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Abstract

To improve the accuracy of sensor orientation using calibrated aerial im-
ages, this paper proposes an automatic sensor orientation method utilizing
horizontal and vertical constraints on human-engineered structures, address-
ing the limitations faced with sub-optimal number of Ground Control Points
(GCPs) within a scene. Related state-of-the-art methods rely on structured
building edges, and necessitate manual identification of end points. Our
method makes use of line-segments but eliminates the need for these matched
end points, thus eliminating the need for inefficient manual intervention.

To achieve this, a 3D line in object space is represented by the intersec-
tion of two planes going through two camera centers. The normal vector of
each plane can be written as a function of a pair of azimuth and elevation-
s angles. The normal vector of the 3D line can be expressed by the cross
product of these two plane’s normal vectors. Then, we create observation
functions of horizontal and vertical line constraints based on the zero-vector
cross-product and the dot-product of the normal vector of the 3D lines. The
observation functions of the horizontal and vertical lines are then introduced
into a hybrid Bundle Adjustment (BA) method as constraints, including ob-
served image points as well as observed line segment projections. Finally,
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to assess the feasibility and effectiveness of the proposed method, simulated
and real data are tested. The results demonstrate that, in cases with only 3
GCPs, the accuracy of the proposed method utilizing line features extract-
ed automatically, is increased by 50%, compared to a BA using only point
constraints.

Keywords: sensor orientation, line features, bundle adjustment, horizontal
lines, vertical lines.

1. Introduction

One of the central tasks within aerial photogrammetry is simultaneous
determination of a sensor’s Exterior Orientation Parameters (EOPs) and the
3D position of observed points in object space. Knowledge of a sensor’s
orientation can then be used as the basis for dense matching, ortho-photo
generation and so on (Gerke, 2009; James and Robson, 2012; Zhang et al.,
2012; Gülch, 2012), and thus the accuracy of sensor orientation strongly
impacts on that of latter photogrammetric procedures.

To determine the EOPs of only one image, a resection is an effective
method when more than three Ground Control Points (GCPs) and corre-
sponding image points are available. Similarly, a relative orientation method
can be utilized to estimate the EOPs of stereo images (Zhang et al., 2011).
However, in the majority of cases it is necessary to compute the EOPs of
many aerial images distributed on multiple tracks. Bundle Adjustment (BA)
is regarded as a most efficient and economic method to achieve accurate
sensor orientation. For the traditional BA method, many GCPs distributed
evenly across the surveyed area are required to reduce any propagation of
errors across regions. For example, in (Alamus et al., 2006) 42 GCPs were
established in order to provide EOPs for 390 DMC images taken at an aver-
age altitude of 4500 m above the ground level. Establishing such GCPs can
be a labor-intensive and costly process.

To reduce the number of GCPs required for a survey, common prac-
tice is to integrate high-precision and expensive GNSS/IMU sensors into the
photogrammetric camera system. For example, in (Yuan et al., 2009) high-
accuracy precise point positioning (PPP) GNSS data served as an additional
observation in their BA in order to reduce the number of the required GCPs.
With four GCPs situated at the extents of the surveyed region, together with
data from two additional cross flights, the accuracy of the method was still
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found to be slightly inferior to that of a traditional BA with complete GCP
coverage (the accuracy was, however, sufficient for the topographic mapping
requirements for which the approach was intended). In addition, when both
high-precision Inertial Measurement System (IMU) and GPS are present,
a direct sensor orientation can be used to extrapolate from the projections
centers to the ground coordinate system (Yastikli and Jacobsen, 2005).

However, in many cases such as many low-cost or Unmanned Aerial Ve-
hicle (UAV) applications, GPS/IMU instruments are unavailable, or their
precision is poor, rendering a GPS/IMU augmented BA approach infeasi-
ble. Thus, during the past two decades BA methods with additional sensor
data or constraints have been proposed. For example, when multi-temporal
aerial imageries covering the same area were available, previous world point
solutions were input into a combined BA method to achieve more robust
orientation of new aerial images (Yuan et al., 2004). To address the limita-
tion of the traditional BA method applied in weak convergence geometry,
DEM-aided BA method was proposed by (Teo et al., 2010), in which Digital
Elevation Model (DEM) was used as the elevation control. To overcome the
need for GCPs required by the traditional BA method, a dense network of
reference points were extracted by a least squares surface matching and then
used for GCPs (Gneeniss et al., 2013).

