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NUMERICAL APPROXIMATION OF STOCHASTIC TIME-FRACTIONAL

DIFFUSION

Bangti Jin1, Yubin Yan2 and Zhi Zhou3

Abstract. We develop and analyze a numerical method for stochastic time-fractional diffusion driven
by additive fractionally integrated Gaussian noise. The model involves two nonlocal terms in time,
i.e., a Caputo fractional derivative of order α ∈ (0, 1), and fractionally integrated Gaussian noise
(with a Riemann-Liouville fractional integral of order γ ∈ [0, 1] in the front). The numerical scheme
approximates the model in space by the standard Galerkin method with continuous piecewise linear
finite elements and in time by the classical Grünwald-Letnikov method (for both Caputo fractional
derivative and Riemann-Liouville fractional integral), and the noise by the L2-projection. Sharp strong
and weak convergence rates are established, using suitable nonsmooth data error estimates for the
discrete solution operators for the deterministic inhomogeneous problem. One- and two-dimensional
numerical results are presented to support the theoretical findings.
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1. Introduction

In this work, we consider numerical methods for solving the following time-fractional diffusion equation driven
by fractionally integrated additive Gaussian noise, with 0 < α < 1, 0 ≤ γ ≤ 1:

∂αt u(t) +Au(t) = 0I
γ
t Ẇ (t), ∀0 < t ≤ T, with u(0) = u0, (1.1)

where the notation 0I
γ
t v(t) denotes the Riemann-Liouville fractional integral of order γ > 0 of a function

v : [0, T ]→ R defined by

0I
γ
t v(t) =

1

Γ(γ)

∫ t

0

(t− s)γ−1v(s) ds,

where Γ(·) denotes the Gamma function defined by Γ(z) =
∫∞

0
sz−1e−sds (for <z > 0), with the convention

0I
0
t v(t) = v(t). For γ ∈ (−1, 0), 0I

γ
t v denotes the Riemann-Liouville fractional derivative of order −γ ∈ (0, 1),
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defined by 0I
γ
t v := (0I

1+γ
t v(t))′. The notation ∂αt v(t), 0 < α < 1, denotes the Caputo fractional derivative of

order α defined by [27, p. 91]

∂αt v(t) = 0I
1−α
t v′(t).

In the model (1.1), the operator A denotes the negative Laplacian −∆ with a zero Dirichlet boundary condition
in a convex polygonal domain D ⊂ Rd (d = 1, 2, 3), with its domain D(A) = H1

0 (D) ∩H2(D). The noise W (t)
is given by a Wiener process with a covariance operator Q on a filtered probability space (Ω,F ,P, {Ft}t≥0),
with {Ft}t≥0 being an increasing filtration of σ-fields Ft ⊂ F , each of which contains all (F ,P)-null sets. Let E
denote the expectation (with respect to P). The function u0 is an F0-measurable random variable, and belongs
to L2(D) or its subspace. In order to ensure the well-posedness of problem (1.1) [12, pp. 1473–1474], we assume
the following condition:

α ∈ (0, 1), γ ∈ [0, 1] and α+ γ > 1/2. (1.2)

The deterministic counterpart of the model (1.1), commonly known as subdiffusion, has been extensively
studied in the literature over the last few decades [25], due to its numerous applications in engineering, physics

and biology [37]. The term 0I
γ
t Ẇ (t) in the model (1.1) is to describe random effects on transport of particles

in medium with memory or particles subject to sticking and trapping [12]. The fractionally integrated noise

0I
γ
t Ẇ (t) reflects the fact that the internal energy depends also on the past random effects. In recent years,

stochastic fractional diffusion, e.g., the model (1.1), has been very actively researched [5,10–12,32]. Chen et al
[12] studied the L2 theory of (1.1) in both divergence and non-divergence forms. Anh et al [5] discussed sufficient
conditions for a Gaussian solution (in the mean-square sense) and derived temporal, spatial and spatiotemporal
Hölder continuity of the solution. Chen [10] analyzed moments, Hölder continuity and intermittency of the
solution for 1D nonlinear stochastic subdiffusion. Liu et al [32] analyzed the existence and uniqueness of the
solution to (1.1) with fairly general quasi-linear elliptic operators; see also [17,33] for further analytic results.

