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Abstract

Proteinuria is strongly associated with kidney disease progression but the mechanisms

underlying podocyte handling of serum proteins such as albumin and IgG remain to be eluci-

dated. We have previously shown that albumin and IgG are transcytosed by podocytes in

vitro. In other epithelial cells, the neonatal Fc receptor (FcRn) is required to salvage albumin

and IgG from the degradative pathway thereby allowing these proteins to be transcytosed or

recycled. Here we directly examine the role of FcRn in albumin and IgG trafficking in podo-

cytes by studying handling of these proteins in FcRn knockout (KO) podocytes in vitro and in

a podocyte-specific FcRn knockout mice in vivo. In vitro, we find that knockout of FcRn

leads to IgG accumulation in podocytes but does not alter albumin trafficking. Similarly, in

vivo, podocyte-specific knockout of FcRn does not result in albumin accumulation in podo-

cytes in vivo as measured by mean albumin fluorescence intensity whereas these mice

demonstrate significant intraglomerular accumulation of IgG over time. In addition we find

that podocyte-specific FcRn KO mice demonstrate mesangial expansion as they age and

activation of mesangial cells as demonstrated by increased expression of α-smooth muscle

actin. Taken together, these results suggest that trafficking pathways for albumin and IgG

differ in podocytes and that sustained disruption of trafficking of plasma proteins alters glo-

merular structure.

Introduction

Proteinuria is an independent marker of kidney disease progression and is widely used clini-

cally as a biomarker of kidney dysfunction [1, 2]. Proteinuria is both a consequence of kidney

damage and damages the glomerulus and tubules directly by increasing production of pro-

inflammatory cytokines and promoting fibrosis [1, 3–5]. Both the glomerulus and the proxi-

mal tubules are involved in the renal handling of serum proteins but the molecular
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mechanisms remain to be fully elucidated. The primary barrier to filtration of large plasma

proteins into the urine is the glomerular filtration barrier (GFB) which consists of three lay-

ers–a fenestrated endothelium, the glomerular basement membrane and the podocyte [6]. The

podocyte is a specialized epithelial cell containing a large cell body and multiple processes

which ramify to form smaller processes. Paracellular passage of large serum proteins is pre-

vented by the slit diaphragm which extends between the foot processes of neighboring podo-

cytes and precludes filtration of proteins ~ 70 kDa or larger. The precise amount of albumin

filtered through the GFB is a contested topic [7, 8]. By even the most conservative estimates, ~

4 g albumin a day transit the GFB [9]. The amount of IgG that traverses the glomerular filtra-

tion barrier is unknown.

Podocytes have been shown to take up albumin in vitro and in vivo [4, 10–12]. Using in

vitro assays, we have previously shown that podocytes endocytose albumin and that most is

transcytosed, with a smaller amount sent to the lysosome for degradation [13]. These findings

have been confirmed in vivo using intravital multiphoton microscopy in rats [11]. In other epi-

thelial cells, including those in the renal proximal tubule, the neonatal Fc receptor (FcRn) is

required to prevent albumin and IgG from entering the degradative pathway, thereby allowing

albumin to be recycled or transcytosed [14–17]. FcRn, has homology to major histocompati-

bility complex class I and binds albumin and IgG at pH 6–6.5 but has minimal affinity for

these proteins at neutral pH [18]. Within the adult kidney, FcRn is expressed in podocytes, vas-

cular endothelial cells and the proximal tubule [19]. The physiologic role of FcRn in albumin

trafficking in podocytes is unknown.

Akilesh et al. demonstrated that the neonatal Fc receptor is required to prevent the intraglo-

merular accumulation of IgG in mice [20]. These studies were performed in global FcRn

knockout (KO) mice which manifest hypoalbuminemia and hypogammaglobulinemia. Plasma

levels of albumin and IgG are 50% [17] and 80–90% [21] lower respectively in global FcRn KO

compared to wild type (WT) mice. Thus podocytes in the global KO are exposed to signifi-

cantly less albumin and IgG than WT mice which might alter trafficking pathways.