In close-range photogrammetric applications, researchers in computer/robotic
communities have proposed many optimization models based on both point
and line features so as to improve the robustness in both textured and struc-
tured environments. (Jeong et al., 2006) used both line and corner features as
landmarks in a new vision-based SLAM, and an extended Kalman filter-based
framework was utilized for localization and reconstruction. (Ramalingam et al.,
2011) developed a general technique that can solve minimal pose estimation
configurations using points and lines by making full use of collinearity and
coplanarity constraints. In order to overcome failure of Perspective-n-Point
(PnP) problem in low texture environment, (Vakhitov et al., 2016) intro-
duced an algebraic line error formulated as linear constraints on the line
endpoints so as to handle points, lines, or a combination of them. (Zuo et al.,
2017) employed orthonormal representation as the minimal parameterization
of modelling line features and then developed robust efficient visual SLAM
system based heterogeneous point and line features, significantly improving
the SLAM solution. (Hofer et al., 2017) utilized both straight line and point
feature to achieve the task of 3D scene abstraction so as to overcome the
high computational complexity associated with subsequent multi-view stere-
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o approaches. (Gomez-Ojeda et al., 2017) developed a stereo visual SLAM
system (PL-SLAM), which combined both points and line segments to work
robustly in a wider variety of scenarios, particularly in low-textured environ-
ments. (Zheng et al., 2018) presented a tightly-coupled filtering-based stereo
VIO system using both points and lines, in which line features were also used
to help improve system robustness when point features cannot be reliably de-
tected. From the experimental results shown in the above published work,
we note that line features used in each optimization model were introduced
mainly for the sake of improving the robustness, especially in low-texture
environments, although modest improvements in accuracy were a welcomed
side effect.

In aerial photogrammetric application, (Gerke, 2011) presented a state-of-
the-art method to integrate linear horizontal, vertical and right-angled scene
structures into the BA method, predicated on the assumption that within
a given scene most “straight lines” are going to be of engineered human
origin, especially within industrial or urban environments. Where objects
are of human-origin, incentives for features to be straight, plumb or level,
are myriad: be it due to the nature of contemporary engineering design and
construction practices, sociological issues around land ownership and city
planning, gravitational loading on structures, or the fundamental geometric
properties of the line in 3D space. His experimental results demonstrated the
number of GCPs necessary can be successfully reduced when including these
assumptions. However, although the scene structures used are ostensibly line
features, the two end-points of each feature need to be identified by hand to
define the constraint. For horizontal lines, the z-components of two end-
points were identical, while the xy-components were the same for vertical
lines. Meanwhile, right-angled constraints were defined by a 900 triangle
consisting of three corners.

We find that the horizontal and vertical scene structures used in (Gerke,
2011) can be expressed by line features without end-points. But, the param-
eterization of line features is more complicated than that of point features,
and the BA method created on basis of line parameterization is also com-
plicated. Fortunately, geometric computation based on line features is well
established within the photogrammetric community. A simple representation
of a 3D line segment is two end-points along the object-space straight line
(Habib et al., 2002). The standard representation used in photogrammetry
is point-orientation definition (Schenk, 2004), in which a fixed point and a
direction vector jointly expressed a line. As a line in 3D has only 4 Degrees
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of Freedom (DoF), the method required two necessary constraints; that the
fixed point was the closest to the Origin, and that sign ambiguity was im-
posed onto the lines direction. Another well-known representation is Plücker
matrices, in the form of a 4×4 skew-symmetric homogenous matrix having 5
dependent ratios (Hartley and Zisserman, 2003). Because the representation
was over-parameterized, one constraint of zero determinate of the matrix was
imposed. (Roberts, 1988) proposed a four-parameter line parameterization
with two orientation parameters and two positional parameters, in which the
positional parameters were defined by the intersection between the line and
XY plane. Recently, (Zhao et al., 2015) had proposed a new monocular S-
LAM algorithm using straight lines, in which a 3D line was defined by two
pairs of azimuth and elevation angles. Here, the normal vector of the plane
passing through a camera center was expressed by an azimuth and elevation
angles. Thus, two planes passing through two corresponding line projections
can define a 3D line by the plane intersection. The results of the method
exploited in SLAM have demonstrated to achieve accurate and robust esti-
mation, thus in this study, the parameterization of (Zhao et al., 2015) is used
in the proposed method.

Thus, to address the limitation of manual work required by (Gerke, 2011)
this study eliminates the need for manual measurements of end-points of
line structures by extrapolating line segments into lines (of infinite length).
Structures in image space are represented using 2D infinite line features, while
corresponding 3D line in object space are represented using two plane normal
vectors. Thus, the normal vector of the structure lines can be calculated by
the cross product of these two planes. When the lines are horizontal, the cross
product between their normal vectors and the Z-axis on a geodetic coordinate
system should be zero. Similarly, for vertical lines, the dot product between
their normal vectors and the Z-axis is also zero. The horizontal and vertical
lines are used for additional observations and input to a hybrid BA model,
which consists of two observed features, namely, image points and 2D line
features.

