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Abstract—Search based software testing is a popular and suc-
cessful approach both in academia and industry. SBST methods
typically aim to increase coverage whereas searching for exe-
cutions with specific properties is largely unresearched. Fitness
functions for execution properties often possess search landscapes
that are difficult or intractable. We demonstrate how machine
learning techniques can convert a property that is not searchable,
in this case crashes, into one that is. Through experimentation
on 6000 C programs drawn from the Codeflaws repository, we
demonstrate a strong, program independent correlation between
crashing executions and library function call patterns within
those executions as discovered by a neural net. We then exploit
the correlation to produce a searchable fitness landscape to
modify American Fuzzy Lop, a widely used fuzz testing tool. On
a test set of previously unseen programs drawn from Codeflaws,
a search strategy based on a crash targeting fitness function
outperformed a baseline in 80.1% of cases. The experiments were
then repeated on three real world programs: the VLC media
player, and the libjpeg and mpg321 libraries. The correlation
between library call traces and crashes generalises as indicated
by ROC AUC scores of 0.91, 0.88 and 0.61. The produced search
landscape however is not convenient due to plateaus. This is likely
because these programs do not use standard C libraries as often
as do those in Codeflaws. This limitation can be overcome by
considering a more powerful observation domain and a broader
training corpus in future work. Despite limited generalisability
of the experimental setup, this research opens new possibilities in
the intersection of machine learning, fitness functions, and search
based testing in general.

Index Terms—Search based software engineering, Search
based software testing, Fuzzing, Machine learning

I. INTRODUCTION

A. Motivation

Testing is an integral part of the software engineering
process. It has been estimated to account for over 50% of
development costs [1]. Its purpose is to find faults in software
by executing a program [2]. Search Based Software Testing
(SBST) is a popular technique in testing. Any SBST approach
depends on two choices: a representation and a fitness func-
tion [3]. A representation is what the tester chooses to observe
about a program and its execution, and an observation is an
instance of a representation that has been captured. A fitness
function scores the intermediate candidate solutions to direct
the search. A typical fitness function in SBST aims to improve
coverage [4].

Searching to optimise coverage criteria has attracted sig-
nificant research effort, though coverage has been observed

to have limitations [5], [6], [7], [8], [9]. Fitness functions
targeting executions with particular properties, by contrast, is
a relatively unexplored area. It is not immediately obvious how
to go about creating an effective, targeted, fitness function for
an arbitrary property. What information to observe? How to
interpret the representation as a fitness landscape?

B. Overview

This paper aims to show how Machine Learning (ML) can
be used to create a useful fitness function in the context of
searching for executions with a specific property. We first
show that ML can be used to process observations to identify
executions with a particular property. We then show how this
capability can be used to guide an SBST process to target the
property. The hypothesis behind the proposed approach is that
a classifier’s likelihood estimate of the presence of a crash can
be interpreted as a fitness – a candidate solution’s proximity
to a crash. Prioritising candidate solutions that are “closer” to
a crash ought to lead to more efficient crash discovery.

We present four central findings. First, we show that the C
library call traces have a strong correlation with the presence
of a crash. Second, we show that a fitness function based on
the crash likelihood has a clear guiding effect on the search
strategy vs a baseline. Third, we show that the correlation for a
presence of a crash generalises to real world programs. Finally,
we present a mixed result for the generalisability of the fitness
function driven by a crash likelihood: the fitness landscape is
rich for some programs and the targeted search works, but for
other programs the representation of standard C library call
traces is inadequate.

C. Approach

The proposed approach has two main steps. First, an ML
mechanism is trained to predict the presence of a property
based on observations of a program’s execution. Then, the
prediction of the property is used as a basis for a fitness
function in an SBST process.

We demonstrate the methodology by considering standard
C library call traces as the representation, and crashes as the
execution property of interest. First we collect standard C
library call traces and crash / no crash labels across a corpus
of programs. We then train a neural network classifier on a
corpus of execution traces of standard C library calls with
crash labels.



We then couple the crash likelihood classifier with the
American Fuzzy Lop (AFL) fuzzer [10]. AFL relies on a
number of heuristics to guide its search. We introduce the
crash likelihood as an additional prioritisation heuristic: non-
crashing executions to which the classifier assigns a higher
crash likelihood are given a higher priority during fuzzing.

D. Contributions
The main contributions of this work are (a) a novel approach

to constructing a fitness function for an SBST process and (b)
a case study demonstrating that this works in practice. The
presented methodology produces a meaningful fitness function
from an arbitrary representation. The approach requires neither
access to source code nor analytical processing of observa-
tions. The methodology opens new research possibilities for
the use of ML in constructing effective fitness functions for
SBST. In future work, it will be extended to other observations
and execution properties.

II. RESEARCH GOALS

There are three research goals. The first investigates the
validity of the chosen representation with respect to the
execution property of interest. The second looks at the use of
an ML constructed fitness function based on the representation.
The third addresses the generalisability of the method to real
world applications.

