this time span based on the fallow duration of six to eight years documented for subsistence 
farmers in Peruvian highlands (Brush, Carney, and Huamán 1981; Orlove and Godoy 1986). We present results 
adding one lag at a time, and also all of them simultaneously. This last specification is quite demanding due to 
correlation between past weather shocks.

38 Farmers report fallowing in only a quarter of uncultivated land. The rest is reported as covered with bushes, 
grasses, and forest. These uses are also consistent with fallowing and crop rotation (Denevan 2001, chap. 3). 
However, we do not know if this land is left fallow or is  nonagricultural land.
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reduces concerns of measurement error due to mismatch of planting and harvesting 
decisions, confounding of current and previous weather shocks, or recall bias. Row 2 
estimates a more parsimonious model without any individual or  household-level con-
trols, only district and  region-by-year fixed effects, while row 3 implements a more 
conservative clustering at province (N = 159) instead of district level (N = 977). 
In all three cases, our results are similar to the baseline specification.

Our results are also robust to alternative ways to measure exposure to extreme 
heat. Row 4 uses the number of days in growing seasons with HDD, while row 5 
uses average HDD during the last 12 months instead of during the last completed 
growing season. We also obtain similar results when allowing for different HDD 
thresholds by climatic region—i.e., coast and highlands (row  6).39 Figures  A.5 
and A.6 in the online Appendix further assess the sensitivity of our results to dif-
ferent values of the threshold ( τ ) ranging from 26°C to 42°C. These results show 
that lower thresholds produce similar results, while higher thresholds increase the 
magnitude of our baseline estimates and reduce their precision.

Prices as Omitted Variables.—An important concern is that our results might be 
driven by changes in relative prices. Extreme heat shocks can reduce aggregate sup-
ply and increase agricultural prices. This price increase would, in turn, create incen-
tives to increase production and input use. In our baseline specification, we address 

39 These  region-specific thresholds were chosen by replicating the analysis shown in Figure 4 in the coast and 
highland observations separately. The results from this exercise are presented in Figure A.7 and A.8 in the online 
Appendix.

Table 5—Robustness Checks

ln(output per ha) ln(area planted)
Tubers

percent output Observations
Dependent variable: (1) (2) (3) (4)

1. Interviewed in fall and winter −0.106 0.079 0.019 26,799
(0.045) (0.026) (0.006)

2. Excluding individual controls −0.120 0.065 0.023 53,493
(0.046) (0.020) (0.005)

3. Clustering by province (N = 159) −0.114 0.055 0.022 53,493
(0.036) (0.020) (0.005)

4. Using number of HHD days during −0.529 0.313 −0.118 53,493
 growing season (0.212) (0.126) (0.042)
5. Using average HDD in last 12 months −0.165 0.095 0.043 53,493

(0.051) (0.030) (0.009)
6. Diff. thresholds by region 0.113 0.046 0.021 53,493
 33°C coast, 36°C highlands (0.043) (0.018) (0.005)
7. Adding province-by-growing −0.121 0.052 0.022 53,480
 season fixed effects (0.042) (0.018) (0.005)
8. Adding local prices −0.122 0.061 0.024 49,713

(0.044) (0.021) (0.005)

Notes: Standard errors clustered at the district level (in parentheses). All specifications, except in row 2, include the 
same controls as baseline regression in Table 2. Row 1 restricts the sample to farmers interviewed in fall and win-
ter (i.e., April to August). Row 7 adds province-by-growing season fixed effects while row 8 includes logs of price 
indexes for tubers and cereals at district level. 
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this concern by including a set of climatic  region-by-growing season fixed effects. 
To the extent that agricultural markets are national or circumscribed to climatic 
regions, this approach would control for agricultural prices. However, if agricultural 
markets are narrower, we could have an omitted variables problem.

We examine the relevance of this issue in two ways (see rows 7 to 8 in Table 5). 
First, we add  province-by-growing season fixed effects (row  7). This is a much 
richer set of  time-varying controls than our baseline specification and, under the 
assumption that agricultural markets are  province-wide, effectively controls for 
prices. Second, we add proxies of local prices at district level (row 8). We focus on 
tubers and cereals: the two main types of crops in our sample. For each crop type, 
we construct a price index at the district level and add it to baseline regression.40 In 
both cases, our results remain similar to the baseline specification.