The rest of this article is organized as follows. In Section 2, we briefly
introduce the representation of a 3D line and the observation function with
which the line in object space can project into line projection in image space.
After that, the horizontal and vertical line feature constraints are defined by
the cross product and dot product between Z-axis and line normal vectors
in the geodetic coordinate system. Section 3 describes a Hybrid BA (HBA)
method, integrating image point features and 2D line features. Section 4
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gives a suggested workflow for the method, including feature extraction and
matching, a free-net BA model as well as the HBA model. Section 5 uses
synthetic and real datasets to evaluate the accuracy of the proposed method.
Section 6 discusses the behavior of the approach with respect to changes in
constraints and observations. Finally, we draw our conclusions in Section 7.

2. Line Features Constraints

2.1. 3D line feature representation

Figure 1: A 3D line feature representation using 4 directional angles, defining two plane
normal vectors.

In Figure 1, a red 3D line, L, projects into two cameras, Ci and Cj,
forming two line projections, namely, li and lj, respectively. ni denotes the
normal vector of the plane, which passes through center of the Ci camera
and the 3D line. Similarly, the normal vector of the plane passing through
the center of the Cj camera is nj. The 3 × 1 plane normal vector can be
computed via

n = RTKT l (1)

where K and R represent a camera calibration matrix and a rotation matrix,
respectively. In addition, a direction vector (normal vector) illustrated in
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Figure 2 can be jointly represented using an azimuth angle (φ) and elevation
(θ) in

n = N(φ, θ) =

sinθcosφsinθsinφ
cosθ

 (2)

A 3D line can be defined by the intersection of two planes. Thus, in this
paper, two normal vectors, including two pairs of azimuth and elevation
angles, are used to represent a 3D line, namely

L = [φi, θi, φj, θj] (3)

Figure 2: A direction vector represented by an azimuth angle (φ) and elevation (θ).

2.2. Observation function of 3D lines

In Figure 3, the red 3D line L also projects onto a third image, Ck,
forming a third line projection, lk. Since a 3D line can be just defined by two
plane normal vectors, no redundant constraints are provided if only two line
projections can be observed. 3D lines with more than two line projections
provide line projection constraints based on the trifocal tensor model. As
stated in Section 2.1, a 3D line is defined by two plane normal vectors with
two pairs of azimuth and elevation angles. The third normal vector of the
plane passing through can be calculated based on the trifocal tensor model
(Hartley and Zisserman, 2003) via

nk = (tj − tk)
Tnjni − (ti − tk)

Tninj (4)
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Figure 3: The line feature constraints from more two images can be established based on
trifocal tensor model.

where ti, tj and tk represent the locations of the ith, jth, and kth cameras,
respectively. Then, the projections of lines can be obtained by an observation
function of

lΨ = K−TRnΨ,Ψ = {i, j, k} (5)

building a relationship between a 3D line and a 2D line segment.
The cost function of the line projections can be defined in Equation (6) to

minimize the Euclidean distances between the predicted 2D line projections
and edge points of the observed 2D line segments.

argmin(xTi l
Ψ)T (xTi l

Ψ) (6)

where a 2D line segment is composed with lots of edge points, namely, l =
{x1, x2, ..., xi, ...xM}. Thus, a 2D line segment can provide 3 observation
equations, namely

g(X) : argmin lΨTΠlΨ (7)

where Π =
∑
xix

T
i is a 3× 3 matrix.

2.3. Horizontal and vertical lines constraints

As explained in Section 2.1, a 3D line, L, can be represented using two
plane normal vectors ( nM and nA), namely

nM =

sinθMcosφM

sinθMsinψM

cosθM

 , nA =

sinθAcosφA

sinθAsinψA

cosθA

 (8)
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Here (φM , θM) and (φA, θA) are two pairs of azimuth and elevation angles
on the M th and Ath cameras, respectively (M and A denote the main and
associate camera, respectively. Two cameras with biggest parallax angle
are selected as the main and associate cameras.). Therefore, the directional
vector of the 3D line can be calculated by the cross product of these two
plane normal vectors, namely,

nL = nM × nA (9)

Meanwhile, the Z-axis vector in a geodetic coordinate system can be written
by

nV =

00
1

 (10)

Therefore, if a 3D line is horizontal, the dot product between the L and
the Z-axis vector should be zero, namely,

h(X) = (nM × nA)
T · nV , h = 0 (11)

For a vertical 3D line, the cross product between L and the Z-axis is a 3× 1
zero vector and computed by

v(X) = (nM × nA)
T × nV , v = 0 (12)

For above two equations, X represent the unknown parameters, including
EOPs and 3D line parameters. In this paper, the zero-vector dot product
and zero-vector cross product are used as the constraint on the horizontal
and vertical lines, and then imposed into the cost function explained below.