To the best of our knowledge, there seems no work on the numerical analysis of the stochastic time-fractional
PDEs driven by fractionally integrated Gaussian noise, except in a few special cases (to be described below).
It is precisely this gap that we aim at filling in the present work. Specifically, we develop a numerical scheme
for problem (1.1), based on the standard Galerkin finite element method (FEM) with continuous linear finite
elements in space, the classical Grünwald-Letnikov method (i.e., backward Euler convolution quadrature [24,
34, 35]) in time (for both Caputo fractional derivative and Riemann-Liouville fractional integral) and the L2-
projection of the noise, cf. (3.3). The scheme combines discretization techniques for subdiffusion [24] and
stochastic heat equation [39], and it is easy to implement. We prove nearly sharp strong and weak convergence
rates for the fully discrete approximation in Theorems 5.1 and 5.2, respectively, which represent the main
theoretical contributions of the work.

The proofs employ well established stochastic error analysis tools from the SPDE community. The strong
convergence analysis employs an operator theoretic approach, which was first developed in the work [39] for the
stochastic heat equation and subsequently used in many works. In the analysis, one crucial ingredient is certain
nonsmooth data error estimates for the solution operators associated with the deterministic inhomogeneous
problem, i.e., the semi-discrete and fully solution operators; see Ēh(t) in (4.4) and Bj in (4.5) in Section 4.1.
Due to the presence of the fractional integral operator 0I

γ
t , such estimates differ greatly from that for standard

subdiffusion, and are still unavailable. We employ Laplace transform and generating function [35] to derive the
requisite nonsmooth data estimates, which represents the main technical novelty of this work. We refer interested
readers to [13, 23, 24, 26, 36] for related works on nonsmooth data estimates for deterministic subdiffusion; see
also the survey [25] and the references therein. For the weak convergence, we employ a powerful tool, Malliavin
calculus, recently developed in [3]. This approach is more involved than the Kolmogorov’s equation based
approach [4], but it can be generalized to the weak convergence analysis of semilinear equations [3] (see Remark
5.4 for further details). The technique in [3] relies on a new family of Sobolev-Malliavin spaces that capture
the temporal integrability of the Malliavin derivative, and a new Burkholder type inequality in the dual norm
of these Sobolev-Malliavin spaces. The challenge lies in deriving the error estimate in the dual norm of refined
Sobolev-Malliavin spaces.
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Table 1. Strong and weak convergence rates for the numerical scheme (3.3) with u0 = 0 and
trace class noise, and compared with the standard stochastic heat equation.

(α, γ) strong

(1, 0) O(h+ τ
1
2−ε) [39]

γ < 1/2 O(h2− 1−2γ
α −ε + τmin(1,α+γ− 1

2−ε))

γ > 1/2 O(h2 + τmin(1,α+γ− 1
2−ε))

(α, γ) weak
(1, 0) O(h2 + τ1−ε)

γ < 1−α
2 O(h4− 2(1−2γ)

α −ε + τmin(1,α+γ−ε))
γ > 1−α

2 O(h2 + τmin(1,α+γ−ε))

Theorems 5.1 and 5.2 indicate that the fractionally integrated Gaussian noise 0I
γ
t Ẇ (t) induces convergence

behaviors substantially different from that of stochastic diffusion. In particular, the fractional order γ can exert
strong influence on both strong and weak convergence rates: dependent of the γ value, with h and τ being the
mesh size and time step size, respectively, the spatial convergence rate may reach O(h2) and thus the temporal
convergence rate O(τ) in both strong and weak sense, and the usual dichotomy of the weak temporal rate
being twice the strong one is generally not valid; See Table 1 for convergence rates when the Wiener process
W (t) belongs to trace class, where the results for stochastic diffusion (i.e., (α, γ) = (1, 0)) are also given for the
purpose of comparison. In the table, ε is an arbitrarily small positive constant. Further, the results for stochastic
diffusion are recovered upon letting α→ 1− and γ → 0+. These theoretical findings are fully supported by the
extensive numerical experiments in one- and two-dimensions in Section 6.