A. Representation
For a representation to be useful as a basis of a fitness

function, it needs to be correlated with the execution property
of interest. We need to determine whether program executions
represented with standard C library calls are correlated with
crashes, when interpreted by a neural network. The first
research question of this paper is RQ1:
“Are traces of standard C library calls correlated with
crashes?”

B. Fitness Function
Once we have a representation, we use it to construct a

fitness function. The effectiveness of the fitness function then
needs to be evaluated. This is done by comparing its crash
discovery rate against a baseline – an SBST process guided by
a non-targeted fitness function. The second research question
is RQ2:
“Does the property targeting fitness function result in a higher
crash discovery rate than a baseline?”

C. Generalisability to real world Programs
Effectiveness of machine learning techniques depends on

the representativeness of the training data. This paper presents
a proof of concept, and the generalisation of the trained model
to arbitrary real world programs is expected to be limited.
The following two research questions investigate the degree
to which the model generalises.
RQ3.1:“What is the crash predicting ability of a pre-trained
model on real world applications?”
RQ3.2:“Is a fitness landscape produced by a pre-trained
model applicable to real world applications?”

Fig. 1: AFL workflow. Solid arrows indicate inner loop, dashed arrows outer
loop, and dotted lines initialisation and termination steps. Initial seeds are
provided by the user (1). The instrumented program is executed with a queue
element and the trace is recorded (2). The element is then modified and the
program re-executed (3). Traces deemed interesting are appended to the queue
(4). Once a cycle completes, all queue elements are scored (5) and a new cycle
begins. At termination, the queue and unique crashes remain available.

III. BACKGROUND

Our work relies on the American Fuzzy Lop (AFL) fuzzer
as the underlying SBST tool and Valgrind as the program
profiling tool. We present their functionality below. Machine
learning concepts used by our classifier are also introduced.

A. American Fuzzy Lop

AFL is a popular diversity driven fuzzer, whose main
purpose is to discover crashes in programs. At its core, it
implements a diversification strategy on observed program
traces, based on several heuristics. Its basic workflow can be
seen in Fig. 1, and a detailed description is presented below.

1) Initialisation: The user provides one or more inputs as
seeds which forms the initial queue. Each queue element is
calibrated: it is executed, and its running time and execution
trace are recorded.

2) Fuzzing Operations: Each queue item is then modified
and executed repeatedly for a number of executions deter-
mined by its fuzzing budget. These include deterministic and
stochastic modifications. The deterministic steps are bit and
byte flips, simple arithmetic and “interesting integers”. The
stochastic steps are combinations of the above, block deletions,
insertions and overwrites, memset and splicing. Further details
of these operations can be found online [11].

3) Trace representation: Before fuzzing, AFL instruments
a program at every decision point. The transitions between
these points form a hashmap (in AFL’s documentation this is
called a “bitmap”) of edges and their hit counts. To fit the
bitmap fully into L2 cache, only a rough number of transition
counts is kept: 0, 1, 2, 3, 4–7, 8–15, 16–31, 32–127, 128+. In
SBST terminology, the bitmap is AFL’s representation.

4) Interestingness: AFL defines a notion of interestingness
(used interchangeably with uniqueness) of an execution on



the state transition bitmap by one of these three conditions:
the execution produced a state transition that has not been
seen before; it changed the count of a transition; or it did
not exercise a transition which had previously always been
exercised. This definition of interestingness is heuristically
chosen as a trade-off between the efficiency of crash discovery
and instrumentation overhead. For an input to be appended
to the queue, its execution trace needs to fulfil one of these
conditions. Crashing inputs are not used as seeds for further
fuzzing by default.

5) Prioritisation Heuristics: A single pass through the
queue is called a cycle. At the end of a cycle, old queue
elements whose bitmaps are entirely superseded by new ones
are culled. Fuzzing then continues with an updated queue. At
the start of a new cycle, each queue element is assigned a
fuzzing budget α. The value determines how many times each
element is to be modified and executed. This is AFL’s fitness
function. There are five heuristics.

• An element’s execution time with respect to the average.
Quicker executions get a higher priority simply to allow
for more total executions.

• The size of the element’s bitmap. The reasoning is that
larger traces are more likely to exercise more behaviours
and thus reveal more faults.

• Recency of a queue element. Newer entries are prioritised
as they would have gotten less air time than older ones.

• An element’s hierarchic novelty. For instance, the depth
of entries that were found using the initial queue is 1.
Elements that were found by modifying depth 1 elements
would have a depth of 2 and so on. Elements of greater
depth (i.e. descendants of more complex parents) get a
higher priority as they are expected to produce ever more
complex executions.

• Ad-hoc budget extension. If unique executions are found
while fuzzing an element, its budget is dynamically
increased until no more new ones are found.

B. Valgrind

Valgrind is an instrumentation framework for dynamic
analysis which has been used extensively in academia and
industry [12], [13]. It tracks every instruction as a program is
executed in a simulated environment. One of the tools included
is Callgrind, which records an execution’s call history [14].
The calls include both the program’s own functions as well
as any library calls it makes. Traces produced by Callgrind
are ideal for our purposes for two reasons. First, we expect
function calls to be strongly correlated with crashes. Second,
since library calls can be isolated from a program’s own
function calls, these traces can be compared across programs.

