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Merchant Storage Investment in a Restructured Electricity 
Industry

Afzal S. Siddiqui,a Ramteen Sioshansi,b and Antonio J. Conejoc

abstract

Restructuring and liberalisation of the electricity industry creates opportunities for 
investment in energy storage, which could be undertaken by a profit-maximising 
merchant storage operator. Because such a firm is concerned solely with maxi-
mising its own profit, the resulting storage-investment decision may be socially 
suboptimal (or detrimental). This paper develops a bi-level model of an imper-
fectly competitive electricity market. The modelling framework assumes elec-
tricity-generation and storage-operations decisions at the lower level and storage 
investment at the upper level. Our analytical results demonstrate that a relatively 
high (low) amount of market power in the generation sector leads to low (high) 
storage-capacity investment by the profit-maximising storage operator relative to 
a welfare maximiser. This can result in net social welfare losses with a profit-max-
imising storage operator compared to a no-storage case. Moreover, there are guar-
anteed to be net social welfare losses with a profit-maximising storage operator 
if the generation sector is sufficiently competitive. Using a charge on generation 
ramping between off- and on-peak periods, we induce the profit-maximising stor-
age operator to invest in the same level of storage capacity as the welfare-maxi-
mising firm. Such a ramping charge can increase social welfare above the levels 
that are attained with a welfare-maximising storage operator.
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1. INTRODUCTION

Recent years have seen a renaissance in the development of energy storage. Sioshansi et al. 
(2012) note that this interest in storage is prompted by a number of recent electricity-industry devel-
opments. One is that storage was viewed almost exclusively as an alternative to high-cost peaking 
generation in the 1970s, when much of the pumped hydroelectric capacity that is installed today 
was first built (cf. the work of EPRI (1976) as one example showing this). More recent analyses of 
energy storage, with the work of EPRI-DOE (2003) being a seminal example, recognise that storage 
can provide many services beyond avoiding the cost of installing and operating peaking generation. 
A second major development is the advent of restructured electricity markets, which provide trans-
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parent price signals for many of the services that energy storage can provide. Finally, Denholm et 
al. (2010) note that energy storage is expected to have a growing role in electric power systems as 
the penetration of variable renewable energy grows. As another example of this, von Hirschhausen 
(2014) surveys the potential role of energy storage in achieving the German energy-related policy 
goals underlying its so-called ‘energiewende.’

Although energy storage has the potential to deliver transformative benefits in the pro-
duction and consumption of electricity, it is by no means a panacea. One important issue around 
the impacts of energy storage involves its interactions within an imperfectly competitive market 
environment. This is because charging and discharging storage, and the resulting purchases or sales 
of energy, can affect market prices and the welfare of energy producers (i.e., electricity generators) 
and consumers. Sioshansi et al. (2009) demonstrate the potential for energy storage to mitigate the 
impacts on wholesale electricity prices of limited natural gas supplies after Hurricanes Katrina and 
Rita in 2005. They show that merchant-operated energy storage could have delivered net social 
welfare increases, assuming that the generation sector is perfectly competitive. Sioshansi (2010)
employs a stylised partial-equilibrium model, in which electricity generation is perfectly competi-
tive but wholesale prices respond to storage use, to analyse the welfare impacts of storage use. He 
shows that a merchant storage operator tends to under-use storage compared to welfare-maximising 
use, because it is profit-maximising for the firm to maintain a larger price difference between on- and 
off-peak periods (relative to welfare-maximising use). Using actual data from Germany, Schill and 
Kemfert (2011) compare cases in which storage may be owned by generators, who themselves may 
exert market power (à la a Nash-Cournot equilibrium). They find cases in which having storage in 
the market reduces welfare compared to a no-storage case. Sioshansi (2011) uses data from Texas 
to conduct a welfare analysis of energy storage in a market with high penetrations of wind energy. 
As in the work of Schill and Kemfert (2011), he shows that adding storage to an imperfectly com-
petitive generation market can reduce social welfare compared to the no-storage case. Virasjoki et 
al. (2016) develop an equilibrium model for a Western European test network to study the impact 
of storage on ramping costs and grid congestion in the presence of a realistic level of renewable 
energy. They show that the overall welfare impact of storage is modest, but that it can, nevertheless, 
reduce ramping and congestion costs. This benefit of storage is limited, however, if storage-owning 
producers exert market power. Sioshansi (2014) uses a stylised equilibrium model to consider var-
ious ownership and market structures involving energy storage. He concludes that storage can be 
welfare diminishing (compared to a no-storage case) in the presence of strategic generating firms. 
Surprisingly, he finds that welfare losses that arise with strategic generating firms can be greater if 
storage operations are perfectly competitive. Shahmohammadi et al. (2018b,a) take a bi-level ap-
proach to modelling strategic interactions among storage, conventional generation, and renewable 
units. They model strategic offering behaviour by these units at the upper level, subject to a least-
cost market-clearing model, which determines prices and dispatch, at the lower level.

An important limitation of these welfare analyses of energy storage is that they do not 
endogenise storage investment. In essence, these works all show that if a given amount of energy 
storage is in the system, there may be market structures under which social welfare is increased or 
decreased relative to a no-storage case. They do not, however, show whether investments in storage 
are individually rational in cases in which storage would be welfare-enhancing or -diminishing. 
Indeed, to our knowledge, there are only two works in the extant literature that endogenise storage 
investment within a market-equilibrium framework. However, neither of these works examines the 
welfare impacts of storage investment in an imperfectly competitive market. Nasrolahpour et al. 
(2016) develop a bi-level model with a profit-maximising storage investor at the upper level and 
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market clearing at the lower level. Their model and case study account for uncertain renewable-en-
ergy availability and realistic generation constraints based on data from Alberta. They assume, how-
ever, a perfectly competitive generation sector and do not conduct a welfare analysis or a compari-
son of the merchant’s decisions with those of a welfare-maximising storage operator. Thus, they do 
not model the full range of market imperfections that may yield welfare losses. Dvorkin et al. (2018) 
develop a tri-level model that includes a profit-maximising merchant storage investor. However, 
their focus is on using energy storage for alleviating transmission congestion. Thus, their modelling 
framework cannot unveil the types of market welfare impacts that ours does.

The aim of this work is to fill this important gap in the existing literature. We do this by 
extending the stylised equilibrium model that is proposed by Sioshansi (2014) to explore the wel-
fare implications of storage with an imperfectly competitive generation sector. However, unlike the 
extant literature, we investigate not only market operations but also the storage-investment decision 
itself. Specifically, we posit that storage capacity is owned by either a profit-maximising standalone 
merchant investor or a welfare-maximising storage operator. In either case, the storage operator is 
a leader in the sense that it anticipates the response of the generation sector when making its stor-
age-capacity investment. Moreover, the storage operator is distinct from both the market operator 
and the generation firms. Thus, we use a bi-level modelling framework, in which the lower level 
reflects market operations consisting of storage use and multiple symmetric generators across two 
time periods (off- and on-peak periods, respectively). At the upper level, we have a single storage 
investor, i.e., either the profit-maximising merchant or the welfare maximiser.

We find analytical solutions for the optimal storage capacity adopted by each type of in-
vestor and investigate the welfare effects of each. In particular, we prove that the welfare maximiser 
invests in more storage capacity than the profit-maximising merchant if the generation sector is 
relatively uncompetitive. This is because the welfare maximiser uses a large storage capacity to 
subvert the generators’ strategy of withholding generation by moving energy to the on-peak period. 
Conversely, the profit-maximising merchant is content to profit from the high price differential that 
results from the generators’ behaviour. It is, thus, reluctant to erode its profit by installing a large 
amount of storage capacity. In a more competitive industry, the welfare maximiser reduces its stor-
age capacity to below that of the profit-maximising merchant as there is less welfare loss to mitigate 
from the exercise of market power by generators. With a relatively competitive generation sector 
the profit-maximising merchant maintains a relatively large storage capacity to increase its profit by 
trading a large volume of energy. The larger volume of energy transacted partially compensates for 
the lower price differential between on- and off-peak periods. If the generation sector is sufficiently 
competitive, then the behaviour of the profit-maximising merchant is actually welfare-diminishing 
vis-à-vis having no storage at all. This result runs contrary to those of Sioshansi (2014), who finds 
that there can be no welfare losses with a perfectly competitive generation sector if the storage ca-
pacity is fixed. Thus, our analysis shows that the welfare implications of energy storage is highly 
sensitive to representing the investment decision.

Next, we show that the profit-maximising merchant may be induced to invest in the same 
level of storage capacity as that of the welfare maximiser via a ramping charge on generation. 
The ramping charge essentially penalises generators and the storage operator for having a large 
difference in the off- and on-peak load. This ramping charge can have the effect of mitigating the 
incentives of storage and generation firms to maintain large price differences between the on- and 
off-peak periods. Finally, through numerical examples, we illustrate that storage investment by a 
profit-maximising merchant in the presence of a ramping charge may increase social welfare to 
above the level that is attained by a welfare maximiser. This is because the ramping charge offers 
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another layer of ‘control.’ This added control can mitigate potential welfare losses from inefficient 
storage use and the withholding of capacity by generating firms.

Our work is limited in the potential value of energy storage that it captures, insomuch as we 
focus solely on using energy storage to shift generation loads from on- to off-peak periods. Energy 
storage is recognised today as having many more uses, as outlined by EPRI-DOE (2003). Eyer and 
Corey (2010) provide a comprehensive overview of potential market applications of energy storage 
and guidance on assessing the value of such uses. Eyer et al. (2005) provide a similar overview of 
‘non-market’ applications of storage, including transmission- and distribution-level services. Nourai 
(2007); Nourai et al. (2008) discuss practical experience in using energy storage for distribution 
deferral and related services. Green and Vasilakos (2012); Mauritzen (2013); O’Dwyer and Flynn 
(2015) examine the use of energy storage to aid in integrating variable weather-dependent renew-
able energy resources into power systems.

Because our work neglects such uses of energy storage, it underestimates its potential 
value. The focus of our work is in examining the impacts of market imperfections on suboptimal 
or potentially welfare-diminishing storage investment and use. These types of issues are likely to 
be exacerbated if other potential uses of energy storage are considered. Thus, our work may be 
viewed as formative, insomuch as it lays out a framework for future analysis of the efficiency of 
market-based storage investment for these other applications.

The remainder of the paper is structured as follows. Section 2 lays out the basic assump-
tions underlying the market setting that we examine. Next, Section 3 derives equilibrium storage 
investment and operations and the resulting impacts of storage in a case with constant marginal 
generation costs. Section 4 then proposes a ramping charge as a means of incentivising the wel-
fare-maximising level of storage investment by a profit-maximising merchant. Our main insights 
are illustrated via numerical examples, which are given in Section 5. Section 6 summarises our 
contributions and offers directions for future research. All proofs of the lemmata, propositions, and 
corollary are given in Appendix 7.1, which is posted on the Energy Journal website as supplemen-
tary material. We also present an extension of our model to a case with linear marginal generation 
costs in Appendix 7.2, which is posted on the Energy Journal website as supplementary material. 
Numerical results for this case are given in Section 5.2.