Here we use in vitro assays and podocyte-specific FcRn knockout mice to directly examine

the role of FcRn in albumin and IgG trafficking in podocytes. Creation of podocyte-specific

FcRn KO mice allowed for the examination of intraglomerular trafficking of albumin and IgG

in mice that have normal serum levels of these proteins, permitting direct assessment of FcRn

mediated trafficking of albumin and IgG in podocytes.

Materials and methods

Generation of conditionally immortalized WT and FcRn KO podocytes

Podocytes were isolated from wild type or global FcRn KO mice as previously described [22].

Primary podocytes were immortalized using a thermosensitive SV40 T antigen as previously

described [23]. Briefly, media containing viral particles was collected from the viral producer

line plpcx SVtsa58 (kindly provided by Dr. Parmjit Jat) and applied to primary WT or FcRn

KO podocytes. The plpcs SVtsa58 viral producer line encodes the thermolabile tsA58 LT anti-

gen and G418 resistance. Podocytes were selected using G418. After selection, podocytes were

allowed to replicate at 33˚C. To induce differentiation, podocytes were placed at 37˚C for 8–10

days. To verify expression of podocyte markers, podocytes were stained with podocin or WT1.

In vitro trafficking assay

The in vitro albumin and IgG trafficking experiments were performed as previously described

[13]. Briefly, WT or FcRn KO podocytes were loaded with 1.5 mg/ml FITC-human albumin or

1 mg/ml human IgG at 4˚C (which permits binding and inhibits endocytosis) or 37˚C (which
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permits endocytosis). Previous work has shown that mouse FcRn binds both human albumin

and IgG at the concentrations used in these studies [24]. After loading, cells were washed well

and incubated in Ringer solution (122.5 mM NaCl, 5.4 mM KCl, 1.2 mM CaCl2, 0.8 mM

MgCl2, 0.8 mM Na2HPO4, 0.2 mM NaH2PO4, 5.5 mM glucose, and 10 mM HEPES; pH 7.4) at

4˚C or 37˚C in the presence or absence of 20 μM leupeptin (which inhibits lysosomal degrada-

tion). Cells and supernatant were either harvested immediately (t = 0) or at the designated

time points. The supernatant was removed by evaporation under a vacuum and the remaining

albumin or IgG resuspended in 35 μl RIPA buffer. The amount of albumin or IgG in the cellu-

lar or fraction was assessed by western blot analysis.

Western blotting

Podocytes were harvested by scraping into RIPA buffer and protein concentrations were mea-

sured using the BCA assay (Pierce, Thermofisher Scientific, Waltham, MA). Samples were

reduced using 10% β-mercaptoethanol. The Western blot procedure was performed as

described in detail in [13, 25]. Briefly, cell lysates were run on 10% polyacrylamide gels and

transferred onto nitrocellulose membranes (Bio-Rad, Hercules, CA). Subsequent blocking,

antibody, and wash solutions were diluted in PBS-T (phosphate-buffered saline, 1% Triton-X

100). Membranes were blocked in 5% nonfat dry milk in PBS-T for 60 minutes and then incu-

bated with primary antibody. The primary antibodies used were as follows: FITC (1:1,000;

clone ZF2471–1900, Invitrogen; Carlsbad, CA), IgG (1:1000; GW20083F, Sigma-Aldrich,

St. Louis, MO), actin (1:5,000; A1978, Sigma-Aldrich). Blots were washed and then incubated

with horseradish peroxidase-conjugated secondary antibodies (1:10,000 dilution; Jackson

ImmunoResearch, West Grove, PA). The antibody complexes were detected using enhanced

chemiluminescence (Pierce) and Western blot images were captured using a photodocumen-

tation system (UVP; Upland, CA).

PCR

Total RNA was isolated using RNeasy Mini Kit (QIAGEN, Valencia, CA). cDNA was synthe-

sized from total RNA (1 μg) with the High Capacity cDNA Reverse Transcriptase Kit (Invitro-

gen) which uses the random primer scheme. The primers used for FcRn are as follows: sense

50-TGA CCT GTG CTG CTT TCT CCT-30, antisense 50-CAG CAA TGA CCA TGC GTG
GAA-30. Real-time PCR was performed with the use of the AppIied Biosystems Step One Plus

Real-Time PCR System (Life Technologies, Carlsbad, CA). The expression of a target gene in

relation to a reference gene was calculated using a comparative cycle threshold (Ct) method.