3. Hybrid Bundle Adjustment using Point and Line Observations

In this study, both image points and line segments are treated as measured
observations. Our approach, using these two types of features, is thus termed
HBA.

A 3D point in object space, M, projects into a camera forming an image
point where

f =

[
u
w

]
=

[
x/z
y/z

]
(13)
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where xy
z

 = KR(M − t) (14)

Here, u and w denote x- and y-direction locations of an image point respec-
tively. An image point is also represented in the form of a homogenous vector
[x, y, z]T .

Thus, the HBA’s cost function can be expressed by

argmin
X

ρf∥f(X)−Z∥2∑−1
f

+ρg∥g(X)−0∥2∑−1
L
+ρh∥h(X)−0∥2∑−1

h

+ρv∥v(X)−0∥2∑−1
v

(15)

where Z denotes measured image point projections. ρf , ρg, ρh and ρv are
robust Huber cost functions (Zuo et al., 2017).

∑−1
f ,

∑−1
L ,

∑−1
h and

∑−1
v

denote the inverse matrices of the covariance matrices of four observations,
namely, image points, image line segments, horizontal constraint and verti-
cal constraints, respectively. The four weighting matrices are manfully set,
namely,

∑−1
h =

∑−1
v = λ

∑−1
f = λ

∑−1
L . λ is called as weighting ratio

parameters and will be discussed in Section 6. For the cost function, the
unknown parameters include camera pose (C), 3D points (M) and 3D line
(L), namely,

X = [C M L]T (16)

The structure of the HBA’s Jacobian matrix is shown in Figure 4, including
the four kinds of observation, namely; Image Points, Line Segments, Horizon-
tal Constraints and Vertical Constraints. Assume that NP image points (ℵP

Figure 4: Jacobian structure of HBA.

3D points) and NL line segments (ℵL 3D lines) are extracted from ℵC images,
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among which NH and NV 3D lines are horizontal and vertical, respectively.
Although we add horizontal and vertical lines constraints, the unknown pa-
rameters is not changed, and the number of those is 6ℵC + 3ℵP + 4ℵL. The
number of the observations is 2NP + 3NL +NH + 2NV .

When all of the unknown parameters are initialized, we can iteratively
search the descent path to a minimum based on Gauss-Newton or Levenberg-
Marquardt optimization solutions (Sun et al., 2016).

4. Workflow

To implement this approach, we sequentially conduct three main pro-
cedures, shown in Figure 5, namely; Feature Extraction & Matching (1),
Free-net BA Optimization (2), and the HBA method with line constraints
(3).

Figure 5: Workflow of the proposed method, including three main procedures.

4.1. Feature Extraction & Matching

The proposed method includes two types of features; image interest points
and line segments. Thus, the first step of the proposed method must be the
extraction and matching of image points and line segments. In this study,
we extract high-quality image point correspondences using a publicly soft-
ware package (L2-SIFT). The package uses a block-SIFT algorithm to extract
points from large-size aerial images. A red-black data structure is then used
to efficiently achieve matching image points from multiple images (Sun et al.,
2014). Here, a two-level RANSAC algorithm is first used to obtain as many
point matches from two images as possible; an incremental BA algorithm
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is then used to further remove incorrect point matches for additional im-
ages. “CannyLines”, a parameter-free Canny operator to robustly extract
edge map, is used to extract line segments from an input image (Lu et al.,
2015). Where lines are of less than 100 pixels in length, they are excluded due
to unreliability of short line segments. Once image points are matched, we
can accomplish stereo matching of line segments based on point-line invari-
ance (Fan et al., 2012). Finally, we remove line and point outliers based on
their projective residuals, where these are indicative of incorrect line segment
matches.

As a line in 3D has 4 degrees of freedom, (instead of 3 for a point), more
than 4 observations are required to distinguish line outliers. Thus, lines
appearing on less than 3 images are rejected. Remaining line matches are
checked based on the calculated line projection residual error.

Given the ith set of line segment matches Li = {lai , lbi , lci} (where a, b and c
denote the index of cameras), we can take any two line segments (say, lai and
lbi ) to determine an unbounded 3D line say l̂i. We can then project l̂i onto the
rest of the images, obtaining a predicted infinite 2D line, say l̂ci (for camera
c). The observed line segment with the length of n pixels on cth image is
firstly divided into n sampled edge points, namely, lci = {p1i , p2i ..., pni }. Then,
the average normed distance between these edge points of lci and l̂i is

dL =
1

n

∑
∥pji

T
l̂i∥ (17)

When dL is more than a given threshold (1 pixel is set in this paper), the
line matches will be regarded as an outlier and rejected.

