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Abstract. Dynamic hand gesture recognition is a crucial yet challeng-
ing task in computer vision. The key of this task lies in an effective
extraction of discriminative spatial and temporal features to model the
evolutions of different gestures. In this paper, we propose an end-to-end
Spatial-Temporal Attention Residual Temporal Convolutional Network
(STA-Res-TCN) for skeleton-based dynamic hand gesture recognition,
which learns different levels of attention and assigns them to each spatial-
temporal feature extracted by the convolution filters at each time step.
The proposed attention branch assists the networks to adaptively focus
on the informative time frames and features while exclude the irrele-
vant ones that often bring in unnecessary noise. Moreover, our proposed
STA-Res-TCN is a lightweight model that can be trained and tested
in an extremely short time. Experiments on DHG-14/28 Dataset and
SHREC’17 Track Dataset show that STA-Res-TCN outperforms state-
of-the-art methods on both the 14 gestures setting and the more com-
plicated 28 gestures setting.

Keywords: dynamic hand gesture recognition, spatial-temporal atten-
tion, temporal convolutional networks

1 Introduction

Dynamic hand gesture recognition has attracted increasing interests due to its
potential relevance to a wide range of applications, such as touchless automo-
tive user interfaces, gaming, robotics, etc [21, 3, 28]. However, it is still challeng-
ing to develop a highly precise hand gesture recognition system, owing to high
intra-class variance derived from the various possibilities to perform the same
gesture [30, 5, 3].
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Fig. 1. Overall architecture of the proposed STA-Res-TCN, which consists of a main
branch for feature processing, a mask branch for attention and an element-wise multi-
plication for the final generation of attention-aware features.

Early studies on dynamic hand gesture recognition mainly take 2D videos
captured by RGB cameras as input, which inevitably causes the loss of valuable
3D spatial information and brings in extra challenges of occlusions and light
variation [5, 28, 16, 29, 9]. In recent years, thanks to the drastic advances of cost-
effective depth sensors, like Microsoft Kinect or Intel RealSense [10, 15, 33, 27],
reliable joint coordinates can be easily obtained using hand pose estimation
algorithms [6, 22, 34], and thus skeleton-based dynamic hand gesture recognition
has become an active research field.

Traditionally, spatial-temporal hand gesture descriptors are first extracted
from the input skeleton sequences, and then a classifier is employed for the
final predictions [29, 30, 5, 28, 25, 9, 24, 3]. In recent years, computer vision has
witnessed a great success of the introduction of deep learning methods [18, 11, 26,
13]. However, there is significantly little work in the literature using Deep Neural
Networks (DNNs) to deal with skeleton-based dynamic hand gesture recognition.
To the best of our knowledge, the only literature [23], which does employ DNNs,
sticks to a two-stage training strategy with a Convolution Neural Network (CNN)
followed by a Long Short-Term Memory (LSTM) recurrent network, instead of
an end-to-end framework. The CNN focuses on the extraction of spatial features
related to the position of the skeleton joints in 3D space, and the LSTM recurrent
network is then used to explore time evolutions and drawing predictions.

Recently a novel set of networks, Temporal Convolutional Networks (TCNs),
is proved to be an effective approach to capture spatial-temporal patterns in
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the context of action segmentation and human action recognition task [18, 16].
However, given the high intra-class variance nature of hand gestures, not all
features extracted by TCN are necessarily informative for every specific input
video at every time step. Attention mechanism needs to be introduced to assist
the model to adaptively focus on the informative time frames and features.

Inspired by the work of TCN [18, 16], we propose an end-to-end Spatial-
Temporal Attention Res-TCN (STA-Res-TCN). The proposed STA-Res-TCN
adaptively learns different levels of attention through a mask branch, and assigns
them to each spatial-temporal feature extracted by a main branch through an
element-wise multiplication. Experimental results demonstrate that the STA-
Res-TCN has achieved state-of-the-art performance on DHG-14/28 Dataset [29]
and SHREC’17 Track Dataset [30] on both the 14 gestures setting and the more
complicated 28 gestures setting.

2 Related Work

In this section, we first provide a literature review on skeleton-based dynamic
hand gesture recognition. We then extend our review to works focusing on at-
tention mechanism.

2.1 Skeleton-based Dynamic Hand Gesture Recognition

Skeleton-based dynamic hand gesture recognition has become a heated research
field thanks to the advances of cost-effective depth sensors and hand pose esti-
mation algorithms. In this section, we briefly review the existing literature on
skeleton-based dynamic hand gesture recognition, which can be gathered into
two main categories: approaches with traditional feature extraction and ap-
proaches with DNNs.