2. MARKET MODEL

We assume that there is a wholesale electricity market that operates across two time peri-
ods, = 1,2t , which correspond to off- and on-peak periods, respectively. As in the work of Sioshansi 
(2014), we do not account for either uncertainty or transmission constraints. The market is assumed 
to consist of 1≥N  symmetric profit-maximising firms with cost functions: 

,( ), = 1, , ,n tc g n N

where generation output, ,n tg , is measured in MW. We assume that these cost functions are non-de-
creasing and convex, i.e., that ,( ) 0′ ≥n tc g  and , ,( ) 0, 0′′ ≥ ∀ ≥n t n tc g g . We also define: 

,
=1

= ,∑
N

G
t n t

n
g g

to be total period-t industry output.
Period-t demand is represented by the inverse demand function: 

( ) = , = 1,2,−t t tP x A Z x t



Merchant Storage Investment in a Restructured Electricity Industry / 133

Copyright © 2019 by the IAEE.  All rights reserved.

where Pt(x) is given in $/MW. Short-term electricity demand is normally relatively price-inelastic. 
We assume that the market includes a set of perfectly competitive (i.e., non-strategic) generators that 
offer their generation at marginal cost. This competitive fringe provides for the demand elasticity in 
the inverse demand functions (i.e., the demand functions can be viewed as residual demand func-
tions that account for the competitive supply). For the demand to be both well defined and well be-
haved, we assume that 1 2, > (0)′A A c  and 1 2, > 0Z Z . Moreover, we assume that the period-2 demand 
function is always greater than the period-1 demand function, which fits the definition of the two pe-
riods being on- and off-peak, respectively. This assumption requires that 2 1>A A  and 2 2 1 1/ > /A Z A Z .

The system is assumed to have a single storage operator, which is either a profit-maxi-
mising merchant or a welfare maximiser. The storage operator must invest in storage capacity if it 
wishes to use storage (i.e., we assume that the system begins with no storage installed). We let k rep-
resent the amount of storage capacity installed, which is measured in MW of discharging capacity. 
Storage investment is assumed to incur a cost of: 

21 ,
2

Ik

where > 0I . The investment cost of energy storage is highly technology- and case-specific. More-
over, many technologies may face resource limits or other bounds on their capacity (e.g., reservoir 
size in a pumped hydroelectric storage plant or limited rare-earth metals for certain types of batter-
ies). Our assumed quadratic investment-cost function reflects such restrictions through an increas-
ing marginal cost. Our findings will be qualitatively similar in the presence of constant marginal 
cost, however.

The storage technology has a fixed roundtrip efficiency of (0,1]∈E . If the storage operator 
invests in storage it can buy /d E MW during period 1 (i.e., the off-peak period), which is charged 
into storage. This allows the storage operator then to discharge d MW during period 2 (i.e., the on-
peak period), which is sold in the wholesale market. The amount of energy charged and discharged 
is restricted by the installed capacity, meaning that we impose the constraint 0 ≤ ≤d k. For nota-
tional convenience, we define = 1/F E and note that 1≥F .

Our assumption of a single storage operator allows us to model a bounding range of ex-
treme opposite market outcomes. A single welfare-maximising storage operator represents the best 
possible outcome in terms of market efficiency. Conversely, a single profit-maximising storage op-
erator may represent the worst-case market outcome, insomuch as this firm would behave as a 
monopolist with regards to storage investment and operation. Because an actual electricity market 
likely has multiple storage operators, the market outcome would likely lie between the two cases 
that we examine.

The market interaction is assumed to consist of two decision stages. The second stage 
consists of the storage operator and generating firms competing with one another by simultaneously 
determining charging and discharging levels and production quantities in the off- and on-peak peri-
ods. In the first stage, the storage operator determines its investment level, fully taking into account 
the subsequent decisions in the operating stage and the impact of its investment decision thereon. 
Given the sequential nature of the market interaction, we seek a subgame-perfect Nash equilibrium. 
Thus, we begin our analysis by first examining the Nash-Cournot equilibrium between the storage 
operator and generating firms in the second decision stage. Once the operating-stage equilibrium is 
determined, we then determine the optimal first-stage investment decision of the storage operator, 
while taking account of its impact on operating-stage decisions.
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Before deriving market equilibria in detail, we first show that the equilibrium production 
decisions of the generating firms in the two periods are symmetric (due to the assumed symmetry of 
the firms). To do this, we note that generating firm n solves the profit-maximisation problem:

,,1 ,2
max

g gn n  
1 1 ,1 ,1 2 2 ,2 ,2( ) ( ) ( ) ( )− − + + −G G

n n n nP g Fd g c g P g d g c g

 s.t.   ,1 ,2, 0,≥n ng g  

to determine its production levels. The inverse demand functions in the two periods take account of 
the effect of generator-production decisions, as well as charging and discharging decisions by the 
storage operator. The following lemma shows that the production levels of the generators in the two 
periods are symmetric in an equilibrium.

Lemma 1  The equilibrium production levels of the symmetric generators in the two 
periods are symmetric (i.e., ,1 ,1=n mg g  and ,2 ,2= , , = 1, ,∀ n mg g n m N). 

Proof.  See Appendix 7.1. 

Because of this symmetry, we hereafter define the equilibrium production levels of the 
generating firms as: 

, = , = 1, , , = 1,2.∀ 

G
t

n t
gg n N t
N

The symmetry assumption is needed to derive closed-form analytic expressions for the generation 
equilibrium (cf. Section 3.1). In some cases a power system may have symmetric generation firms. 
Examples include Brazil, Norway, and Québec, which have electricity sectors that are dominated 
by hydroelectricity, and California, which has natural gas-fired generation setting the margin in 
most hours. Heterogeneity in generation costs would give a merit order that is increasing, which is 
what we investigate with the case of linear marginal costs (cf. Section 5.2 and Appendix 7.2). That 
being said, we do not believe that heterogeneous costs would qualitatively affect our findings in any 
marked way.

3. MARKET EQUILIBRIA WITH CONSTANT MARGINAL GENERATION COSTS

This section derives market equilibria and presents the results of our welfare analysis for 
the case in which the symmetric generating firms have constant marginal costs. Thus, we assume 
that generator costs are given by: 

, ,( ) = , = 1, , ,n t n tc g Bg n N

where > 0B . Note that with constant marginal costs our previous assumption that 1 2, > (0)′A A c  
simplifies to 2 1> >A A B.

We proceed with the analysis in this section by first deriving closed-form expressions 
for the equilibrium production levels of the generating firms. We then determine equilibrium stor-
age-operation and -investment decisions for the profit- and welfare-maximising storage operators, 
respectively. We finally compare the welfare outcomes of the two types of equilibria (i.e., with 
profit- and welfare-maximising storage operators).
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3.1 Generator Equilibrium

With constant marginal generation costs, generator n’s profit-maximisation problem sim-
plifies to:

,,1 ,2
max

g gn n

  1 1 ,1 ,1 2 2 ,2 ,2( ) ( )− − + + −G G
n n n nP g Fd g Bg P g d g Bg

 s.t.   ,1 ,2, 0,≥n ng g  

which has Karush-Kuhn-Tucker (KKT) conditions: 

1 1 1 1 ,1 ,10 ( ) 0≤ − + ⋅ − + + ⊥ ≥G
n nA Z g Fd Z g B g

2 2 2 2 ,2 ,20 ( ) 0.≤ − + ⋅ + + + ⊥ ≥G
n nA Z g d Z g B g

We assume interior solutions to each firm’s profit-maximisation problem (otherwise we have = 0G
tg  

for at least one period, which is an uninteresting case). Combining this assumption with the KKT 
conditions and the known symmetry of the production levels gives: 

1 1
1

1

( ) = ,
1
 + − 
  +  

G A Z Fd BNg d
N Z  

(1)

and: 

2 2
2

2

( ) = ,
1
 − − 
  +  

G A Z d BNg d
N Z  

(2)

as the aggregate production levels of the generators in the two periods. These production levels are 
given as functions of d, because of the impact that storage use has on the inverse demand functions 
in the two periods (and its resultant impact on generation levels).

Next, we substitute (1) and (2) into the periods-1 and -2 inverse demand functions, respec-
tively, to obtain equilibrium prices in each period: 

1 1
1( ) = ,

1
+ +

+
A Z Fd BNp d

N  
(3)

and: 

2 2
2 ( ) = .

1
− +

+
A Z d BNp d

N  
(4)

These two functions, 1( )p d  and 2 ( )p d , should be contrasted with the inverse demand functions, 1( )P x  
and 2 ( )P x , which are defined in Section 2. The inverse demand functions represent what consumers 
are willing to pay in each of the two periods to consume x MW. The two functions, 1( )p d  and 2 ( )p d ,  
represent what the equilibrium market prices will be in each of the two periods if storage charges Fd 
MW in period 1 and discharges d MW in period 2. The functions, 1( )p d  and 2 ( )p d , give the equi-
librium prices taking into account customers’ willingness to pay via the inverse demand functions 
and the equilibrium production decisions of the generators, which are characterised by (1) and (2).
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3.2 Investment and Operating Equilibrium of Profit-Maximising Storage Operator

We analyse the behaviour of a profit-maximising storage operator by first examining its op-
erating decision. Such a storage operator determines the amount of energy to charge and discharge 
in the two periods to maximise its profit. Thus, its operational problem is given by:

max
d

  2 1[ ( ) ( )]⋅ −d p d Fp d

 s.t.  0 ,≤ ≤d k         ( )µ  

where µ is the Lagrange multiplier associated with the storage-capacity constraint. The KKT condi-
tions for the storage-operation problem are: 

2 1 2 10 ( ( ) ( )) ( ) ( ) 0µ′ ′≤ − − − + + ⊥ ≥p d Fp d dp d dFp d d

0 0,µ≤ − ⊥ ≥k d

where the derivatives of the price functions are taken with respect to d. Depending on the parame-
ters, there are three possibilities for the solution, * ( )Πd k : 

* ( ) =Πd k  { 

2 1

2 1

1 2

2 1

1 2

0, if (0) (0) < 0;
(0) (0), if ;

2[ (0) (0)]
(0) (0) , otherwise;

2[ (0) (0)]

−
−

≥
′ ′−

−
′ ′−

p Fp
p Fpk k
Fp p

p Fp
Fp p

 (5)

where we write the operating decision as being a function of the investment level. This is to note 
explicitly that d depends on k.

Equation (5) shows that for a fixed level of storage capacity there are three possible stor-
age-use levels. The optimal choice among these three depends on the relative price difference be-
tween the on- and off-peak periods. The first case of no storage use only arises if the difference 
between on- and off-peak prices is too small for storing energy to be economic (i.e., if the price 
difference is too small to overcome the roundtrip efficiency losses). The third case in (5) is a level of 
storage use that equalises the marginal revenue that is earned from arbitraging the price difference 
between the on- and off-peak periods with the marginal cost that arises from diminishing the price 
difference between the two periods. This third case arises if the equalising storage-use level is less 
than the installed storage capacity. Otherwise, if the equalising storage-use level is greater than the 
installed storage capacity, the second case, in which storage is operated at its capacity, arises.

