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Abstract 

BACKGROUND: Cell or tissue specific background may influence the consequences of expressing the 

Huntington's disease (HD) mutation. Aggregate formation is known to occur in skeletal muscle, but 

not heart of the R6/2 fragment HD model. 

OBJECTIVE: We asked whether aggregate formation and the expression and subcellular localization 

of huntingtin species was associated with mitochondrial dysfunction. 

METHODS: We analyzed levels of soluble HTT and HTT aggregates, as well as important fission and 

fusion proteins and mitochondrial respiratory chain activities, in quadriceps and heart of the R6/2 N-

terminal fragment mouse model (12 weeks, 160±10 CAG repeats). 

RESULTS: Soluble mutant HTT was present in both tissues with expression higher in 

cytoplasmic/mitochondrial than nuclear fractions. HTT aggregates were only detectable in R6/2 

quadriceps, in association with increased levels of the pro-fission factor DRP1 and its phosphorylated 

active form, and decreased levels of the pro-fusion factor MFN2. In addition, respiratory chain 

complex activities were decreased. In heart that was without detectable HTT aggregates, we found 

no evidence for mitochondrial dysfunction. 

CONCLUSION: Tissue specific factors may exist that protect the R6/2 heart from HTT aggregate 

formation and mitochondrial pathology. 
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Introduction 

Huntington’s disease (HD) is a progressive movement disorder with dementia and 

behavioural abnormalities [1]. HD is caused by a CAG repeat expansion mutation in the 

huntingtin gene (HTT), encoding for the large huntingtin protein (HTT). Striatal and extra-

striatal, e.g. cortical, degeneration constitutes the neuropathological signature of HD. 

However, HTT is ubiquitously expressed and there is also evidence indicating that mutant 

HTT causes a peripheral phenotype, for instance in skeletal muscle [2, 3].  

The physiological function of wild-type HTT remains incompletely understood. HTT is 

predominantly found in the cytoplasm where it associates with the plasma membrane, 

mitochondria, lysosomes and the endoplasmatic reticulum [4-11]. Mutant HTT is 

predominantly localized in the cytoplasm but similar to wild-type HTT co-localizes also with 

the nucleus, endoplasmic reticulum, endosomes, Golgi-apparatus and mitochondria [12-15]. 

The mutation is thought to confer both a loss of physiological functions and a toxic gain of 

function, which is linked to the observation that mutant HTT species can form aggregates 

that may interfere with cellular functions [16].  

In tissues of HD models, including skeletal muscle and in cells from HD patients, 

mitochondrial dysfunction involving disturbed calcium homoeostasis, enhanced reactive 

oxygen species (ROS) production and reduced biogenesis has repeatedly been reported [17]. 

HTT was shown to associate with DRP1 on the outer mitochondrial membrane increasing its 

enzymatic activity leading to increased mitochondrial fragmentation [18-21]. In addition, 

mutant HTT may associate with TIM23 influencing the effectiveness of mitochondrial import, 

which is important for the mitochondrial unfolded protein response (UPRmt) [14]. Further to 

the direct influence of HTT on mitochondrial function, naturally occurring variability in genes 

relevant for fission and fusion significantly influenced motor age-at-onset independent of 



the CAG repeat expansion [22]. These findings indicate that mutant HTT influences 

mitochondrial biology. No single role of HTT in mitochondrial function has emerged; 

however, several lines of evidence in different model systems and human material point 

towards a role in fission and fusion regulation [18-21, 23, 24], a key element in mitochondrial 

quality control. In support of this notion, reducing DRP1 activity in HD models improved the 

HD phenotype suggesting mitochondrial quality control pathways may be treatment targets 

for HD disease modification [20].  

In the present study we investigated the relationship between the expression of full-length 

mutant HTT, the occurrence of HTT aggregates and mitochondrial biology in skeletal muscle 

and heart from the R6/2 fragment mouse model of HD. In contrast to brain, skeletal muscle 

is easy to access, including in humans. If a relationship existed between mutant HTT species 

and a biological phenotype in skeletal muscle, e.g. mitochondrial dysfunction, valuable 

insight into HD disease mechanisms could be gained with the potential to serve as peripheral 

biomarker. We hypothesised that 1) mutant HTT is expressed in skeletal muscle and heart; 

and 2) given the extant findings of increased mitochondrial fragmentation in HD models, and 

of mitochondrial abnormalities in skeletal muscle, that skeletal muscle and heart would 

show evidence of a shift of the fission and fusion balance towards mitochondrial fission, 

given that the N-terminal fragment model is a particularly aggressive model of HD.  