C. Machine Learning Mechanisms

The structure of a neural network may vary greatly depend-
ing on the intended purpose and data. The central features of
our NN are outlined next.

Batch normalisation is a method for standardising data
within the network so that it has a mean of 0.0 and standard

deviation of 1.0 [15]. Not only does this make the training
faster, but it also rids us of the need for preliminary data
normalisation.

An activation function of a neuron determines the range
of its outputs. A hyperbolic tangent (tanh) activation outputs
values in (−1.0, 1.0) whilst sigmoid activation produces values
in (0.0, 1.0). The former is used to introduce non-linearity for
the network to capture complex, non-linear relationships in the
data. The latter is used to produce a likelihood estimate for
binary classification problems.

A typical strong binary classifier produces output values
close to zero or one, indicating the value of a binary label. This
is not ideal for our purpose, since we want a variety of degrees
of certainty where a search can be conducted. Adding Gaus-
sian noise regularisation is one way of introducing uncertainty
into the model [16]. In addition to producing a wider range
of certainties, it also makes the model more robust against
overfitting.

D. Receiver Operator Characteristic

The Receiver Operator Characteristic is a mechanism to
measure the effectiveness of a binary classifier. It is a plot
of the true positive rate against the false positive rate. The
Area Under Curve (AUC) of the ROC is a summary of the
ROC and we use it our evaluation. The main benefit of ROC
AUC versus accuracy is that it is independent of the balance
of labels [17].

For instance, if the proportion of class one and class zero in
a test dataset is 1:9, a classifier would achieve an accuracy of
0.9 by always guessing zero. Since AUC of ROC is the rate of
true positives, the class sizes are normalised, and a classifier
guessing the larger labels achieves an AUC of 0.5. This is a
more honest representation of its performance.

IV. EXPERIMENTAL SETUP

This section describes our experimental setup. It consists of
a large dataset of instrumented program executions, a neural
network regression classifier and a modified AFL fuzzer. In
terms of the implementation, our contribution is the additional
prioritisation heuristic to AFL – one generated by the NN (see
Subsection IV-F below).

A. Augmented Codeflaws

The main corpus used in this work is extracted from the
CodeFlaws program repository. It contains a total of 7808
programs with sizes ranging from 1 to 322 lines of code,
along with test cases and automatic fix scripts [18]. These
are grouped into 40 defect classes, with triggering inputs and
automatic repair scripts. As it is, there are two drawbacks to
this dataset. First, there are too few inputs to train an Neural
Network (NN) model on. An appropriate dataset would contain
tens of thousands of program executions. Second, all of the
programs are perfectly valid C code, and the defects of the
faulty versions are relative to the correct program. That is, the
defective programs are only faulty with respect to the fixed
programs, i.e. oracles. In this paper, we bypass the oracle



problem [19] and concentrate on a universally undesirable
property – a crash.

The dataset was augmented by fuzzing the programs in
Codeflaws. Each program was fuzzed with AFL using default
settings for five minutes, using six parallel instances of AFL.
Due to AFL’s generation heuristics, some programs ended up
with a disproportionately large number of inputs. Of these, we
uniformly sampled a subset of a thousand executions to avoid
skewing the training data towards a particular program.

The dataset was divided into a train set and a test set. To
ensure that the test dataset was not tainted with training data,
the train-test partition was created as follows. The programs in
the Codeflaws repository are grouped pairwise by defect IDs.
That is, each element in the repository is a pair consisting
of a faulty and a fixed version of a program. The difference
between a fixed and a faulty program tends to be small, e.g.
change of one line. Having one program from a pair in the
training set and the other in the test set would overfit the data:
the model would get trained on an example which is very
similar to one in the test set. Thus we need to ensure that only
one program in a fixed-faulty pair is included in the training
set. The train-test split was therefore done on a granularity
of defect IDs. For instance, there are seven pairs of programs
with a 38-B defect ID. All seven pairs of the 38-B defect
would be excluded from the training set and kept for testing.
This ensured that the programs in the test set are sufficiently
different from the ones in the training set. A 75%:25% train-
test split was produced by uniformly sampling the defect IDs.

B. Real World Programs

We consider three real world programs to investigate the
generalisability of a Codeflaws trained model. They are the
VLC 2.0.3 media player, and the libjpeg and mpg321 image
and mp3 libraries. The version of VLC was chosen because it
was listed on AFL’s site and known to have a crash causing
fault in its subtitle module [10]. The latter two are also
known to have crash producing faults, and have been used
as benchmarks in recent work on fuzzing (see Section VI).
The initial seed input for each program was a blank file.

