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Abstract: We consider the family of operators H (ε) := − d2

dx2
+ εV in R with almost-

periodic potential V . We study the behaviour of the integrated density of states (IDS)
N (H (ε); λ) when ε → 0 and λ is a fixed energy. When V is quasi-periodic (i.e. is a
finite sum of complex exponentials), we prove that for each λ the IDS has a complete
asymptotic expansion in powers of ε; these powers are either integer, or in some special
cases half-integer. These results are new even for periodic V . We also prove that when
the potential is neither periodic nor quasi-periodic, there is an exceptional set S of
energies (which we call the super-resonance set) such that for any

√
λ �∈ S there is a

complete power asymptotic expansion of IDS, and when
√

λ ∈ S, then even two-terms
power asymptotic expansion does not exist. We also show that the super-resonant set S
is uncountable, but has measure zero. Finally, we prove that the length of any spectral
gap of H (ε) has a complete asymptotic expansion in natural powers of ε when ε → 0.

1. Introduction

We consider the operator
H = H (ε) := −� + εV, (1.1)

where ε > 0 is a small parameter and V is a real-valued almost-periodic potential. We
are interested in various quantitative and qualitative spectral properties of H as ε → 0,
and this paper is the first one in a series of articles devoted to the study of these properties
of H under various assumptions. In this paper, we assume that the dimension d = 1, so
that

H = H (ε) := − d2

dx2
+ εV . (1.2)

The quantities we will be interested in are: the length of the spectral gaps, and the
integrated density of states (IDS) N (λ; H (ε)) when the spectral variable λ is fixed; we
are going to study the behaviour of these quantities as ε → 0.
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The first problem we study is as follows. Let λ ∈ R be a fixed number and consider
the behaviour of the IDS of H (ε) at λ when ε → 0. Questions of this nature (how
the value of IDS at a fixed energy depends on the value of a small coupling constant)
have arisen in our study of perturbations of Landau Hamiltonians by almost-periodic
potentials. Despite the slightly esoteric feel of this type of questions, we believe they are
more natural than it may seem at the first sight, especially given that the answers are quite
surprising. Let us briefly describe the effects happening in dimension one; we are going
to devote the second paper in this series to discuss the multidimensional case, where the
results are even more unexpected. Suppose first that V is quasi-periodic (i.e. V is a finite
linear combination of trigonometric functions). Then, whenever λ is not a square of a
frequency, there is a complete asymptotic expansion of N (λ; H (ε)) in integer powers of
ε. Suppose, λ = θ2 �= 0, where θ is a frequency. Then the type of the expansion will
depend on the relationship between τ (the constant Fourier coefficient of V ) and ν (the
Fourier coefficient at ei2θx ). First we notice that, as we will show in this paper, there is
a spectral gap of H (ε) around θ2 of length ∼ 2νε. Therefore, if |τ | < |ν|, then the point
λ+τε stays inside this gap and, as a result, the IDS does not depend on ε when ε is small.
If, on the other hand, |τ | > |ν|, then the shift by τε pushes our point λ well outside the
spectral gap, and we obtain the standard asymptotic expansion in integer powers of ε.
The most interesting case is |τ | = |ν|, when the point λ + τε is approximately at the
edge of the spectral gap. In this case generically the answer will depend on the sign of
τ . For one value of this sign the point λ + τε is still located in the gap and so the IDS
is constant. However, for the opposite value of the sign of τ the point λ + τε will be
pushed just outside the gap and, as a result, the IDS will have a complete expansion in
half-integer powers of ε (where we define half-integers as (Z/2)\Z). Similar situation
happens when we look at the point λ = 0: we have expansion in half-integers whenever
τ < 0; otherwise, the expansion is in integers. The bottom line is, if V is quasi-periodic,
then for all λ we have a complete asymptotic expansion of N (λ; H (ε)) as ε → 0, which
contains either integer, or half-integer powers of ε.

An interesting phenomenon occurs when we look at this problem in the ‘proper’
almost-periodic setting, for example, when all the Fourier coefficients are non-zero.
In this case there is a substantial set S such that for λ1/2 ∈ S there is no asymptotic
expansion of N (λ; H (ε)) at all; in fact, there are uncountably many values of λ for
which the remainder N (λ; H (ε)) − N (λ; H (0)) is not even asymptotically equivalent to
any power of ε. This set (whichwe call the super-resonance set) is therefore uncountable,
but has measure zero; the interesting feature of this set is that it is present no matter how
quickly the Fourier coefficients of V go to zero—whether V is smooth, or analytic, the
super-resonant set without the asymptotic expansion of IDS is always uncountable (but
perhaps its dimension may depend on the smoothness of V ).

The second problem we consider is as follows. It has been noticed by Arnold, [1] that
if H is a Hill operator (1.2) with V being a finite trigonometric periodic polynomial

V =
n∑

j=−n

a j e
i2 j x , (1.3)

then the size of the spectral gap around the point m2, m ∈ N is at most Cm,nε
−[−m/n],

where [s] is the largest integer not bigger than s. If the sum in (1.3) is infinite, then the
size of any gap is (generically) proportional to ε. It turns out that in the periodic case it
is not very difficult to prove more: that the size of each spectral gap enjoys a complete
asymptotic expansion in natural powers of ε, see e.g. [2]. Our second theorem is the
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extension of these results to the case of almost-periodic potentials: we prove that the
length of each spectral gap has a complete asymptotic expansion in natural powers of ε.
We also prove similar expansions for the upper and lower ends of each spectral gap. The
leading power in each expansion will depend on whether the potential is quasi-periodic
or almost-periodic. In the quasi-periodic case the leading power of the length of the gap
opened around the square of each frequency θ will increase together with the order of θ

(see the next section for the precise definitions and formulation of the results), whereas
in the almost-periodic setting when no Fourier coefficients vanish, all expansions begin
with the first power of ε. These expansions are formally uniform, but effectively they are
not, because the higher the order of a frequency θ is, the smaller ε we need to choose to
‘see’ the expansion of the length of the gap generated by θ (i.e. if we choose ε not very
small, then the remainder in the expansion will be larger than the asymptotic terms).

Somewhat similar problems were considered in [3] and, in the discrete setting, in [4]
(see also [5] and references there). However, there is a significant difference between
these papers and our results. In these papers the authors have fixed ε and studied the
behaviour of the gap length as a function of the ‘natural label’ of the gap (corresponding,
roughly, to what we call the order of a frequency, see below for details). So, they were
able to obtain information about all gaps simultaneously, but this information was either
bounds (upper and lower), or one asymptotic term, whereas we obtain more detailed
information (complete asymptotic expansion) about smaller number of gaps.

The method we use for obtaining our results is a version of the gauge transform
method used in [7,8]. The only difference is that in [7,8] we had fixed coupling constant
and assumed that the energy λ was large (so that the small parameter was λ−1), whereas
in the present paper the small parameter is the coupling constant ε. This difference is not
essential, so the construction of the gauge transform can be performed almost word-to-
word as it is done in [7,8]. This method allows us to find two operators, H1 and H2 so that
H1 is unitarily equivalent to H , H2 is close to H1 in norm, and H2 is almost diagonal
(in the sense that most of the off-diagonal matrix coefficients of H2 vanish). For the
sake of completeness, we have written the details of the gauge transform construction
relevant to our setting in “Appendix”; in the main body of the paper we will give a brief
description of the method and use the relevant properties of H1 and H2 without proof.

The structure of the rest of the paper is as follows: in the next section we will give
all the necessary definitions and formulate the main results. In Sect. 3 we will discuss
the quasi-periodic operators, and in Sect. 4 the almost-periodic operators. Finally, in
“Appendix” we will describe the method of the gauge transform.

2. Notation and Main Results

Wewill consider two types of the potential V . The first type is quasi-periodic potentials:

V =
∑

θ∈	

V̂θe2θ . (2.1)

Here,
eθ (x) := eiθx , (2.2)

V̂θ are complex numbers (called the Fourier coefficients of V ; since V is real, we have

V̂−θ = V̂θ ), and 	 = 	(V ) ⊂ R
d is a finite set, called the set of frequencies (or

rather half-frequencies; the factor 2 is used purely for convenience) of V . We assume
without loss of generality that 	 is symmetric about the origin and contains it. Denote
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by l the number of independent elements in 	 (so that |	| = 2l + 1). For each natural
L we denote 	L := 	 + 	 + · · · + 	 (the algebraic sum of L copies of 	) and put
	∞ := ∪L	L . When θ ∈ 	∞, we denote by Z(θ) the smallest number L for which
θ ∈ 	L and call this number the order of the frequency θ . We put

TL := 	L\	L−1. (2.3)

A simple combinatorial estimate shows that

#	L ≤ (3L)3l . (2.4)

We also put τ := V̂0, 	′ := 	\{0} and V ′ := V − τ , so that

V ′ =
∑

θ∈	′
V̂θe2θ . (2.5)

The second type of potentials we are going to consider are smooth almost-periodic,
by which we mean that 	 is still a finite set, but we have

V =
∑

θ∈	∞
V̂θe2θ (2.6)

with
|V̂θ | � m−P (2.7)

for θ ∈ Tm and arbitrary positive P .
We also assume that 	 satisfies the diophantine condition, i.e. for θ ∈ 	m we have

|θ | 
 m−P0 , where P0 > 0 is fixed.
In either of these two cases (quasi- or almost-periodic potentials) we also assume (as

we can do without loss of generality) that

||V ||2 := (
∑

θ∈	∞
|V̂θ |2)1/2 < 1/100. (2.8)

Our first main result concerns the spectral gaps.