 

  



Materials and Methods 

Animals 

R6/2 transgenic mice (B6CBATg(HDexon1)62Gpb/1J) and their corresponding wild-type 

B6CBAF1/J were purchased from Jackson Laboratory. The R6/2 fragment model contains 

exon 1 with expanded CAG repeats of the human HTT gene [25]. For genotyping and for 

determination of the CAG repeat length (160 ± 10) DNA was extracted from tail biopsies 

[26]. Mice at 12 weeks were sacrificed by cervical dislocation, quadriceps and heart were 

dissected and immediately snap-frozen in liquid nitrogen and stored at -80°C. For 

immunohistochemistry tissues were snap-frozen in liquid nitrogen-cooled 2-methylbutane 

and stored at -80°C. For electron microscopy 12 weeks-old mice were perfused with 4% 

paraformaldehyde and tissues were immediately fixed in 2.5% glutaraldehyde. All work was 

performed according to local regulations and EU Directive 2010/63/EU.  

Animal care was in accordance with the United States Public Health Service Policy on 

Humane Care and Use of Laboratory Animals, and procedures were approved by the 

Institutional Animal and Use Committee of Psychogenics, Inc. (PHS OLAW animal welfare 

assurance number A4471-01), an AAALAC International accredited institution (Unit #001213) 

[27]. 

 

Antibodies 

For western blotting the following antibodies were used: anti-DRP1 (dynamin-1-like protein, 

BD 611112) 1:1000 and anti-OPA1 (optic atrophy protein 1, BD 612606) 1:1000 from BD 

Biosciences. Anti-MFN1 (anti-mitofusin1, ab126575) 1:500, anti-MFN2 (mitofusin-2, 

ab50838) 1:1000; anti-NDUFA9 (NADH dehydrogenase [ubiquinone] 1 alpha subcomplex 

subunit 9, ab14713) 1:3000; anti-SDHA (succinate dehydrogenase [ubiquinone] flavoprotein 



subunit, ab14715) 1:10000; anti-UQCRC2 (cytochrome b-c1 complex subunit 2, ab14745) 

1:6000; anti-MTCO1 (cytochrome c oxidase subunit 1, ab14705) 1:6000; anti-ATP5A 

(ab14748) 1:6000 and anti-citrate synthase (ab129095) 1:1000 from Abcam. For detection of 

the phosphorylation state anti-Phospho-DRP1 (Ser616) (3455, Cell Signaling) 1:1000 was 

used. For analysis of HTT aggregates the S829 (1:3000) antibody, kindly provided by Gillian 

Bates (UCL, UK), was used. As secondary antibodies goat anti-mouse IgG (H+L)-HRP (1:3000, 

1706516, Bio-Rad), goat anti-rabbit IgG (H+L)-HRP (1:10000, 111-035-003, Jackson 

ImmunoResearch) or rabbit anti-goat IgG (H+L)-HRP (1:10000, R21459, Life Technologies) 

were used.  

For immunohistochemistry the S829 antibody (1:400 in PBS, 5% horse serum, 0.05% Tween) 

and as secondary antibody donkey anti-sheep IgG (H+L) Alexa fluor 488 (1:400 in PBS, 

A11015, Thermo Fisher) were used. 

Total protein extraction, gel electrophoresis and western blot 

These methods were performed as described previously [28]. Tissues were lysed using a 

tissue lyser (Qiagen) in homogenization buffer (320 mM sucrose, 1 mM K+ EDTA, 10 mM 

Tris/HCl, pH 7.4, 1 µg/ml pepstatin, 1 µg/ml leupeptin and 1 mM PMSF) followed by 

repeated centrifugation at 600×g at 4°C. The supernatant was used for protein analysis. For 

western blot analysis protein samples were denatured in NuPAGE LDL sample buffer 

(NP0008, Thermo Fisher) and analyzed on 9% Bis-Tris gels in MOPS buffer (50 mM MOPS, 50 

mM Tris base, 0.2% SDS (w/v), 0.1 mM EDTA, pH 7.3) followed by western blotting on PVDF 

membranes in transfer buffer (25 mM bicine, 25 mM Bis-Tris, 1 mM EDTA, 20% methanol 

(v/v), pH 7.2). Analyses of HTT aggregates were performed on 6% Bis-Tris gels. Assembly of 

oxidative phosphorylation complexes was analyzed using blue native gel electrophoresis 

with 4%-16% gradient gels as described previously [29]. Protein extractions for analysis of 



the phosphorylation state were performed in RIPA buffer (10 mM Tris base, 0.1% SDS (w/v), 

1% Triton X-100 (v/v), 1% Na-deoxycholate (w/v), 5 mM EDTA, pH 7.4) containing 

phosphatase inhibitors (PhosSTOP, 04906837001, Sigma-Aldrich). For visualizing the total 

protein amount the membrane was incubated with Pierce Reversible Protein Stain Kit for 

PVDF membranes (Pierce, Rockford, USA) or Ponceau solution (2% Ponceau S (w/v), 3% 

trichloroacetic acid (w/v)) for nitrocellulose membranes (Bio-Rad). Data analysis was 

performed by densitometric quantification using the ImageQuant TL software (GE 

Healthcare). Protein levels were determined relative to total protein amount. 