Animals

Podocyte specific FcRn knockout mice were obtained by crossing FcRn floxed mice [26] (a

kind gift of Dr. Sally Ward, UT Southwestern) with podocin-Cre mice (Jackson Labs, Bar Har-

bor, Maine). Genotype was determined by PCR. All experimental mice were homozygous for

the floxed FcRn gene. Podocyte specific FcRn knockout mice (FcRn fl/fl;cre/+) were double

transgenic resulting in no FcRn expression in podocytes. Control mice (FcRn fl/fl;+/+) were

single transgenic (no Cre expression) resulting in unchanged FcRn expression in podocytes.

Male mice were used for all experiments. For the aging studies the number of mice is as fol-

lows: 3 month old control or podocyte specific FcRn knockout, n = 3 animals per group; 6

month old control or podocyte specific FcRn knockout, n = 6 animals per group; 12 month

old control or podocyte specific FcRn knockout, n = 6 animals per group. All procedures

involving animals were performed using protocols approved by the Institutional Animal Care

FcRn trafficking of albumin and IgG in the glomerulus
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and Use Committee at the University of Colorado, Denver, protocol number 00085. Animals

were euthanized using pentobarbital.

Urine albumin was measured using the Albuwell assay (Exocell), urine creatinine was mea-

sured using the assay and BUN was measured on an Alpha Wasserman auto analyzer. Serum

albumin was measured by ELISA (Abcam) as was serum IgG (Affymetrix).

For the GFR measurements, urine was collected by placing mice in metabolic cages for 24

hours. Serum and urine creatinine concentrations were analyzed with HPLC-MS/MS (Applied

Biosystems 3200 Qtrap). Creatinine and [2H3] creatinine were detected in multiple reaction

monitoring mode, monitoring the transitions of the m/z from 114 to 44.2 and from 117 to

47.2, respectively [27]. Mice were aged 9–12 months. Four male control and 3 podocyte-spe-

cific FcRn KO mice were used.

Immunofluorescence

Confocal microscopy images were acquired using Zeiss 780 laser-scanning confocal/multipho-

ton-excitation fluorescence microscope with a 34-Channel GaAsP QUASAR Detection Unit

and non-descanned detectors for two-photon fluorescence (Zeiss, Thornwood, NY). The

imaging settings were initially set to maximize the signal-to-noise ratio, avoid saturation and

ensure minimal contributions from tubular autoflluorescence. The settings were kept constant

between different samples. Images were obtained with a Zeiss C-Apochromat 40x/1.2NA Korr

FCS M27 water-immersion lens objective. The illumination for imaging was provided by a

30mW Argon Laser using excitation at 488 nm, HeNe 5mW (633 nm) and 1mW (543 nm).

Image processing was performed using Zeiss ZEN 2012 software. Images were analyzed in

Image J software (NIH, Bethesda, Maryland). Fluorescence intensity of albumin or IgG was

normalized to glomerular area. 20–25 glomeruli were analyzed per mouse.

Preparation of cells for fixed cell images was performed as described in detail in [13]. Podo-

cytes were fixed in 4% paraformaldehyde in phosphate-buffered saline (PBS) with 0.5% Triton

X-100 (20 min; room temp), washed, blocked with 10% normal serum and labeled with pri-

mary antibodies. Primary antibodies were as follows: Podocin (1:200, P0372, Sigma-Aldrich),

WT-1 (1: 200, sc-192, Santa Cruz), FcRn (1: 100, sc-66892, Santa Cruz). Cells were subse-

quently washed and labeled with the appropriate conjugated secondary antibodies (Alexa

Fluor 488, Alexa Fluor 568; Invitrogen). F-actin was concurrently stained with Alexa-Phalloi-

din 633 (Invitrogen).