Regional Differences.—As discussed in Section IA, our sample has two distinct 
climatic regions: coast and highlands. The coast has a warm,  semiarid climate with 
very little precipitation, especially in the central and southern coast. In contrast, the 
highlands are cooler and receive more rain. These climatic differences are appar-
ent when observing the distribution of daily temperature in these two regions (see 
Figure 3). The two regions also differ in their agricultural practices. Coastal farm-
ers are, on average, substantially better off, are more productive, more educated, 
and more likely to have access to irrigation. Compared to highland farmers, coastal 
farmers are also more likely to specialize on fruits and cereals, less likely to own 
livestock, and more likely to cultivate a larger share of their land.

Given these regional differences, a relevant question is whether our baseline 
specification, which pools all observations, may be hiding relevant heterogeneity in 
the effects and responses to extreme heat. We address this question by relaxing the 
baseline specification and allowing for different effects of weather variables (DD, 
HDD, and precipitation) by climatic region. In particular, we modify the baseline 
specification by including interaction terms of weather variables with an indicator 
of being located in the highlands. Table 6 shows the estimates of the effect of HDD 
for each region, and displays the  p-value of the test of equality of both estimates.

Our main conclusions still remain the same after allowing for regional differ-
ences: in both regions, extreme heat has a negative effect on productivity and a 
positive effect on the quantity of land used. Surprisingly, despite coastal farmers 
being normally exposed to higher temperatures, there are no statistical differences 
in the magnitude of the effect on yields in both regions.41 There are, however, some 
quantitative differences on the effect on land use. In particular, the increase in area 
planted is smaller in the coast. In this region, there is also no significant change in 
crop mix, measured by the share of tubers in total output.

40 The price index for each crop type is a Laspeyres index using  self-reported unit prices and output shares of 
each crop (within a crop group) in baseline year 2007. We then take natural logarithms.

41 This result echoes findings by Burke and Emerick (2016) among US corn farmers. Using a long difference 
approach, they find that extreme heat has similar detrimental effects on crop yields across time, despite the observed 
increase in average temperatures. Burke and Emerick (2016) interpret this finding as suggestive evidence of limited 
 long-term adaptation to higher temperatures.
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A possible interpretation of these findings is that mitigation and adaptive responses 
vary by baseline climate.42 For instance, warmer areas could have developed differ-
ent ways to cope with extreme heat other than using their land more intensively. This 
interpretation is in line with recent papers that combine  high-frequency temperature 
variation with  long-run climate differences to study adaptation to climate change 
(Barreca et al. 2015; Heutel, Miller, and Molitor 2017; Auffhammer 2018).

There are, however, other possible explanations that we cannot rule out. For 
instance, these findings may reflect lower land availability in the coast. In this 
region, agriculture occurs in densely populated valleys, surrounded by very arid 
deserts, and depends heavily on access to irrigation.43 These features can constrain 
the expansion of agricultural land. Similarly, they may be driven by coastal farmers 
having access to other  nonagricultural coping mechanisms. This is plausible given 
that coastal farmers tend to be better off and are closer to cities and other urban 
areas. For these reasons, we interpret with caution as only suggestive evidence of 
different responses by climatic region.

Very Cold Days.—Our previous results focus on the effect and responses to high 
temperatures. However, as hinted in Figure 4, low temperatures could also have a 
negative effect on agricultural productivity. This is especially relevant in the high-
lands, where around 6  percent of days in the growing season have temperatures 
below 8°C. To examine this issue, we replicate our main results adding a measure of 
 low-temperature degree days. This measure is similar to our variables DD and HDD, 
but uses only temperatures below 8°C.

Table 7 shows the results. There are two relevant observations. First, our baseline 
results of the effect of HDD on yields and land use remain unaffected. Second, sim-
ilar to extreme heat, low temperatures have a negative effect on yields, and increase 

42 Indeed, we observe similar results when using an indicator of cool and warm regions instead of a climatic 
region dummy (see Table A.8 in the online Appendix).

43 The share of uncultivated land is almost 45  percent in the highlands and 11.5  percent in the coast (see 
Table 1).

Table 6—Effect of HDD on Land Productivity, Output, and Land Use: By Climatic Region

ln(output per ha) ln(total output) ln(area planted)
Tubers 

percent output
(1) (2) (3) (4)

(A) Average HDD  ×  Coast −0.114 −0.063 0.034 0.006
(0.047) (0.047) (0.019) (0.004)

(B) Average HDD  ×  Highlands −0.142 0.016 0.118 0.038
(0.057) (0.044) (0.047) (0.010)

Difference (B) − (A) p-value 0.706 0.226 0.097 0.002

Observations 53,493 53,619 53,493 53,619
R2 0.336 0.348 0.443 0.526

Notes: Standard errors clustered at the district level (in parentheses). All specifications include district, month of 
interview, climatic region-by-growing season fixed effects, and the same farmer controls as baseline regression in 
Table 2. 
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land use and share of tubers. These last results are consistent with our interpretation 
that farmers increase land use as a response to negative productivity shocks.