The three possible storage-use levels that are in (5) apply for a fixed storage-capacity level. 
Once we endogenise the storage-investment decision, which is the next step of our analysis, only the 
second case, in which all of the installed storage capacity is used, is optimal for the storage operator. 
This is because storage investment is costly (cf. Lemma 2). If the market is extended to include more 
than two operating periods, this property ‘relaxes,’ in the sense that the storage-capacity constraint 
is binding in at least one operating period. If it is not, the storage operator can slightly reduce its 
costly storage-investment level without impacting its ability to use storage at its desired level in any 
of the operating periods.
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We finally turn to the investment decision of the profit-maximising storage operator. Such 
a storage operator determines its investment level to maximise its profit from operating storage, less 
its investment cost. Thus, the investment problem is given by:

max
k

  * * * 2
2 1[ ( ( )) ( ( ))] ( ) ( ) / 2Π Π Π− −p d k Fp d k d k Ik

 s.t.  0.≥k  

Following the notation that is used in (5), we write the storage-operating decision as depending 
on the investment level. The period-1 and -2 prices are written in the storage operator’s objective 
function as depending on the operating-stage equilibrium. This is reflected by the prices’ being 
defined as 1( )⋅p  and 2 ( )⋅p , which account for equilibrium production levels of the generating firms 
in characterising period-1 and -2 prices. Similarly, storage use is defined as * ( )Πd k , which reflects 
profit-maximising storage use.

Before proceeding with analysing the storage-investment problem, we first show that the 
optimal storage-investment level is always equal to the amount of storage that is used in the oper-
ating stage.

Lemma 2  Consider a storage-investment problem of the form:

,
max

k d
  2( ) ( ) / 2− d Ik

 s.t.  0 ,≤ ≤d k  

where ( ) d  is an arbitrary function that directly depends only on the storage-use level, d, 
and > 0I . Any optimal solution, * *( , )k d  , must have * *=k d . 

Proof.  See Appendix 7.1. 

From Lemma 2, we know that storage is fully utilised in the operating stage by the storage 
operator (i.e., that * ( ) =Πd k k). This is because our storage-investment problem has the form that is 
given in Lemma 2. Namely, storage investment only directly affects the objective function through 
its direct cost. Otherwise, the operating profit that the storage operator earns depends solely on the 
storage-use decision, d, and not on the storage-investment decision, k. That is to say, we can view 
the storage-investment problem as having the form in Lemma 2 with: 

2 1( ) = [ ( ) ( )] .− d p d Fp d d

Thus, based on Lemma 2, the storage-investment problem can be simplified to: 

2
2 1

0
[ ( ) ( )] ( ) / 2.max

≥
− −

k
p k Fp k k Ik

 
(6)

The on- and off-peak energy prices that are in objective function (6) are written as functions of k (as 
opposed to d) because storage is fully utilised in the operating stage. The simplified storage-invest-
ment problem is a convex quadratic program (due to the linear relationship between ( )tp k  and k). As 
such, the KKT condition, which is: 

2 1 2 10 ( ) ( ) ( ) ( ) 0,′ ′≤ − + + − + ⊥ ≥p k Fp k Ik kp k Fkp k k

is sufficient for a global optimum. We assume an interior solution of the storage-investment prob-
lem. Otherwise, we have = 0k , which is an uninteresting case. Under this assumption, the KKT 
condition gives: 
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* 2 1
2

1 2

( 1)= ,
( 1) 2 2Π

− − ⋅ −
⋅ + + +
A FA BN Fk

I N F Z Z
 (7)

so long as 2 1 ( 1) 0− − ⋅ − ≥A FA BN F , as the optimal investment level for the profit-maximising stor-
age operator. We, hereafter, refer to *

Πk  as the ‘profit maximiser’s storage-investment level.’ The 
requirement that 2 1 ( 1) 0− − ⋅ − ≥A FA BN F  intuitively means that the price difference between the 
on- and off-peak periods has to be sufficiently high to justify the cost of storage investment. If this 
condition is not satisfied, then we have the uninteresting case in which zero storage investment is 
optimal.

3.3 Investment and Operating Equilibrium of Welfare-Maximising Storage Operator

We analyse the case of a welfare-maximising storage operator in the same way that we do a 
profit maximiser. That is, we first examine its operating decisions and then determine its investment 
level. With a welfare-maximising storage operator, the operating decisions of generators are still 
given by (1) and (2). To determine the operating and investment decisions of a welfare-maximising 
storage operator, we first characterise the components of social welfare. Period-t consumer welfare 
is defined as the integral of the difference between customers’ willingness to pay for energy, which 
is given by ( )tP x , and the equilibrium energy price, which is given by ( )tp d . Thus, periods-1 and -2 
consumer welfare, as a function of d, are: 

( )1 2
1 1 1 1 10

1( ) = [ ( ) ( )] = [ ( ) ] ,
2

−
− ⋅ −∫

Gg d FdC GW d P x p d dx Z g d Fd

and: 
( )2 2

2 2 2 2 20

1( ) = [ ( ) ( )] = [ ( ) ] ,
2

+
− ⋅ +∫

Gg d dC GW d P x p d dx Z g d d

respectively. Periods-1 and -2 producer welfare are: 

21
1 1 1 1( ) = ( ) [ ( ) ] = ( ) ,⋅ −G G GZW d g d p d B g d

N

and: 
22

2 2 2 2( ) = ( ) [ ( ) ] = ( ) ,⋅ −G G GZW d g d p d B g d
N

respectively. The welfare of the storage operator is given by: 

[ ] 2
2 1

1( , ) = ( ) ( )
2

⋅ − −SW d k d p d Fp d Ik

{ }* 2 2 2
1 2 2 1

1= ( 1) 2 2 .
1 2Π  ⋅ + + + − − − +

d k I N F Z Z dZ dF Z Ik
N

The storage operator’s welfare is given by two terms. The first, 2 1[ ( ) ( )]⋅ −d p d Fp d , represents the 
intertemporal-arbitrage profit earned, which depends on the operating-stage decision, d. The second, 

2( ) / 2Ik , represents the storage operator’s investment cost, which depends on k.
Using these expressions for the various components of social welfare, the operating prob-

lem for the welfare-maximising storage operator is: 
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1 1 2 2 1 1 2 2[ ( ) (0)] [ ( ) (0)] [ ( ) (0)] [ ( ) (0)]max − + − + − + −C C C C G G G G

d
W d W W d W W d W W d W  (8)

2 1[ ( ) ( )]+ −p d Fp d d

s.t. 0 , ( )µ≤ ≤d k  (9)

where µ is the Lagrange multiplier associated with the upper bound on d. The first four bracketed 
terms in (8) represent the consumer and producer welfare in the two operating periods. The last term 
in (8) represents the operating profit of the storage plant only (i.e., storage-investment cost is not 
accounted for). The reason that storage-investment cost is not included in (8) is that the investment 
cost is sunk in the operating stage, and, as such, does not affect the social welfare engendered by 
storage use.

Next, using the expressions for 1 ( )Gg d  and 2 ( )Gg d , we have: 

1 1
1 2

1

( ) = ,
( 1)

 −′ − − +  
C Z A BW d F N Fd

N Z

2 2
2 2

2

( ) = ,
( 1)

 −′ + +  
C Z A BW d N d

N Z

1 1
1 2

1

2( ) = ,
( 1)

 −′ + +  
G Z N A BW d F Fd

N Z

2 2
2 2

2

2( ) = ,
( 1)

 −′ − − +  
G Z N A BW d d

N Z

and: 
2

* *1 22 2( , ) = ( ) .
1Π Π

+∂
− +

∂ +
S F Z ZW d k k d k I

d N

Taken together, these give us: 

1 1 2 2
2 2

1 2

( , ) = (2 1) (2 1)
( 1) ( 1)

   − −∂
+ + + + −   ∂ + +   

Z A B Z A BW d k F N N Fd N d N
d N Z N Z

 (10)

2
* *1 22 2( ) ,

1Π Π

+
+ − +

+
F Z Zk d k I

N

as the derivative of social welfare with respect to d. We also have that: 

1 2 2 1
2 2

( 1)(0, ) =
( 1) ( 1) 1

− − − − ⋅ −∂
− +

∂ + + +
A B A B A FA BN FW k FN N

d N N N

2
2 1

2

( 1) (1 ) (1 )= .
( 1)

− + ⋅ + − − ⋅ −
+

A FA B N F B F
N

Using these derivatives, the KKT conditions for the welfare maximiser’s operational prob-
lem, which is given by (8) and (9), are: 
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1 1 2 2 1 1
2 2 2

1 2 1

( ) ( ) 2 ( )0
( 1) ( 1) ( 1)

     − − −
≤ − − + − +     + + +     

FZ N A B Z N A B FZ N A BFd d Fd
N Z N Z N Z

( ) ( )2 2 1 12 2
2

1

2 ( )
( 1) 1 1

− + − + −
+ − − + + + + 

A Z d BN A Z Fd BNZ N A B d F
N Z N N

2 1 2 1( ( ) ( )) ( ) ( ) 0µ′ ′− − − + + ⊥ ≥p d Fp d dp d dFp d d

0 0.µ≤ − ⊥ ≥k d

Depending on the parameters, there are three possible solutions, * ( )Wd k : 

* ( ) =Wd k  { 

2 1

2 1
2

1 2

2 1
2

1 2

0, if ( 1)( 2) < 0;
( 1)( 2), if ;

( 1)( 2) , otherwise.

− − ⋅ − +
− − ⋅ − +

≥
+

− − ⋅ − +
+

A FA BN F N
A FA BN F Nk k

F Z Z
A FA BN F N

F Z Z

 (11)

The three storage-use levels that are in (11) have analogous interpretations to those that 
are in (5), which corresponds to a profit-maximising storage operator. Namely, the first case in 
(11) arises if the welfare (as opposed to profit) gains from storage use are insufficient to justify the 
roundtrip efficiency losses that arise from storage use. In such a case, storage is not used. The third 
case uses storage at a level that the marginal net welfare gains are exactly zero (meaning that there 
are no benefits from increasing or decreasing storage use), so long as this storage-use level is below 
the installed capacity. If this level of storage use that achieves zero marginal net welfare gains is 
greater than k, the second case, in which storage is operated at its capacity, arises. As with a prof-
it-maximising storage operator, the three storage-use levels that are in (11) can only arise with an 
exogenously fixed storage-investment level. Once the storage-investment decision is endogenised, 
Lemma 2 gives us the same result as with a profit-maximising storage operator that the optimal 
storage-investment level is exactly equal to the amount of storage that is used in the operating stage.