For the in vivo immunolocalization studies, the kidneys were cleared of blood by perfusion

of phosphate-buffered saline (PBS) and then fixed by perfusion with 4% paraformaldehyde

(Electron Microscopy Sciences; Hatfield, PA) in PBS (pH 7.4). The kidneys were then removed,

immersed in 4% paraformaldehyde for 24hr, infused with 5% (2 hr), 10% (2 hr) and 25% (over-

night) sucrose, frozen in liquid nitrogen and cryosectioned (3 μm). Kidney sections were

blocked (10% normal goat serum in PBS) and incubated overnight at 4˚C with primary anti-

body: IgG (1:250; GW20083F, Sigma-Aldrich), albumin (1:250; ab106582, Abcam, Cambridge,

UK), a-SMA (1:250; 1A4, Sigma-Aldrich). After washing, the sections were incubated (60 min,

room temperature) with appropriate mix of Alexa 488-conjugated goat anti-chicken IgG (1:500;

Invitrogen) and Alexa 633-conjugated phalloidin (1:200; Invitrogen). Sections were then

washed with PBS and mounted in Fluromount-G (Thermo Fisher Scientific, Waltham, MA).

Histology

3 μm sections were cut from paraffin embedded tissue and stained using the periodic acid

Schiff reagent. Analysis of glomerular and mesangial area was performed using NDP.view 2

(Hamamatsu, Hamamatsu City, Japan). 20–30 glomeruli were analyzed per mouse.

FcRn trafficking of albumin and IgG in the glomerulus
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Data analysis

Data are presented as means ± SE. Statistical analysis was performed using t-tests for two

groups and one-way analysis of variance for three or more groups, using Prism software

(GraphPad, San Diego, CA). Tukey’s post hoc test was applied to the ANOVA data. Values

were considered statistically significant when p< 0.05.

Results

Establishing WT and FcRn KO podocyte cell lines

In order to directly investigate the role of FcRn in albumin and IgG trafficking in podocytes,

we isolated podocytes from WT and global FcRn KO mice and created conditionally immor-

talized cell lines by transforming primary podocytes with the thermosensitive SV40 T antigen

[23]. Differentiated WT and FcRn KO podocytes expressed the podocyte markers podocin

and Wilms tumor 1 (WT1) (Fig 1A) and FcRn KO podocytes had minimal FcRn mRNA as

assessed by qPCR (Fig 1B). FcRn knockout did not impair albumin or IgG uptake in podocytes

(Fig 1C).

FcRn KO impairs IgG trafficking but not albumin trafficking in vitro

To examine IgG and albumin trafficking in vitro, differentiated WT and FcRn KO podocytes

were loaded with albumin or IgG at 4˚C (a temperature that allows surface binding of albumin

or IgG but inhibits endocytosis) or 37˚C (permits endocytosis), washed well after loading and

harvested immediately or at the times indicated in Fig 2. Leupeptin, a lysosomal enzyme inhib-

itor, was also used to examine the effects of blocking lysosomal degradation on albumin and

IgG trafficking in WT and FcRn KO podocytes. In WT podocytes loaded with IgG at 37˚C,

there was a decrease in the amount of IgG remaining in the cells after 30 minutes incubation

in Ringer solution (Fig 2A). Inhibition of lysosomal degradation with leupeptin did not signifi-

cantly increase the amount of IgG remaining in WT podocytes after 30 minutes incubation in

Ringer solution, suggesting that monomeric IgG is not trafficked to the lysosome. In contrast

to WT podocytes, the amount of IgG remaining intracellularly in FcRn KO podocytes 30 min-

utes after loading with IgG was not significantly decreased, suggesting impairment in IgG

transcytosis in the KO (Fig 2A).

Albumin trafficking in WT and FcRn KO podocytes was examined by loading podocytes

with FITC-labeled albumin, washing the podocytes very well and then assessing how much

FITC-albumin remained in the podocytes immediately after washing or after 60 minutes in

Ringer solution ± leupeptin to inhibit lysosomal degradation. Podocytes were assessed after 60

min as initial studies demonstrated that albumin is trafficked more slowly than IgG. As shown

in Fig 2B, in both WT and FcRn KO podocytes loaded with FITC-albumin at 37˚C there was a

significant decrease in the amount of albumin remaining in the cells 60 minutes after incuba-

tion in Ringer solution. Thus, knockout of FcRn did not impair albumin trafficking in podo-

cytes in vitro. In both WT and KO podocytes, there was a trend towards increased albumin

accumulation in leupeptin treated cells at t = 60 minutes, 37˚C but this was not significant.