IV. Other Coping Mechanisms

Our main results suggest that farmers adjust input use as a mechanism to cope 
with the negative effects of extreme temperatures. In this section, we study other 
coping mechanisms previously documented in the consumption smoothing liter-
ature, such as working in  nonagricultural activities (Rosenzweig and Stark 1989; 
Kochar 1999; Colmer 2018), migrating (Munshi 2003; Feng, Oppenheimer, and 
Schlenker 2012; Kleemans and Magruder 2018; Jessoe, Manning, and Taylor 2018), 
or selling livestock (Rosenzweig and Wolpin 1993). Then, we examine how these 
coping mechanisms interact with changes in land use.

We start by examining whether farmers in our context use other coping mecha-
nisms (see Table 8). Our first set of outcomes focuses on the use of livestock as a 
buffer against income shocks (columns 1 to 3). We find that HDD is associated with 
an increase in the probability that a farmer reports a decrease in livestock value.44 
This reduction seems to come from households selling, rather than consuming, their 
livestock. These results are consistent with farmers selling livestock to offset the 
adverse effects of extreme heat.

Next, we focus on indicators of  off-farm work (columns 4 and 5). We use an 
indicator of a household member having a  nonagricultural job, as well as the total 
number of hours of  off-farm work (conditional on having a  nonagricultural job). 
As in Table 4, we restrict the sample to households interviewed during the growing 
season (i.e., spring and summer). These outcomes capture the supply of  off-farm 
employment in the extensive and intensive margin. In the extensive margin, the esti-
mate is insignificant. However, the estimate on the intensive margin is positive and 

44 Our definition of livestock includes cattle, horses, sheep, llamas, and pigs.

Table 7—Effect of Low Temperatures on Land Productivity, Output, and Land Use 

ln(output per ha) ln(total output) ln(area planted)
Tubers  

percent output
(1) (2) (3) (4)

Average low DD −0.122 0.071 0.212 0.047
(0.067) (0.051) (0.053) (0.014)

Average DD 0.010 0.017 0.012 −0.024
(0.013) (0.010) (0.009) (0.003)

Average HDD −0.105 −0.047 0.040 0.018
(0.039) (0.041) (0.017) (0.004)

Observations 53,389 53,515 53,389 53,515
R2 0.336 0.348 0.444 0.525

Notes: Standard errors are clustered at the district level (in parentheses). All specifications include district, month 
of interview, climatic region-by-growing season fixed effects, and the same farmer controls as baseline regression 
in Table 2. Low DD = degree days below 8°C. 
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statistically significant: farmers with  off-farm jobs seem to increase the number of 
hours worked in that activity. While suggestive of  off-farm employment as a coping 
strategy, this result is not robust to using the whole sample of farmers.

In columns 6 and 7, we look for evidence of  short-term migration. Due to data 
limitations, we cannot measure migration directly. Instead, we use proxy variables 
such as an indicator of whether any member has been away for more than 30 days 
and household size. Similar to the results on  off-farm employment, none of these 
outcomes seem to be affected by extreme temperature. However, we should inter-
pret these last results with caution. Our analysis focuses on a short period (within 
a year), and these adjustments may happen over a longer time frame. In addition, 
our measures of labor and migration may be noisy proxies of actual behavior. These 
factors likely reduce the power of our statistical analysis and could explain the insig-
nificant results.

Interactions with Productive Responses.—Our results suggest that in our sample, 
farmers seem to use livestock sales as a coping strategy to smooth negative weather 
shocks. A natural question is how this coping strategy interacts with the productive 
responses, such as increasing input use, identified in our main results. Does having 
livestock eliminate the need to change land use, or do they complement each other? 
These are relevant questions to better understand the portfolio of coping strategies 
available to subsistence farmers.

We examine these issues by estimating heterogeneous responses to extreme heat 
for farmers with different ability to use other coping strategies. Based on our previ-
ous findings, we interact HDD with indicators of owning livestock 12 months ago 
and having at least one household member employed in a  nonagricultural activity. 
We use these indicators as proxies of farmers’ ability to use livestock and  off-farm 
employment as buffers to negative income shocks.