Theorem 2.1. Suppose, V is either quasi-periodic, or infinitely smooth almost-periodic
and satisfies all the above assumptions. Suppose, θ ∈ 	′∞. Then for sufficiently small ε
operator H has a (possibly trivial) spectral gap around |θ |2, the length of which, as well
as its upper and lower ends, have complete asymptotic expansions in natural powers of
ε. If V̂θ �= 0 then the asymptotic expansion for the upper (lower) end of the gap starts
with |θ |2 ± |V̂θ |ε + O(ε2).

Remark 2.2. If V̂θ = 0, we cannot guarantee that an expansion for the gap-length is
always non-trivial, i.e. it could happen, in principle, that the length of the gap is O(ε+∞).

The next result involves two quantities, s2(0) and g2(0) which will be defined in the
next section (in formula (3.24)). Throughout the paper we use the convention that each
time we use letters a j (or a j (λ)) for coefficients in asymptotic expansions, the exact
values of these coefficients could be different. The same refers to the use of C which
can mean a different positive constant each time we use it.
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Theorem 2.3. Suppose, V is quasi-periodic. Then for sufficiently small ε > 0 (i.e.
ε < ε0, where ε0 > 0 depends on V and λ) the following holds:

(i) For λ < 0 we have N (λ; H) = 0.
(ii) For λ > 0 and

√
λ �∈ 	∞ we have

N (λ; H) ∼ π−1
√

λ +
∞∑

p=1

ap(λ)ε p. (2.9)

(iii) For λ = |θ0|2 with θ0 ∈ 	′ (i.e. ν := V̂θ0 �= 0) there are the following options:
(a) If either |τ | < |ν|, or |τ | = |ν| and [s2(0)τ − �(ν ḡ2(0))] < 0, then

N (λ; H) = π−1|θ0|; (2.10)

(b) If |τ | > |ν|, then

N (λ; H) ∼ π−1|θ0| +
∞∑

p=1

ap(λ)ε p, a1(λ) < 0; (2.11)

(c) If |τ | = |ν| and [s2(0)τ − �(ν ḡ2(0))] > 0, then

N (λ; H) ∼ π−1|θ0| + ε3/2
∞∑

p=0

ap(λ)ε p, a0(λ) < 0; (2.12)

(d) If |τ | = |ν| and [s2(0)τ − �(ν ḡ2(0))] = 0, then

N (λ; H) ∼ π−1|θ0| + εk/2
∞∑

p=0

ap(λ)ε p, a0(λ) < 0, (2.13)

with some natural k ≥ 4 including, possibly, k = ∞ (the latter means that N (λ; H) =
π−1|θ0| + o(ε+∞)).

(iv) For λ = |θ0|2 with θ0 ∈ 	∞ \ 	 (i.e. ν := V̂θ0 = 0) there are the following
options:

(a) If τ = 0, and s22 (0) < |g2(0)|2, then

N (λ; H) = π−1|θ0|; (2.14)

(b) If |τ | > 0, then

N (λ; H) ∼ π−1|θ0| +
∞∑

p=1

ap(λ)ε p, a1(λ) < 0. (2.15)

(c) If τ = 0 and s22 (0) > |g2(0)|2, then

N (λ; H) ∼ π−1|θ0| +
∞∑

p=2

ap(λ)ε p, a2(λ) < 0; (2.16)
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(d) If τ = 0 and s22 (0) = |g2(0)|2, then

N (λ; H) ∼ π−1|θ0| + εk/2
∞∑

p=0

ap(λ)ε p, a0(λ) < 0, (2.17)

with some natural k ≥ 5 including, possibly, k = ∞.
(v) Suppose, λ = 0. Then there are the following options:
(a) If τ > 0, then N (0; H) = 0;
(b) If τ < 0, then

N (0; H) ∼ ε1/2(π−1|τ |1/2 +
∞∑

p=1

apε
p), a1 > 0; (2.18)

(c) If τ = 0, then

N (0; H) ∼ ε

∞∑

p=0

apε
p, a0 > 0. (2.19)

Finally, the following result holds for almost-periodic potentials.

Theorem 2.4. Suppose, V is infinitely smooth almost-periodic, but not periodic, and
V̂θ �= 0 for any θ ∈ 	′∞. Then there exists a set S (which we call a super-resonance
set) such that a complete power asymptotic expansion of N (λ; H) exists if and only if
λ �∈ S. The set S is uncountable and has measure zero.

Remark 2.5. As we will see in the proof, there are uncountably many values of λ for
which the difference N (λ; H (ε)) − N (λ; H (0)) properly oscillates between C1ε

j and
C2ε

j , where C1 �= C2 and j equals 1 or 2.

We will think of a point ξ ∈ R as the exponential function eξ (x) := eiξ x lying in the
Besikovich space B2(R) (the collection of all formal countable linear combinations of
{eξ }with square-summable coefficients). Then for arbitrary pseudo-differential operator
W with symbol (in a left quantisation) w = w(ξ, x) being quasi-periodic in x ,

w(ξ, x) =
∑

θ∈	

e2θ (x)ŵ(ξ, θ), (2.20)

we have
Weξ = eξw(ξ, x). (2.21)

Thus,we can think of the Fourier coefficients ŵ(θ, ξ) of the symbol as thematrix element
of W joining ξ and ξ + 2θ :

ŵ(ξ, θ) = 〈Weξ , eξ+2θ 〉B2(R). (2.22)

In our paper [7] it is explained that instead of working with operators acting in L2(R),
we can consider operators with the same symbol acting in B2(R) and work with them.
This will not change the spectral properties we are studying in our paper (for example,
the spectrum as a set is the same whether our operator acts in L2(R) or B2(R)).
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3. Quasi-Periodic Potential

In this section we assume that the potential V is quasi-periodic, i.e. that (2.1) holds.

3.1. Gauge transform: general description. First of all, we give a brief outline of the
construction of the gauge transform of our operator. The details of this construction are
similar to those in [7]; for the sake of completeness, we present them in “Appendix”. Let
us fix a natural number N . All the constructions are going to depend on the choice of
N , but we will often omit writing N as the variable. Applying the gauge transform leads
to a pair of operators, H1 = H (ε)

1 and H2 = H (ε)
2 so that H1 = UHU−1 is unitarily

equivalent to H ; H1 and H2 are close in norm, more precisely,

||H1 − H2|| � εN ; (3.1)

and H2 is almost diagonal in the sense that it can be decomposed into a direct integralwith
all fibres being finite dimensional (moreover, as we will see, the dimension of all fibres
will be 1 or 2). Also, the frequencies of H2 are inside the set	3N . Here, the coefficient 3
technically appears in the gauge transform approach (see “Appendix”). It reflects the fact
that one has to make slightly more than N steps to achieve the error of order εN . Once we
have constructed these operators, it turns out that we can study spectral characteristics
of H by means of studying the corresponding spectral characteristics of H2. Indeed, the
spectra of H and H1 are the same, and so are the lengths of the spectral gaps. Also, the
lengths of the spectral gaps of H1 and H2 differ by at most εN .

Concerning the IDS, it was proved in [7] that

N (λ; H1) = N (λ; H) (3.2)

and
|N (λ; H2) − N (λ; H1)| � ε(N+1)/2. (3.3)

More precisely, we have shown in [7] that the immediate consequence of (3.1) is

N (λ − εN ; H2) ≤ N (λ; H1) ≤ N (λ + εN ; H2), (3.4)

and now (3.3) would follow once we establish expansion (4.6) for N (λ; H (ε)
2 ).

We also define

H ′ := H0 + V ′ = H − ετ, H ′
j := Hj − ετ, j = 1, 2, (3.5)

and notice the obvious property

N (λ; Hj ) = N (λ − μ; Hj − μ), (3.6)

so if we put
μ := ετ, (3.7)

we have
N (λ; Hj ) = N (λ − μ; H ′

j ). (3.8)

This trivial consideration is important for understanding of some of the effects described
later.
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Now we choose a small positive number δ = δ(N ), to be specified later and for each
non-zero frequency θ ∈ 	′(H2) we put

R(θ) = R(θ; δ) := {ξ ∈ R, |(ξ + 2θ)2 − ξ2| < δ} = (−θ − δ

4|θ | ,−θ +
δ

4|θ | ). (3.9)

Next, let ψ = ψ(ξ) be a standard smooth non-negative cut-off function satisfying
suppψ ⊂ [−1/2, 1/2] and ψ(ξ) = 1 for ξ ∈ [−1/4, 1/4], and let ϕ := 1 − ψ . We put

ϕθ (ξ) := ϕ((ξ + θ)4|θ |δ−1). (3.10)

Note that
R(−θ) = −R(θ), ϕ−θ (−ξ) = ϕθ (ξ). (3.11)

We also put

χ̃θ (ξ) := ϕθ (ξ)(|ξ + 2θ |2 − |ξ |2)−1 = ϕθ (ξ)

4(ξ + θ)θ

when θ �= 0, and χ̃0(ξ) = 0.
The region R(θ) is called the resonance zone corresponding to θ . Since (for fixed N )

the number of resonance zones is finite and the length of them goes to zero, it implies
that for sufficiently small δ these zones do not intersect. We also denote by

R(δ) := ∪θ∈	′(H2)R(θ; δ) (3.12)

the ‘overall’ resonant set corresponding to ε; we obviously have

R(δ1) ⊂ R(δ2) (3.13)

for δ2 > δ1.
In what follows we always assume that δ(N ) is sufficiently small so that different

resonance zones R(θ; δ) do not intersect for all θ ∈ 	′
9N ; we also take ε so small that

ε ≤ δ2.

Remark 3.1. It is not difficult to see that in case when	′ satisfies Diophantine condition
on frequencies, the parameter δ(N ) can be chosen to be cN with some constant c = c(	)

with all constructions and statements of Sect. 3 being valid.