Podocyte-specific FcRn KO mice

In order to determine whether the differential trafficking of albumin and IgG in podocytes

lacking FcRn occurred in vivo, we generated podocyte-specific FcRn KO (FcRn fl/fl;Podocin-

Cre/+) mice by crossing podocin-Cre mice with FcRn floxed mice (Fig 3). FcRn floxed mice

lacking the Cre transgene (FcRn fl/fl;+/+) served as littermate controls. FcRn fl/fl;Podocin-

Cre/+ mice had similar serum levels of albumin and IgG compared to controls (Fig 3A). There

FcRn trafficking of albumin and IgG in the glomerulus
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was no difference in the urinary albumin to creatinine ratio in podocyte-specific FcRn KO

mice versus control at 3, 6 and 12 months (Fig 3B). There was also no difference in estimated

glomerular filtration rate (eGFR) in 9–12 month control or podocyte specific FcRn KO mice

(Fig 3C).

Podocyte-specific KO of FcRn results in IgG accumulation in the

glomerulus

We used immunofluorescence staining to examine whether lack of FcRn in podocytes results

in albumin or IgG accumulation in the glomerulus as mice age. There was no significant differ-

ence in IgG accumulation in the glomeruli of podocyte-specific FcRn KO versus control mice

at 3 months of age (mean IgG fluorescence/glomerular area 3.9 ± 0.5 vs 5.1 ± 0.4, p = NS; Fig

4A). By 6 months of age, podocyte-specific FcRn KO mice had a significant increase in

Fig 1. Characterization of FcRn knockout podocytes. A, Conditionally immortalized wild type (WT) and FcRn knockout (KO) podocytes express the podocyte markers

podocin and Wilms Tumor 1 (WT1). Scale bar 20 μm. B, FcRn KO podocytes have minimal expression of FcRn mRNA. C, There was no significant differences in uptake

of FITC-albumin or IgG in wild type versus FcRn KO podocytes. n = 3 experiments.

https://doi.org/10.1371/journal.pone.0209732.g001
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glomerular IgG compared to controls (5.7 ± 0.3 vs 4.1 ± 0.2, p< 0.05). At 12 months of age

there was a statistically significant increase in the amount of IgG present in the glomerulus in

podocyte-specific FcRn KO compared to controls (9.4 ± 0.5 vs 5.6 ± 0.5, p< 0.0001).

Podocyte-specific KO of FcRn results in minimal intraglomerular albumin

accumulation

When mean albumin intensity per glomerulus was measured, there was no significant differ-

ence in albumin accumulation in the glomeruli of 3 month, 6 month or 12 month old versus

podocyte-specific FcRn KO versus control mice (Fig 4B). Interestingly, there was a significant

time dependent decrease in intraglomerular albumin accumulation with 12 month old control

and podocyte-specific FcRn KO mice exhibiting a significant decrease in albumin accumula-

tion within the glomerulus compared to the respective 3 month old mice (mean albumin fluo-

rescence/glomerular area for 12 month versus 3 month old mice 1.5 ± 0.1 vs 2.5 ± 0.1 for

controls, p< 0.0001 and 1.8 ± 0.1 vs 2.3 ± 0.1 for KO, p< 0.01). The lack of albumin detection

within the glomerulus was not due to an inability to stain for albumin as albumin within the

blood vessels surround the glomerulus was readily detected (Fig 4B).

The final concentration of albumin in the urine has been shown to be dependent on both

passage of albumin through the glomerular filtration barrier and proximal tubular uptake of

Fig 2. FcRn KO impaired albumin but not IgG transcytosis in podocytes in vitro. A, Cultured podocytes from FcRn KO mice demonstrate impaired IgG transcytosis.