C. Trace Instrumentation

The dataset was then instrumented with Valgrind’s Callgrind
tool which produces a trace of function calls. An example can
be seen in Listing 1. Traces were then parsed into call counts
of the number of times each function called another. Program
specific functions were filtered out, so each execution is only
characterised by its trace of standard C library functions. This
preprocessing produced a corpus of instrumented executions
across a range of various programs, with crash / no crash
labels.

< . . . / d l−r u n t i m e . c : d l f i x u p (4 x ) \\A
< . . . / d l−machine . h : d l r e l o c a t e o b j e c t (80 x ) \\B
∗ . . . / d l−l ookup . c : d l lookup symbol x \\C

Mean Median Stdev
Crashes per program 8.886 1 42.730
Execs per program 61.192 25 127.535

Crashes per program 0.153 0.0309 0.309
Test set size 1537.33 1524 82.59

TABLE I: General characteristics of the corpus

> . . . / d l−l ookup . c : do lookup x (84 x ) \\D

Listing 1: Example of a Valgrind instrumented trace. The symbols <, * and >
correspond to ”called by”, ”function” and ”calls” respectively. The last number
in braces shows how many times this call occurred in a given execution. In
this example function on row C is called by functions on rows A and B, 4
and 80 times respectively, whilst it calls function on row D 84 times. The
trace produced is {(A, C : 4), (B, C : 80), (C, D : 84)}

D. Experiments

For RQ1, the training and testing procedure was repeated
20 times, and the results averaged. The characteristics of the
produced corpus can be seen in Table I. The corpus had a total
of 6089 programs.

For RQ2, using the whole test set of some 1500 programs
would not have been feasible. Therefore, 200 programs were
sampled, uniformly at random, from the test set. The only
restriction in selecting the programs was that they showed at
least a single crash in the corpus generation stage (see Section
IV-A). Each program was then fuzzed for up to two times
the number of executions in the corpus generation stage or
to a maximum of 15 minutes. The total number of crashing
executions, the number of unique crashes and the number of
distinct paths was recorded.

For RQ3, the NN was not retrained or modified. Due to time
constraints, experiments were not carried out on all modes –
only not B4 and T4 (see Subsection IV-F below). They are
the most representative benchmark between a “blind” strategy
and a guided one; effects of search strategies are not impacted
by AFL’s built-in heuristics. Each mode was run for 12 hours,
five times each.

E. Neural Network Classifier

A regression classifier is a model that outputs a floating
point likelihood of an input belonging or not belonging to a
class. The output can be thought of as a probability of the
input being part of a class or not. Our classifier is based on a
neural network. An NN was chosen because it does not require
feature extraction pre-processing and it can be easily modified
to use alternative data inputs. The NN takes instrumented
traces of program executions as inputs and a binary label of
a crash as the target. The NN’s output is the likelihood of a
crash for a given execution trace. The framework related to
RQ1 is pictured in Fig. 2.

The network is composed of seven layers. The input layer
takes the vector of function call counts. There were 1733
distinct function call transitions in the corpus, which is there-
fore the size of the input layer. The second layer is batch
normalisation. Layers three through six are densely connected



Fig. 2: Experimental setup for RQ1. Codeflaws is a augmented with additional
inputs producing crashing and non-crashing executions (1). These are then in-
strumented with Valgrind (2). A neural network is trained on the instrumented
executions (3) and crash / no crash labels (4). The performance of the NN
classifier is then evaluated on a held out test set (5).

.

layers with sizes 128, 64 and 32 neurons with Gaussian noise
regularisation. Hyperbolic tangent activation is used for non-
linearity. The last layer is a single neuron with a sigmoid
activation. The network was implemented using the Keras
framework and trained using the RMSprop optimiser [20].

F. Constructing the Fitness Function

We modify AFL’s fitness function to consider the crash
likelihood score provided by the NN. This is done with a
number of modifications outlined below. The framework is
shown in Fig. 3.

Calls to trained NN for new queue elements: AFL adds
an input to its queue when the execution path is found to be
interesting, as explained above. A newly added queue element
is sent to a mechanism which executes it under Valgrind,
instruments the trace and scores it with a trained NN model.
We tried doing this analysis with AFL’s uniqueness heuristics
disabled, i.e. by calling it for each modified input during
fuzzing. This was prohibitively slow due to the instrumentation
overhead, and the signal from the model was too weak:
the crash likelihood scores would rarely vary. This means
that the execution paths appear very similar in terms of
the standard C library call representation under the slightly
mutated inputs. AFL’s built-in definition of uniqueness was
thus maintained, and the framework only asks for the model’s
estimate intermittently – at the start of a new cycle.

Normalisation of crash likelihood scores: The crash
likelihood scores are then used to calculate an alternative
fuzzing budget β (equations 2 and 1). The values produced

Fig. 3: Experimental setup for RQ 2. 200 programs are sampled from the
test set (1). The programs are fuzzed in baselines modes (2) and modified
targeted modes (3). Targeted modes query a trained NN for crash likelihood
scores (4). The number of total crashes, unique crashes and discovered paths
are recorded (5).

by the NN are not directly comparable across programs. For
instance, executions of program A might have a mean of 0.1,
while the values for program B may have a mean of 0.6, i.e.
0.5 is not guaranteed to be the cut-off point of “suspicious”
vs “not suspicious”. The raw values are thus normalised as
shown in Eq. 2. This maps the crash likelihood score into a
range of [0.0, 2.0], where scores between xmin and µ get an
adjusted score w(x) in the range [0.0, 1.0] and those above
the mean in (1.0, 2.0].