Table 8—Other Responses to Extreme Heat

Livestock buffer Off-farm work Short-term migration

Decrease in
livestock 

value
Sold

livestock
Consumed
livestock

Household 
member has 
off-farm job

ln(hours 
worked 

off-farm)

Household 
member away 

30+ days

 
Household  

size
Dependent variable: (1) (2) (3) (4) (5) (6) (7)

Average DD −0.008 −0.012 −0.013 0.009 0.026 0.003 −0.006
(0.002) (0.002) (0.003) (0.004) (0.009) (0.001) (0.014)

Average HDD 0.022 0.016 0.007 0.006 0.054 −0.002 0.016
(0.007) (0.009) (0.009) (0.011) (0.025) (0.002) (0.033)

Mean outcome 0.332 0.517 0.476 0.464 57.548 0.085 4.339

Observations 48,169 48,169 48,169 26,726 12,377 53,619 53,619
R2 0.077 0.146 0.240 0.213 0.169 0.083 0.244

Notes: Standard errors are clustered at the district level (in parentheses). All specifications include district, month 
of interview, climatic region-by-growing season fixed effects, and the same farmer controls as baseline regression 
in Table 2. Columns 1 to 3 restrict the sample to farmers who reported having livestock 12 months ago. Columns 
4 and 5 restrict the sample to farmers interviewed in spring and summer. Column 5 further restricts the sample to 
households in which at least one member has an off-farm job. All regressions are estimated using OLS. All regres-
sions, except in columns 5 and 7, have a binary outcome variable.
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Our results in Table 9 suggest that the effect of HDD on land use (area planted 
and relative share of tubers) is qualitatively similar between farmers with and with-
out livestock (columns  2 and  3). However, the magnitude of the effect is larger 
among farmers who do not own livestock. This result is not driven by these latter 
farmers experiencing a larger negative productivity shock. As shown in column 1, 
the effect of HDD on agricultural yields is similar for both types of farmers and, if 
anything, marginally smaller for farmers without livestock. In the case of  off-farm 
employment (columns 4 to 6), there are no significant quantitative differences in the 
effect of HDD in any outcome.

We interpret these results as evidence that farmers do not use one strategy exclu-
sively but instead use a combination of responses to cope with extreme heat. These 
responses include both sale of disposable assets (such as livestock) and adjustments 
in production decisions (such as changes in land use).

V. Implications for Estimating Damages from Climate Change

Most models assessing climate change damages use estimates of the effect of 
temperature on crop yields to calculate the loss of agricultural output and, hence, 
rural income. This approach is correct if, among other things, the amount of land 
used is constant. However, if farmers increase land use, as we have documented 
above, this approach would ignore an important margin of productive adaptation 
and overestimate the actual fall in agricultural output.

In this section, we quantitatively assess the magnitude of this overestimation of 
damages. To do so, we obtain  end-of-the-century predictions of temperature over our 
study area from current climate change projections. Then, we calculate the predicted 
change in agricultural output by extrapolating the effect of these temperatures on 

Table 9—Coping Strategies and Productive Responses

Livestock buffer Off-farm work

ln(output 
per ha)

ln(area 
planted)

Tubers percent 
output

ln(output 
per ha)

ln(area 
planted)

Tubers percent 
output

Dependent variable: (1) (2) (3) (4) (5) (6)

(A) Average HDD  ×   D = 0 −0.087 0.055 0.024 −0.100 0.041 0.017
(0.044) (0.019) (0.005) (0.048) (0.018) (0.005)

(B) Average HDD  ×   D = 1 −0.121 0.018 0.015 −0.112 0.040 0.020
(0.047) (0.018) (0.005) (0.046) (0.018) (0.005)

Difference (B) − (A) p-value 0.059 0.002 0.000 0.392 0.956 0.113

 D  is indicator equal to  1  if Household owns livestock Any household member has off-farm job

Observations 53,493 53,493 53,619 53,493 53,493 53,619
R2 0.336 0.452 0.525 0.335 0.444 0.525

Notes: Standard errors are clustered at the district level (in parentheses). All specifications include district, month 
of interview, climatic region-by-growing season fixed effects, and the same farmer controls as baseline regressions 
in Table 2. Regressions includes interaction of HDD with an indicator variable  D  of whether household owned live-
stock 12 months ago (columns 1 to 3) or has a member with a nonagricultural job (columns 4 to 6). All regressions 
also include the interaction of HDD with an indicator of climatic region. The third row reports the p-value of test of 
equality of estimates in first two rows.
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agricultural yields. This is the approach commonly used in the literature.45 Finally, 
we compare these results to predictions obtained using our estimates of the effect of 
temperature on output. These latter estimates take into account changes in land use.