We finally turn to the welfare-maximiser’s investment decision. The welfare-maximising 
storage operator determines its investment level to maximise social welfare (including the stor-
age-investment cost, which is not sunk at the investment stage). The investment problem is given 
by: 

* * *
1 1 2 2 1 1

0
[ ( ( )) (0)] [ ( ( )) (0)] [ ( ( )) (0)]max

≥
− + − + −C C C C G G

W W W
k

W d k W W d k W W d k W

* * * * 2
2 2 2 1

1[ ( ( )) (0)] [ ( ( )) ( ( ))] ( ) .
2

+ − + − −G G
W W W WW d k W p d k Fp d k d k Ik

This problem follows the notational conventions that are used in formulating the investment prob-
lem of the profit-maximising storage operator. The period-1 and -2 prices are defined as 1( )⋅p  and 

2 ( )⋅p , which account for the equilibrium production levels of the generating firms. Storage use is 
defined as * ( )Wd k , which characterises its use by the welfare-maximising storage operator.

By appealing to Lemma 2, we know that storage is fully utilised in the operating stage (i.e., 
that * ( ) =Wd k k). We further assume an interior solution to the storage-investment problem (i.e., that 

> 0k ). Otherwise, we have an uninteresting case with no storage investment. Under these assump-
tions, the storage-investment problem simplifies to the convex quadratic program: 
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1 1 2 2 1 1[ ( ) (0)] [ ( ) (0)] [ ( ) (0)]max − + − + −C C C C G G

k
W k W W k W W k W

2
2 2 2 1

1[ ( ) (0)] [ ( ) ( )] .
2

+ − + − −G GW k W p k Fp k k Ik

As in the case of a profit-maximising storage operator, the on- and off-peak energy prices are writ-
ten as functions of k (as opposed to d) because of the assumption that storage is fully utilised. The 
necessary and sufficient KKT condition is: 

2 21 2
1 2

(2 1) (2 1) ( 1) 2 2
1 1
+ +  + − ⋅ + + +  + + 

Z N Z NF I N F Z Z k
N N

[ ] * 2
2 1 1 2= ( ) ( 1) 2 2 ,

1 Π  − − ⋅ − − ⋅ + + + +
N A B F A B k I N F Z Z

N
which gives: 

* 2 1
2 2

1 2

( 1)( 2)= ,
( 1)

− − ⋅ − +
⋅ + + +W

A FA BN F Nk
I N F Z Z

 (12)

as the investment level of the welfare-maximising storage operator, so long as A2 – FA1 –  BN ∙ 
( 1)( 2) 0− + ≥F N . We, hereafter, refer to *

Wk  as the ‘welfare maximiser’s storage-investment level.’ 
The requirement that 2 1 ( 1)( 2) 0− − ⋅ − + ≥A FA BN F N  means that the price difference between the 
on- and off-peak periods has to be sufficiently high to provide enough welfare gains from storage 
use to justify its investment cost. If this condition is not satisfied, then we have the uninteresting 
case of no storage investment.

3.4 Welfare Analysis

We conclude our analysis of the case with constant marginal generation costs by examin-
ing the welfare implications of having a profit- or welfare-maximising storage operator. We begin 
with the following proposition, which gives conditions under which the storage-investment levels 
of the two types of storage operators differ. The proposition also shows that infinitesimal changes 
in the profit maximiser’s storage-investment level toward the welfare maximiser’s level are always 
welfare-enhancing.

Proposition 1  The welfare maximiser’s storage-investment level is larger (smaller) than 
the profit maximiser’s storage-investment level if the number of generating firms is less 
(greater) than N, which is the unique positive root of the characteristic quadratic: 

2 2
2 1 1 2( ) = ( ) ( 1) 2( ) ( 1) − ⋅ ⋅ − + ⋅ − + + ⋅ − Q N N I A FA IB F F Z Z B F

2 2
2 1 1 2 2 1 1 2( ) ( 1) 3( ) ( 1) ( )( ). − ⋅ ⋅ − + ⋅ − + + ⋅ − + − + N I A FA IB F F Z Z B F A FA F Z Z

Moreover, starting from the profit maximiser’s storage-investment level, an infinitesimal 
increase (decrease) in storage capacity is always welfare-enhancing for <N N ( >N N). 

Proof.  See Appendix 7.1. 

Proposition 1 shows that the welfare maximiser’s storage-investment level is greater than 
the profit maximiser’s storage-investment level only if the number of generating firms is relatively 
small. Intuitively, with a small number of generators, the ability of the generating firms to exercise 
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market power (especially during the on-peak period) results in high deadweight losses. As such, 
adding storage increases social welfare by allowing greater supply during the on-peak period. Thus, 
the welfare-maximising storage operator invests in more storage than a profit maximiser does for a 
small number of firms. The situation is reversed for a large number of generators. The second part of 
the proposition shows that infinitesimal changes to the profit maximiser’s storage-investment level 
are always welfare-enhancing. Whether additions or subtractions of storage capacity are welfare-en-
hancing depends on whether the profit maximiser invests in more or less storage capacity than the 
welfare maximiser does (i.e., whether the number of firms is less or greater than N ).

The following proposition demonstrates that the threshold number of firms, N , decreases 
with both the investment- and generation-cost parameters. That is to say, the welfare maximiser’s 
storage-investment level being higher than the profit maximiser’s storage-investment level is less 
likely as the marginal cost of either storage investment or generation increase.

Proposition 2  N is strictly decreasing in the storage-investment-cost parameter, I, and 
is strictly decreasing in the generation-cost parameter, B. 

Proof.  See Appendix 7.1. 

The following proposition examines the impacts of the market structure on the price dif-
ferential between the on- and peak periods. It shows that greater storage use or a greater number of 
generating firms decrease the price difference.

Proposition 3  The equilibrium price differential, 2 1( ) ( )−p d Fp d , decreases with stor-
age use. It also decreases with more generating firms. 

Proof.  See Appendix 7.1. 

Intuitively, the number of generating firms affects the price differential because the exer-
cise of market power increases off- and on-peak equilibrium prices. However, the effect is more 
pronounced during the on-peak period. Thus, fewer generating firms increases the price differential. 
Conversely, the reduction of market power, viz., by having more firms, decreases the price differ-
ential.

Building on this result, the following proposition shows that both the welfare and profit 
maximiser’s storage-investment levels decrease with the number of generating firms. Intuitively, 
having more generating firms makes the generation equilibrium more competitive, which reduces 
the price differential between on- and off-peak periods. As such, a profit-maximising storage opera-
tor has less incentive to invest in storage, because there is a smaller price difference to arbitrage. A 
welfare-maximising storage operator has less incentive to invest in storage with more firms, because 
the more competitive generation equilibrium implies that there are less welfare gains from the use 
of storage.

Proposition 4  The profit maximiser’s and welfare maximiser’s storage-investment levels 
decrease with more generating firms. 

Proof.  See Appendix 7.1. 

Finally, the following proposition and corollary show that there are instances, with a rel-
atively competitive generation sector, in which the profit maximiser’s storage-investment level re-
sults in lower social welfare than having no storage at all. This result challenges the conventional 
wisdom that energy storage is always welfare enhancing. Intuitively, the result arises because ‘too 
much’ storage is adopted by the profit-maximising storage operator when N is greater than a critical 
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threshold, N . The profit maximiser adopts too much storage in such cases because the highly com-
petitive generation sector results in relatively small price differentials between the on- and off-peak 
periods. As such, the storage operator invests in more capacity to store (and sell) a greater volume 
of energy to partially overcome the smaller price margin.

Proposition 5  The total social welfare that is achieved by the profit maximiser’s 
storage-investment level, *( )ΠW k , is strictly greater (less) than the social welfare that is 
achieved without any storage investment, (0)W , so long as the number of firms is less 
(greater) than some critical threshold, N. 

Proof.  See Appendix 7.1. 

Corollary 1  If the social welfare that is engendered by the profit maximiser’s stor-
age-investment level, *( )ΠW k , is strictly less than the social welfare that is obtained with-
out storage, (0)W , then we have that < N N. 

Proof.  See Appendix 7.1. 

Proposition 5 should be contrasted with the welfare analysis that is conducted by Sioshansi 
(2014). Sioshansi (2014) shows that if the amount of storage is exogenously fixed, there can be no 
welfare losses arising from storage use with a perfectly competitive generation sector. Proposition 
5, conversely, shows that if the storage-investment decision is endogenised, there are guaranteed to 
be welfare losses arising from storage investment and use by a profit maximiser, so long as the gen-
eration sector is sufficiently competitive. This shows the sensitivity of the welfare impacts of energy 
storage to endogenously capturing the investment decision.

4. INCENTIVISATION OF STORAGE INVESTMENT WITH A RAMPING CHARGE

Our analysis in Section 3 demonstrates that the profit and welfare maximisers’ storage-in-
vestment levels typically differ. One instrument for driving the profit maximiser toward a more 
economically efficient level of storage investment is through a ramping charge on generation. To 
understand the premise of this mechanism, for a low (high) number of generating firms, ‘too little’ 
(‘too much’) storage capacity is installed by the profit maximiser. In other words, the price differen-
tial between the on- and off-peak periods is ‘too high’ (‘too low’) for a relatively small (large) num-
ber of generators. Consequently, with a profit-maximising storage operator, generators are ramping 
their production more (less) than occurs with a welfare maximiser.

Hence, we examine the impacts of imposing an exogenous ramping charge, which we de-
note R and which is measured in $/MW, on generation. This ramping charge can take on a negative 
value, representing a ramping payment to generators. The concept of a ramping charge is implicitly 
used in many wholesale electricity markets today. Zhao et al. (2017) demonstrate that if ramping 
constraints are binding in a unit commitment- or economic dispatch-based market model that rep-
resents such constraints, the resulting Lagrange multipliers implicitly incorporate the cost of the 
ramping constraints in determining market-clearing prices. Thus, our proposed solution builds off 
of market-design principles that are in-use today.

To analyse the impact of the ramping charge, we again begin by first examining the produc-
tion decisions of the generators. Generator n’s profit-maximisation problem is given by: 

,1 ,2
1 1 ,1 ,1 2 2 ,2 ,2 ,2 ,1, 0

max ( ) ( ) ( ).
≥

− − + + − − ⋅ −
n n

G G
n n n n n ng g

P g Fd g Bg P g d g Bg R g g
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Note that this problem can be written as: 

,1 ,2
1 1 ,1 ,1 2 2 ,2 ,2, 0

max ( ) ( ) ( ) ( ) ,
≥

− − − + + − +
n n

G G
n n n ng g

P g Fd g B R g P g d g B R g

meaning that the ramping charge can be viewed as changing the (still symmetric) marginal produc-
tion costs of the generators in the two periods. As such, we can appeal to Lemma 1 to conclude that 
with the ramping charge the production equilibrium is still symmetric. Assuming an interior solution 
to the generators’ profit-maximisation problems, we have aggregate production levels: 

1 1
1

1

ˆ ( , ) = ,
1
 + − + 
  +  

G A Z Fd B RNg d R
N Z  

(13)

and: 
2 2

2
2

ˆ ( , ) = ,
1
 − − − 
  +  

G A Z d B RNg d R
N Z  

(14)

in the two periods. We write these production levels as depending on both d and R, to explicitly note 
the effect of the ramping charge. Comparing these two expressions with (1) and (2), respectively, 
shows that the ramping charge has the desired impact on generators’ production decisions. Namely, 
a positive value of R disincentivises having a large difference between on- and off-peak production 
levels. As such, R increases off-peak production while contemporaneously decreasing on-peak pro-
duction. A negative value of R has the reversed effect on the two production levels.