The important property of the operator H2 established in “Appendix” is as follows:
the Fourier coefficients ĥ2(ξ ; θ) satisfy

ĥ2(ξ ; θ) = 0, i f θ �= 0 and ξ �∈ R(θ). (3.14)

This property implies that if a point ξ lies outside all the resonance zones, then the one-
dimensional subspace spanned by the corresponding eξ is invariant with respect to H2.
If, on the other hand, for some (unique) θ we have ξ ∈ R(θ), then the two-dimensional
subspace spanned by eξ and eξ+2θ is invariant with respect to H2.

We have the following further properties of the symbol of H2. The non-vanishing
Fourier coefficients ĥ2(ξ ; θ) must have θ ∈ 	3N . Each Fourier coefficient ĥ2(ξ ; θ) is
smooth outside of the end-points of R(θ). Also, we have ĥ2(−ξ ;−θ) = ĥ2(ξ ; θ) and

ĥ2(ξ ; θ) = ĥ2(ξ + 2θ;−θ). The Fourier coefficient ĥ2(ξ ; 0) satisfies
ĥ2(ξ ; 0) = |ξ |2 + ετ + f (ξ ; 0), (3.15)
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where f (ξ ; 0) is the perturbation theory correction:

f (ξ ; 0) =
N∑

p=2

ε p f p(ξ ; 0). (3.16)

Here, each f p is a sum of terms of the following type: each term is a product of p Fourier
coefficients of V and p − 1 functions χ̃θ j (for details see Lemma 5.4). In particular,

f2(ξ ; 0) = −
∑

θ∈	′
|V̂θ |2χ̃θ (ξ) (3.17)

and, assuming ξ is non-resonant for all θ , we have

f2(ξ ; 0) = −
∑

θ∈	′

|V̂θ |2
|ξ + 2θ |2 − |ξ |2 . (3.18)

Note that (3.15) implies that for ξ > 0 and sufficiently small (depending on ξ ) ε we
have

∂

∂ξ
ĥ2(ξ ; 0) > 0. (3.19)

Similarly, if ξ ∈ R(θ) (and θ �= 0), we have

ĥ2(ξ ; θ) = εV̂θ (1 − ϕθ (ξ)) +
N∑

p=2

ε p f p(ξ ; θ), (3.20)

where f p(ξ ; θ) has a form similar to f p(ξ ; 0) and, in particular,

f2(ξ ; θ) = −1

2

∑

θ1,θ2∈	′,θ1+θ2=θ

V̂θ1 V̂θ2(χ̃θ2(ξ) − χ̃θ2(ξ + 2θ1)). (3.21)

As we have stated above, there are two types of invariant subspaces of H2:
1. If ξ �∈ ∪θ∈	3N R(θ), then eξ generates a one-dimensional invariant subspace of

H2;
2. Suppose, ξ ∈ R(θ) for some θ ∈ 	3N . Denote η := ξ + 2θ ∈ R(−θ). Then the

two-dimensional subspace generated by eξ and eη is invariant under H2.

3.2. Basic constructions. Let us now construct the mapping G : R → R defined in the
following way. Suppose first that ξ is non-resonant. Then we put G(ξ) := ĥ2(ξ ; 0) =
|ξ |2 +ετ + f (ξ ; 0); notice that for non-resonant ξ we thus haveG(−ξ) = G(ξ). Suppose
now that ξ is resonant. Then it belongs to exactly one resonance zone, say ξ ∈ R(−θ).
Consider the 2 × 2 matrix M(ξ) = M−θ (ξ), where the diagonal elements are ĥ2(ξ ; 0)
and ĥ2(ξ − 2θ; 0) and off-diagonal elements are ĥ2(ξ ;−θ) and ĥ2(ξ − 2θ; θ). This
matrix is Hermitian and has two real eigenvalues λ1(M(ξ)) ≤ λ2(M(ξ)). We define
G(ξ) = λ2(M(ξ)) if ξ > 0 and G(ξ) = λ1(M(ξ)) if ξ < 0. Thus defined function G is
even outside the resonance zones, increasing for positive ξ outside the resonance zones
and is continuous outside the end-points of the resonance zones. At the end points of
resonant zones it may have jumps. These jumps are caused by the fact that the pair of



L. Parnovski, R. Shterenberg

Fig. 1. The graph of G in the simplest case of one frequency

eigenvalues (λ1(M(ξ)), λ2(M(ξ))) can be extended continuously outside a resonance
zone, but once we have made a choice of one eigenvalue for each resonance point ξ ,
we have introduced discontinuities. A careful look at the situation convinces one that
in fact if we consider two resonant zones R(±θ, δ), then the function G may have
discontinuities only at the left endpoints, namely±θ − δ

4|θ | , and there the jump of G can

be quite substantial (of order ε). At two other points ±θ + δ
4|θ | function G is continuous.

See Fig. 1 for the sketch of the graph of G.
The most important property of G is the following one: we have

N (λ; H2) = (2π)−1meas{ξ, G(ξ) ≤ λ} =: (2π)−1meas �λ, (3.22)

where we have denoted {ξ, G(ξ) ≤ λ} =: �λ = �λ(G). This property was proved in
[7] and it immediately implies that the spectrum of H2 is

σ(H2) = {G(ξ), ξ ∈ R}. (3.23)

Equation (3.23) shows that in order to study the spectrum of H2, we need to look at
the range of G. Our discussions above and Fig. 1 imply the following statement:

Lemma 3.2. The range of G consists of the entire semi-axis [λ0,+∞), with the possible
exception of the gaps, ‘generated’ by the resonant zones. Each pair of zones R(±θ)

generates at most one gap (a−(θ), a+(θ)).

Later, we will obtain more precise information on the location and the length of the
gaps.

Let us introduce a change of variables: we put ξ = θ0 + ζ ∈ R(−θ0), so that
|ζ | ≤ δ

4|θ0| . We also put
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s = s(ζ ) := f (ζ − θ0; 0) + f (ζ + θ0; 0)
2

= O(ε2),

t = t (ζ ) := f (ζ − θ0; 0) − f (ζ + θ0; 0)
2

= O(ε2),

ν := V̂ (θ0),

g = g(ζ ) := ĥ2(ζ + θ0;−θ0) − νε = O(ε2),

s j = s j (ζ ) := f j (ζ − θ0; 0) + f j (ζ + θ0; 0)
2

,

t j = t j (ζ ) := f j (ζ − θ0; 0) − f j (ζ + θ0; 0)
2

,

g j = g j (ζ ) := f j (ζ + θ0;−θ0).

(3.24)

The diagonal elements of M(ξ) are equal to (ζ − θ0)
2 + (s + t) + μ and (ζ + θ0)

2 +
(s − t) + μ, μ := ετ and the off-diagonal elements are εν + g and εν̄ + ḡ.

The characteristic polynomial of the matrix M(ξ) − μ is

χ(σ) = σ 2 − 2σ [(ζ 2 + θ20 ) + s] + [(ζ 2 − θ20 )2

+ 2s(ζ 2 + θ20 ) − |ν2|ε2 + 4tζθ0 + (s2 − t2 − 2ε�(ν ḡ) − |g|2)] (3.25)

and the eigenvalues of M(ξ) are

σ± = σ±(ζ ; θ0;μ) = ζ 2 + θ20 + μ + s ± ((2ζθ0 − t)2 + |εν + g|2)1/2. (3.26)

Obviously, λ2(M(ξ)) = σ+(ζ ), and λ1(M(ξ)) = σ−(ζ ).

3.3. Spectral gaps. Let us find the size of the spectral gap around θ20 + μ. This gap is
an interval [σmax− , σmin

+ ], where σmax− is the maximal value of σ−(ζ ; θ0;μ) when ζ runs
over the interval [− δ

4|θ0| ,
δ

4|θ0| ], and σmin
+ is the minimal value of σ+(ζ ; θ0;μ).

Remark 3.3. It is easy to see and will be even clearer in what follows that all the objects
we are interested in require detailed information only from the interior of the resonant
zones. In particular, maximum value of σ− and minimal value of σ+ are attained inside
the interval [− δ

100|θ0| ,
δ

100|θ0| ] (assuming of course, ε is small enough). This allows us to
ignore cut-off functions ϕθ introduced above as they are equal to zero in the region of
interest.