4.2. Free-net BA optimization

Matching of line segments, and consequent identification of line outliers
via projective relationships as described in Section 4.1 requires an accurate
relative camera estimation. In addition, accurate initialization of cameras
and object points increase the likelihood of a rapid convergence to a global
minimum during the optimization process described in Section 4.3.

Thus, a free-net BA method, regarded as the golden standard for EOPs,
is used to recover relative camera poses and tie points within an arbitrary
coordinate system. We set this local coordinate system to the first camera
used. First, an incremental BA method, a local optimization solution, is
used to reject incorrect point matches and compute the initial values of the
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camera for the free-net BA. When adding the last image into the incremen-
tal BA model, we consequently update results of the EOPs using a global
optimization solution, namely, BA method. In addition, camera distortion
is firstly eliminated using a point-based camera self-calibration method, and
then calibrated images are processed by the proposed method.

The camera poses optimized by the free-net BA method are termed local
EOPs, expressed by (Ri

L, t
i
L), while the local tie points optimized are rep-

resented by X i
L. Using the locations of GCPs, we can describe the absolute

orientation problem to calculate a relative rotation (r), a relative shift (T )
and a scale (s) between the local coordinate and GCPs’s coordinate. The tie
points and the camera locations in the local coordinate can be transformed
using {

X i
G = srX i

L + T

tiG = srtiL + T
(18)

Here, X i
G and tiG denote tie points and camera translation vectors geo-located

in the geodetic coordinate the same as that of the GCP. Similarly, the rota-
tions of initial cameras (Ri

G) in GCPs’ coordinate in the proposed method
are calculated via

Ri
G = Ri

Lr
−1 (19)

4.3. HBA optimization using line feature constraints

Using the absolute orientation method described in Section 4.2, we trans-
form the EOPs from a local coordinate system onto the geodetic system
describing the GCPs. We can therefore determine the types of 3D line ob-
served by comparing normal vectors of the lines with the Z-axis vector. For
a set of corresponding line segments, we calculate the four parameters of the
3D line resulting from the absolute orientation method. The normal vector
nL = {n1

L, n
2
L, n

3
L} of the 3D line is obtained using four calculated parameters

in Equation (9), and then its elevation angle can be computed via

θ = arctan

√
(n1

L)
2 + (n2

L)
2

n3
L

(20)

We consider an elevation angle ranging between −5o and +5o as vertical,
and impose a corresponding vertical line constraint into the HBA model.
Similarly, lines with absolute elevation angles greater than 85o are constrained
to be horizontal lines in the HBA model. Lines falling outside these criteria
are rejected.
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Table 1: The parameters of the tested data, including a simulated data and a real data.

Parameters Simulated data Village data
Tracks 3 3
Area 100 km × 10 km 2 km × 3.5 km

Height (m) 5,000 1,000
Mapping scale 1:5,000 1:1,000

GSD (m) 0.5 0.1
GTPs 22 12
Images 237 90

Images size (pixels) 7,680×13,824 7,680×13,824
3D points 1,815 6,648

Point projections 14,242 21,734
3D Lines 470 6,749

Line projections 2,674 22,837
Horizontal lines 235 6,731
Vertical lines 235 18

Finally, we input as observations all point features, line segment features,
and horizontal and vertical line constraints into the HBA model. An iter-
ative non-linear solution, such as Gauss-Newton, is utilized to estimate the
optimal parameters, including 3D tie points, 3D unbounded lines as well as
the EOPs in the geodetic coordinate system. The halting criteria of the it-
erative solution used in this study were either that magnitudes of unknown
parameter changes dropped below 10−12 per iteration, or that 20 iterations
were completed.

5. Experiments and results

5.1. Tested data

In order to verify the feasibility and performance of the proposed method,
we have applied the approach to two aerial data sets, one real and one sim-
ulated. The overall parameters of the two data are listed in Table 1.

For the simulated data, we have created an aerial scene of 100 km × 10
km area involving 237 images across 3 tracks. The camera is mounted on
an airborne vehicle working at a height of 5,000 m. The mapping scale is
1:5000, and the Ground Sample Distance (GSD) of one pixel is up to 0.5
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m. A total of 14,242 image points (1,815 tie points) and 2,674 line segments
projections are used for the measured features. Of these, 235 are horizontal
lines and 235 are vertical lines. In addition, 22 Ground Truth Points (GTPs)
are used to define the global coordinate system and assess the accuracies of
sensor orientation methods.