Substituting (13) and (14) into the period-1 and -2 inverse demand functions, respectively, 
gives equilibrium prices: 

1 1
1

( )ˆ ( , ) = ,
1

+ + ⋅ −
+

A Z Fd N B Rp d R
N

and: 
2 2

2
( )ˆ ( , ) = ,

1
− + ⋅ +

+
A Z d N B Rp d R

N

in the two periods. Comparing these price functions to (3) and (4), respectively, shows the impact of 
the changed production levels (that are caused by the ramping charge) on off- and on-peak energy 
prices. As noted before, a positive value of R yields greater off-peak and reduced on-peak produc-
tion. This, in turn, results in lower off-peak and higher on-peak prices (in order for demand to equal 
supply). This higher price differential between the on- and off-peak periods gives greater incentives 
for storage investment. A negative value of R has the opposite effect.

We next model the operating decisions of the profit-maximising storage operator as solving 
the problem: 

2 1
[0, ]

ˆ ˆ[ ( , ) ( , )],max
∈

⋅ −
d k

d p d R Fp d R

which yields the optimal solution: 

d̂Π(k,R) = {
2 1

2 1

1 2

2 1

1 2
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ˆ ˆ(0, ) (0, ) , otherwise.
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The three storage-use levels that are given in this equation have analogous interpretations to those 
that are in (5), but taking account of the effect of the ramping charge on the prices in the two periods. 
As in the case of the profit-maximising storage operator in the absence of a ramping charge, only the 
second case, in which all of the installed storage capacity is used, arises once the storage-investment 
decision is endogenised.

We finally have the profit maximiser’s storage-investment problem: 

2
2 1

0

ˆ ˆ ˆˆ ˆ[ ( ( , ), ) ( ( , ), )] ( , ) ( ) / 2.max Π Π Π
≥

− −
k

p d k R R Fp d k R R d k R Ik

From Lemma 2, we know that ˆ ( , ) =Πd k R k. We further assume that > 0k , which would otherwise 
yield an uninteresting case, which gives: 

2 1
2

1 2

( 1) ( 1)ˆ ( ) = ,
( 1) 2 2Π

− − ⋅ − + ⋅ +
⋅ + + +

A FA BN F RN Fk R
I N F Z Z  

(15)

as the optimal storage-investment level of the profit maximiser, so long as A2 – FA1 – BN ∙
( 1) ( 1) 0− + ⋅ + ≥F RN F . As stated above, a positive ramping charge increases the price differential 
between the on- and off-peak periods. This increased price difference incentivises greater storage in-
vestment by the profit-maximising storage operator. This impact of the ramping charge is conveyed 
through the final term in the numerator of (15).

We can finally determine the value for the ramping charge that results in the profit and 
welfare maximisers’ storage-investment levels being equal to one another by solving *ˆ ( ) =Π Wk R k ,  
which gives: 

* 2 1
2 2

1 2

( )[ ( 1)] ( 1)[ ( 1) (2 3) ]= ,
( 1)[ ( 1) ]

ζ ζ− − ⋅ + − ⋅ − ⋅ + + +
⋅ + ⋅ + + +

A FA IN N BN F I N NR
N F I N F Z Z

where 2
1 2=ζ +F Z Z . We, hereafter, refer to *R  as the ‘equalising ramping charge.’ An interesting 

property of a ramping charge, and the equalising ramping charge in particular, is that it may induce 
greater or less social welfare than that achieved by the welfare-maximising storage operator in the 
absence of a ramping charge. This is because the ramping charge provides an added layer of control 
that can both affect the level of storage investment and the production decisions of the generating 
firms. As such, it could be used to correct productive-efficiency losses from the exercise of market 
power by the generating firms as well as suboptimal storage-investment and -use decisions made by 
a profit-maximising storage operator.

In fact, one could optimise the ramping charge in a tri-level model. In such an analysis 
the upper-most level represents a welfare-maximising social planner, which chooses R. The mid-
dle-level problem represents the investment decision of the storage operator (which could be profit- 
or welfare-maximising) while the lower-level problem gives the equilibrium between generators 
and the storage operator in the two operating periods. If such an exercise is conducted, it should be 
noted that the ramping charge that we examine is one of many possible approaches to address any 
welfare losses that arise from the exercise of market power by a storage operator or the generators. 
Market monitoring, forced divestiture, or incentivising entry are among other means of addressing 
market failures. As such, a ramping charge is at most a heuristic approach to addressing market 
inefficiencies. We do not conduct such a tri-level modelling exercise. Rather, we simply find a value 
of R that modifies the amount of storage that is built. As such, we may arrive at equilibria that either 
increase or decrease social welfare compared to the equilibrium that is attained with a welfare-max-
imising storage operator. The difference in social welfare between the case of a profit-maximising 
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storage operator with a ramping charge and the case of a welfare-maximising storage operator with-
out one is given by: 

* *2 2
* 1 1 2 2

2 2
1 2 1 2

1 1ˆ( ( )) ( ) = .
2( 1) ( 1)Π

   + − − −
− − + + −   + +   

W W
W

A FZ k B A Z k BN R RNW k R W k
N Z Z N Z Z

As a benchmark, and assuming that all installed storage capacity is fully utilised, we can 
examine the problem of a hypothetical social planner that controls all generation and storage deci-
sions without the need for ramping charges: 

1 2

2 2 21 2
1 1 1 2 2 2 1 2, , 0

1max ( ) ( ) ( ) ( ) ( ) .
2 2 2≥

⋅ − − − + ⋅ + − + − ⋅ + −
g g k

Z ZA g Fk g Fk A g k g k B g g Ik

This social planner’s problem has the optimal solution: 

1
1

1

= ,−P A Bg
Z

2
2

2

= ,−P A Bg
Z

and: 

= 0.Pk  (16)

 Indeed, neither storage nor ramping charges are needed in this ideal situation, because it is possible 
for the social planner to control generation exactly to match the marginal benefit from consumption 
to marginal cost in each time period. Hence, unlike the central-planning result with a linear mar-
ginal cost (cf. Appendix 7.2), any storage use or investment is non-optimal with a constant marginal 
generation cost under centralised planning. Because = 0Pk  is the optimal amount of storage in this 
central-planning benchmark, we define the notation, 1 2( , , )P P PW g g k , to give the total social welfare 
in the central-planning case.

5. NUMERICAL EXAMPLES

 We present the results of two sets of numerical examples here. First, we summarise results 
for an example with constant marginal generation costs, which is the case that is examined in Sec-
tions 3 and 4. Then we provide numerical results for a case in which the marginal generation costs 
are linear. Table 1 summarises the parameter values that are used in our numerical case studies. The 
parameter, K, is related to the slope of the generators’ marginal cost for the cases that are analysed 
in Section 5.2 and Appendix 7.2, in which the generation firms are assumed to have linear marginal 
costs. We allow N to range between 1 and 10, to show the impacts of different levels of market com-
petitiveness on storage-investment decisions.

5.1 Results with Constant Marginal Generation Costs

 Figure 1 illustrates the characteristic polynomial (cf. Proposition 1) for the parameter val-
ues that are given in Table 1 and for two other sets of values for I and B. For the base parameter val-
ues that are given in Table 1, the two roots of the characteristic polynomial are –2.577 and 1.555 (cf. 
the solid blue curve in Figure 1), meaning that with a single generating firm the profit maximiser’s 
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storage-investment level is less than the welfare maximiser’s storage-investment level. Otherwise, 
with two or more generating firms, the profit maximiser’s storage-investment level is higher.

The two other curves in Figure 1 illustrate the results of Proposition 2. First, the dashed 
green curve shows that if the storage-investment cost increases, the threshold value, N , decreases. 
The red dotted curve shows that decreasing the marginal generation cost has the reversed effect on 
N . Figure 2 further illustrates Proposition 1 by showing the profit and welfare maximisers’ stor-
age-investment levels, assuming the base parameter values that are given in Table 1. It shows that 
with more than two generating firms the profit-maximising storage operator over-invests relative to 
the welfare maximiser. Figure 2 also illustrates Proposition 4, in that the profit and welfare maxi-
misers’ storage-investment levels are decreasing in the number of firms.

Figure 3 shows equilibrium on- and off-peak prices with different numbers of generating 
firms and with different storage-investment decisions. As expected, a case with no storage yields the 
greatest price differences. This is because there is no opportunity to substitute low-price electricity 
that is generated off-peak for high-price on-peak electricity. The equilibrium price differentials with 
profit-maximising and welfare-maximising storage operators vary, but follow the intuition behind 
Proposition 1. If ≤N N , Proposition 1 tells us that the welfare-maximising storage operator invests 

Table 1: Data for Numerical Examples
Parameter Definition Value

A1 Intercept of off-peak inverse demand function 200
A2 Intercept of on-peak inverse demand function 400
Z1 Slope of off-peak inverse demand function   10
Z2 Slope of on-peak inverse demand function   10
B Marginal generation cost   20
K Slope coefficient of marginal generation cost (for linear-marginal cost)   1
I Investment-cost coefficient of energy storage   5
E Roundtrip efficiency of energy storage   0.95

Figure 1: �Characteristic polynomial, Q(N), for different values of I and B with constant 
marginal generation costs.
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in more storage capacity than the profit maximiser does. This is because with few generating firms 
there are relatively large deadweight losses from their exercise of market power. We know from 
Lemma 2 that all of the storage is utilised. This implies that the price differential will be smaller 
with a welfare-maximising storage operator compared to a profit maximiser. If there are more than 

Figure 2: �Profit and welfare maximisers’ storage-investment levels with constant marginal 
generation costs.

Figure 3: �Energy prices under different storage-investment equilibria with constant marginal 
generation costs.
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N  generating firms, Proposition 1 implies that the relative investment levels are reversed, meaning 
that there is a smaller price differential with a profit-maximising storage operator.

Figure 4 shows the change in social welfare that is engendered by the profit and welfare 
maximisers’ storage-investment levels relative to the no-storage case. It also shows the change in 
social welfare from the equilibrium that arises with a profit-maximising storage operator in the pres-
ence of a ramping charge that is set at *R , the equalising ramping charge. The figure finally shows 
the change in social welfare under centralised planning.