Recall that |μ| � ε and |s|, |t |, |g| � ε2. Moreover, it follows from the definitions
and properties of ĥ2 that t (0) = s′(0) = 0. Thus, we can rewrite

σ± = σ±(ζ ; θ0;μ) = ζ 2(1+O(ε2))+θ20 +μ+ s(0)± (4ζ 2θ20 (1+O(ε2))+ |εν +g|2)1/2.
(3.27)

If ĥ2(θ0;−θ0) = 0, which in particular means that ν = g(0) = 0 then, obviously,
σ+(0) = σ−(0) = θ20 +μ+s(0) and thus,wehavenogap.Assumenow that ĥ2(θ0;−θ0) �=
0. Let us use the analytic expansion for

|ĥ2(θ0 + ζ ;−θ0)|2 = |εν + g|2

in powers of ζ in the neighbourhood of ζ = 0 as (εν + g(ζ ))(εν + g(ζ̄ )).
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Remark 3.4. This complete expansion exists (both here and below) because all cut-off
functions ϕθ are equal either to 0 or 1 in the regions under consideration. Formore details
see “Appendix”, in particular, Remark 5.3 and Lemma 5.4

Thus, let us denote by 2p, p ∈ N the first non-trivial power in the expansion of
|ĥ2(θ0;−θ0)|2 in powers of ε; obviously, this power has to be even since the expression
is non-negative. We put c1(ε) := ε−2p|ĥ2(θ0;−θ0)|2, c1(0) > 0. We then have

|εν + g|2 = c1(ε)ε
2p + c2(ε)ε

p+qζ + ζ 2O(ε3), c1(0) > 0, q ≥ p, (3.28)

where c2(ε) is analytic in ε and either q ∈ N (then it is easy to see that q ≥ 2), or
q = ∞ (meaning c2 ≡ 0). In particular, we have p = 1 and c1(0) = |ν|2 for ν �= 0,
or p ≥ 2 for ν = 0. Suppose first that q = +∞ (i.e. c2 ≡ 0). Then, obviously, we
have σmax− = σ−(0) and σmin

+ = σ+(0), which implies that the size of the gap is exactly

2|ĥ2(θ0,−θ0)| = 2
√
c1ε2p. Thus, we can assume that q is finite. Calculating derivatives,

we obtain the following equations for any critical points ζ± of σ±:

2ζ(1+O(ε2))(4ζ 2θ20 (1+O(ε2))+|εν+g|2)1/2±(4ζθ20 (1+O(ε2))+c2ε
p+q) = 0. (3.29)

We immediately see that ζ± = O(ε p+q). Then we can rescale ζ =: ε p+q z and rewrite
(3.29) as follows (here we also use (3.28)):

2z(1 + O(ε2))ε p(c1 + O(ε2q))1/2 ± (4zθ20 (1 + O(ε2)) + c2) = 0. (3.30)

This shows that the solutions z± and thus ζ± are analytic in ε with the main term
ζ± ∼ − c2ε p+q

4θ20
. Plugging this into (3.26) and using the fact that σmax− = σ−(ζ−) and

σmin
+ = σ+(ζ+), we obtain the following lemma

Lemma 3.5. If ĥ2(θ0;−θ0) ≡ 0 (as a function of ε), then the size of the gap is O(εN ).
If ĥ2(θ0;−θ0) �≡ 0, then there exists the complete asymptotic expansion for the size
of the gap (up to the order O(εN )) starting with twice the first non-zero power of ε in
expansion (3.20) of |ĥ2(θ0;−θ0)|, i.e. either 2|ν|ε or 2| f p(θ0,−θ0)|ε p, p ≥ 2.

Since N is arbitrary, we immediately obtain the following result (which also implies
Theorem 2.1 for quasi-periodic case):

Theorem 3.6. Suppose, V is quasi-periodic. If ĥ2(θ0;−θ0) ≡ 0 for each N, then the
size of the spectral gap around θ20 is O(ε∞). If ĥ2(θ0;−θ0) �≡ 0 for some N, then there
exists the complete asymptotic expansion for the size of the gap in natural powers of
ε; the first term of this expansion is twice the first non-zero term in expansion (3.20) of
|ĥ2(θ0;−θ0)|, i.e. either 2|ν|ε or 2| f p(θ0,−θ0)|ε p, p ≥ 2.

Remark 3.7. (1) As one can see from the proof, we also have complete expansions of
the upper and lower ends of each gap.

(2) We notice that while ĥ2 depends on the cut-off function ϕ, ĥ2(θ0,−θ0) does not.
Thus, as it should be, corresponding expansion from Theorem 3.6 is independent of the
particular choice of the cut-off function.
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3.4. Integrated density of states. Now let us discuss the IDS of H2. Formula (3.22)
implies that in order to study the integrated density of states, we need to solve the
equation

G(ξ) = λ. (3.31)

In the unperturbed case (when G(ξ) = ξ2) this equation has two solutions whenever
λ > 0. After the perturbation, this equation may have no solutions (when λ is inside a
spectral gap), or it may have one solution (when λ is exactly at the spectral edge of H2).
As we will see later, in other cases equation (3.31) has exactly two solutions.

If λ is negative, the above constructions imply that N (λ; H) = 0 for sufficiently
small ε. Suppose now that λ is positive and

√
λ �∈ 	3N (in particular, λ �= 0). Then, for

sufficiently small δ, points (both of them) ξ with ξ2 = λ do not belong to any resonance
region; the same is true for points of the form λ− ετ . This, together with (3.19), implies
that the equation G(ξ) = λ has two solutions (recall that we use convention of not
distinguishing two solutions that are within distance O(εN ) from each other), call them
G−1(λ) > 0 and −G−1(λ). Monotonicity of G implies that (again for sufficiently small
δ) the following holds: whenever 0 < η < G−1(λ), we have G(η) < λ, and whenever
η > G−1(λ), we have G(η) > λ.

This implies that �λ = [−G−1(λ),G−1(λ)], so that
N (λ; H2) = π−1G−1(λ). (3.32)

Now an easy application of the inverse function theorem and (3.16)–(3.17) imply

N (λ; H2) = π−1
√

λ +
N∑

p=1

ap(λ)ε p + O(εN ). (3.33)

Since N is arbitrary, formulas (3.2) and (3.3) now imply

N (λ; H) ∼ π−1
√

λ +
∞∑

p=1

ap(λ)ε p. (3.34)

The next case we consider is λ = θ20 > 0 with either θ0 ∈ 	 (so that V̂θ �= 0), or
θ0 ∈ 	m for some m > 1; for the sake of definiteness we will also assume that θ0 > 0.
Then we have the following:

�λ = {ξ, |ξ |2 < λ, ξ �∈ (R(θ0) ∩ R(−θ0))}
� {ξ ∈ R(−θ0), λ2(M(ξ)) ≤ λ} � {ξ ∈ R(θ0), λ1(M(ξ)) ≤ λ} (3.35)

(the disjoint union) and, therefore,

(2π)N (λ; H2) = 2
√

λ − δ

2|θ0| + meas{ξ ∈ R(−θ0), λ2(M(ξ)) ≤ λ}
+ meas{ξ ∈ R(θ0), λ1(M(ξ)) ≤ λ}.

(3.36)

Note that

meas{ξ ∈ R(θ0), λ1(M(ξ)) ≤ λ} = meas{ξ ∈ R(−θ0), λ1(M(ξ)) ≤ λ},
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and so

(2π)N (λ; H2) = 2
√

λ − δ

2|θ0| + meas{ξ ∈ R(−θ0), λ2(M(ξ)) ≤ λ}
+ meas{ξ ∈ R(−θ0), λ1(M(ξ)) ≤ λ}.

(3.37)

Thus, we have to study the behaviour of the eigenvalues of M(ξ) when ξ ∈ R(−θ0).
Aswe havementioned above, in order to calculate it, we need to compute themeasure

of the set of points ζ , |ζ | ≤ δ
4|θ0| for which

ζ 2 + (s + μ) ± (4ζ 2θ20 + |ν|2ε2 − 4tζθ0 + t2 + 2ε�(ν ḡ) + |g|2)1/2 ≤ 0. (3.38)

We start by assuming that ν �= 0, i.e. θ ∈ 	.
Case 1. Assume first that μ ≥ 0. Then we always have

σ+ − θ20 = ζ 2 + (s +μ)+ (4ζ 2θ20 + |ν|2ε2 −4tζθ0 + t
2 + 2ε�(ν ḡ)+ |g|2)1/2 > 0 (3.39)

and, thus,
meas{ξ ∈ R(−θ0), λ2(M(ξ)) ≤ λ} = 0. (3.40)

Therefore, we need to consider only the measure of ζ , |ζ | ≤ δ
4|θ0| for which

σ− − θ20 = ζ 2 + (s + μ) − (4ζ 2θ20 + |ν|2ε2 + 2ε�(ν ḡ) + g̃)1/2 ≤ 0, (3.41)

where we have denoted

g̃ = g̃(ζ ) := −4tζθ0 + t2 + |g|2. (3.42)

Note that g̃ = O(ε4) + ζ 2O(ε2). Inequality (3.41) is equivalent to

ζ 4 + 2(s + μ)ζ 2 + (s + μ)2 ≤ 4ζ 2θ20 + |ν|2ε2 + 2ε�(ν ḡ) + g̃, (3.43)

or
ζ 4 − 2[2θ20 − (s + μ)]ζ 2 + [(s + μ)2 − |ν|2ε2 − 2ε�(ν ḡ) − g̃] ≤ 0. (3.44)

Let us formally solve (3.44) as a quadratic equation in ζ 2. We obtain:

ζ 2± = [2θ20 − (s + μ)] ±
√

[2θ20 − (s + μ)]2 − [(s + μ)2 − |ν|2ε2 − 2ε�(ν ḡ) − g̃].
(3.45)

Expanding the square root in the RHS of (3.45), we obtain

ζ 2+ = 2[2θ20 −(s+μ)]+
∞∑

j=1

(−1) j
(

j

1/2

)
[2θ20 −(s+μ)]−2 j+1[(s+μ)2−|ν|2ε2−2ε�(ν ḡ)− g̃] j

(3.46)
and

ζ 2− = −
∞∑

j=1

(−1) j
(

j

1/2

)
[2θ20 − (s +μ)]−2 j+1[(s +μ)2−|ν|2ε2−2ε�(ν ḡ)− g̃] j .

(3.47)
A straightforward application of the inverse function theorem implies that equation

(3.46) (where the functions s and g̃ have ζ+ as their argument) has exactly one positive
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solution ζ +
+ = 4θ20 + O(ε) and one negative solution ζ−

+ = −4θ20 + O(ε). Therefore, all
points ζ ∈ [− δ

4|θ0| ,
δ

4|θ0| ] satisfy the inequality ζ 2 < ζ 2
+ .