Importantly, this exercise only assumes changes in temperature (DD and HDD) 
and keeps everything else constant. Thus, it does not account for other potential fac-
tors and responses associated with climate change such as changes in CO    2    , increase 
risk of natural disasters, changes in water availability, degradation of land quality, 
migration, changes in sectoral employment, etc. For that reason, our results should 
be interpreted with caution: they do not attempt to predict the effect of global warm-
ing on Peruvian agriculture, but only to highlight the importance of accounting for 
farmers’ changes of land use when estimating damages from climate change.

A. Climate Change Projections

We obtain temperature projections from two climate change scenarios: RCP45 
and RCP85. These scenarios, used in the IPCC’s Fifth Assessment Report (IPCC 
2014), represent two different sets of assumptions about the future trajectory of 
global greenhouse gas emissions.46 RCP85 is a “business as usual” framework in 
which no additional policies to reduce greenhouse gas emissions are introduced. 
This scenario forecasts an increase of 4.9°C in global temperatures by the end of 
the century. RCP45 is a more optimistic scenario that assumes increased efforts to 
curb emissions at a global scale and forecasts an average 2.4°C increase in global 
temperatures.47

For each scenario, we obtain gridded data at a resolution  1.25 × 1.875  degrees of 
monthly temperatures for the baseline year 2005 and the forecast for the year 2099. 
We then adjust for  model-specific error in a similar way to Deschênes and Greenstone 
(2011) to account for the fact that the historical temperatures (from MODIS) and 
predicted temperatures (from the  HadGEM2-ES model) are from different sourc-
es.48 Then, we use the predicted temperature distribution for each scenario  j  and 
location  k  to calculate  D D jk    and  HD D jk    for the end of the century.49

Panel A in Table 10 presents the predicted average  ΔDD  and  ΔHDD  for our 
whole sample and each climatic region in both scenarios.50 Note that the increase in 
average HDD is 0.305°C in the RCP45 scenario and more than three times, 0.950°C 
in the “business as usual” scenario. The increase in temperature will create substan-
tially more harmful temperatures in the coast than in the highlands. While the coast 

45 See, for example, Deschênes and Greenstone (2007).
46 We use the model output produced by the Hadley Centre Global Environment Model version 2 ( HadGEM2-ES).
47 In Table A.12 in the online Appendix, we also include precipitation projections. While the results are quali-

tatively similar, we focus on temperatures only as there is less consensus (“low confidence”) about the sign and the 
magnitude of projected precipitations patterns (IPCC 2014, chap. 27).

48 We calculate the implied temperature change (i.e., 2099 compared to 2005) for each  month-location accord-
ing to each HadGEM2 scenario and then add this to the average temperature in our (MODIS) dataset for each day 
of the year.

49 We assume the same optimal temperature threshold as discussed in the previous section, 33°C. In both sce-
narios, average precipitation is predicted to stay within one standard deviation of its natural internal variability, so 
we do not assume any change in this respect (IPCC 2014).

50 Formally,  ΔHD D jk   = HD D k   −    ‾ HDD   k   , where     ‾ HDD   k    is the average historical HDD in location  j . We use a 
similar procedure to calculate the change in  degree-days  ΔD D jk   .
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is expected to experience 1. 20–2.91 additional harmful degrees a day during grow-
ing season months, the highlands are expected to experience just up to 0.7 HDD a 
day, in the most pessimistic scenario. These results are a natural consequence of the 
current distribution of temperatures in both regions: as previously mentioned, the 
coast is already drier and hotter than the highlands. Thus, a shift in the distribution 
of temperature has a larger effect on the frequency of extremely hot days.

B. Predicted Effects on Agriculture

We calculate the predicted change on agricultural yields and output using the esti-
mated effect of temperature on agricultural outcomes and the predicted changes in 
temperatures from climate change forecasts. In particular, we calculate the predicted 
effects as follows:

  Δ  y ijk   =   β 1   ˆ  ΔD D jk   +   β 2   ˆ  ΔHD D jk   ,

where  y  is the outcome (i.e., yield or output) of farmer  i  in location  k , while    β 1   ˆ    and  
   β 2   ˆ    correspond to the estimated effect of DD and HDD for each climatic region 
(coast and highlands) taken from columns 1 and 2 in Table 6.