For the real data, 90 aerial images have been captured by a DMC camera,
covering 2.0 km × 3.5 km Shandong province at a mapping scale of 1:1000,
located in the north of China. The nominal focal length of the DMC camera is
120 mm, with a pixel pitch of 12 µm. The images contain significant amounts
of human-engineered features (such as buildings and roads). Textures are
distributed across 3 tracks, and the GSD reaches up to 0.1 m when the
camera has been mounted on an stable Manned Aerial Vehicle (MAV) on the
altitude of 1,000 m. 21,734 image points (6,648 3D tie points) and 22,837
line segments projections (6,749 3D lines) are extracted, among which 6,731
lines are horizontal and the 18 are vertical. Additionally, 12 GTPs measured
by high-precision GCP receivers and a total station are used to orient the
reconstructed model in Beijing-54 coordinate system.

The experimental results of the proposed method were compared with
both a standard BA approach in which we used more than 3 GCPs, and one
in which only 3 GCPs were used. For simplicity, the standard BA methods
using 3, 6 and 14 GCPs are term as “sBA-3”, “sBA-6” and “sBA-14” in this
study.

5.2. Simulated results

The geometry of the simulated data can be seen in Figure 6. Red triangles
and blue quads denote camera locations and terrain points, respectively.

The distribution of 237 camera locations and 470 3D lines in the XY plane
are shown in Figure 7, indicated as blue dots and purple crosses, respectively.
3 GCPs (red triangles) and 21 GTPs (green circles) with no noise are evenly
distributed along the 3 tracks. A total of 470 horizontal and vertical lines,
which are expressed using purple crosses, are distributed within the tracks. A
white Gaussian noise with σ = 0.3 pixel is added to all image tie points and
observed line segments. Note that a cross in Figure 7 contains a horizontal
line as well as a vertical line at the same time.

Next, we analyze the accuracy of the camera locations and Check Points
(CPs) associated with the proposed method by comparing against two stan-
dard BA methods without such line constraints.
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Figure 6: The 3D scene of the simulated data.

Figure 7: Simulated Camera Locations, GCPs, CPs and Lines, as distributed on the XY
plane.
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The residuals of the camera locations as estimated by the three methods
are shown in Figure 8. The results of our method, using 3 GCPs and line
constraints is depicted by a red curve, whilst the results of a standard BA
using both 14 GCPs (sBA-14) and 3 GCPs (sBA-3) without line constraints,
are shown using blue and green curves respectively. Note that the 14 GCPs
used in the standard BA method are distributed on the first and third tracks,
with the remaining points on the second track set to CPs.

From the residuals plot, it would appear that sBA-14 provides a superior
solution to that of both sBA-3 and the proposed method (as might be ex-
pected, given all the additional information available) but our solution does
significantly outperform that of sBA-3.

Figure 8: The residuals of camera locations are recovered by two no-lines-based BA meth-
ods using 14 and only 3 GCPs, as well as the proposed method.

The Root-Mean-Square-Error (RMSE) of the CPs and camera locations
are shown in Figure 9. For the sBA-14 method, the least RMSEs of 0.245 m
and 0.372 m can be obtained when assessing the accuracy of the CPs and the
camera locations. The accuracy of the CPs and the camera locations with
0.603 m and 1.22 m can be obtained by the proposed method, better than
the accuracy of 2.312 m and 3.566 m associated with the BA method using
only 3 GCPs and no lines.

Generally speaking, by applying line constrains on the simulated data,
we see an improvement in accuracy of approximately 70%.

5.3. Village data results

Real world performance was assessed using our “Village” dataset. The
scene is of a built-up rural environment, rich with engineered structures ex-
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Figure 9: RMSEs of CPs and Camera locations recovered by three BA methods.

hibiting the distinct line features to which our HBA approach is suited. Using
the detection and matching algorithm described in Section 4, we extracted
a total of 6,749 3D lines from 90 images. By means of example, we show
the 14th image together with extracted line segments in Figure 10. Each line
segment is represented using a red line together with an index number. We
can see that the majority of extracted segments are horizontal, as might be
expected given the observation geometry. In addition, 5 vertical edges of the
building (668th, 678th, 679th, 685th, and 686th lines) are also detected and
contribute horizontal constraints to the HBA model.

The camera locations, GCPs and CPs of the Village data in XY direction
are depicted in Figure 11, in which blue dots, red triangles and green circles
indicate the cameras, GCPs and CPs, respectively. For the sBA-3 method
and the proposed method, 3 red GTPs serve as the GCPs, used in the BA,
and the remaining 9 GTPs are used as CPs to check the accuracy of the BA
model. In the figure, CPs are indexed and marked with green triangles. For
the sBA-6 method, the first three CPs (1st, 2nd and 3th) are treated as GCPs
together with the points indicated by red triangles, with the remaining 6
points (4th ∼ 9th) used for the assessment of the estimation accuracy.