The situationwith ζ− is a bit more involved. There are two further sub-cases. Suppose
first that for all ζ ∈ [− δ

4|θ0| ,
δ

4|θ0| ] we have [(s +μ)2 − |ν|2ε2 − 2ε�(ν ḡ) − g̃] < 0 (this
happens, for example, if μ = τε with |τ | < |ν|). Then the RHS of equation (3.47) is
negative, so it has no real solutions. Thus, (3.41) holds for all ζ ∈ [− δ

4|θ0| ,
δ

4|θ0| ], and
therefore in this case

meas{ξ ∈ R(−θ0), λ1(M(ξ)) ≤ λ} = δ

2|θ0| (3.48)

and
N (θ20 ; H2) = π−1θ0 (3.49)

for all small ε. The situation is the same when |τ | = |ν| and [s2(0)τ − �(ν ḡ2(0))] < 0.
Now assume that μ = τε with |τ | > |ν|. Then the inverse function theorem implies

that (3.47) has a unique positive and a unique negative solutions ζ±− ∼ ±ε; both have a
complete asymptotic expansion in powers of ε. In this case we have

meas{ξ ∈ R(−θ0), λ1(M(ξ)) ≤ λ} = δ

2|θ0| +
N∑

p=1

ãpε
p + O(εN ) (3.50)

and

N (θ20 ; H2) = π−1θ0 +
N∑

p=1

apε
p + O(εN ), a1 < 0. (3.51)

Finally, let us consider the most interesting situation whenμ = τε with |τ | = |ν| and
[s2(0)τ − �(ν ḡ2(0))] > 0. In this case, equation (3.47) has a unique positive solution
and a unique negative solution ζ±− ∼ ±ε3/2; both ζ±− ε−3/2 have complete asymptotic
expansions in powers of ε. In this case we have

meas{ξ ∈ R(−θ0), λ1(M(ξ)) ≤ λ} = δ

2|θ0| + ε3/2
N∑

p=0

ãpε
p + O(εN ) (3.52)

and

N (θ20 ; H2) = π−1θ0 + ε3/2
N−2∑

p=0

apε
p + O(εN ), a0 < 0. (3.53)

Case 2. Now we discuss the case μ < 0. In this case, as we have already mentioned,
we always have

ζ 2 + (s + μ) − (4ζ 2θ20 + |ν|2ε2 − 4tζθ0 + t2 + 2ε�(ν ḡ) + |g|2)1/2 ≤ 0 (3.54)

whenever |ζ | < δ
4|θ0| and, thus,

meas{ξ ∈ R(−θ0), λ1(M(ξ)) ≤ λ} = δ

2|θ0| . (3.55)

Therefore, we only need to solve the inequality

ζ 2 + (s + μ) + (4ζ 2θ20 + |ν|2ε2 − 4tζθ0 + t2 + 2ε�(ν ḡ) + |g|2)1/2 > 0. (3.56)
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Calculations similar to those above imply the following.
If |τ | < |ν|, or if |τ | = |ν| and [s2(0)τ − �(ν ḡ2(0))] < 0, we have

N (θ20 ; H2) = π−1θ0. (3.57)

If |τ | > |ν|, we have

N (θ20 ; H2) = π−1θ0 +
N∑

p=1

apε
p + o(εN ), a1 < 0. (3.58)

Finally, if |τ | = |ν| and ε[s2(0)τ − �(ν ḡ2(0))] > 0, we have

N (θ20 ; H2) ∼ π−1θ0 + ε3/2
N−2∑

p=0

apε
p + o(εN ), a0 < 0. (3.59)

The situation when |τ | = |ν| and [s2(0)τ − �(ν ḡ2(0))] = 0 (in either case 1 or 2)
can be dealt with similarly. It is not hard to see that N (θ20 ; H2) admits the asymptotic
expansion of the form

N (θ20 ; H2) ∼ π−1θ0 + εk/2
N−2∑

p=0

apε
p + o(εN ), a0 < 0, (3.60)

with somenatural k ≥ 4 including the case k = ∞.Weomit the details of this calculation.
Suppose now that ν = 0, so θ0 ∈ 	m\	m−1 withm > 1. Then we immediately have

g j ≡ 0 for all j < m. If τ �= 0, then we effectively have the situation discussed above,
so the results will be the same (i.e. formula (3.58) holds). Assume that τ also vanishes.
Then we have

σ±−θ20 = ζ 2+s±(4ζ 2θ20 −4tζθ0+t
2+|g|2)1/2 = ζ 2+s±((2ζθ0−t)2+|g|2)1/2. (3.61)

Since t (0) = s′(0) = 0, it is not difficult to see that (depending on the sign of s(0)) we
either always have σ+ − θ20 > 0 or σ− − θ20 < 0. Therefore, we can repeat the above
constructions. In this situation the new generic assumption will be s2(0)2 �= |g2(0)|2
(which form ≥ 3 simply means s2(0) �= 0). Then the calculations similar to those above
imply that

N (θ20 ; H2) = π−1θ0 +
N∑

p=2

apε
p + o(εN ), a2 < 0, (3.62)

for s2(0)2 > |g2(0)|2 and (3.57) holds for s2(0)2 < |g2(0)|2.
As above, the case ν = τ = s2(0)2 − |g2(0)|2 = 0 can be considered in the same

way and leads to the asymptotics (3.60) with possible value of k ≥ 5.
The last case we have to consider is λ = 0. The only points ξ where there is a chance

that G(ξ) is negative are located in a (1 + |τ |)1/2ε1/2-neighbourhood of the origin and
are not located in any resonance zone. Therefore, we have

(2π)N (0; H2) = meas{ξ, ĥ2(ξ ; 0) < 0}

= meas{ξ, |ξ |2 + ετ +
N∑

p=2

ε p f p(ξ ; 0) + O(εN ) < 0}. (3.63)
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Now the simple use of the Implicit Function Theorem immediately gives the answer.
If τ > 0, then N (0; H2) = 0 for small ε. If τ < 0, then

N (0; H2) ∼ ε1/2(π−1|τ |1/2 +
N−1∑

p=1

apε
p) + O(εN ). (3.64)

Finally, if τ = 0, then we have to note that formula (3.17) implies that for small ξ and
non-trivial V we have f2(ξ ; 0) < 0 and, therefore,

N (0; H2) ∼ ε

N−1∑

p=0

apε
p + O(εN ), a0 > 0. (3.65)

All the asymptotic formulas for N (λ; H2) obtained above together with equations
(3.2) and (3.3) lead to Theorem 2.3. Again, it is easy to see that the corresponding
expansions are independent of the particular choice of the cut-off function ϕ.

4. Almost-Periodic Potential

Let us discuss the situation when the potential is not quasi-periodic, but smooth almost-
periodic, i.e. 	 is still a finite set, but we have

V =
∑

θ∈	∞
V̂θe2θ (4.1)

with
|V̂θ | � m−P (4.2)

for θ ∈ Tm and arbitrary positive P; recall that

Tm := 	m\	m−1. (4.3)

We also assume that 	 satisfies the diophantine condition, i.e. for θ ∈ 	m we have
|θ | 
 m−P0 , where P0 > 0 is fixed.

Remark 4.1. We can relax the diophantine properties of the frequencies if we assume a
faster decay of the Fourier coefficients: the only condition that we effectively need is
that the resonance zones do not intersect, see (4.13).

The way we perform the gauge transform is, essentially, the same as in the quasi-
periodic case, with one important difference: we cannot afford to have infinitely many
resonance zones, therefore, before transforming the operator H to H1 and H2 as above,
we need to turn H to a quasi-periodic operator by truncating the potential V . The level
of the truncation depends on the size of ε—the smaller ε, the more frequencies (and
resonance zones) we need to keep. Thus, the number of resonance zones will be finite
for each fixed ε, but, as opposed to the quasi-periodic situation, will increase as ε goes
to zero. More specifically, let us assume first that 0 < ε < ε0, where ε0 is a positive
number, to be chosen later. We put εn := 2−nε0 and In := [ εn

4 , εn]. The gauge transform
construction will be performed separately for each In and the asymptotic expansions we
will obtain will hold only for ε ∈ In . In order to ‘glue’ these expansions together at the
end, we will use the following lemma:
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Lemma 4.2. Let α > 0 and let F = F(ε) be a complex-valued function defined on
(0, ε0). Suppose that for any natural numbers M and n there exists M1 = M1(M, n) ∈ N

such that for ε ∈ In we have:

F(ε) =
M1∑

j=1

a j;nεα j + O(εMn ). (4.4)

Here, a j;n are some coefficients depending on j and n (and M) satisfying

a j;n = O(ε
−(2α j/3)−100
n ) (4.5)

and the constants in the O-terms do not depend on n (but they may depend on M). Then
there exist complex numbers {a j }, j = 1, . . . , [M

α
] + 1 such that for all ε, 0 < ε < ε0

we have:

F(ε) =
[ M

α
]+1∑

j=1

a jε
α j + O(εM ). (4.6)

This Lemma (in slightly different form) is proved in Section 3 of [7]; see also [6].
In order to apply it, we have to establish (4.4)–(4.5). Whenever we will be using this
lemma, it will be rather straightforward to check estimates (4.5) for the coefficients from
the constructions, so in what follows we will concentrate on establishing (4.4).

Remark 4.3. Note that (4.4) is not a ‘proper’ asymptotic formula, since the coefficients
a j;n are allowed to grow with n.