The figure demonstrates that the social welfare that is engendered by the profit maximiser’s 
storage-investment level is always lower than that arising from the welfare maximiser’s storage-in-
vestment level, which is keeping with Proposition 1. The figure also shows that the profit maxi-
miser’s storage-investment level can result in lower social welfare compared to having no storage at 
all. There are social welfare losses arising from the profit maximiser’s storage-investment level with 
four or more generating firms. This is keeping with Proposition 5. Indeed, from the proof of Propo-
sition 5 we can compute the threshold number of firms, = 3.389N , above which the social welfare 
that is achieved with the profit maximiser’s storage-investment level is less than the no-storage case.

Figure 4 also shows that the social welfare that arises from the welfare maximiser’s stor-
age-investment level asymptotes to the social welfare in the no-storage case as →+∞N  ( i.e., the 
social-welfare difference approaches zero). This is because as →+∞N  the generation sector be-
comes increasingly competitive, meaning that the off- and on-peak prices approach the marginal 
generation cost, B. As that happens, storage becomes less necessary for mitigating the exercise 
of market power. Indeed, as discussed at the end of Section 4 and shown in (16), if the generation 
sector is perfectly competitive (which is functionally equivalent to the assumption of centralised 
planning), zero storage investment is welfare-maximising.

Figure 4 also illustrates the welfare effects of the ramping charge. Proposition 1 does not 
hold with the ramping charge (i.e., the welfare impact of increasing storage capacity from the level 

Figure 4: �Change in social welfare relative to no-storage case under different storage-
investment equilibria with constant marginal generation costs.
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that is chosen by the profit-maximising storage operator is ambiguous). This is exactly because the 
incentives of the generating firms and the investment level of the profit-maximising storage operator 
are affected by the ramping charge. As discussed in Section 4, it is possible for an equilibrium with 
a profit-maximising storage operator in the presence of a ramping charge to yield greater social 
welfare than that attained by a welfare-maximising storage operator in the absence of a ramping 
charge. This is indeed observed with 2≥N  firms in the figure. This result is because the ramping 
charge impacts generation quantities and the storage-investment decision. Indeed, for relatively low 
levels of market power, the improvement in social welfare occurs because the inclusion of the ramp-
ing charge is able to mimic the generation levels of the benchmark central-planning framework, in 
which no storage is deployed. Hence, with a large number of firms, both consumer and producer 
welfare increase in an equilibrium with a profit-maximising storage operator and a ramping charge 
vis-à-vis a welfare-maximising storage operator, while storage profit decreases and ramping pay-
ments are made to generators.

Figure 5 shows *R , the equalising ramping charge. The figure shows that for a relatively 
low number of firms, i.e., in the presence of substantial market power in the generation sector, the 
ramping charge is positive. As discussed in Section 4, this positive ramping charge increases off-
peak and decreases on-peak generation to reduce ramping. This increases the difference between 
on- and off-peak prices, which induces the profit-maximising storage operator to increase storage 
capacity (so it can sell a greater volume of energy and exploit the larger price difference).

The result is reversed with a relatively large number of firms, i.e., with less market power. 
In this case the profit maximiser’s storage-investment level is above the welfare maximiser’s. To 
correct this distorted investment, a negative ramping charge is imposed, i.e., generators are paid 
to ramp. As a result, off-peak generation decreases while on-peak generation increases, which de-
creases the difference between on- and off-peak prices. This decreased price difference reduces the 
ability of the profit-maximising storage operator to conduct intertemporal arbitrage and its incen-
tives for storage investment.

Figure 5: Equalising ramping charge with constant marginal generation costs.
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Figure 5 also illustrates the qualitative effects of higher generation or storage costs on the 
equalising ramping charge. The figure shows that increasing either cost reduces *R . Intuitively, this 
is because more costly investment or operational decisions are more onerous to alter through the 
ramping charge.

5.2 Results with Linear Marginal Generation Costs

 It is not possible to conduct the types of comparative statics for the case of linear marginal 
generation costs that we do for constant marginal generation costs in Section 3. We, instead, provide 
some numerical examples here (with the derivations of the underlying analytical expressions given 
in Appendix 7.2). These examples demonstrate that many of the qualitative properties of the equi-
libria that we have with constant marginal generation costs carry over to the linear case. We assume 
here that generator costs are given by: 

2
, , ,

1( ) = , = 1, , .
2

+ n t n t n tc g Bg NKg n N

We choose this parametric form for the generators’ cost functions (specifically, the inclusion of N 
in the quadratic term) to ensure that the sectoral perfectly competitive supply is equal regardless of 
the number of firms. Without such an adjustment, the industry’s marginal cost function would vary 
with N. Such a framework would not allow for easy comparison of market outcomes across different 
levels of market power in the generation sector. We use the same base case parameter values that are 
summarised in Table 1, assuming that = 1K .

Figure 6 summarises the profit and welfare maximisers’ storage-investment levels with 
linear marginal generation costs. It also provides the optimal level of storage investment in a bench-
mark case in which there is a social planner that owns and operates all of the storage and generation 

Figure 6: �Profit and welfare maximisers’ storage-investment levels and optimal storage-
investment level under centralised planning with linear marginal generation costs.



152 / The Energy Journal

All rights reserved. Copyright © 2019 by the IAEE.

capacity. We retain the same notational conventions that are used in Sections 3–4 in denoting equi-
librium investment levels under different market structures. The figure illustrates that Propositions 1 
and 4 carry over from the case of constant marginal generation costs to linear costs. Specifically, we 
see that the welfare maximiser’s storage-investment level is greater than the profit maximiser’s for 
a small number of generating firms. The profit and welfare maximisers’ storage-investment levels 
both decrease with the number of generating firms. Eventually, once there are a sufficient number 
of generating firms in the market, the profit-maximising storage operator overinvests in storage 
relative to the level of the welfare-maximising storage operator. One difference between the cases 
of constant and linear marginal generation costs is that some level of storage investment is optimal 
with centralised planning. This is because even if the generation sector is perfectly competitive, 
some price difference remains between the on- and off-peak periods. So long as the investment cost 
of storage is not unduly high or its roundtrip efficiency too low, it is socially beneficial to use some 
storage capacity to reduce this price difference.

Finally, Figure 7 shows the change in social welfare between different equilibrium stor-
age-investment levels and a no-storage case. The figure shows that investing in some amount of 
storage capacity is always welfare enhancing vis-à-vis having no storage capacity. On the other 
hand, Proposition 5 and the second part of Proposition 1 do not hold (i.e., we do not observe cases 
with social welfare losses arising from the profit maximiser’s storage-investment level). Indeed, 
with a sufficiently high linear marginal generation cost, there is no possibility of having ‘too much’ 
storage relative to the no-storage case.

6. DISCUSSION AND CONCLUSIONS

 The past few years have seen growing interest in energy storage. This is driven by rec-
ognition of many applications for which storage can be used, the advent of restructured electricity 

Figure 7: �Change in social welfare under different storage-investment equilibria relative to 
no-storage case with linear marginal generation costs
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markets, and the growing role of storage for integrating renewable energy sources. As such, energy 
storage is being championed by policymakers and is increasingly being installed by utilities, stand-
alone merchant firms, and individual electricity customers. Despite this, the academic literature 
cautions that storage is not without its tradeoffs, insomuch as it could lead to reduced social welfare 
and increased CO2 emissions under certain market-structure conditions.

We contribute to the literature studying the welfare impacts of energy storage by exam-
ining the equilibrium storage-investment level under a variety of market structures. Our analytical 
results demonstrate that a welfare-maximising storage operator invests in more storage capacity 
than a profit-maximising firm only if the generation sector is relatively imperfectly competitive. In 
fact, if the generation sector is sufficiently competitive, then a profit-maximising storage investor 
may degrade social welfare compared to a no-storage case. This finding stands in contrast to that of 
Sioshansi (2014), who shows that storage cannot yield welfare losses with a perfectly competitive 
generation sector if only the operation (but not the investment) decision is endogenised. We find that 
a ramping charge on generation can induce the profit-maximising storage operator to invest in the 
welfare maximiser’s storage-investment level. Indeed, we find that the equalising ramping charge 
may yield social welfare that is greater than that attained by the welfare maximiser’s storage-invest-
ment level, because the ramping charge can mitigate market failures in a relatively uncompetitive 
generation sector. Our numerical examples illustrate these principles and show that many of them 
carry over to a more realistic case with linear marginal generation costs. Hence, the policy insights 
that stem from our analysis can be used by regulatory bodies to align better the incentives of a prof-
it-maximising storage operator with those of society.

By taking a stylised approach, we are able to unpick methodically the countervailing in-
centives driving storage investment, e.g., the tradeoff between profit margin and trading volume. 
Nevertheless, in doing so, we omit some pertinent real-world details that may lead to a compre-
hensive comparison of storage investment and use under different market structures in future work. 
For example, uncertainty (pertaining either to load or renewable generation) could make the default 
storage operations of charging during off-peak periods and discharging during on-peak periods more 
risky, thereby necessitating a stochastic- or robust-optimisation model. Likewise, storage siting is 
important in alleviating transmission congestion. Towards this end, our two-period model could be 
enhanced by incorporating two nodes and a potentially congested transmission line. Finally, a com-
plete tri-level model, e.g., following the structure that is employed by Murphy and Smeers (2010), 
with the policymaker at the upper-most level, storage investment at the middle level, and market 
operations at the lowest level could be implemented to identify optimal policies (e.g., ramping 
charges) and their interaction with storage adoption in the presence of imperfect competition.

Our analysis also neglects some market-structure realities. We assume a single storage op-
erator, constant marginal generation costs, and two operating periods to enable deriving closed-form 
expressions characterising market equilibria. Relaxing any of these assumptions may significantly 
complicate the derivations or may necessitate the use of computational techniques. Future work 
may apply such techniques (e.g., a case with multiple storage operators would render an equilibrium 
problem subject to equilibrium constraints) to numerical examples and discern results from there. 
Sioshansi (2014) does analyse a case of storage owned by multiple generating firms and concludes 
that there can be mixed welfare outcomes, depending on the underlying market structure. Some of 
these results may extend to a case in which storage-investment decisions are endogenised. Our mod-
elling framework could also be extended, if a purely computational approach is taken, to account for 
other services being provided by storage. Sioshansi (2011); Green and Vasilakos (2012); Mauritzen 



154 / The Energy Journal

All rights reserved. Copyright © 2019 by the IAEE.

(2013) examine the use of storage for wind integration. Such an analysis may reveal further sources 
of market inefficiencies.