Panels B and C in Table 10 present our results. The main observation is that using 
yields to predict the effect of climate change can lead to a substantial overestima-
tion of the loss of agricultural output. This finding suggests that taking into account 
farmers’ adjustments in land use is quantitatively important when estimating dam-
ages associated with climate change.

For instance, assuming the quantity of land used is fixed, we would predict that 
drops in output are equal to drop in yields. This implies a drop in output of up to 
4  percent (column  4) under RCP85. However, the predicted change in output is 
positive: around 0.02 percent. Overestimation is particularly salient in the coast. In 
that region, assuming land used is fixed, output losses are estimated to range from 
10 to 26 percent. These magnitudes are almost twice as large as when allowing for 

Table 10—Predicted Effects of Temperature on Agriculture under Two Climate Change Scenarios

RCP 4.5 RCP 8.5

All Coast Highlands All Coast Highlands
(1) (2) (3) (4) (5) (6)

Panel A. Predicted change of temperature
 Δ  DD 2.001 0.820 2.196 4.385 1.565 4.850
 Δ  HDD 0.305 1.204 0.157 0.950 2.910 0.627

Panel B. Predicted effect on agriculture
 Δ  Yields (ln Y/T) 0.002 −0.099 0.018 −0.036 −0.258 0.001
 Δ  Output (ln Y) 0.007 −0.051 0.016 0.016 −0.136 0.041

Panel C. Differences on estimate of damages
 Δ  yields −  Δ  output −0.005 −0.047 0.002 −0.052 −0.122 −0.040

Notes: Table presents predictions of the effect of increased temperatures on agriculture under two climate change 
scenarios (RCP 4.5 and 8.5). Predictions uses region-specific estimates of the effect of temperature on yields and 
output from columns 1 and 3 in Table 6. Precipitation is assumed to remain constant. 
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changes in land used. In the highlands, the differences when using both types of 
approaches are much smaller, but they produce qualitatively different results: a drop 
in yields, but an increase in output.

Naturally, land is a finite resource, and thus this particular strategy is not dynam-
ically consistent. In other words, farmers will not be able to offset output losses in 
the face of higher temperatures by adding more land to their production function 
indefinitely. Nevertheless, note that the farmers in our sample keep large amounts of 
unused land during any given growing season (see Table 1). In the case of highland 
farmers this is as high as 40 percent of their land holdings. It is, therefore, a produc-
tive adaptation with a significant margin over the near term.

As a final point, our predictions highlight potentially heterogeneous impacts on 
agricultural production: while the coast will experience sizable output losses, the 
impact in the highlands would be slightly positive. This result is consistent with 
other studies that predict large negative effects of climate change on warm (lower 
latitude) areas but smaller (albeit less conclusive) effects on cooler (higher latitude) 
areas (Deschênes and Greenstone 2007, 2012; Auffhammer and Schlenker 2014).

VI. Conclusion

This paper examines how subsistence farmers respond to extreme tempera-
ture. Using  microdata from Peruvian farmers, we show that extreme temperatures 
decrease agricultural productivity, but increase area planted. The expansion of area 
planted is coupled with changes in crop mix. We also find suggestive evidence of an 
increase in domestic labor.

We interpret these results as evidence that farmers use productive adjustments, 
such as changes in input use, as strategies to attenuate drops in output and consump-
tion. This interpretation is consistent with predictions of  producer-consumer models 
in the presence of incomplete markets.

Our results point to a margin of adjustment not previously documented in the 
literature. This response could be relevant in other contexts with subsistence farm-
ers and incomplete markets. In addition, this paper highlights the importance of 
high temperature realizations, which are expected to keep increasing due to climate 
change, as an income and productivity shock. This measure could be used alongside 
other standard measures, such as rainfall, to study farmers’ decisions and would 
require new policy instruments that would address the consequences of heat expo-
sure among subsistence farmers.

There are, however, several unsolved issues. First, due to data limitations, we can-
not investigate other important topics such as the potential  long-term effects, interac-
tions with other  long-run adaptive strategies (like defensive investments or adoption 
of new technologies). Second, we cannot directly examine the role of different market 
distortions on shaping this response to extreme temperatures. Third, while our findings 
are specific to the Peruvian case (with distinct regional differences), our methodology 
could be used to study similar phenomena in other contexts. Finally, we are unable 
to examine how farmers acquire information about weather shocks. This is relevant 
given that how and when farmers learn about the weather shock can affect their ability 
to respond to it. Examining these issues warrants future research.
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