Now, we will describe the construction in more detail. Let us fix a natural number N
(which signifies that our errors are going to be O(εN )) and suppose that ε ∈ In . All the
constructions below depend on the choice of (n, N ), but we will often omit writing n
and N as the variables. Recall that for each θ ∈ 	′∞ we define Z(θ) := m for θ ∈ Tm .
We also fix the smoothness P of the potential so that

|V̂θ | � Z(θ)−P ; (4.7)

this (large) P depends on P0 and N and will be chosen later. For each natural L we
define the truncated potential

VL :=
∑

θ∈	L

V̂θe2θ . (4.8)

Estimate (2.4) implies

||V − VL ||∞ �
∑

Z>L

Z−P#(TZ ) �
∑

Z>L

Z3l−P � L3l+1−P < L−P/2, (4.9)

assuming of course that P is sufficiently large. Now, we choose L̃ = L̃(n, N ) so large
that the normof the operator ofmultiplication by V−VL is smaller than εNn . The previous
estimate shows that it is enough to take

L̃(n; N ) := ε
− 2N

P
n (4.10)

to achieve this. Thenwe run 3N steps of the gauge transform as described in “Appendix”,
but for the operator ĤL̃ := H + εVL̃ . The main difference with the gauge transform
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procedure for the previous section is that now the width of each resonant zone decreases
as n increases. More precisely, we put

R(θ) = Rn(θ) := {ξ ∈ R, |(ξ +2θ)2 −ξ2| < ε
1/2
n } = (−θ − ε

1/2
n

4|θ | ,−θ +
ε
1/2
n

4|θ | ) (4.11)

and
ϕθ (ξ) = ϕθ;n(ξ) := ϕ((ξ + θ)4|θ |ε−1/2

n ). (4.12)

Then the frequencies of the resulting operator H2 will be inside the set (	L̃)3N =
	3N L̃ .

Note that the resonant zones obtained at each step do not intersect. Indeed, suppose
that θ1, θ2 ∈ 	′

3N L̃
, θ1 �= θ2. Then θ2 − θ1 ∈ 	′

6N L̃
and, therefore, our diophantine

condition implies

|θ2 − θ1| 
 (6N L̃)−P0 
 ε
3N P0
P

n > ε
1/8
n (4.13)

for sufficiently small εn , assuming that P is chosen so large that

3N P0
P

< 1/8. (4.14)

At the same time the length of the resonant zone corresponding to θ ∈ 	′
3N L̃

is bounded
from above by

ε
1/2
n /|θ | ≤ ε

1/2
n (3N L̃)P0 � ε

1/2
n ε

− 3N P0
P

n < ε
3/8
n .

Remark 4.4. Of course, condition (4.14) means that the bigger N is (i.e. themore asymp-
totic terms we want to obtain), the bigger P we should take (i.e. the smoother potentials
we have to consider).

Remark 4.5. The calculation above shows that even if we consider ‘wide’ resonance
zones which are ten times wider than (4.11) (i.e. ‘wide’ resonance zones are the intervals

(−θ − 5ε1/2n
2|θ | ,−θ + 5ε1/2n

2|θ | )), then these zones will not intersect either. This observation
will be useful later on.

This construction leads to two operators, H1 and H2 with the same properties as
described in the previous section. For each θ ∈ 	′

3N L̃
we denote by R(θ) = R(θ; n)

the resonant zone—the interval centred at −θ of length ε
1/2
n
2|θ | . We also denote

R(εn) = Rn := ∪θ∈	′
3N L̃

R(θ; n); (4.15)

this is the resonant zone corresponding to In . The meaning of this set is that the symbol
h2 of H2 is diagonal for ξ �∈ Rn . This means that all Fourier coefficients ĥ2(ξ ; θ) = 0
whenever θ �= 0 and ξ �∈ Rn ; our construction implies that even more is true: ĥ2(ξ ; θ) =
0 unless ξ ∈ R(θ; n). The main difference between the almost-periodic and quasi-
periodic cases is the following: in the quasi-periodic case the resonant set was fixed for
any given N as δ(N ) and decreasing as N grows (see (3.13)), whereas in the almost-
periodic case R(εn) is fixed only when ε ∈ In , and in general it is no longer true that
Rn+1 ⊂ Rn (since the smaller εn leads to bigger n and bigger L̃(n) given by (4.10) and,
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thus,Rn+1 consists of a bigger number of smaller zones thanRn). Estimate (2.4) implies
that the number of elements in 	3N L̃ can be estimated by

(9N L̃)3l � ε
− 9Nl

P
n � ε

−1/6
n , (4.16)

which implies
meas(Rn) < ε

1/6
n (4.17)

if we choose P large enough.
Let us now discuss the behaviour of the gaps of H2 (and, therefore, of H ). This can

be done using the arguments from the quasi-periodic case. When ε ∈ In , the operator
H2 has gaps around points |θ |2, θ ∈ 	3N L̃(n)

, and the length of each such gap has
asymptotic expansion in natural powers of ε, according to Theorem 3.6. Now we notice
that if θ ∈ 	3N L̃(n)

, then θ ∈ 	3N L̃(m)
for any m ≥ n and, therefore, there is a gap of

H2 around θ for anym ≥ n. The length of this gap has an asymptotic expansion given by
Theorem 3.6 for ε ∈ Im , m ≥ n (Here we assume that ε0 is chosen to be small enough,
depending only on N ). These expansions may be different in general, but we can use
Lemma 4.2 to deduce that we have a complete power asymptotic expansion of the length
of a gap valid for all ε < ε0. Thus, we obtain Theorem 2.1 for smooth almost-periodic
case.

Nowwe discuss the asymptotic behaviour of the IDS. Recall that all our constructions
are made for fixed N ; sometimes, we will be emphasising this and make N an argument
of the objects we consider. First, we introduce the set of ξ > 0 such that ξ �∈ 	∞ and
there is an infinite sequence n j → ∞ and θ j ∈ 	L(n j ) satisfying ξ ∈ R(θ j ; n j ). We

denote this set by S̃1(N ). Since we have
∑∞

n=p meas(Rn) → 0 as p → ∞, the measure

of S̃1(N ) is zero. Also, it is easy to see that the set ∩nRn(N ) is the Cantor-type set (i.e. a
perfect set with empty interior) and is, thus, uncountable (unless V is periodic and	∞ is
therefore discrete). Since, obviously, ∩nRn(N ) ⊂ (S̃1(N )∪	∞) and 	∞ is countable,
this implies that the set S̃1(N ) is uncountable.We also have S̃1(N ) ⊂ S̃1(Ñ ) for N < Ñ .
Finally, we introduce S1 := ∪N S̃1(N )—global uncountable set of Lebesgue measure
zero.

Let us assume at the moment that τ = 0. For each fixed λ > 0 there are the following
three possibilities:

1. Let
√

λ ∈ 	∞. Then
√

λ = |θ | ∈ R(−|θ |; n) for all sufficiently large n and we
therefore can repeat the procedure from the previous section to obtain the resonance
asymptotic ‘expansion’ (3.57) (see also Lemma 4.2).

2. Let
√

λ �∈ (S1 ∪ 	∞). Then for all N we have
√

λ �∈ S̃1(N ) ∪ 	∞. Thus, for all
sufficiently large n we have λ1/2 �∈ Rn . Then again we can repeat the (non-resonant)
procedure from the previous section which, together with Lemma 4.2, guarantees the
existence of the complete asymptotic expansion (3.34).

3. Let
√

λ ∈ S1. This is the most interesting case. As we will see below, in general
there is a big part of S1 where no power asymptotic expansion exists. Let usmake a pause
for a moment and summarize what we have done so far. We have proved the following
statement:

Theorem 4.6. Suppose, V is smooth almost-periodic with the constant Fourier coeffi-
cient τ = 0. Then there exists a set S1 such that for λ1/2 ∈ R+\(S1 ∪ 	∞), we have a
complete expansion of the form (3.34), whereas when λ ∈ 	∞, we have (3.57). The set
S1 is uncountable and has measure zero.
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Suppose now τ �= 0. Let us denote by R′(θ; n) the interval centred at −θ , but of
twice larger length than R(θ; n); obviously, R(θ; n) ⊂ R′(θ; n). We also denote by
S̃2(N ) the set of points ξ �∈ 	∞ for which there is an infinite sequence n j → ∞ and
θ j ∈ 	L(n j ) such that ξ ∈ R′(θ j ; n j ). We put S2 = S2(τ ) := ∪N S̃2(N ). Then S1 ⊂ S2,

meas(S2) = 0, and for
√

λ �∈ S2 we still have the complete asymptotic expansion.
Indeed, if ε ∈ In j and

√
λ �∈ R′(θ j ; n j ), then

√
λ + τε �∈ R(θ j ; n j ) for sufficiently large

n. This proves the following statement:

Theorem 4.7. The statements of the previous theorem hold for any τ �= 0 with the set
S1 replaced by a different uncountable zero measure set S2 = S2(τ ).

Nowwewill prove the opposite—that there is a substantial set S such that for
√

λ ∈ S
there is no asymptotic expansion in powers of ε for N (λ; H). Obviously, the measure
of S has to be zero, but we will show that it is uncountable. However, as we have seen
in the previous section, such a set must be empty in the quasi-periodic case. This means
that we need to make a further assumption on the potential. Namely, we will assume that
V is not periodic (i.e., 	∞ is dense) and V̂θ �= 0 for any θ ∈ 	′∞.

Remark 4.8. We can replace the last condition by requiring that there are infinitely many
non-zero Fourier coefficients located in ‘strategically important’ places.

We again start with the case τ = 0. The strategy of the proof will be as follows. First,
we will make a natural attempt to construct a set S such that for

√
λ ∈ S there is no

asymptotic expansion in powers of ε of N (λ; H). This attempt will almost work, but
not quite. Then we will see what the problem with our first attempt is and will modify
it correspondingly.