Fuzzing budget weighting: The normalised score w(x) is
a multiplier for the final fuzzing budget β (Eg. 1). Depending
on the mode, the initial fuzzing budget α is either a fixed
value (e.g. α = 100 for T2) or one given by AFL’s heuristics.
This value is then weighted by the normalised score w(x).
In addition, to prevent discarding elements simply due to the
NN’s opinion, a minimal value is introduced. This assigns
adjusted values at least some fuzzing budget, and prevents
them from being discarded simply because of being non-
suspicious.

β = max(20, α× w(x)) (1)

w(x) =


x−xmin

µ−xmin
, if x ≤ µ

1 + µ−x
xmax

, otherwise
(2)



Queue Sorting: AFL uses a first in first out queue. We
introduce queue sorting by descending β, which is done at
the start of every cycle. A fuzzing cycle therefore starts with
the most suspicious seeds. This is important due to AFL’s ad-
hoc fuzzing budget extension heuristic. Without modification,
AFL dynamically increases the assigned budget if the seed
element keeps producing new paths. This way it may end up
discovering new paths from seeds with low crash likelihood
scores.

Disabling Ad-hoc Extension: Without modification, AFL
dynamically increases the assigned budget if the seed element
keeps producing new paths. This way AFL may end up
discovering new paths from seeds regardless of their budget.
To isolate the effect of a particular prioritisation strategy,
modes 3 and 4 (see below) had the ad-hoc extension disabled.
It is an artificial weakening of AFL’s heuristics intended for
experimental purposes.

Modes of modified AFL: The experiments were run in
8 modes: four baselines (B1-4, with fuzzing budget α) and
four targeted modes (T1-4, with fuzzing budget β). The
purpose of several different modified and baseline modes is
to investigate whether a targeted strategy noticeably changes
the crash discovery rate. Modes other than B1 and T1 disable
some of AFL’s original heuristics in order to make the effect
more apparent.

B1 The first baseline mode is the unmodified AFL mech-
anism with ad-hoc extension enabled. The fuzzing
budget α is calculated by AFL’s original heuristics.

B2 The second baseline assigns a constant budget of α =
100 to each queue element and uses ad-hoc extension.

B3,4 The third and fourth baselines are the same as B1 and
B2 but with ad-hoc extension disabled.

T1 The first modified mode considers both the original
AFL weighting and the score given by the NN. The
fuzzing budget β is given by weighting the original
AFL budget α by the adjusted NN score, and uses ad-
hoc extension.

T2 The second modified mode assigns the budget β purely
from the NN with α = 100, and uses ad-hoc extension.

T3,4 Third and fourth modified modes are same as T1 and
T2 but with the ad-hoc extension disabled.

V. RESULTS

This section presents the central results of our experiments.
We found that the NN discovers a strong correlation between
the chosen representation and the property of interest. We
also found that a fitness function based on the NN’s crash
likelihood estimate is clearly more effective at crash discovery
than a baseline. Finally, we observe a mixed result of gen-
eralisability of the Codeflaws trained model onto real world
applications.

RQ1. Correlation of C Library Call Traces and Crashes

Central Finding: Traces of standard C library calls have
a strong correlation with crashing executions. Across the 20
randomly partitioned train-test splits of the Codeflaws corpus,
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Fig. 4: Distribution of one of the test sets: The x-axis label is the NN’s crash
likelihood, y-axes (no-crash label on the left, crash label on the right) are the
proportions of executions in each 2-percent bucket of x. The two peaks on
the left and right indicate the majority of test set elements falling into two
distinct classes. Distributions of other sets appeared similar.

the mean and median area under curve of the ROC are 0.897
and 0.901 respectively. The strong correlation suggests that
standard C library calls are a useful representation for crash
discovery.

The outputs produced by the network are not tightly grouped
at the extremes of 0.0 and 1.0. This was observed visually
across the score distributions of the test sets. An example
of such a distribution is shown in Fig. 4. The ROC curve
corresponding to Fig. 4 is presented in Fig. 5. The distribution
shows a considerable portion of crashing elements appear-
ing between the two peaks. This space is a middle ground
between definitely crashing and definitely not crashing. This
distribution of outputs is desirable for the purpose of using
the network’s output as a fitness function. A distribution with
high peaks would have been a search landscape with plateaus –
with many candidate solutions sharing the same fitness value,
making search impossible. A better accuracy might have been
achieved with a stronger classifier if we had not introduced
noise to produce this uncertainty. The result is therefore a
compromise of the two aims: predictive ability and uncertainty.