Erenna Singulex SMC immunoassay for mutant HTT detection 

The MW1 antibody was developed by Dr. Paul Patterson [30]. 2B7 antibody generation and 

characterization were as previously described [31]. The 2B7 antibody was conjugated to 

magnetic particles (MPs), to a final concentration of 25 μg/mg of MPs, and the MW1 

antibody was labeled to a final concentration of 1 μg/μl, using the Erenna capture and 

detection reagent labeling kits from Merck-Millipore, following the manufacturer’s 

instructions. Conjugated/labeled antibodies were diluted in Assay Buffer (02-0474-00, 

Merck-Millipore) to 1:1200 and 1:4000, respectively, prior to performing the assay.  

The immunoassay was largely performed as previously described [32]. In brief, mouse tissue 

samples were pre-diluted in artificial CSF (aCSF) with 1% Tween-20 (v/v) and complete 

protease inhibitor (11 697 498 001, Roche) to a concentration of 10 µg/ml of total protein. 

Pre-diluted tissue samples and 2B7 antibody coupled to MPs were added to assay buffer 

containing 6% BSA (w/v), 0.8% Triton X-100 (v/v), 750 mM NaCl and complete protease 

inhibitor in a 96-conical assay plate (P-96-450V-C, Axygen). The plate was sealed and 

incubated on a shaker at room temperature for 1 h. Samples were washed on a magnetic 

rack, using a HydroFlex Microplate 8 Channel Washer (Tecan), in 1x Erenna Wash Buffer (02-



0111-03, Merck-Millipore). Afterwards MPs were incubated with MW1 detection antibody 

for 1 h at room temperature. Samples were again washed in 1x Erenna Wash Buffer on a 

magnetic rack in a HydroFlex washer. The antibody-antigen complex was transferred to a 

new 96-conical assay plate to eliminate nonspecific binding events to the plastic. After buffer 

aspiration the Elution Buffer B (02-0297-00, Merck-Millipore) was added to the plate for 5 

min of incubation while shaking. The eluted detection antibody was transferred to a Nunc 

384-well analysis plate (264573, Sigma-Aldrich) and neutralized with Buffer D (02-0368-00, 

Merck-Millipore). The analysis plate was spun down to eliminate foaming and bubble 

formation, sealed, and subsequently analyzed with the Erenna Immunoassay System (Merck-

Millipore). 

Subcellular fractionation 

For the Singulex assay tissues were lysed as described previously [33] but with buffer 

conditions suitable for the assay. All steps were performed on ice and at 4°C. 50 mg of tissue 

was minced using sharp scissors, suspended in 300 µl of STM buffer (250 mM sucrose, 50 

mM Tris-HCl pH 7.4, 5 mM MgCl2, 1 µg/ml pepstatin, 1 µg/ml leupeptin and 1 mM PMSF) 

and homogenized for 1 min at 1000 rpm using a Potter S homogenizer (Sartorius B. Braun). 

The homogenate was decanted into a 1.5-ml tube, remaining tissue fragments were re-

suspended in 300 µl of STM buffer and homogenization was repeated. The homogenates 

were combined, incubated for 30 min on ice and vortexed for 15 sec. After taking 40 µl of 

the total lysate (TL) for analysis the homogenate was centrifuged for 15 min at 800×g. The 

pellet was the nuclear fraction and the supernatant the cytoplasmic/mitochondrial fraction. 

The pellet was washed in 300-500 µl of STM buffer, vortexed for 15 sec and centrifuged for 

15 min at 500×g. The washing step was repeated and the pellet finally re-suspended in 200-

500 µl of NET buffer (20 mM Hepes pH 7.9, 1.5 mM MgCl2, 0.5 M NaCl, 0.2 mM EDTA, 1% 



Triton X-100 (v/v), 1 µg/ml pepstatin, 1 µg/ml leupeptin and 1 mM PMSF). The nuclear 

fraction was lysed by sonification, centrifuged at 9,000×g for 30 min and the resultant 

supernatant was the final nuclear fraction (NF). The cytoplasmic/mitochondrial fraction was 

centrifuged at 800×g for 10 min to remove cell debris and the supernatant was the final 

cytoplasmic/mitochondrial fraction (CM). For subcellular fractionation into cytoplasmic and 

mitochondrial fractions, the cytoplasmic/mitochondrial fraction was further purified as 

described [33]. 