Approaches with traditional feature extraction Smedt et al. [29,
30] propose a new descriptor named Shape of Connected Joints (SoCJ), from
which a Fisher Vector (FV) representation is computed. The FV representation
is then concatenated with two other descriptors, Histogram of Hand Directions
(HoHD) and Histogram of Wrist Rotations (HoWR). The temporal information
is encoded using a temporal pyramid and the classification process is performed
by a linear Support Vector Machine (SVM) classifier. Smedt et al. [30] also eval-
uate the performances of the other two depth-based descriptors, HOG2 [24] and
HON4D [25], and a skeleton-based method proposed by Devanne et al. [9] origi-
nally presented for human action recognition. Chen et al. [5] first extract finger
motion features and global motion features from the input dynamic hand gesture
skeleton sequence, and then feed these motion features, along with the skeleton
sequence, into a recurrent neural network (RNN) to get the final predictions.
Boulahia et al. [3] introduce the HIF3D feature-set [2], which is initially con-
ceived for modeling whole body actions, to the domain of dynamic hand gesture
recognition. For final classification, they also employ the SVM classifier.
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Approaches with DNNs Nunez et al. [23] propose an architecture
consists of a combination of a Convolution Neural Network (CNN) followed by
a Long Short-Term Memory (LSTM) recurrent network. The CNN focuses on
the extraction of the spatial features, and the LSTM recurrent network is then
used to capture the patterns related to the time evolution. The CNN is first pre-
trained independently by connecting to a Fully-connected Multilayer Perceptron
(MLP). Later, the output of the CNN is connected to the LSTM for the second
stage training.

All the works above fail to develop an end-to-end framework to explore spatial
features and temporal features at the same time, and to include the process of
final classification in the same network.

2.2 Attention Mechanism

Studies in neural science show that attention mechanism plays an important role
in human visual system [35, 8]. Recently, the exploration of attention mecha-
nism applied in deep learning has attracted increasing interests in various fields,
including skeleton-based human action recognition [31, 20]. However, to the best
of our knowledges, there is no work in the literature applying attention mech-
anism to skeleton-based dynamic hand gesture recognition. Even for the works
on human action recognition, the attention modules in the existing literatures
are mostly built on top of the Long Short-Term Memory (LSTM) recurrent net-
works. There is a lack of investigation of TCNs, which exhibit totally different
characteristics from LSTM-based models.

3 Spatial-Temporal Attention Res-TCN

Our proposed STA-Res-TCN consists of a main branch for feature processing
and a mask branch for attention. The overall architecture is shown in Fig. 1. In
this work, we employ TCN with residual units (Res-TCN) to construct the main
branch.

In order to put our proposed model into context, we first provide a brief
overview of TCN and its variant Res-TCN as in the original paper [18, 16]. Then
we describe our proposed Spatial-Temporal Attention Res-TCN for skeleton-
based dynamic hand gesture recognition. Finally, the employed data augmenta-
tion techniques are introduced.

3.1 Overview of Temporal Convolution Networks

The Temporal Convolution Network (TCN) [18] is built from stacked units of
1-dimensional convolution across the temporal domain followed by a non-linear
activation function and max pooling. The input to a TCN is a temporal se-
quence of D-dimensional feature vectors extracted per video frame. Specifically,
for a video of T frames, the input X0 is a concatenation of all frame-wise D-
dimensional feature vector across time such that X0 ∈ RT×D. Note that T is the
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Fig. 2. The input data structure for the network. Left: The hand skeleton for each
frame. Middle: The D-dimensional skeleton feature vector for each frame, constructed
by concatenating the 3D coordinates of each hand joints. Right: The input block,
constructed by stacking the skeleton feature vectors across time. The yellow-highlighted
block demonstrates the first application of the f1 ∗N0 = f1 ∗D = 8 ∗ 66 1-dimensional
temporal convolution kernel.

length of the input and D is the number of channels of the input. In a TCN, the l-
th temporal convolution layer consists of Nl filters, each with a temporal window

of fl frames, denoted as {W (i)
l }

Nl
i=1 where each filter is W

(i)
l ∈ Rfl×Nl−1 . Given

the output from the previous layer Xl−1 ∈ RT×Nl−1 , the activations Xl ∈ RT×Nl

can be computed with

Xl = f(Wl ⊗Xl−1), (1)

where f(·) is non-linear activation function ReLU, and ⊗ denotes 1-dimensional
temporal convolution.