Our analysis also abstracts away the question of who the welfare-maximising storage oper-
ator is. In theory, this could be a case in which storage is built and operated by the market operator 
or independent system operator (ISO). However, this may be untenable in practice because a mar-
ket operator or ISO that owns storage would no longer be an independent third party (which is an 
important concept underlying wholesale electricity-market restructuring). Sioshansi (2017) notes 
that a merchant energy storage developer proposed having an ISO directly control the dispatch of 
a pumped hydroelectric storage plant to mitigate transmission congestion. A contentious issue that 
was raised in the ensuing case surrounded the impact that the proposal would have on the market 
independence of the ISO. In the end, the Federal Energy Regulatory Commission (FERC) denied 
the request, as it determined that the impact on the independence of the ISO outweighed any co-or-
dination benefit of having the ISO dispatch the plant.1

Our analysis has important real-world policy and regulatory implications. Our finding that 
profit-maximising storage investment is not welfare maximising means that policymakers and regu-
lators should be cognisant of what impacts energy storage can have within particular markets. These 
impacts will be dependent on the relative competitiveness of the generation sector. The fact that a 
sufficiently competitive generation sector can result in net welfare losses (compared to a no-storage 
case) should be cause for concern. This can be especially true as energy storage is first adopted 
within a market, because there may be one dominant storage operator, as we assume in our model-
ling framework. Regulatory decision making with respect to the market efficiency impacts of energy 
storage has been somewhat muted to date. For instance, in its recent order on integrating energy 
storage into electricity markets (cf. Electric Storage Participation in Markets Operated by Regional 
Transmission Organizations and Independent System Operators, Order Number 841), the FERC 
largely sidesteps the issue of the market impacts of energy storage. Instead, it implicitly assumes 
that energy storage does not have deleterious effects on market efficiency. Our findings suggest that 
such a view may be incorrect, depending on other factors related to the underlying structure of the 
market.
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7. APPENDIX

7.1 Proofs of Lemmata, Propositions, and Corollary

Proof of Lemma 1  We show that ,1 ,1= , , = 1, ,∀ n mg g n m N . The result that  
,2 ,2= , , = 1, ,∀ n mg g n m N  can be shown analogously and is excluded for brevity. Because of the 

assumed properties of the inverse demand and cost functions, each generator’s profit-maximisation 
problem is convex. Thus, the Karush-Kuhn-Tucker (KKT) conditions for ,1ng , which are: 

1 1 1 1 ,1 ,1 ,1( ) ( ) = 0µ′− + ⋅ − + + −G
n n nA Z g Fd Z g c g  (17)

,1 ,10 0,µ≤ ⊥ ≥n ng  (18)

where ,1µn  is the Lagrange multiplier associated with generator n’s period-1 non-negativity con-
straint, are sufficient for a global optimum.

Subtracting condition (17) for generator m from that for generator =n m gives: 

1 ,1 ,1 ,1 ,1 ,1 ,1( ) ( ) ( ) = 0.µ µ′ ′⋅ − + − − +n m n m n mZ g g c g c g  (19)

Suppose for contradiction that the production levels are not symmetric and without loss of general-
ity that the generators are labelled such that ,1 ,1>n mg g . From condition (18) we must have ,1 = 0µn . 
Thus, (19) becomes: 

1 ,1 ,1 ,1 ,1 ,1( ) ( ) ( ) = 0,µ′ ′⋅ − + − +n m n m mZ g g c g c g

which cannot hold because by assumption we have that 1 ,1 ,1( ) > 0⋅ −n mZ g g , by convexity of the cost 
function we have that ,1 ,1( ) ( ) 0′ ′− ≥n mc g c g , and the KKT conditions require that ,1 0µ ≥m . This gives 
the desired contradiction, which proves the result. 

Proof of Lemma 2  Assume for contradiction that * *( , )k d  is an optimal solution in which * *=k d .  
By the inequality constraint in the problem, we must have * *>k d . Consider the alternate solution 

*( , )k d , with: 

* *

= .
2
+



k dk

This solution is clearly feasible in the problem constraint. Moreover, we have that: 

* *2 * 2 2 *2[ ( ) ( ) / 2] [ ( ) ( ) / 2] = ( ) / 2 < 0,− − − ⋅ −  d Ik d Ik I k k

because by construction *<k k , meaning that *( , )k d  gives a smaller objective-function value than 
* *( , )k d , contradicting the optimality of * *( , )k d . 

Proof of Proposition 1  To show the first part of the proposition, we compare the expressions in (7) 
and (12), which gives that for *

Wk  to be greater than or equal to *
Πk  we must have: 

2 1 2 1
2 2 2

1 2 1 2

( 1)( 2) ( 1) ,
( 1) ( 1) 2 2

− − ⋅ − + − − ⋅ −
≥

⋅ + + + ⋅ + + +
A FA BN F N A FA BN F

I N F Z Z I N F Z Z

which simplifies to: 
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2 2
2 1 1 2( ) = ( ) ( 1) 2( ) ( 1) − ⋅ ⋅ − + ⋅ − + + ⋅ − Q N N I A FA IB F F Z Z B F

2 2
2 1 1 2 2 1 1 2( ) ( 1) 3( ) ( 1) ( )( ) 0. − ⋅ ⋅ − + ⋅ − + + ⋅ − + − + ≥ N I A FA IB F F Z Z B F A FA F Z Z

Because the coefficients of N  and 2N  in ( )Q N  are both negative, we have ( ) < 0,′′ ∀Q N N  
and (0) < 0′Q . Thus, ( )Q N  is a downward-facing parabola. Furthermore, because (0) > 0Q , ( )Q N  
has a unique positive root, N . Hence, for <N N , we have * *

Π≥Wk k , otherwise, * *< ΠWk k .
To show the second part of the proposition, we note that from (10) we have that: 

1 1 2 2
2 2

1 2

( ) = (2 1) (2 1)
( 1) ( 1)

   − −′ + + + + −   + +   

Z A B Z A BW k F N N Fk N k N
N Z N Z

 (20)

2
* 1 2( 1) 2 2( ) .

1Π

⋅ + + +
+ −

+
I N F Z Zk k

N

Substituting *
Πk  into (20) gives: 

* * *1 1 2 2
2 2

1 2

( ) = (2 1) (2 1)
( 1) ( 1)Π Π Π

   − −′ + + + + −   + +   

Z A B Z A BW k F N N Fk N k N
N Z N Z

2 2
1 2

( )= .
( 1) [ ( 1) 2( )]+ ⋅ + + +

Q N
N I N F Z Z

The denominator, 2 2
1 2( 1) [ ( 1) 2( )]+ ⋅ + + +N I N F Z Z , is strictly positive. Thus, the only way for 

*( )Π′W k  to be positive (negative) is if <N N  ( >N N ). 

Proof of Proposition 2  N  is defined as the root of the characteristic polynomial (cf. Proposition 1): 

( ) = 0.Q N

To show the first part of the proposition, we totally differentiate this defining equation with respect 
to I, which gives: 

( ) ( ) = 0.∂ ∂ ∂
+

∂ ∂ ∂
NQ N Q N

I N I

This can be rewritten as: 

( )
= .

( )

∂
∂ ∂−

∂∂
∂

Q NN I
I Q N

N

 (21)

We have: 

( )[ ]2
2 1( ) = ( 1) < 0,∂

− + − + ⋅ −
∂

Q N N N A FA B F
I

and we also know (cf. the proof of Proposition 1) that ( ) < 0,′′ ∀Q N N  and (0) < 0′Q , meaning that: 

( ) < 0.∂
∂

Q N
N
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Thus, from (21) we have that: 

< 0,∂
∂
N
I

which is the desired result.
To show the second part of the proposition, we totally differentiate ( ) = 0Q N  with respect 

to B, which gives: 

( ) ( ) = 0,∂ ∂ ∂
+

∂ ∂ ∂
NQ N Q N

B N B

and which can be rewritten as: 

( )
= .

( )

∂
∂ ∂−

∂∂
∂

Q NN B
B Q N

N

We have that: 

( ) ( )2
1 2( ) = ( 1) 1 ( 1) (2 3) < 0,∂

− ⋅ − ⋅ + − + − ⋅ +
∂

Q N I F N N F Z Z F N N
B

and we know that: 

( ) < 0.∂
∂

Q N
N

Thus, we have: 

< 0,∂
∂
N
B

which is the desired result. 

Proof of Proposition 3  To show the impact of storage use on the price differential, we note that 
from (3) and (4) we have: 

2
2 1 2 1

2 1
( 1) ( )( ) ( ) = .

1
− − ⋅ − − ⋅ +

−
+

A FA BN F d Z F Zp d Fp d
N

 (22)

The coefficient on d: 
2

2 1 ,
1

+
−

+
Z F Z

N

is negative, meaning that the price differential decreases with storage use.
To show the impact of the number of generating firms on the price differential, we partially 

differentiate (22) with respect to N , which gives: 

2 1
2 1

[ ( ) ( ) ( 1)]( ( ) ( )) = .
1

− + ⋅ −∂
− −

∂ +
p d Fp d B Fp d Fp d

N N

This partial derivative is negative. Thus, it follows that the price differential decreases with N . 
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Proof of Proposition 4  To, first, show the effect of the number of generating firms on the profit 
maximiser’s storage-investment level, we partially differentiate (7) with respect to N , which gives: 

* 2 1
2 2 2

1 2 1 2

[ ( 1)] ( 1)= .
( ( 1) 2 2 ) ( 1) 2 2Π

− − ⋅ −∂ ⋅ −
− −

∂ ⋅ + + + ⋅ + + +
A FA BN F I B Fk

N I N F Z Z I N F Z Z

This partial derivative is strictly negative. Thus, it follows that the profit maximiser’s storage-invest-
ment level decreases with the number of generating firms.

Next, to show the impact of the number of firms on the welfare maximiser’s storage-invest-
ment level, we partially differentiate (12) with respect to N , giving: 

* 2 1
2 2 2 2 2

1 2 1 2

2[ ( 1)( 2)] ( 1) 2 ( 1)( 1)= .
( ( 1) ) ( 1)

− − ⋅ − + ⋅ +∂ ⋅ − +
− −

∂ ⋅ + + + ⋅ + + +W
A FA BN F N I N B F Nk

N I N F Z Z I N F Z Z

This partial derivative is strictly negative, from which it follows that the welfare maximiser’s stor-
age-investment level decreases with the number of generating firms. 

Proof of Proposition 5  We have: 

* 31( ) (0) = ( 1)
2Π − − ⋅ −W k W IB F N

( )2 2
1 2 2 1

12 ( 1) ( ) 2 ( 1)
2

  − ⋅ − + + ⋅ − + −    
B F F Z Z I A FA B F N

( ) ( )2 2
1 2 2 1 1 2

3 7 1( 1) ( ) 3 = ( ).
2 2 2

    − ⋅ − + + + − + +      
B F I F Z Z N A FA I F Z Z S N

( )S N  is a cubic polynomial, which is strictly positive and decreasing at = 0N . ( )S N , therefore, has 
exactly one positive root and either zero or two negative roots. Let N  denote the positive root of 

( )S N . N  is the critical number of firms, above which no storage yields higher social welfare than 
the profit maximiser’s storage-investment level. 

Proof of Corollary 1  *( ) < (0)ΠW k W  means that an infinitesimal increase in the storage-invest-
ment level from *

Πk  decreases social welfare. From Proposition 1, we know that this outcome is 
possible only when the number of firms is greater than N . Hence, we must have that >N N  when 

*( ) < (0)ΠW k W . 