Electron microscopy 

Two ultra-thin sections from different areas were used for electron microscopy. For 

quadriceps tissue the sections were prepared in longitudinal orientation to the fiber. Images 

of ultra-thin sections per sample were taken with a Jeol 1400 Transmission Electron 

Microscope (JEOL GmBH). For quantification five images per sample at ×12,000 

magnification were used. Images were exported to a tablet-PC (iPad2, Apple) and the 

mitochondrial area and number were evaluated using the Glow Draw application (The 

Othernet, LLC © Daniel Cota), followed by quantification using ImageJ software (ImageJ 

1.46r, Wayne Rasband, National Institutes of Health, USA). The median of individual results 

from each of the five images was calculated for the mitochondrial area and number [34]. 

Data acquisition and all analyses were done blinded to the genotype.  

Immunohistochemistry 

Quadriceps sections were cut in transverse orientation to the fiber direction at 10 µm. 

Sections were fixed for 10 min in acetone, washed with PBS followed by drying for 1 h at 

room temperature. The following procedures were performed in a humidified chamber: 

sections were blocked in blocking solution (5% goat serum (v/v) in PBS) for 45 min followed 

by incubation overnight at 4°C with the primary antibody. Sections were washed with PBS-T 



(0.05% Tween (v/v) in PBS) and incubated with the secondary antibody for 1 h in the dark at 

room temperature. Sections were embedded in Citifluor AF1 (R1320, Agar Scientific) 

containing DAPI (5 µg/ml, DAPI dilactate, D3571, Life Technologies). 

mRNA isolation and quantitative real-time PCR 

mRNA was isolated with the RNeasyPlus Mini Kit (74134, Qiagen) and 2 µg of RNA was 

reverse-transcribed into cDNA with the iScript cDNA synthesis kit (Bio-Rad). Quantitative 

real-time PCR (qPCR) was performed using SYBR® green supermix with the CFX384 Touch 

Real-Time PCR Detection Systems (Bio-Rad) as previously described [28, 34]. Primer 

sequences are listed in supplementary tables S3. For gene expression analysis in muscle 

samples Poldip3 (polymerase (DNA-directed), delta interacting protein 3) and Metap1 

(methionylaminopeptidase 1) were used as reference genes (R6/2 muscle: mean CV 0.17 and 

mean M Value 0.49), and Sdha (Succinate dehydrogenase [ubiquinone] flavoprotein subunit) 

and Metap1 for heart samples (mean CV 0.16 and mean M Value 0.46). The reference genes 

were selected according to Hellemans and colleagues [35] with homogenous stable cDNA 

level mean CV < 0.25 and mean M value < 0.5. Data were analyzed with the Bio-Rad CFX 

manager software (Bio-Rad).  

Mitochondrial DNA copy number 

The DNA was isolated with Puregene Core Kit A (Qiagen) as instructed by the manufacturer. 

The mitochondrial DNA (mtDNA) copy number was determined with quantitative real-time 

PCR with the CFX384 Touch Real-Time PCR Detection Systems (Bio-Rad) as previously 

described [28]. For detection of the mtDNA the D-loop region was used. As reference B2M 

(beta-2-microglobulin) encoded on the nuclear DNA was used [36-38]. Primer sequences are 

listed in supplementary table S4.  



Enzyme activity assays 

Tissue lysates were prepared as described previously [28]. Briefly, extractions were 

performed in homogenization buffer (320 mM sucrose, 1 mM K+ EDTA, 10 mM Tris/HCl, pH 

7.4, 1 µg/ml pepstatin, 1 µg/ml leupeptin and 1 mM PMSF) using a tissue lyser (Qiagen) at 

4°C. After centrifugation (600×g, 10 min at 4°C) the supernatant was used. 

Measurements of the activity of the respiratory chain enzyme complexes and of citrate 

synthase were performed as described previously [28, 39-42].  

ATP assay 

The amount of ATP was determined by using the ATP assay kit from Abcam (ab83555, 

abcam) as instructed by the manufacturer. The amount of ATP was calculated with the help 

of an ATP standard curve.  

Statistical analysis 

All data were evaluated blinded to the samples’ genotype. Statistical analysis was performed 

using GraphPad Prism (version 5.00 for Windows, GraphPad Software, San Diego California 

USA). Data were examined for normal distribution using the Kolmogorov-Smirnov test. 