There is significantly less monomeric IgG in the cellular fraction in WT podocytes 30 min after loading with IgG, whereas the amount of monomeric IgG in the cellular

fraction in KO podocytes is comparable to that at t = 0. Inhibition of lysosomal degradation does not alter the amount of monomeric IgG present in the cellular fraction

suggesting that IgG is not sent to the lysosome. �, p = 0.0017 compared to the same condition at t = 0; n = 10 experiments. Time (0, 30) is in minutes; L = leupeptin. B, In

contrast, FcRn KO has no effect on albumin transcytosis in cultured podocytes. There is significantly less albumin in the cellular fraction in both WT and KO podocytes 60

minutes after loading with albumin. �, p< 0.0001 compared to the same condition at t = 0; n = 8 experiments. Time (0, 60) is in minutes; L = leupeptin.

https://doi.org/10.1371/journal.pone.0209732.g002
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albumin [7, 10, 13, 28, 29]. Since podocyte specific KO of FcRn did not result in intraglomeru-

lar accumulation of albumin over time and KO mice demonstrated no increase in albuminuria

with age, we examined whether there were differences in the tubular accumulation of albumin

in control and podocyte specific FcRn KO animals. We found that at 3 months of age there

was minimal accumulation of albumin in the tubules of both control and podocyte-specific

FcRn KO mice. By 6 months of age, both control and KO mice had albumin accumulation

within some tubules which was further increased by 12 months of age (Fig 5).

Fig 3. Functional parameters in podocyte-specific FcRn knock-out mice. A, There were no differences in serum albumin or IgG levels between podocyte-specific FcRn

KO (FcRn fl/fl; Pod-Cre/+) and control (FcRn fl/fl;+/+) mice (n = 14 KO and n = 12 control mice). B, Podocyte-specific FcRn KO and control mice had minimal

albuminuria at 3 months and no significant increase in albuminuria with age (n = 3 control and 3 KO mice at 3 months, 6 KO and 6 control mice at 6 months and 6 KO

and 6 control mice at 12 months). C., There was no significant difference in GFR measurements in 9–12 month old control or podocyte-specific FcRn KO mice (n = 4

control and 3 KO mice).

https://doi.org/10.1371/journal.pone.0209732.g003
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Podocyte-specific KO of FcRn leads to increased mesangial:Glomerular

area ratio

By 6 months of age, podocyte-specific FcRn KO mice had a significant decrease in glomerular

area compared to control mice (1703 ± 62.7 μm2 2198 ± 92.9 μm2, p< 0.0001) and a significant

increase in the mesangial to glomerular area (0.41 ± 0.01 vs 0.27 ± 0.01, p< 0.0001; Fig 6A). By

Fig 4. Podocyte-specific FcRn KO resulted in a significant increase in intraglomerular IgG accumulation, but no change in albumin accumulation. A,

Intraglomerular IgG: At 3 months of age, there was no significant difference in IgG accumulation between podocyte specific FcRn KO (fl/fl; cre/+) and control mice (fl/fll;

+/+). (n = 3 mice per group). By 6 months of age there was a statistically significant increase in intraglomerular IgG accumulation in podocyte-specific FcRn KO (fl/fl;cre/

+) compared to controls (fl/fl;+/+) (n = 6 control and 6 KO mice, � p< 0.05). Intraglomerular IgG accumulation was even more significantly increased by 12 months of

age in the podocyte-specific FcRn KO (n = 6 control and 6 KO mice, �� p< 0.0001). Scale bar 20 μm. B, Intraglomerular Albumin: Albumin accumulation in control and

podocyte-specific FcRn KO mouse glomeruli was minimal and was not significantly different between control and KO animals at 3, 6 or 12 months. By 12 months of age,

both control and podocyte-specific FcRn KO mice had significantly less intraglomerular albumin than 3 month old control or KO animals, � p< 0.01, �� p< 0.0001. Scale

bar 20 μm. NS = not significant. Number of mice per group was the same as in A.