So, we define R′′(θ; n) = (−θ − δn(θ),−θ + δn(θ)) as the interval centred at −θ of
half-length δn and at our first attempt we define δn(θ) = εn|V̂θ |(100|θ |)−1; obviously,
then R′′(θ; n) ⊂ R(θ; n) for large n. Note that our constructions guarantee that if
ξ ∈ R′′(θ; n) and ε ∈ In , then |ξ |2 is well inside the spectral gap of H2(n) (this is the
operator H2, whenwewant to emphasize that we have performed the gauge transform for
ε ∈ In). Now we consider the set S̃3(N ) of all λ for which the following two conditions
are satisfied:

a. There is an infinite sequence n j → ∞ and θ j ∈ 	′
3N L̃(n j )

such that λ1/2 ∈
R′′(θ j ; n j ),

and
b. There is an infinite sequence n′

j → ∞ such that λ1/2 �∈ R(n′
j ).

A simple argument based on the fact that 	∞ is dense in R implies that S̃3(N ) is
uncountable.

Suppose,
√

λ ∈ S̃3(N ). Then, if ε ∈ In j , the point λ is in the spectral gap of
H2(n j ) and, therefore, we have the (trivial) resonant asymptotic expansion (3.49). On
the other hand, if ε ∈ In′

j
, we have the non-resonant asymptotic expansion (3.33). It is

very tempting to stop the proof here by stating that these two expansions are different.
However, we cannot quite guarantee this—it may well happen that all the coefficients in
the non-resonant expansion (3.33) turn to zero. One way of overcoming this is to show
that for generic set of Fourier coefficients of V these coefficients are bounded away
from zero. We, however, will assume a different strategy and reduce the set S̃3(N ) even
further (by choosing smaller values of the parameters δn(θ)).
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Before doing this, let us see what happens with the position of the point ξ ∈ S̃3(N )

related to different resonant zones as n changes. When n = n j , our point ξ is inside
the resonant zone R′′(θ j ; n j ) and, therefore, we have a trivial expansion for ε ∈ In j .
If we consider values n bigger than n j , then ξ may stay inside R(θ j ; n) for a while,
but since ∩n R(θ j ; n) = |θ j | �= ξ , for sufficiently large n our point ξ will get outside
of the resonant zone R(θ j ; n); let us denote by k̃ j the index when this happens (i.e. k̃ j
is smallest value of n > n j for which we have ξ �∈ R(θ j ; n)). Similarly, let k j be the
biggest value of n < n j for which we have ξ �∈ R(θ j ; n). Since the width of a resonance
zone shrinks by a factor

√
2 at each step, Remark 4.5 implies that ξ cannot ‘enter’ a

different resonance zone immediately after ‘leaving’ R(θ j ; n), i.e. ξ �∈ (R(k j )∪R(k̃ j )).
Then by our construction we have N asymptotic terms of N (λ; H (ε)) when ε ∈ Ik j , and
the coefficient in front of ε2 is easily computable and equal to

−(2πξ)−1 f2(ξ, 0; k j ) = (2πξ)−1
∑

θ∈	′
3N L̃(k j )

|V̂θ |2
|ξ + 2θ |2 − |ξ |2 . (4.18)

Similarly, we have N asymptotic terms of N (λ; H (ε)) when ε ∈ Ik̃ j , and the coefficient

in front of ε2 equals

−(2πξ)−1 f2(ξ, 0; k̃ j ) = (2πξ)−1
∑

θ∈	′
3N L̃(k̃ j )

|V̂θ |2
|ξ + 2θ |2 − |ξ |2 . (4.19)

Notice that the sum in (4.19) contains more terms than (4.18); one of the extra terms

corresponds to θ = θ j and its modulus is at least
ε
−1/2
k̃ j

|V̂θ j |2
9|θ j | . The rest of the extra terms

give a total contribution of O(εNk j
). Therefore, we have

| f2(ξ, 0; k̃ j ) − f2(ξ, 0; k j )| ≥
ε
−1/2
k̃ j

|V̂θ j |2
9|θ j | + O(εNk j ). (4.20)

Now we will readjust the definition of the subset R′′ of the resonant zone R by requiring

that the jump (4.20) is at least one, which can be achieved by asking that ε1/2
k̃ j

<
|V̂θ j |2
18|θ j | .

Another way of formulation this is requesting that if n > n j satisfies

ε
1/2
n >

|V̂θ j |2
18|θ j | , (4.21)

then ξ ∈ R(θ j , n). Now, we define a modified set S̃3(N ) which satisfies properties a
and b above, but with a modified parameter δn defining the resonant zone R′′ given by

δn(θ) = min{ εn |V̂θ |
100|θ | ,

|V̂θ |2
72|θ |2 }. The calculations just above show that if ξ ∈ R′′(θ j , n j ),

then, assuming once again that ε0 = ε0(N ) is small enough, we have:

| f2(ξ, 0; k̃ j ) − f2(ξ, 0; k j )| ≥ 1 (4.22)
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and, therefore, we cannot have both these coefficients small at the same time. This
shows that, indeed, we cannot have a complete power asymptotic expansion (nor even
an asymptotic expansion with the remainder o(ε2)) for any ξ ∈ S̃3(N ) with N ≥ 3.

If we put

S3 := ∪N≥3S̃3(N ), (4.23)

then this is an uncountable set such that there is no complete power asymptotic expansion
of N (λ, H) for

√
λ ∈ S3.

We have proved the following result:

Theorem 4.9. Suppose, V is smooth almost-periodic, but not periodic, the constant
Fourier coefficient τ = 0, and V̂θ �= 0 for any θ ∈ 	′∞. Then there exists an uncountable
set S3 such that when λ1/2 ∈ S3, there is no complete power asymptotic expansion of
N (λ; H); even more, if λ1/2 ∈ S3, then no asymptotic expansion of N (λ; H) with
remainder estimate o(ε2) exists.

Suppose now that τ �= 0. Consider the set S̃3(N ) of all λ for which the following
two conditions are satisfied:

a. There is an infinite sequence n j → ∞ and θ j ∈ 	′
3N L̃(n j )

such that (λ+τεn j )
1/2 ∈

R′′(θ j ; n j ),
and
b. There is an infinite sequence n′

j → ∞ such that (λ + τεn′
j
)1/2 �∈ R(n′

j ).

A slightly more difficult than before (but still quite elementary) argument shows
that S̃3(N ) is uncountable for each τ . Also, similar to the case τ = 0, if ε ∈ In j , the
point λ is in the spectral gap of H2(n j ) and, therefore, we have the (trivial) resonant
asymptotic expansion (3.49). On the other hand, if ε ∈ In′

j
, we have the non-resonant

asymptotic expansion (3.33), and the coefficient at the first order term in this expression
equals − τ

2π
√

λ
, which means that these two expressions are different starting with ε, i.e.

it is enough to take N ≥ 2. Putting S3 := ∪N≥2S̃3(N ), we will prove the analogue of
Theorem 4.9 in the case τ �= 0:

Theorem 4.10. Suppose, V is smooth almost-periodic, but not periodic, the constant
Fourier coefficient τ �= 0, and V̂θ �= 0 for any θ ∈ 	′∞. Then there exists an uncountable
set S3 such that when λ1/2 ∈ S3, there is no complete power asymptotic expansion of
N (λ; H); even more, if λ1/2 ∈ S3, then no asymptotic expansion of N (λ; H) with
remainder estimate o(ε1) exists.

Putting all the results proved in this section together, we have proved the following:

Theorem 4.11. Suppose, V is smooth almost-periodic, but not periodic, and V̂θ �= 0 for
any θ ∈ 	′∞. Then there exists a set S (which we call a super-resonance set) such that
a complete power asymptotic expansion of N (λ; H) exists if and only if λ �∈ S. The set
S is uncountable and has measure zero.

Proof. We just notice that S3 ⊂ S ⊂ S1 for τ = 0 and S3 ⊂ S ⊂ S2 for τ �= 0. ��
Remark 4.12. We have called the set S the super-resonant set. An interesting question
which we have not studied so far is what is the dimension of this set.
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5. Appendix

In this appendix, we will describe the method of gauge transform.

5.1. Preparation. Our strategy will be to find a unitary operator which reduces H =
H0 + εOp(V ), H0 := −�, to another PDO, whose symbol, essentially, depends only
on ξ (notice that now we have started to distinguish between the potential V and the
operator of multiplication by it Op(V )). More precisely, we want to find operators H1
and H2 with the properties discussed in Sects. 3 and 4. The unitary operator will be
constructed in the form U = ei� with a suitable bounded self-adjoint quasi-periodic
PDO �. This is why we sometimes call it a ‘gauge transform’. It is useful to consider
ei� as an element of the group

U (t) = exp{i�t}, ∀t ∈ R.

We assume that the operator ad(H0, �) is bounded, so that U (t)D(H0) = D(H0).
This assumption will be justified later on. Let us express the operator

At := U (−t)HU (t)

via its (weak) derivative with respect to t :

At = H +
∫ t

0
U (−t ′) ad(H ;�)U (t ′)dt ′.

By induction it is easy to show that

A1 = H +
k̃∑

j=1

1

j ! ad
j (H ;�) + R(1)

k̃+1
,

R(1)
k̃+1

:=
∫ 1

0
dt1

∫ t1

0
dt2 . . .