Parametric analysis of two groups was done with an unpaired t-test or with a Welch’s 

unequal variances t-test. For non-parametric analysis of two groups the Mann-Whitney test 

was used. For analysis of three or more groups one-way ANOVA was performed. 

  



Results 

Soluble mutant HTT is present in heart and quadriceps, while aggregates are only detectable 

in quadriceps  

We first examined whether soluble mutant HTT was expressed. Using the antibody 

combination 2B7/MW1 with the Singulex assay [31, 32, 43] there was clear evidence of 

soluble mutant HTT expression in total lysates of R6/2 transgenic (tg) quadriceps (Fig. 1A), 

and R6/2 heart muscle (Fig. 1D). We then investigated the distribution of total soluble 

mutant HTT in different cellular compartments. To this end we analyzed an enriched nuclear 

(NF) and cytoplasmic/mitochondrial fraction (CM) from quadriceps of R6/2 tg mice (Fig. 1B), 

and R6/2 tg heart (Fig. 1E). The cytoplasmic/mitochondrial fractions contained no detectable 

histone H3, a nuclear protein. The nuclear fractions were clearly enriched and contained no 

detectable GAPDH, a cytosolic protein, while some mitochondrial content remained since 

NDUFA9, a mitochondrial protein, was detectable at low levels. In R6/2 tg quadriceps (Fig. 

1C) the cytoplasmic/mitochondrial fraction clearly contained more soluble mutant HTT than 

the nuclear fraction (R6/2 P < 0.0001). In R6/2 tg heart mutant HTT was only in the 

cytoplasmic/mitochondrial fraction detectable with western blot using the 1C2 antibody that 

binds to polyQ repeats [25, 44] (Fig. 1F).  

The formation of HTT aggregates is a hallmark event in the pathogenesis of HD. We next 

examined whether HTT aggregates were detectable in quadriceps and heart muscle of R6/2 

tg mice. To this end we used two different methods, immunohistochemistry and western 

blot. We used the S829 antibody, which was raised against the N-terminal exon 1 HTT 

protein and was shown to detect aggregates in R6/2 tg mice [45, 46]. In quadriceps of R6/2 

tg mice aggregates were detectable on western blot (Fig. 2A) and also by confocal 

microscopy on tissue sections (Fig. 2B, G, Fig. S2). We then investigated the fractions 



enriched for nuclear or cytoplasmic/mitochondrial content. This revealed that aggregates 

were present in quadriceps of R6/2 tg mice with levels much higher in the nuclear fraction 

than in the cytoplasmic/mitochondrial fraction (Fig. 2C). 3D analysis of a section using 

confocal microscopy with z-stacking also demonstrated aggregates predominantly near the 

nucleus but very often aggregates appeared in close vicinity to nuclei rather than within 

them (Fig. 2G). 

In heart of R6/2 tg mice (Fig. 2D, E, Fig. S2), HTT aggregates were not evident using western 

blot or confocal microscopy. Furthermore aggregates were not detectable in the enriched 

nuclear or the cytoplasmic/mitochondrial fractions in heart of R6/2 tg mice (Fig. 2F). 

  

Fission and fusion protein imbalance is only observed in quadriceps of R6/2 tg mice 

Mitochondria form a dynamic network that undergoes fission and fusion to remain 

functional in the context of environmental and metabolic stress. Fission and fusion are 

mainly controlled by pro-fission and pro-fusion proteins. We investigated protein levels of 

the pro-fission dynamin-related protein (DRP1) and the pro-fusion proteins mitofusin 1 

(MFN1), mitofusin 2 (MFN2) and optic atrophy 1 (OPA1) [47, 48] in quadriceps and heart of 

R6/2 mice. DRP1 protein levels were significantly increased in R6/2 tg quadriceps (P < 0.01; 

Fig. 3A, B), whereas MFN2 protein levels were decreased compared to wild-type (wt) mice (P 

< 0.01). OPA1 and MFN1 protein levels were similar in tg and wt mice. In contrast to 

quadriceps, in R6/2 heart fission and fusion protein levels were similar in tg and wt mice (Fig. 

3C, D).  

At the mRNA level, compared to wt, levels of Dmn1l and Mfn1 were significantly increased in 

R6/2 tg quadriceps (Dmn1l P < 0.01; Mfn1 P < 0.01), while Opa1 mRNA level were decreased 

(P < 0.0001; Table 2). In R6/2 tg heart Opa1 transcripts were decreased (P < 0.05). The poor 



correlation of mRNA levels to protein levels can possibly be explained by post-transcriptional 

mechanisms involved in conversion of mRNA to protein, which are not well defined. In 

addition proteins may differ substantially in their in vivo half-life [49].  