https://doi.org/10.1371/journal.pone.0209732.g004
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12 months of age, there was a further significant increase in the mesangial/glomerular area in

the podocyte-specific FcRn KO compared to controls (0.46 ± 0.01 vs 0.35 ± 0.01, p< 0.0001),

with a resultant increase in the glomerular area in the KO to close to that of control (Fig 6B). To

further examine the mesangial expansion seen in the podocyte-specific FcRn KO mice, we

examined the glomerular expression of α-smooth muscle actin (α-SMA), a marker of activated

mesangial cells [30]. We found an increase in glomerular α-SMA actin expression by 3 months

in podocyte-specific FcRn KO versus control which was statistically significant by 6 and 12

Fig 5. Albumin accumulates in control and podocyte-specific FcRn knockout mice with age. Albumin vesicles

(green) are not seen in control or podocyte-specific FcRn knockout at 3 months of age. By 6 months of age, albumin is

seen in tubules in both control and KO mice (arrows) with more prominent vesicles seen by 12 months in both control

and KO animals.

https://doi.org/10.1371/journal.pone.0209732.g005
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month months (α-SMA intensity/glomerular area for 3 month KO vs control 3.2 ± 0.3 vs

1.2 ± 0.1; for 6 month KO vs control 7.5 ± 0.5 vs 4.0 ± 0.3, p< 0.01; for 12 month KO versus

control 16.3 ± 1.0 vs 5.6 ± 0.3, p< 0.0001, Fig 7). While older podocyte specific FcRn KO mice

demonstrated mesangial expansion, there was no significant difference in eGFR in 9–12 month

control or KO mice (Fig 3C).

Discussion

Proteinuria is a common clinical marker of kidney damage and is strongly associated with pro-

gression of kidney disease [2, 31]. The mechanisms underlying renal handling of serum pro-

teins such as albumin and IgG remain to be fully elucidated. Human and animal studies have

shown podocyte vacuolization in proteinuric kidney diseases and albumin and IgG have been

shown to colocalize with podocyte vacuoles [5, 10, 32–37]. Previously, we have shown that cul-

tured podocytes endocytose albumin and that the majority of endocytosed albumin is transcy-

tosed. Here we extend our findings to an in vivo model and also examine podocyte handling of

IgG. To our knowledge, this is the first systematic concurrent examination of podocyte albu-

min and IgG trafficking in podocytes.

In renal proximal tubular cells, FcRn is required for salvaging albumin and IgG from the

degradative pathway and transcytosing these proteins from the apical cell surface to the baso-

lateral side [16]. Others have shown that injection of an anti-FcRn antibody reduces protein-

uria in nephrotic rats [34] and that global FcRn KO mice accumulate IgG within the

glomerulus by 6 months of age [20]. Our study, however, is the first to directly demonstrate

the role of FcRn in albumin and IgG handling in cell culture and in an in vivo model in which

Fig 6. Podocyte-specific FcRn KO resulted in mesangial expansion as mice aged. A, 6 month old podocyte-specific FcRn KO mice had a decrease in mean glomerular

area (��, p< 0.0001) and an increase in mesangial/glomerular area (��, p< 0.0001 compared to controls). Scale bar 20 μm. B, By 12 months of age, mean glomerular area

was similar in podocyte-specific FcRn KO and control mice but the podocyte-specific KO manifested a further increase in glomerular/mesangial area (��, p< 0.0001

compared to controls). Scale bar 20 μm.

https://doi.org/10.1371/journal.pone.0209732.g006
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only podocytes lack FcRn. Our studies demonstrate that albumin and IgG are differentially

handled by podocytes in vitro and in vivo. Lack of FcRn in cultured podocytes did not impair

albumin handling acutely. In vivo, lack of FcRn did not result in significant intraglomerular

accumulation of albumin. Interestingly, mice had significantly less intraglomerular albumin

accumulation at 12 months compared to 3 months in both podocyte-specific FcRn KO animals

and controls. Lack of intraglomerular albumin accumulation in podocyte-specific FcRn KO

mice was not due to technical issues with staining as albumin could be seen in the peritubular

and periglomerular capillaries.