RQ2. Fuzzing with a Targeted Fitness Function

Central Finding: Targeted modes have a higher crash
discovery efficiency than the baselines. This suggests that the
targeted fitness function constructed in this way is effective.
The scope of this paper is to show a proof of concept for
future work to be built on – not to produce a practically
applicable tool. There are recent major improvements on AFL
(see Section VI) that the proposed approach does not attempt
to outperform.

Data Collected: Three values were recorded for each
execution: total number of crashes, number of unique (by
AFL’s definition of uniqueness) crashes and the number of
paths discovered. Fuzzing is inherently random, so each
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Fig. 5: The Receiver Operator Characteristic curve for the distribution in Fig.
4. The red curve represents the false positive vs true positive rate of crashing
execution classification, corresponding to the red (RH peak) distribution in
Fig. 4. The total AOC here is 0.887. The black diagonal line represents the
indifference curve.

program was fuzzed under each experimental mode (B1-4
and T1-4) three times, and the median values were taken.
More repetitions would have made the results more robust
and convincing but only three runs were taken due to time
constraints.

The performance is evaluated with the area under curve
for each measure. The reason for accumulating the values in
this way is to reward both the number of crashes (or paths)
found, as well as finding them sooner. This is illustrated in a
plot of the result of fuzzing program 48-C-255529, in Fig. 6.
The top plot shows all modes finding 4 or 5 unique crashes,
which would suggest equal performance. The bottom plot is
the corresponding area under curve of the top right plot. It
distinguishes between the modes’ performance as some of
them found unique crashes quicker than others.

Absolute values are not comparable across different pro-
grams: e.g. some programs had one or two unique crashes,
others had dozens. Therefore the different modes are ranked
based on the cumulative performance measure. The rank yields
a score between 0 and 7, for worst and best respectively. The
significance of differences between modes was measured by
the p-values of pairwise Wilcoxon tests.

We observed that the performance of different modes was
indistinguishable for some programs. This was the case for
programs with high crash rates and very few paths. If a
program constantly crashes, it makes no difference how to look
for crashes. Likewise, when a program only has a handful of
possible paths, and they all get discovered quickly, the search
strategy has no effect. In order to observe a difference in the
modes, these trivial programs were filtered out. These included
programs with crash rates over 2% and with fewer than 50
paths, leaving a total of 52 programs.

Fig. 6: This figure is an example of performance of the different modes for
fuzzing a SUT (48-C-255529 in Codeflaws), showing how our evaluation
measures are calculated. The different colours correspond to different modes,
with solid lines being the modified modes and the dashed lines being baselines.
The x-axis is the number of executions, and the y-axis is the number of unique
crashes after x number of executions. The bottom plot shows the same value
but accumulated over executions up to that point. A score between 0 and 7
is given to each mode on the cumulative performance.
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Fig. 7: Distribution of mean scores of baseline modes (blue, bottom part of
bar) and targeted modes (red, top part of bar). The plots are of total crashes
found, unique crashes found and paths found from top to bottom.

Performance of Targeted Search vs Baseline: The mod-
ified modes of AFL produced consistently more crashes than
the baseline modes. The scores of baseline modes and targeted
modes is shown in Fig. 7, for the 52 non-trivial programs in
the test set. The figure shows the proportion of ranks averaged
across baseline modes and targeted modes. For instance, the
two rightmost columns in the top chart show that a targeted
mode was the top performer with a score of 7 for total crashes
found in 81% of cases. The effect of a targeted strategy is
most apparent in the total crashes found, as evidenced by the
top plot. In terms of unique crashes and paths discovered, a
targeted mode comes out on top in 63.5% and 61.5% of cases
respectively. These findings indicate that an estimate of an
NN model trained on standard C library calls of crashing and
non-crashing executions has a clear guiding effect.

Performance by Mode: Table II shows a mode-wise
comparison of scores. The first column shows that the targeted
modes produce consistently more crashing executions than any
of the baselines. The p-scores for the modified versus their
baseline counterparts are low, which indicates a considerable
difference. As expected, the difference is more apparent in the
bottom two modes where the ad-hoc budget extension was
disabled, i.e. when the fuzzing budget is fixed by a fitness
function and not allowed to increase dynamically.

Although the modified modes did not specifically target
uniqueness, they achieved more unique crashes nonetheless.

Mode Total crashes Unique crashes Total paths

B1 / T1
2.250 / 4.269
< 0.0001

3.231 / 3.654
0.3897

2.981 / 3.385
0.4534

B2 / T2
3.212 / 4.462

0.0107

3.500 / 3.981
0.2472

2.539 / 3.692
0.0261

B3 / T3
2.654 / 4.539
< 0.0001

3.192 / 3.654
0.3727

3.808 / 4.481
0.1786

B4 / T4
2.058 / 4.558
< 0.0001

3.00 / 3.789
0.1032

3.442 / 3.673
0.6084

TABLE II: Mean rank score of each mode. The top row is the mean rank
score by the baseline mode, and its modified counterpart in the range of 0−7.
The bottom row is the p-value for the two modes.