 

Table 2. Expression of mitochondrial pro-fission and pro-fusion genes 

Relative mRNA level  Dmn1l Opa1 Mfn1 Mfn2 

R6/2 quadriceps 

mean ± SEM  

n ≥ 19 

wt 1.3 ± 0.07 1.4 ± 0.15 0.6 ± 0.07 0.7 ± 0.06 

tg 1.7 ± 0.07 0.7 ± 0.05 1.0 ± 0.09 0.8 ± 0.08 

P value 
0.0021

b
  

** 

<0.0001
a
  

*** 

0.0087
b
  

** 

0.3432
a  

ns 

R6/2 heart  

mean ± SEM 

n ≥ 12 

wt 0.7 ± 0.09 0.9 ± 0.04 0.8 ± 0.05 0.8 ± 0.05 

tg 0.7 ± 0.08 0.7 ± 0.07 1.0 ± 0.09 1.1 ± 0.13 

P value 
0.4903

b
  

ns 

0.0138
b  

* 

0.0541
a
  

ns 

0.0598
a 

  

ns 

a) Welch's unequal variances t-test, b) Unpaired t-test 

 

Active phosphorylated DRP1 is increased only in quadriceps of R6/2 tg mice 

Absolute DRP1 protein levels do not necessarily reflect its enzymatic activity. The activity of 

DRP1 is regulated by a variety of post-translational modifications, including phosphorylation, 

S-nitrosylation, SUMO (small ubiquitin-like modifier)ylation, ubiquitination, and O-

GlcNAcylation, in response to diverse cellular stimuli [50, 51]. Phosphorylation at the amino 

acid residue Ser616 (position in human DRP1) leads to DRP1 activation and mitochondrial 

fragmentation [52, 53]. Once activated, DRP1 is recruited from the cytosol to mitochondria 

to induce mitochondrial fragmentation [51, 54, 55]. We next examined the amount of active 

DRP1 by using an antibody, which detects active phosphorylated DRP1 (p-DRP1). To confirm 

the specificity of the antibody we first treated HEK293 cells with the protonophor CCCP 

(carbonyl cyanide m-chlorophenyl hydrazone) to induce fission [56]. We detected an 



increase of p-DRP1, whereas absolute DRP1 level remained similar (Fig. S1), indicating that 

an increase in p-DRP1 signal reflects the increase of DRP1 enzymatic activity induced by 

CCCP. 

In lysates of R6/2 tg quadriceps we observed increased p-DRP1 levels (P < 0.01) and an 

increased p-DRP1/DRP1 ratio compared to wt mice (P < 0.05) indicating that active DRP1 

levels were elevated (Fig. 4A, B). We then performed subcellular fractionations for 

evaluating the distribution of DRP1 between the cytosolic and the mitochondrial 

compartment. DRP1 levels were higher in the quadriceps mitochondrial fractions of tg R6/2 

mice (69 ± 7%) than those of wt (31 ± 10%; Fig. 4C, D). In heart of R6/2 tg mice levels of p-

DRP1 were non-significantly lower (P = 0.07) in whole tissue lysates compared with wt; 

however, the p-DRP1/DRP1 ratio was similar in tg and wt hearts (Fig. 4E, F). In the 

mitochondrial fraction amounts of DRP1 were low with 8% in wt and 5% in tg hearts (Fig. 4G, 

H). In summary, higher levels of active DRP1 than in controls were only evident in tg 

quadriceps of R6/2 mice. In R6/2 heart tissue, the active DRP1/total DRP1 ratio was similar 

to controls. 

 

Mitochondrial mass 

Changes in the balance of mitochondrial pro-fission (p-DRP1/total DRP1) and pro-fusion 

factors (MFN1, MFN2, OPA1) can lead to abnormal mitochondrial network shape. We used 

electron microscopy to examine ultra-structural mitochondrial morphology and to analyze 

the size and number of mitochondria. We did not observe differences in cristae morphology 

in tg quadriceps or heart compared to wt (Fig. 5A, D). After quantification, we observed a 

non-significant increase in the amount of mitochondria in tg quadriceps of R6/2 mice (P = 



0.07), whereas the size was similar to wt tissue (Fig. 5A-C). Mitochondrial size and number in 

R6/2 heart tg mice (Fig. 5D-F) were similar to controls (Fig. 5J-L).  

In order to assess mitochondrial mass we analyzed citrate synthase activity, mitochondrial 

(mt) DNA copy number and Tfam (mitochondrial transcription factor A) mRNA expression or 

protein level. TFAM is an important regulator for mtDNA transcription and mtDNA copy 

number [57, 58]. Compared to wt tissue, citrate synthase activity, mtDNA copy number or 

Tfam mRNA levels were similar in R6/2 tg quadriceps and heart.  