Intravital imaging has provided evidence for passage of albumin through the glomerular fil-

tration barrier [7, 8, 29, 38], although the amount of albumin to transverse the GFB is widely

debated. Our study provides further evidence for passage of albumin through the GFB as both

Fig 7. Podocyte-specific FcRn KO resulted in increased glomerular expression of α-smooth muscle actin. Intraglomerular expression of α-smooth muscle actin (α-

SMA) was significantly increased in 6 month podocyte-specific FcRn KO (fl/fl;Cre/+) mice compared to controls (fl/fl;+/) (�, p< 0.01, n = 6 control and 6 KO mice). The

increase in α-SMA expression was even more pronounced by 12 months of age (��, p< 0.0001, n = 6 control and 6 KO mice). Scale bar: 20 μm.

https://doi.org/10.1371/journal.pone.0209732.g007
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unmanipulated control and podocyte-specific FcRn knockout mice demonstrate albumin

accumulation within renal tubules over time. The precise mechanisms for albumin handling

in podocytes remain to be fully determined. Gianesello et al. have shown that megalin, cubilin,

amionless and the ClCl-5 channel are involved in the uptake of low doses of albumin in cul-

tured human podocytes [12] and we have shown that albumin endocytosis in cultured podo-

cytes is also dependent on caveolin [13]. Schiessl et al. have shown that in vivo, angiotensin II

dependent passage of albumin through the glomerular filtration barrier is dependent on mega-

lin [39]. In addition, we have found that in cultured human podocytes, endocytosed albumin

is degraded primarily in the lysosome [25]. In the proximal tubule, FcRn is required to divert

endocytosed albumin from the lysosmal degradative pathway. In the present study, however,

we find that in vitro, FcRn is not required for albumin transcytosis through the podocyte nor

does lack of FcRn in vivo lead to intraglomerular accumulation of albumin. The lack of albu-

min accumulation in podocytes both in vivo and in vitro suggests that podocytes possess

another non-FcRn dependent pathway for handling any serum albumin that passes through

the GFB.

Knockout of FcRn in podocytes led acutely to intracellular accumulation of IgG in vitro

and accumulation of IgG in vivo which became significant by 6 months of age. Lack of FcRn,

however, did not completely abrogate IgG transcytosis in cultured podocytes as evidenced by

the fact that some IgG appeared in the supernatant in FcRn KO cells after loading podocytes

with IgG and incubating in IgG free solution, suggesting the existence of an additional non-

FcRn dependent pathway for IgG handling.

Akilesh et al. found increased IgG accumulation in the glomeruli of global FcRn KO mice

compared to wild type at 6 months of age [20]. There are several important differences

between our study and that of Akilesh et al. We used podocyte-specific FcRn KO mice which

have normal circulating levels of albumin and IgG whereas Akilesh et al. used global FcRn KO

mice which have serum albumin levels that are 50% lower and serum IgG levels that are 80–

90% lower than those of wild type animals. In addition, we performed systematic quantitation

of albumin and IgG staining in podocyte-specific FcRn KO mice or controls as mice aged

using confocal microscopy whereas Akilesh et al. used epifluorescence microscopy on wild

type or global FcRn KO mice at a single time point (6 months) and did not perform any

quantitation.

An interesting finding of the present study is that podocyte-specific knockout of FcRn leads

to mesangial expansion in the KO mice as they age as well as increased expression of α-smooth

muscle actin within the mesangial regions of the glomerulus, suggesting activation of mesan-

gial cells with intraglomerular IgG accumulation. Upregulation of a-smooth muscle actin has

been linked to progression of fibrosis [40], suggesting that dysregulated serum protein traffick-

ing in podocytes might contribute to CKD progression. The mechanisms underlying how

knockout of a trafficking protein in a podocyte can lead to an expansion of mesangial area and

increased expression of α-SMA remain to be further investigated.

In summary we have directly examined the role of FcRn in albumin and IgG trafficking in

poodcytes and found that FcRn-mediated trafficking of these proteins differs. Podocyte-spe-

cific FcRn knockout impairs glomerular handling of IgG whereas albumin handling is not

affected. Differences in intra podocyte trafficking of these proteins may reflect differences in

their biologic functions. Albumin often serves as a carrier for different molecules such as lipids

whereas IgG is a component of the immune system. Our findings suggest that intra-podocyte

trafficking pathways are complex and that disruption of normal trafficking pathways in podo-

cytes is deleterious.
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