The extracted 21,734 point projections and 22,837 line projections form
our observations, providing our HBA with 118,746 constraints, as well as
47,480 unknown parameters. The plane and height residuals of the CPs es-
timated by the three methods are shown in Figure 12, in which the blue,
green and red curves describe the results of the sBA-6, sBA-3, and the pro-
posed method respectively. Comparing the last 6 CPs, we can see that the
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Figure 10: The extracted line from the 14th image serve as the constraints of the proposed
method.

Figure 11: Camera locations, GCPs and CPs of the Village data, as distributed on the
XY plane.
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(a) Plane residual. (b) height residual.

Figure 12: RMSEs of CPs are evaluated by two traditional methods and the proposed
method.

Table 2: The RMSEs of the CPs of the Village dataset resulting from sBA-6, sBA-3 and
the proposed method.

Residual (m)
sBA-6 (No Lines

& 6 GCPs)
sBA-3 (No Lines

& 3 GCPs)
Proposed BA (Lines &

3 GCPs)

Max
East 0.1474 0.1358 0.0874
North 0.2026 0.2062 0.0897
Height 0.3545 1.1073 0.6333

RMSE

East 0.0764 0.0887 0.0400
North 0.1190 0.1348 0.0876
Height 0.1877 0.7093 0.3248
Plane 0.1414 0.1614 0.1191
Total 0.2350 0.7274 0.3388

three methods share a similar plane residual, but that the Z accuracy of
the proposed method is better than that of sBA-3 when the same GCPs are
integrated into the BA model.

In addition, we calculate the statistics of RMSEs of the CPs of the Village
data estimated by the three methods in Table 2. With six high-quality
GCPs, sBA-6 without line constraints provides RMSE accuracy of 0.235 m.
However, removing 3 GCPs increases the error to 0.7274 m. Using our HBA
on the same 3 GCPs improves the accuracy to 0.3355 m. An improvement
of the accuracy is again, approximately 50%.

We plot 3D point clouds associated with three methods in Figure 13, in
which green, blue and red dots represent the results of sBA-6, sBA-3 and
the proposed method respectively. To clearly distinguish the differences, we
randomly pick up 10 points in the three arbitrary regions, labeled in black
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boxes, and calculate the residuals of sBA-3 and the proposed method when
comparing against sBA-6. In the three subfigures, the blue curves represents
the residuals of sBA-3, while the red curves are those of the proposed method.
We see that the average residuals of points in sBA-3 are 0.6 m, but those
of the proposed method are only 0.2 m. Thus, we can conclude that adding
horizontal and vertical line constraints can control the error propagation,
providing the similar function of another 3 GCPs used in sBA-6.

Figure 13: 3D points are obtained by two standard methods and the proposed method.

At the same time, we also analyze the accuracies of the estimated camera
locations of the proposed method by comparing with sBA-3. The Z values of
the 90 camera locations estimated by three methods are shown in Figure 14,
in which three subfigures are the Z values of cameras 1-10, 41-50 and 61-70.
It demonstrates that the accuracy of the proposed method is closer to that
of sBA-6, and better than those of sBA-3.

Residuals of point estimates on the plane for each of sBA-3 and the pro-
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Figure 14: The heights of each cameras are estimated by two standard methods and the
proposed method.

posed BA compared to those of sBA-6 are shown in Figure 15. The blue
curve is shows sBA-3, while the red one is the proposed method. It is clear
that the camera locations estimates on the plane estimated by the proposed
method are also closer to those of the sBA-6.

In summary, from the experimental results of the simulated and real data,
we can see that utilization of line constraints can significantly improve the
accuracy of our sensor orientation estimates. Whilst it remains preferable to
simply introduce more GCPs into a survey where possible, this is not always
practicable. In such cases, our method can provide auxiliary observations
and control information to reduce error propagation. Thus, the accuracy of
camera orientation estimates can be improved.

6. Discussion

In this section, we principally discuss the impact different line constraint
and weighting ratio parameters have on estimate performance, using both
the simulated data and real data in Section 5.

For line constraints, we mainly focus on any accuracy improvement ob-
served between general line constraints and horizontal/vertical line constraints.
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Figure 15: The plane residuals of the estimated cameras by calculating the difference with
the estimated plane camera locations of sBA-6.

For the weighting ratio parameter λ, different geometric meanings of the four
components that form the objective function make it difficult to precisely ex-
press the uncertainties of the observations in form of mathematical equation.
Thus, we determine an appropriate parameter for use in Section 5 empirically
below.

Firstly, we show 3 BA results, the first one (“No Lines”) is a BA using only
image point observations. The second, (“General Lines”) is a BA using both
image point and general line segment observations, where the orientation of
the lines are unconstrained. The third is the proposed method representing a
BA with horizontal and vertical line constraints, labelled “Constraint Lines”.