7.2 Market Equilibria with Linear Marginal Generation Costs

Here, we investigate how storage investment is affected by linear marginal generation 
costs. All modelling assumptions are the same as those that are in Sections 2–4, with the exception 
of the generation cost. We now assume that generation costs have the quadratic form: 

2
, , ,

1( ) = , = 1, , ,
2

+ n t n t n tc g Bg NKg n N

where , > 0B K .
We proceed with this analysis in four steps. We first derive the equilibrium production 

levels of the generating firms in the two operating periods. Next, we determine equilibrium stor-
age-operation and -investment decisions for the profit- and welfare-maximising storage operators, 
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respectively. Finally, we find the benchmark generation and storage-related decisions if all of them 
are made by a single social planner.

7.2.1 Generator Equilibrium

With linear marginal generation costs, generator n’s profit-maximisation problem becomes: 

,1 ,2

2 2
1 1 ,1 ,1 ,1 2 2 ,2 ,2 ,2, 0

1 1max ( ) ( ) .
2 2≥

− − − + + − −
n n

G G
n n n n n ng g

P g Fd g Bg NKg P g d g Bg NKg

Because this is a convex optimisation problem, its KKT conditions, which are: 

1 1 1 1 ,1 ,1 ,10 ( ) 0,≤ − + ⋅ − + + + ⊥ ≥G
n n nA Z g Fd Z g B NKg g

and: 

2 2 2 2 ,2 ,2 ,20 ( ) 0,≤ − + ⋅ + + + + ⊥ ≥G
n n nA Z g d Z g B NKg g

are sufficient for a global optimum. We can appeal to Lemma 1 to conclude that the equilibrium 
production levels of the generators are symmetric in each of the two periods. Adding the assump-
tion that we have an interior solution (otherwise we have = 0G

tg  in at least one period, which is an 
uninteresting case), gives: 

1 1
1

1

( )( ) = ,⋅ + −G N A Z Fd Bg d
L

 (23)

and: 

2 2
2

2

( )( ) = ,⋅ − −G N A Z d Bg d
L

 (24)

as the aggregate production levels of the generators in the two periods, where we define: 

1 1= ( 1) ,⋅ + +L Z N NK

and: 

2 2= ( 1) .⋅ + +L Z N NK

We finally substitute these aggregate production levels into the period-1 and-2 inverse 
demand function to obtain equilibrium prices: 

1 1 1 1
1

1

( )( )( ) = ,+ + +A Z Fd Z NK Z BNp d
L

 (25)

and: 

2 2 2 2
2

2

( )( )( ) = ,− + +A Z d Z NK Z BNp d
L

 (26)

in the two periods.
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7.2.2 Investment and Operating Equilibrium of Profit-Maximising Storage Operator

We analyse the behaviour of a profit-maximising storage operator by first examining its 
operating decisions, which are governed by the profit-maximisation problem:

max
d

 
2 1[ ( ) ( )]⋅ −d p d Fp d

 s.t.  0 ,≤ ≤d k               ( )µ  

where µ is the Lagrange multiplier associated with the storage-capacity constraint and we use (25) 
and (26) as the prices in the two periods. Because 1( )p d  and 2 ( )p d  depend on d linearly, this prof-
it-maximisation is convex and its KKT conditions are necessary and sufficient for a global optimum. 
This storage operator’s problem has the KKT conditions: 

2 1 2 10 ( ( ) ( )) ( ) ( ) 0,µ′ ′≤ − − − + + ⊥ ≥p d Fp d dp d dFp d d

0 0,µ≤ − ⊥ ≥k d

which yields the same solution that is given in (5), with the caveat that we use the price functions 
that are given by (25) and (26), as opposed to (3) and (4).

Turning to the storage operator’s investment decision, this is determined by the profit-max-
imisation problem: 

2
2 1[ ( ) ( )] ( ) / 2,max − −

k
p k Fp k k Ik

where by Lemma 2 we know that storage is fully utilised in the operating stage, meaning that =d k. 
We further assume that we have an interior solution, in which storage capacity is built (i.e., that the 
non-negativity constraint, 0≥k , is non-binding). The sufficient KKT condition for this problem is: 

2 1 2 1( ) ( ) ( ) ( ) = 0.′ ′− + + − +p k Fp k Ik kp k Fkp k

Substituting (25) and (26), respectively, for the periods-1 and -2 price functions and solving gives: 

* 1 2 2 2 2 1 1 1
2

1 2 1 2 1 2 1 2

[ ( ) ] [ ( ) ]= ,
2 ( ) 2 ( )Π

⋅ ⋅ + + − ⋅ ⋅ + +
+ ⋅ + + ⋅ +

L A Z NK Z BN FL A Z NK Z BNk
IL L F Z L Z NK Z L Z NK

 (27)

as the profit maximiser’s storage-investment level.

7.2.3 Investment and Operating Equilibrium of Welfare-Maximising Storage Operator

We analyse the case of a welfare-maximising storage operator in the same way that we do 
in the case of constant marginal generation costs. We begin by first deriving expressions for peri-
ods-1 and -2 consumer welfare, which are: 

( )1 2
1 1 1 1 10

1( ) = [ ( ) ( )] = [ ( ) ] ,
2

−
− ⋅ −∫

Gg k FkC GW k P x p k dx Z g k Fk

and: 
( )2 2

2 2 2 2 20

1( ) = [ ( ) ( )] = [ ( ) ] ,
2

+
− ⋅ +∫

Gg k kC GW k P x p k dx Z g k k
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respectively. These expressions are all written as functions of k, because we know from Lemma 2 
that =d k in a welfare-maximising equilibrium. Periods-1 and -2 producer welfare are, similarly: 

21
1 1 1 1 1

21( ) = ( ) ( ) ( ) = ( ) ,
2 2

+ ⋅ − −  
G G G GZ NKW k g k p k B Kg k g k

N

and: 
22

2 2 2 2 2
21( ) = ( ) ( ) ( ) = ( ) ,

2 2
+ ⋅ − −  

G G G GZ NKW k g k p k B Kg k g k
N

respectively. The welfare of the storage operator is given by: 

( ) ( )2
* 1 2 1 2 1 2 1 2

1 2

/ 2
( ) = (2 ) ,Π

+ ⋅ + + +
−S IL L F Z L Z NK Z L Z NK

W k k k k
L L

where *
Πk  is the value that is given by (27). Thus, substituting (23) and (24) for 1 ( )Gg d  and 2 ( )Gg d , 

we have: 

{ }2 2 2 2
2 1 1 1 1

1 2 2
1 2

( ) (2 1) ( 2)
( ) =

 ⋅ ⋅ − + ⋅ + + ⋅ + + ′
L Z N A B F Z N Z NK N N K k

W k FZ
L L

 (28)

2 2 2 2
1 2 2 2 2

2 2 2
1 2

( ) (2 1) ( 2)  ⋅ − ⋅ − + + + ⋅ + +  +
L Z N A B Z N Z NK N N K k

Z
L L

2 2 2
1 1 2 1 2 1 2 2*

2 2
1 2

( ) ( )
( ) 2 .Π

  ⋅ + + ⋅ +  + − + 
  

F Z L L Z NK Z L L Z NK
k k I

L L

Assuming that we have an interior solution (i.e., that > 0k ), the investment problem can be 
written as: 

1 1 2 2 1 1 2 2[ ( ) (0)] [ ( ) (0)] [ ( ) (0)] [ ( ) (0)] ( ),max − + − + − + − +C C C C G G G G S

k
W k W W k W W k W W k W W k

which is a convex quadratic program. Using (28), the sufficient KKT condition gives: 

2 2 2 2
2 1 2 1 2 1 2 1 2 2 1 2 1 1*

2 2 2 2 2 2 2 2 2 2 2
1 2 1 2 1 1 2 1 2 2

( ) ( )
= ,

κ κ

 − + ⋅ ⋅ + − ⋅ + 
   + ⋅ + + + ⋅ + +   

W

A L J FA L J BN Z L L Z FZ L L Z
k

IL L F Z L Z Z N K Z L Z Z N K

as the welfare maximiser’s storage-investment level, where: 
2 2

1 1 1= ( ) ,+ +J Z NK Z N K

2 2
2 2 2= ( ) ,+ +J Z NK Z N K

and: 

= ( 2).κ ⋅ +NK N
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7.2.4 Benchmark Central Planner’s Problem

We know from Section 4, and (16) in particular, that building storage is suboptimal for a 
social planner with constant marginal generation costs. This may not be the case, however, with 
linear marginal generation costs. As a benchmark, we consider the following problem: 

( )
1 2

2 2 2 2 21 2
1 1 1 2 2 2 1 2 1 2, , 0

1max ( ) ( ) ( ) ( ) ( ) ,
2 2 2 2≥

⋅ − − − + ⋅ + − + − ⋅ + − + −
g g k

Z Z KA g Fk g Fk A g k g k B g g g g Ik

in which a welfare-maximising central planner owns and operates all generation and storage facil-
ities. This is a convex quadratic optimisation problem, thus its KKT conditions are sufficient for 
a global optimum. Assuming an interior solution (i.e., that generation levels are non-zero in both 
periods and that some energy storage is built), the KKT conditions give the optimal solution: 

1
1

1

= −
+

P A Bg
Z K  

1 2 1 1 2 1 2 2 1
2

1 1 2 2 1 1 2

[ ( ) ( )] [ ( 1) ( ) ,
( )( ) [ ( ) ( )]

⋅ ⋅ + − ⋅ + − ⋅ ⋅ − − ⋅ −
+ ⋅

+ ⋅ + + + ⋅ ⋅ + + ⋅ +
FZ K A Z K FA Z K B Z Z F K Z FZ

Z K I Z K Z K K Z Z K F Z Z K

2
2

2

= −
+

P A Bg
Z K  

2 2 1 1 2 1 2 2 1
2

2 1 2 2 1 1 2

[ ( ) ( )] [ ( 1) ( )] ,
( )( ) [ ( ) ( )]

⋅ ⋅ + − ⋅ + − ⋅ ⋅ − − ⋅ −
− ⋅

+ ⋅ + + + ⋅ ⋅ + + ⋅ +
Z K A Z K FA Z K B Z Z F K Z FZ

Z K I Z K Z K K Z Z K F Z Z K

and: 

2 1 1 2 1 2 2 1
2

1 2 2 1 1 2

[ ( ) ( )] [ ( 1) ( )]= .
( )( ) [ ( ) ( )]

⋅ ⋅ + − ⋅ + − ⋅ ⋅ − − ⋅ −
⋅ + + + ⋅ ⋅ + + ⋅ +

P K A Z K FA Z K B Z Z F K Z FZk
I Z K Z K K Z Z K F Z Z K

Pk  is positive so long as the linear portion of the marginal generation cost is relatively high, i.e., 
if 2 1( ) > ( 1)⋅ − ⋅ −P PK g Fg B F . Hence, due to the linear marginal generation cost, storage may be 
required even under central planning because it enables the substitution of relatively inexpensive 
generation that is stored off-peak to displace higher-cost generation in the on-peak period. 