∫ tk̃

0
U (−tk̃+1) ad

k̃+1(H ;�)U (tk̃+1)dtk̃+1. (5.1)

The operator � is sought in the form

� =
k̃∑

j=1

� j , � j = Op(ψ j ), (5.2)

with some bounded operators� j . Substitute this formula in (5.1) and rewrite, regrouping
the terms:

A1 = H0 + εOp(V ) +
k̃∑

j=1

1

j !
k̃∑

l= j

∑

k1+k2+···+k j=l

ad(H ;�k1 , �k2 , . . . , �k j )

+R(1)
k̃+1

+ R(2)
k̃+1

,

R(2)
k̃+1

:=
k̃∑

j=1

1

j !
∑

k1+k2+···+k j≥k̃+1

ad(H ;�k1 , �k2 , . . . , �k j ). (5.3)
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Changing this expression yet again produces

A1 = H0 + εOp(V ) +
k̃∑

l=1

ad(H0;�l)

+
k̃∑

j=2

1

j !
k̃∑

l= j

∑

k1+k2+···+k j=l

ad(H0;�k1 , �k2 , . . . , �k j )

+
k̃∑

j=1

1

j !
k̃∑

l= j

∑

k1+k2+···+k j=l

ad(εOp(V );�k1 , �k2 , . . . , �k j ) + R(1)
k̃+1

+ R(2)
k̃+1

.

Next, we switch the summation signs and decrease l by one in the second summation:

A1 = H0 + εOp(V ) +
k̃∑

l=1

ad(H0; �l ) +
k̃∑

l=2

l∑

j=2

1

j !
∑

k1+k2+···+k j=l

ad(H0; �k1 , �k2 , . . . , �k j )

+
k̃+1∑

l=2

l−1∑

j=1

1

j !
∑

k1+k2+···+k j=l−1

ad(εOp(V ); �k1 , �k2 , . . . , �k j ) + R(1)
k̃+1

+ R(2)
k̃+1

.

Now we introduce the notation

B1 := εOp(V ),

Bl :=
l−1∑

j=1

1

j !
∑

k1+k2+···+k j=l−1

ad(εOp(V );�k1 , �k2 , . . . , �k j ), l ≥ 2, (5.4)

Tl :=
l∑

j=2

1

j !
∑

k1+k2+···+k j=l

ad(H0;�k1 , �k2 , . . . , �k j ), l ≥ 2. (5.5)

We emphasise that the operators Bl and Tl depend only on �1, �2, . . . , �l−1. Let us
make one more rearrangement:

A1 = H0 + εOp(V ) +
k̃∑

l=1

ad(H0, �l) +
k̃∑

l=2

Bl +
k̃∑

l=2

Tl + Rk̃+1,

Rk̃+1 = Bk̃+1 + R(1)
k̃+1

+ R(2)
k̃+1

. (5.6)

Let ϕθ (ξ, εn) be a smooth cut-off function of the set

ξ : ||ξ + 2θ |2 − |ξ |2| > ε
1/2
n , εn := 2−nε0. (5.7)

More precisely, let ψ = ψ(ξ) be a standard smooth non-negative cut-off function
satisfying suppψ ⊂ [−1/2, 1/2] andψ(ξ) = 1 for ξ ∈ [−1/4, 1/4], and letϕ := 1−ψ .
We put

ϕθ (ξ, εn) := ϕ((ξ + θ)4|θ |ε−1/2
n ), εn := 2−nε0. (5.8)
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For any symbol

b :=
∑

θ

b̂(ξ, θ)e2θ (x)

we use the notation

b� = b�(εn) :=
∑

θ

b̂(ξ, θ)ϕθ (ξ, εn)e2θ (x).

Similar notation is used for corresponding operator, i.e. B�.
Now we can specify our algorithm for finding � j ’s. The symbols ψ j will be found

from the following system of commutator equations:

ad(H0;�1) + B�
1 = 0, (5.9)

ad(H0;�l) + B�
l + T �

l = 0, l ≥ 2, (5.10)

and hence ⎧
⎨

⎩

A1 = H0 + Yk̃ − Y �

k̃
+ Rk̃+1,

Yk̃ = ∑k̃
l=1 Bl +

∑k̃
l=2 Tl .

(5.11)

Below we denote by yk̃ the symbol of the PDO Yk̃ . Obviously, the operators B
�
l , T

�
l are

bounded, and therefore, in view of (5.9), (5.10), so is the commutator ad(H0;�). This
justifies the assumption made in the beginning of the formal calculations in this section.

It is also convenient to introduce the following norm in the class of symbols:

b :=
∑

θ

sup
ξ

|b̂(ξ, θ)|. (5.12)

We notice that ‖Op(b)‖ ≤ b .

5.2. Commutator equations. Put

χ̃θ (ξ) := ϕθ (ξ)(|ξ + 2θ |2 − |ξ |2)−1 = ϕθ (ξ)

4(ξ + θ)θ

when θ �= 0, and χ̃0(ξ) = 0. We have

Lemma 5.1. Let A = Op(a) be a symmetric PDO with symbol a such that a < ∞.
Then the PDO � with the Fourier coefficients of the symbol ψ(ξ, x) given by

ψ̂(ξ, θ) = i â(ξ, θ)χ̃θ (ξ) (5.13)

solves the equation
ad(H0;�) + Op(a�) = 0. (5.14)

Moreover, the operator � is bounded and self-adjoint and its symbol ψ satisfies the
following bound:

ψ ≤ ε
−1/2
n a . (5.15)
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Now, using Lemma 5.1, equations (5.7), (5.9), (5.10) and applying inductive argu-
ments (cf. the proof of Lemma 4.2 from [8]), we obtain the following estimates for the
symbols introduced above:

Lemma 5.2. Let V be a symmetric symbol. Then ψ j , b j , t j satisfy (for ε ≤ εn)

ψ j ≤ C jε
1
2 j
n

(
V

) j
, j ≥ 1; (5.16)

b j + t j ≤ C jε
1
2 j+

1
2

n
(
V

) j
, j ≥ 2. (5.17)

Moreover, assuming ε0 is small enough (depending on V and k̃) we get

ψ � ε
1/2
n V ; (5.18)

yk̃ ≤ 2εn V ; (5.19)

‖Rk̃+1‖ � ε
1
2 k̃+1
n

(
V

)k̃+1
. (5.20)

Proof. The proof follows by induction. For B1 the estimate follows from the definition
and for �1 from Lemma 5.1. Now, fix l ≥ 1 and assume (5.16) and (5.17) for all
l ≥ j ≥ 1. From (5.4) we get

bl+1 ≤ Cl+1ε
1+ 1

2 l
n

(
V

)l+1 = Cl+1ε
1
2 (l+1)+ 1

2
n

(
V

)l+1
. (5.21)

Next, we use definition (5.4). For the first commutator we apply (5.9) or (5.10). Then
assumption of the induction implies

tl+1 ≤ Cl+1ε
1
2 k1+

1
2 +

1
2 (l+1−k1)

n
(
V

)l+1 = Cl+1ε
1
2 (l+1)+ 1

2
n

(
V

)l+1
. (5.22)

This proves (5.17) for j = l + 1. Applying Lemma 5.1 we get (5.16) for j = l + 1. ��
Now, we take

k̃ > 2N . (5.23)

Then

‖Rk̃+1‖ � εNn

and we can disregard Rk̃+1. More precisely, let W = Wk̃ be the operator with symbol

wk̃(ξ, x) := yk̃(ξ, x) − y�

k̃
(ξ, x), i.e. ŵk̃(ξ, θ) = ŷk̃(ξ, θ)(1 − ϕθ (ξ)). (5.24)

We put H1 := A1 and H2 := −� + W . Then ||H1 − H2|| � εNn and, moreover, the
symbol ĥ2(ξ, θ) := ξ2 + ŵ(ξ, θ) satisfies conditions described in Sects. 3 and 4.

Remark 5.3. In the case of quasi-periodic potential V the construction above can be
simplified. In fact,we canuse just δ(N ) instead of ε1/2n (seeSect. 3) and thus, avoid further
“glueing” of the asymptotics for different intervals In (see Lemma 4.2). Technically, it is
possible because different resonant zones do not intersect for all steps up to 9N and thus,
the cut-off functions ϕθ (ξ) present in the symbol of the operator H2 (see Lemma 5.4
below) are equal either to 0 or 1 for all ξ close to the center of a given resonant zone or
between any two neighboring resonant zones. This ensures analyticity of the functions
used in the proof of (3.33) (for nonresonant ξ ) and Lemma 3.5 and asymptotics below
(for resonant ξ ).
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5.3. Computing the symbol of the operator after gauge transform. The following lemma
provides us with more explicit form of the symbol yk̃ .

Lemma 5.4. We have ŷk̃(ξ, θ) = 0 for θ �∈ 	k̃ . Otherwise,

ŷk̃(ξ, θ) = εV̂θ +
k̃−1∑

s=1

εs+1
∑

Cs(ξ, θ)V̂θs+1

s∏

j=1

V̂θ j χ̃θ ′
j
(ξ + 2φ′

j )

= εV̂θ +
k̃−1∑

s=1

εs+1
∑

Cs(ξ, θ)V̂θs+1

s∏

j=1

V̂θ j

ϕθ ′
j
(ξ + 2φ′

j )

4θ ′
j (ξ + 2φ′

j + θ ′
j )

,

(5.25)

where the second sums are taken over all θ j ∈ 	, θ ′
j , φ

′
j ∈ 	s+1 and

Cs(ξ, θ) =
s∑

p=1

∑

θ ′′
j ,φ

′′
j ∈	s+1 (1≤ j≤p)

C (p)
s (θ)

p∏

j=1

ϕθ ′′
j
(ξ + 2φ′′

j ). (5.26)

Here C (p)
s (θ) depend on s, p and all vectors θ, θ j , θ

′
j , φ

′
j , θ

′′
j , φ

′′
j . At the same time,

coefficients C (p)
s (θ) can be bounded uniformly by a constant which depends on s only.

We apply the convention that 0/0 = 0.

The proof is identical to the proof of Lemma 9.3 from [7] andwe omit it here. Explicit
value of the coefficients for the second term (see (3.17) and (3.21)) can be found directly
as the second order perturbation or following more carefully the first two steps of the
construction for A1 from (5.11).
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