Since the original TCN is designed for action segmentation task in RGB
video, the encoder reviewed above is followed by a decoder with similar ar-
chitecture, except that upsampling is used instead of pooling. Kim et al. [16]
extend the original TCN to human action recognition task by adopting only the
encoder portion and applying global average pooling and a softmax layer [19]
for prediction. They also employ the residual connections as introduced in [11,
12].

3.2 Spatial-Temporal Attention Res-TCN

We propose an end-to-end Spatial-Temporal Attention Res-TCN (STA-Res-
TCN) for skeleton-based dynamic hand gesture recognition. The overall archi-
tecture is shown in Fig. 1.
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For each video frame, a D-dimensional skeleton feature vector is constructed
by concatenating the 3D coordinates of each hand joints. The frame-wise skeleton
feature vectors are then stacked temporally across the entire video sequence to
form the input block X0 ∈ RT×D, as shown in Fig. 2, which is later fed into the
STA-Res-TCN.

Given the high-intra variance nature of hand gestures, we notice that not all
video frames and not all features extracted by TCN contain the most discrimina-
tive information. Irrelevant time frames and features often bring in unnecessary
noises. Given this observation, along with the main branch, we introduce an
extra attention branch to generate same size masks at each layer which softly
weight the feature maps extracted by the main branch. Such soft attention mech-
anism assists the model to adaptively focus more on the informative frames and
features.

To be specific, given the output of the previous block Xl−1 ∈ RT×Nl−1 from
the main branch and M̃l−1 ∈ RT×Nl−1 from the mask branch, the feature maps
extracted by the main branch and the masks with the same size generated by
the mask branch at the l-th block can be respectively computed with:

X̃l = Xl−1 + F (Wlmain
, Xl−1), (2)

M̃l = G(Wlmask
, M̃l−1), (3)

where {W (i)
lmain

}Nl
i=1 and {W (i)

lmask
}Nl
i=1 respectively denotes the collection of filters

of the l-th block for the main branch and the mask branch; F (·) and G(·) denotes
a series of operations of batch normalization [14], ReLU activation, drop out [32]
and 1-dimensional temporal convolution. X̃l and M̃l both have Nl channels, and

each channel has T frames. For channel i ∈ {1, 2, ..., Nl}, X̃(i)
l = {x̃(i)l,1, ..., x̃

(i)
l,T } ∈

RT calculates the time evolution of the response to the i-th convolution filter of

the l-block. The i-th channel mask M̃
(i)
l = {m̃(i)

l,1, ..., m̃
(i)
l,T } ∈ RT are the scores

indicating the importance of each time frame. We softly weight X̃
(i)
l with the

scores M̃
(i)
l to achieve temporal attention for the i-th channel. Similarly, for time

step t ∈ {1, 2, ..., T}, M̃l,t = {m̃(1)
l,t , ..., m̃

(Nl)
l,t } ∈ RNl are the scores indicating the

importance of each channel (i.e.each feature extracted by convolution filters).
We softly weight X̃l,t ∈ RNl with the scores M̃l,t to achieve spatial attention
(i.e.attention upon features). Thus, by performing an element-wise multiplication
between the main branch feature maps X̃l and the masks M̃l, we gain the spatial-
temporal attention-aware feature maps:

Xl = X̃l ∗Ml, (4)

Ml = Sigmoid(M̃l). (5)

A sigmoid layer is employed to restrict the output range of the masks to [0, 1].

Note that the first block of STA-Res-TCN does not involve a residual unit
or any normalization and activation layer, the computation can be formulated
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as follows:

X̃1 = W1main ⊗X0, (6)

M̃1 = W1mask
⊗X0, (7)

M1 = Sigmoid(M̃1), (8)

X1 = X̃1 ∗M1. (9)

where ⊗ denotes 1-dimensional temporal convolution.
For classification, we employ global average pooling after the last block across

the entire temporal sequence and followed by a softmax layer to draw final
predictions.

3.3 Data Augmentation

Overfitting is a severe problem in deep neural networks. It leads to an adequate
performance on the training set, but a poor performance on the test set [23,
32]. Either the DHG-14/28 Dataset or the SHREC’17 Track Dataset contains
no more than 2700 hand gesture sequences for training, which are not enough
to prevent overfitting. We employ the same data augmentation techniques with
Nunez et al. [23] for fair comparison, including scaling, shifting, time inter-
polation and adding noise. We expand the original training set by 4 times.