Table 3. Analysis of mitochondrial mass 

Mitochondrial 

mass 

 Citrate synthase 

activity/ total protein 

[µmol/min/mg] 

Relative 

mtDNA copy 

number 

Relative 

Tfam mRNA 

level 

Relative 

TFAM protein 

level 

R6/2 quadriceps 

mean ± SEM  

n ≥ 6 

wt 0.06 ± 0.01 0.7 ± 0.04c 0.8 ± 0.14 1.1 ± 0.43 

tg 0.09 ± 0.02 0.8 ± 0.05c 1.1 ± 0.20 0.87 ± 0.16 

P value 0.1496b 

ns 

0.4747b 

ns 

0.2741a 

ns 

0.57921b 

ns 

R6/2 heart  

mean ± SEM 

n ≥ 6 

wt 0.4 ± 0.05 0.7 ± 0.15 1.2 ± 0.17 0.8 ± 0.2 

tg 0.4 ± 0.02 0.9 ± 0.15 1.3 ± 0.11 1.2 ± 0.23 

P value 0.501a 

ns 

0.4283b 

ns 

0.655b 

ns 

0.1574b 

ns 

a) Welch's unequal variances t-test, b) Unpaired t-test, c) data were log-transformed 

 

 

 

The activity of complex I and complex IV is decreased in quadriceps of R6/2 tg mice 

An imbalance in mitochondrial fission and fusion can affect oxidative phosphorylation 

capacity and reduce ATP levels [59]. Therefore we next examined the activity of the 

respiratory chain complexes I, II/III and IV with spectrophotometry. To control for variations 

of mitochondrial mass we normalized our data to citrate synthase activity. In addition, we 



examined ATP levels in all tissues. In R6/2 tg quadriceps we observed decreased complex I 

and complex IV activities (P < 0.05), whereas the activity of complex II/III was similar to wt 

(Fig. 6A). However, ATP levels were similar in tg and wt quadriceps (Fig. 6B). In tg heart 

tissue the respiratory chain activity and ATP levels were similar to wt (Fig. 6C, D).  

In addition to the analysis of respiratory chain complex activities we assessed the assembly 

of the complexes using blue native gel electrophoresis. While the levels of most respiratory 

chain enzyme complexes were unaffected in R6/2 tg, levels of complex III assembly were 

increased in R6/2 tg quadriceps compared to wt (P < 0.05) (Table S1, S2). 

Discussion  

In this study we examined the subcellular localization of mutant HTT, and mitochondrial 

dynamics and function in skeletal and heart muscle of late-stage R6/2 mice. Soluble mutant 

HTT was present in both muscle tissues with soluble mutant HTT expression higher in 

cytoplasmic/mitochondrial than nuclear fractions. However, HTT aggregates were only 

detectable in R6/2 quadriceps, in association with increased levels of the pro-fission factor 

DRP1 and its phosphorylated active form, and decreased levels of the pro-fusion factor 

MFN2. In addition, respiratory chain complex activities were decreased. In heart, despite 

similarly high, or even higher, levels of soluble mutant HTT, there were no detectable HTT 

aggregates and no evidence for mitochondrial dysfunction. This suggests that R6/2 heart is 

protected from HTT aggregate formation and mitochondrial pathology. 

We first used the very sensitive Singulex assay, to assess whether tissues contained mutant 

HTT [31, 32, 43]. This is important because hypotheses of HD related downstream biological 

consequences are based on the assumption that mutant HTT is expressed in the analyzed 

tissues. We showed that soluble mutant HTT was indeed present in R6/2 heart and skeletal 

muscle samples. This is consistent with studies showing that soluble mutant HTT is 



expressed in a variety of non-CNS tissue of R6/2 tg mice e.g. skeletal muscle, liver and spleen 

[43].  

We next examined soluble mutant HTT subcellular expression. We detected soluble mutant 

HTT in cytoplasmic/mitochondrial and in nuclear fractions and consistent with data from 

brains of R6/2 and HdhQ150 mice, levels of HTT were highest in cytoplasmic/mitochondrial 

fractions [60, 61]. This indicates that full-length HTT, or fragments following cytoplasmic 

processing or CAG-repeat length-dependent aberrant splicing of HTT exon 1, can shuttle 

between the cytoplasm and the nucleus [12, 62-66]. It is unknown whether HTT contains a 

nuclear localization signal. However, HTT contains multiple HEAT (huntingtin, elongation 

factor 3, the PR65/A subunit of protein phosphatase 2A and the lipid kinase Tor) repeat 

sequences [67]. Proteins harboring HEAT domains often mediate protein-protein 

interactions and intracellular transport, including nucleocytoplasmic shuttling [68]. HTT 

contains a nuclear export signal (NES) in the C-terminal region, which is strictly conserved 

among species [62]. In addition HTT has within the first N-terminal 17 amino acids a 

translocated promoter region that acts as nuclear export signal [64]. Increasing polyQ 

expansions reduce its nuclear export and cause nuclear accumulation and aggregation of 