The residuals of the camera locations in the simulated data and the real
data are shown in Figure 16 and Figure 17, respectively. In addition, RMSEs
are depicted in Figure 18. From these above 3 figures, it is clearly seen that
the accuracy of point features can be slightly improved by adding general
lines, however much more significant improvement can be seen by adding
horizontal and vertical line constraints.

We posit that horizontal and vertical lines provide more constraints in
plane and height directions, which reduces the large scale error propagations
of point/line observation, by bounding any error to a small locality. We
suspect that the only-modest improvements in accuracy of the general line
approach over a point only approach is that, although 2D line segments can
provide more information (constraint), the poorer accuracy of the end-points
obtained by 2D line segment extraction results in less accurate observations.
However, the added horizontal and vertical line constraints can significantly
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(a) XY-direction residuals.

(b) Z-direction residuals.

Figure 16: Residuals of 237 simulated camera locations recovered by adding different line
constraints.

reduce the impact this has on the wider adjustment, by bounding any error
to a small locality. Thus, in our method, horizontal and vertical lines are
included as line observations.

Secondly, the weighting ratio parameter, namely horizontal/vertical line
constraints w.r.t. point/line constraint, affecting the weighting matrices used
in the least squares problem are defined in Equation (15). In this study, the
parameter was manually set, and their suggested values are discussed in
the experimental analyses as follows. The simulated and real dataset were
used to discuss the accuracy variation with the parameter. Here, we set the
parameter λ as 10−4, 10−2, 100, 102, 103, 104, 105 and 106. The curves of
camera locations residuals of the simulated data and the real data are shown
in Figure 19 and Figure 20, while RMSE is also shown in Figure 21. We
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(a) XY-direction residuals.

(b) Z-direction residuals.

Figure 17: Residuals of 90 Village camera locations recovered by adding different line
constraints.

Figure 18: RMSE of camera locations of two datasets recovered by adding different line
constraints.
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discover that, for both two datasets, the best accuracy can be obtained using
the parameter 103. When the parameter is larger than 103 or smaller than
102, poorer accuracy is estimated. Thus, 103 is used in the experiments of
this study. We appreciate that this empirical approach is less desirable than
development of a means of relating the underlying units of covariance, but
leave this for further work.

Figure 19: Curves of camera locations residuals of simulated data obtained when different
weighting ratio parameters are inputted.

Figure 20: Curves of camera locations residuals of Village data obtained within different
weighting ratio parameters.

7. Conclusions and Future work

The potential for increasing the accuracy of indirect sensor orientation
estimates has already been verified in the state-of-the-art work of (Gerke,
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Figure 21: RMSE of camera locations of two datasets calculated within different weighting
ratio parameters.

2011), who showed horizontal and vertical building features could successfully
be used as additional constraints. However, some manual work was still
involved to define the constraints, since end-points of structure edges had to
be manually measured, with the horizontal and vertical constraints defined
based on geometric relationship between the two end-points. This study
proposed a new BA method without manual work, in which unbounded line
features replace end-points to define the constraints.

Our proposed hybrid BA method contains two types of observed features,
namely, image points and 2D line segments. A 3D line is parameterized
using normal vectors of two planes, and then normal vectors of the plane
passing through other corresponding line segments are calculated based on
triple tensor model. In the cost functions of our BA method, image point
projections, line segment projections, horizontal normal vectors and vertical
ones are jointly used for the non-linear optimization observations to estimate
camera poses, 3D points and 3D lines.

Using both simulated data and real data, we found that a 50% increase in
accuracy of the sensor orientation can be obtained by the proposed method,
when comparing with a standard BA method (without line feature con-
straints). In addition, by performing a BA with arbitrarily-oriented line
features as well as line-features that were constrained to the horizontal and
vertical, we determined that it was the horizontal and vertical constraints,
and not the additional observations introduced by use of line-features, that
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provided the increase in estimate accuracy.
In this work we have used pre-rectified images as a source for our bundle

adjustment, and thus not included camera distortion parameters as unknown-
s. There are many real-world applications where knowledge of the intrinsic
parameters will not be known a-priori. Therefore our future work will seek
to introduce and test the robustness of this approach with the inclusion of
camera calibration estimation.

Further, notions of the position uncertainty of 2D and 3D points, and the
mechanisms for introducing them into a bundle adjustment, are well estab-
lished in our community. Characterising error mechanisms and uncertainties
surrounding line features when used as constraints in an adjustment is some-
thing not well explored. We feel fruitful research in this area might be made,
with the ultimate aim to parameterize line feature uncertainty’s such that
they can be meaningfully included in our adjustment approach.
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