4 Experiments

We have evaluated our proposal on two challenging datasets, DHG-14/28 Dataset
[29] and SHREC’17 Track Dataset [30]. Experimental results show that STA-
Res-TCN outperforms the state-of-the-art methods.

4.1 Datasets and Settings

DHG-14/28 Dataset DHG-14/28 dataset [29] is a public dynamic
hand gesture dataset, which contains sequences of 14 hand gestures performed
5 times by 20 participants in 2 finger configurations, resulting in 2800 video
sequences. The coordinates of 22 hand joints in the 3D world space are provided
per frame, forming a full hand skeleton. The Intel RealSense short range depth
camera is used to collect the dataset.

SHREC’17 Track Dataset SHREC’17 Track Dataset [30] is a public
dynamic hand gesture dataset presented for the SHREC’17 Track. It contains
sequences of 14 gestures performed between 1 and 10 times by 28 participants in
2 finger configurations, resulting in 2800 sequences. The coordinates of 22 hand
joints in the 3D world space are provided per frame. The dataset is captured by
Intel Realsense camera.

Implementation Details We perform all our experiments on a Nvidia
GeForce GTX 1080 GPU with Keras 2.0 [7] using TensorFlow [1] backend. The
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learning rate is initially set to be 0.01 and then is gradually reduced by a factor
10 at 0.2, 0.5, 0.6 of the total epochs for the DHG-14/28 Dataset, and at 0.3,
0.6, 0.9 for the SHREC’17 Track Dataset. We employ the Adam algorithm [17]
with parameters β1 = 0.9, β2 = 0.999 and ε = 1e−8. The batch size is set to 256,
and the network is trained for up to 200 epochs. L-1 regularizer with a weight of
1e−4 is applied to all convolution layers. The dropout [32] rate is set to be 0.5
to prevent overfitting. The length of temporal window fl is set to be 8 frames.
Every skeleton sequence is subtracted by the palm position of the first frame.

4.2 Comparisons with State-of-the-Arts

In the experiment on DHG-14/28 Dataset, we follow a leave-one-subject-out
cross-validation strategy, i.e., we perform 20 experiments, each one using data
from 19 subjects for training and data from the rest 1 subject for testing. The
reported results are computed as the average over these 20 cross-validation folds.

We show performance comparisons of STA-Res-TCN with state-of-the-art
methods in Table 1. The recognition rate of our proposed model achieves 89.2%
for the 14 gestures setting and 85.0% for the more complicated 28 gestures set-
ting. The experimental results in Table 1 demonstrate a significant enhancement
of recognition rates in comparison with state-of-the-art methods with both set-
tings. Note that for fair comparison, we employ the same data augmentation
techniques with Nunez et al. [23], the current state-of-the-art method, to both
the baseline model Res-TCN and the attention model STA-Res-TCN. By com-
paring the performance of the baseline model and STA-Res-TCN, we can observe
that our proposed attention mechanism brings 2.3% and 1.4% accuracy raise for
the 14 gestures setting and 28 gestures setting respectively.

Table 1. Comparisons of accuracy (%) on DHG-14/28 Dataset.

Method 14 gestures 28 gestures

SoCJ+HoHD+HoWR [29] 83.1 80.0
Chen et al. [5] 84.7 80.3

CNN+LSTM [23] 85.6 81.1

Res-TCN (Baseline) 86.9 83.6
STA-Res-TCN (Ours) 89.2 85.0

The confusion matrices with 14 gestures setting and 28 gestures setting are
shown in Fig. 3 and Fig. 4. It can be observed that our proposed STA-Res-
TCN achieves recognition rate higher than 90.0% in 11 of the 14 gestures. The
accuracy comparison for each individual gesture is favorable to our proposal in
10 of the 14 gestures compared to the work of [23]. It can also be observed from
the confusion matrix that the gestures Grab and Pinch are usually misclassified
due to the low inter-class variance.
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Fig. 3. Confusion matrix on DHG-14/28 Dataset with 14 gestures setting.

Fig. 4. Confusion matrix on DHG-14/28 Dataset with 28 gestures setting.
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In the experiment on SHREC’17 Track Dataset, we follow the division of
the training set and the test set of the SHREC’17 Track [30], resulting in
1960 training sequences and 840 test sequences. We still employ the same data
augmentation technique to both the baseline model and the attention model
STA-Res-TCN.