The modified modes found most unique crashes quicker than
baselines in 63.5% of cases. More crashes appears to translate
to discovering more distinct crashes, as indicated by a bet-
ter performance in terms of unique crashes discovered. The
significance of this difference is much smaller than for total
crashes, as indicated by the higher p-values. Interestingly, the
difference is more significant (lower p-scores) in the constant
budget modes (B2/T2, B4/T4) than in those with built-in
AFL prioritisation (B1/T1, B3/T3). In other words, the search
methods are more effective at finding unique crashes than
constant budget baselines but fare only somewhat better when
used to augment existing AFL heuristics.

The modified modes perform somewhat better than base-
lines in terms of paths found. This is surprising as targeting
crash discovery was expected to have diminished exploration
performance. The differences however are not very signifi-
cant, as suggested by the high p-values (except for B2/T2
comparison which may be an outlier). A possible explanation
for this marginally improved performance is the modified
strategies’ penalising effect for non-suspicious executions, that
also happen to be trivial and thus poorly suited to be fuzzing
seeds. A more in-depth analysis of this effect is outside the
scope of this work.

RQ3 Generalisability of Representation

The correlation between C library calls and crashes appears
to generalise reasonably well to real world programs. The fit-
ness landscapes based on a Codeflaws trained model however
are not very convenient. This makes a targeted search strategy
with the chosen representation unfit for testing arbitrary real
world programs.

RQ3.1 Correlation Generalises: The results show that the
correlation between the traces and crashes generalises well to
previously unseen programs. The AUCs are 0.907, 0.880 and
0.612 for VLC, libjpeg and mpg321 respectively. The value
of 0.612 for mpg321 indicates a weakness of the model, and
ought to be improved – either by training on a more diverse
corpus or by considering additional observations.

Inconvenient Fitness Landscape: An analysis of the val-
ues produced by the neural network revealed an issue with
the representation in VLC and mpg321. The landscape had
many plateaus: in the whole dataset of “interesting” inputs
generated by AFL, there were only 183 and 92 unique crash
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Fig. 8: Number of unique crashes discovered by the targeted mode T4 (red)
and the baseline mode mode B4 (black). Interestingly, the pattern of discovery
rates was also similar for paths and total crashes.

likelihood values for VLC and mpg321 respectively – vs 14853
for libjpeg. This may be due to the fact that these programs use
standard C libraries to a lesser extent. A richer representation
is thus necessary to analyse programs that do not use standard
C libraries as extensively as those in Codeflaws. We aim to
investigate both of these weaknesses in future work.

RQ3.2 Targeted Search Consistent with RQ2: A search
across landscapes with plateaus would have been meaningless,
so targeted search experiments were only conducted on lib-
jpeg. In terms of unique crashes, total paths and total crashes,
the targeted strategy found a median of 1267, 61 and 13681,
versus 1313, 63 and 8542 found by a baseline. The number
of paths found and unique crashes found are similar in both
modes, but the targeted strategy reached far more total crashes.
This is indicative of the effect of a targeted strategy on fuzzing
given a sufficiently rich representation. These numbers are in
line with those of the Codeflaws experiments.

Pattern of Crash and Path Discovery: The rate of dis-
covery of crashes was consistent across all fuzzing runs, both
for the targeted mode and the baseline mode. For the first
ca. 10% of the fuzzing process the baseline outperforms the
targeted strategy. In 10% to 50% of fuzzing, the targeted
strategy gained considerably over the baseline. Finally, for the
second half, the baseline picked up again. This behaviour can
be attributed to the fact that while there are very few seeds
(the process was started with a blank file), heavily prioritising
one over others limits exploration. Once more paths are found,
focusing on the most suspicious ones yields the most benefit.
Finally, when discovery stalls, exploration becomes once again
more viable. An example of this effect is shown in Fig. 8.
These observations are not central findings of this study, but
they are interesting for potential future work using alternative
representations and search strategies.

VI. RELATED WORK

SBST has been widely applied [21], [22], [23], [24], but
it has limitations [25]. Fitness functions in SBST typically
aim to improve coverage criteria [4], rather than targeting a
specific property or behaviour of executions or programs [26].
The effectiveness of search for coverage criteria scores has
been high although the effectiveness of coverage criteria in
creating test sets good for fault discovery has recently been
disputed [5], [6], and even shown to be detrimental as a sole
target [7], [8], [9]. In this work, we instead explore the idea of
using fitness functions that target execution properties in the
context of SBST.

Search strategies that target execution properties are not un-
known in SBST, although they are less common than ones that
target coverage. Search methods have been applied to produce
a test suite explicitly targeting defects, albeit the intermediate
fitness was coverage of mutated code [27]. More recently,
Rojas et al. have used exception coverage to formulate a
fitness function specifically targeting exceptions [28]. Work
on crash reproduction has considered the presence of a crash
and the similarity of a crashing execution’s stack trace to
that of a candidate solution [29], [30]. While our approach
also uses crashes and function calls as part of the fitness
function, its construction is fundamentally different. Non-
functional properties like execution time [31] and memory
usage [32] have also been targeted. Search based approaches
have also been used in exploit generation. For instance, a
timing attack on the RSA encryption [33] deduces the correct
password by observing the time it takes for a program to deny
access to a guess [34] with the time channel acting as a fitness
function. The use of time in the fitness function here relies
on knowledge of the implementation of RSA. In our work, a
fitness function targeting an execution property is constructed
without knowledge of the underlying implementation.