HTT [64]. The formation of intra-nuclear HTT aggregates is a pathological hallmark in human 

HD brains [70]. Therefore, we next examined whether our peripheral tissues contained 

aggregates. Consistent with previous findings we detected aggregates in total lysate of R6/2 

exon 1 fragment model skeletal muscle but not heart [45, 71-73]. Also in HdhQ150 mice 

aggregates have been detected in a wide range of peripheral tissues at 22 months of age, 

such as skeletal muscle, liver and kidney [74], while similar to our findings in heart of 

HdhQ150 mice aggregates could not be identified [74]. In vitro studies have shown that 

aggregation will not occur until the monomer concentration exceeds a certain critical 



concentration [75]. The aggregation process of the exon 1-derived fragment occurs in a time, 

concentration and polyQ repeat length dependent manner [75]. It is possible that N-terminal 

mutant exon 1-derived protein concentrations do not exceed that critical concentration in 

heart muscle samples. In contrast to in vitro aggregation kinetics [75] high amounts of 

soluble mutant HTT in vivo do not always correlate with the presence of aggregates. In R6/2 

tg testis high level of the soluble form have been detected but no aggregates were observed. 

In contrast, other tissues with similar expression levels of soluble mutant HTT, as for 

example liver, were characterized by aggregate formation [43]. This discrepancy suggests 

that many factors such as the ability of cells to divide, cell specific expression levels and 

subcellular distribution of mutant HTT may determine whether aggregation occurs [76]. 

Furthermore, age-dependent aggregate formation may differ between tissues. In R6/2 tg 

mice aggregates have been detected in e.g. striatum at 2 weeks of age, in cortex at 4 weeks 

and in in skeletal muscle at 8 weeks of age. [45]. This supports the notion that some tissues 

are more prone to aggregation than others.  

We found highest aggregate levels in the nuclear fraction of R6/2 skeletal muscle. However, 

HTT aggregates were often localized adjacent to the nuclei rather than within them, and 

cytoplasmic aggregates were also clearly present, similar to findings in cortex of zQ175 mice 

[69] and striatum of R6/2 mice [78]. Nuclear and cytoplasmic HTT aggregates can interfere 

with nucleocytoplasmic protein and mRNA transport, which has been shown in striatum and 

cortex of both R6/2 tg mice and zQ175, in human HD post-mortem brain tissue and in cell 

models expressing mutant HTT exon 1 [61, 69, 79]. Aggregate-mediated disruption of 

nucleocytoplasmic transport may thus be a critical event leading to pathology by affecting a 

number of cellular processes. We therefore next asked whether the presence of aggregates 

was associated with a biological phenotype. We investigated mitochondrial fission and 



fusion given the evidence indicating fission and fusion imbalance in animal models and in 

human post-mortem brain [18, 19, 21, 23, 24]. Similar to aggregate formation, abnormal 

fission and fusion was limited to R6/2 skeletal muscle in which levels of total and activated 

DRP1 were increased, concomitant with reduced MFN2 levels, and a respiratory chain 

enzyme complex I and IV deficiency. This is similar to what has been observed in HD 

lymphoblasts and Hdh(Q111) striatal cells [19] lending further support to the notion of a 

shift of the fission and fusion balance towards fission in HD. In contrast, in R6/2 tg heart, in 

which there was no detectable aggregate formation, there was no evidence of any 

mitochondrial phenotype. 

In summary, abnormal mitochondrial fission and fusion and respiratory chain defects were 

only evident in R6/2 tg skeletal muscle that had HTT aggregates. Fission and fusion maintain 

mitochondrial homeostasis and are essential for mitochondrial quality control [80]. 

Mitochondrial quality control is tightly associated with mitochondrial protein homeostasis 

which is maintained by mtUPR, a signaling pathway linking mitochondria with the nucleus 

[81]. Inhibition of the nucleocytoplasmic transport by mutant HTT aggregates may lead to 

severe defects in mitochondrial quality control pathways and impact the ability to respond 

to stress.  The striking differences in aggregate formation and mitochondrial function 

between skeletal muscle and heart in the R6/2 model indicate that differences in these 

tissues may have a substantial modifying effect on HD pathogenesis. The underlying 

mechanisms of disease modification may warrant further exploration. 
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