Table 2. Comparisons of accuracy (%) on SHREC’17 Track Dataset.

Method 14 gestures 28 gestures

Oreifej et al.† [25] 78.5 74.0

Devanne et al.† [9] 79.6 62.0
Classify Sequence by Key Frames [30] 82.9 71.9

Ohn-Bar et al.† [24] 83.9 76.5
SoCJ+Direction+Rotation [28] 86.9 84.2

SoCJ+HoHD+HoWR [29] 88.2 81.9
Caputo et al. [4] 89.5 -

Boulahia et al.† [3] 90.5 80.5

Res-TCN (Baseline) 91.1 87.3
STA-Res-TCN (Ours) 93.6 90.7

As demonstrated in Table 2, the STA-Res-TCN achieves the accuracy of
93.6% for the 14 gestures setting and 90.7% for the more complicated 28 gestures
setting. Our proposed model outperforms the state-of-the-art models, especially
showing greater accuracy improvement with the more complicated 28 gestures
setting, which further validates the effectiveness of our proposed model. By com-
paring the performance of the baseline model Res-TCN and the attention model
STA-Res-TCN, we can observe that our proposed attention mechanism brings
2.5% and 3.4% accuracy raise respectively for the 14 gestures setting and 28
gestures setting.

The confusion matrices with 14 gestures setting and 28 gestures setting are
shown in Fig. 5 and Fig. 6. It can be observed that our proposed STA-Res-
TCN achieves recognition rate higher than 90.0% in 10 of the 14 gestures, and
achieves recognition rate higher than 85.0% in 13 of the 14 gestures. The accuracy
comparison for each individual gesture is favorable to our proposal in 10 of the
14 gestures compared to the work of [3].

Moreover, our proposed model can be trained in an extremely short time, no
more than 30 minutes for SHREC’17 Track Dataset or one cross-validation fold
of DHG-14/28 Dataset with a Nvidia GeForce GTX 1080 GPU. The inference
speed of STA-Res-TCN is also considerably fast. It can process 9691 skeletons
per second (i.e.161 hand gestures per second on average), which exceeds the
7615 skeletons per second performance presented by the work of [23] on the
same hardware architecture. The processing speed of our proposed STA-Res-

† Implement and evaluate by Smedt et al. [30]
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TCN also far exceeds the standard of real time analysis (i.e.30 skeletons per
frame) in video.

Fig. 5. Confusion matrix on SHREC-14/28 Dataset with 14 gestures setting.

Fig. 6. Confusion matrix on SHREC-14/28 Dataset with 28 gestures setting.
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4.3 Visualization of the Spatial-temporal Attention

For better understanding of our work, we analyze our proposed attention mech-
anism by visualizing and comparing the feature maps before/after soft attention
masks.

Fig. 7. Visualization of our proposed attention mechanism on a skeleton sequence of
hand gesture “tap”. (a) Input skeleton sequence of hand gesture “tap”. The key frames
range approximately from the 21st frame to the 34th frame. (b) Two examples of the
temporal convolution filters that mainly learn the movements of the tip joint of index
finger. (c) A comparison between the feature maps before soft attention masks and
feature maps after soft attention masks corresponding to the two filters.

For a skeleton sequence of hand gesture “tap”, as shown in Fig. 7(a), the
key movements mainly relate to the tip joint of index finger, and the key frames
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that contain the most discriminative information range approximately from the
21st frame to the 34th frame. Fig. 7(b) shows the two temporal convolution
filters which our proposed attention mechanism has the greatest impact on.
These two filters mainly learn a downward translation movement of the tip
joint of index finger along the y axis, which is in accord with which human
considers as key movement. Fig. 7(c) shows a comparison between the feature
maps before/after soft attention masks corresponding to the two convolution
filters mentioned above. It can be observed that the time frames which our
proposed attention mechanism stressed more attention on are consistent with
which human perceives as discriminative.

5 Conclusion

We present an end-to-end Spatial-Temporal Attention Res-TCN for skeleton-
based dynamic hand gesture recognition, which learns to adaptively assign dif-
ferent levels of attention to each spatial-temporal features at each time step as
layers going deeper. Experimental results demonstrate the effectiveness of the
proposed STA-Res-TCN, which achieves significant accuracy enhancement in
comparison with other state-of-the-art methods. Moreover, our proposed STA-
Res-TCN is a lightweight model, which can be trained and tested in an extremely
short time.
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