A popular method in SBST is fuzzing [35]. Fuzzing is a
technique which attempts to crash a program by feeding it
randomly mutated inputs [36]. Modern fuzzers use program
profiling and feedback to guide their strategy, and they have
also been used to test for properties other than crashes [37].
One such fuzzer is the widely used American Fuzzy Lop
(AFL) [10]. AFL has recently gathered much attention in
academia: it has been improved using a number of techniques.
Symbolic execution was used to solve cases where AFL’s inter-
nal heuristics were ineffective [38]. Its coverage driven heuris-
tics have been improved [39]. Application-specific magic value
awareness has been introduced [40]. Context sensitivity, taint
tracking and search based on gradient descent have also been
explored [41]. Its mutation strategies have been augmented us-
ing a neural network that approximates a program’s semantics
w.r.t. input bytes [42]. AFL is also used as the underlying tool
in this work. The methodology here is not aimed at immediate
improvement to AFL, even if this is a consequence. It is
instead an exploration of a conceptually novel approach to
driving a fuzzing process with a machine learning based fitness
function.



ML techniques have long been used in software engineering.
Neural networks were employed for test suite optimisation
as early as 1995 [43]. More recently, ML has been used for
test suite refinement [44], fault localisation [45] and guided
model based testing [46]. A generative neural network was
applied to SBST for generating well-formed pdf files to test
a pdf reader [47]. A generative model has also been used
for producing seeds for AFL [48]. In that work, a model is
trained per file format: for mp3, bmp and flv. These models
are then used to produce new seeds for AFL. The use of ML
for generative purposes in the context of search for execution
properties is a planned extension to our work.

There are also examples of execution trace profiling and
analysis with ML methods. Forrest et al. used statistical meth-
ods to identify abnormal behaviour in Linux processes [49].
That work is an example of anomaly detection whose pur-
pose is to discover undesirable behaviour. A comprehensive
survey of tools related to anomaly detection was produced by
Chandola et al. [50]. Other relevant work includes behaviour
classification using CFG traces [51], test input classification
and generation [52], and bug detection [53]. Our work analyses
execution traces of programs with ML tools. Unlike the work
mentioned above however, we use this analysis to construct a
fitness function for an SBST process.

VII. CONCLUSION AND FUTURE WORK

In this paper we propose a novel approach for constructing
a property targeting fitness function using ML. This is done
by first training a classifier on observations of a corpus of
crashing and non-crashing library call execution traces across
a range of various C programs. The classifier provides crash
likelihood estimates to a fuzzer which prioritises non-crashing
candidate solutions based on this value. Results show that a
fitness function constructed in this way has a clear effect on
the rate of crash discovery.

The results were obtained with two sets of experiments.
The first one shows that the execution traces represented by
standard C library calls are strongly correlated with the pres-
ence of a crash. The area under curve of the ROC measure is
0.901. This is evidence of the representation being potentially
useful for constructing a fitness function specifically targeting
crashes. The second set of experiments shows how the crash
likelihood estimate can be used as a fitness function. On a
test set of programs, a crash targeting fuzzing strategy based
on the crash likelihood outperformed a baseline in 80.1%,
63.5% and 61.5% of cases with respect to total crashes,
unique crashes and total paths discovered respectively. The
methodology backed by the experimental evidence presented
in this work is expected to provide ample opportunity for
further research.

The general structure of our approach is the following:
collect execution traces, train an ML mechanism to predict
a property from these traces, and then use the prediction as
a component in a fitness function for an SBST tool. The
approach is viable if there is a pattern in the representation
that correlates with the property and the ML technique can

learn to identify this pattern. Several aspects of the approach
can be investigated further. First, other observations and rep-
resentations can be investigated. In this paper we showed that
while the C library call representation works for the set of test
programs that are similar to the corpus, it has limited efficacy
when applied to some programs. This shortcoming may be
overcome by an alternative representation. Second, targeting
properties other than crashes should be investigated in a similar
way. This may include information leaks, exploits, specific
crash types and different resource usages. Current work on al-
ternative representations and properties has promising results.
Third, rather than simply weighting a fuzzing budget with a
crash likelihood score, a fitness function may be constructed
differently. For instance, a fitness function need not be based
on a single value like the crash likelihood given a trace of
C library calls. Instead, it may be a combination of multiple
targets based on a representation of several traces. The traces
do not need to be specific to C or any other language but rather
depend on the profiling tool used. Furthermore, the fitness does
not need to be used in AFL – any other SBST input generator
that uses a fitness function to evaluate intermediate results
ought to be appropriate.
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