To the best of our knowledge, there is no work on the numerical analysis of the general model (1.1), except
some special cases, which we describe next. First, the model (1.1) represents the fractional analogue of the
classical heat equation (but with a nonstandard noise term), and recovers the latter model for the special choice
(α = 1, γ = 0). Thus, naturally our results generalize that for the stochastic heat equation; see Table 1 for
the case of trace class noise. The literature on the stochastic heat equation is vast. See, e.g., [1, 16, 39] for
strong convergence, and, e.g., [4, 9, 15], for weak convergence, and interested readers are also referred to the
surveys [22, 30] and references therein for further pointers to the vast literature. Our overall proof strategies
are inspired by the works [39] and [3], respectively for the strong and weak convergence analysis. Second, the
stochastic fractional model (1.1) was studied earlier for the case γ = 1 − α [31], where the strong convergence
of a discontinuous Galerkin method in time was analyzed; see also [21] for a related fractional-order model with
white noise. We also refer interested readers to [2, 28, 29] for strong and weak convergence rates for numerical
approximations of (linear/semilinear) stochastic Volterra equations, which involve more general kernels, but
their smoothing properties differ from that for the model (1.1).

The rest of the paper is organized as follows. In Section 2, we give preliminaries on Wiener process and
Malliavin calculus. In Section 3, we describe the numerical scheme, and in Section 4, we derive crucial nonsmooth
data error estimates for deterministic subdiffusion. The strong and weak error estimates for approximations are
given in Section 5. In Section 6, we discuss the implementation of the noise, and present numerical results to
support the theoretical analysis. In Appendix A, we present some regularity results. Throughout, the notation
c, with or without a subscript, denotes a generic constant, which may differ at each occurrence, but it is always
independent of the mesh size h and the time step size τ . Further, ε > 0 is always a small positive constant.

2. Preliminaries

In this section, we collect preliminary facts on Wiener process and Malliavin calculus.

2.1. Wiener process

Let (U, ‖·‖U , 〈·, ·〉U ) and (V, ‖·‖V , 〈·, ·〉V ) be separable Hilbert spaces. Let L(U ;V ) be the Banach space of all
bounded linear operators U → V , and we denote L(U) = L(U ;U). L2(U ;V ) ⊂ L(U ;V ) denotes the subspace
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of all Hilbert-Schmidt operators, with norms and inner products respectively given by

‖T‖2L2(U ;V ) =
∑
j∈N
‖Tuj‖2V , 〈S, T 〉 =

∑
j∈N
〈Suj , Tuj〉V .

Both are independent of the specific choice of orthonormal basis {uj}j∈N.
Let H = L2(D) with the norm ‖ · ‖ and the inner product (·, ·). A Wiener process W (t) with covariance Q

may be characterized as follows. Let Q be a bounded, linear, selfadjoint, positive definite operator on H, with
the pairs of eigenvalue and eigenfunction denoted by {(γ`, e`)}∞`=1. Let H0 = Q

1
2H be the Hilbert space endowed

with the inner product 〈u, v〉H0
= (Q−

1
2u,Q−

1
2 v). Let {β`(t)}∞`=1 be a sequence of real-valued independently

and identically distributed (i.i.d.) Brownian motions. Then the series

W (t) =

∞∑
`=1

γ
1
2

` e`β`(t), (2.1)

is a Wiener process with covariance operator Q. If Q is of trace class, i.e.,
∑∞
`=1 γ` < ∞, then W (t) is an

H-valued process. If Q is not in trace class, e.g., Q = I, then W (t) does not belong to H, in which case W (t)
is called a cylindrical Wiener process [14, Chapter 4].

The notation L0
2 = L2(H0;H) denotes the space of Hilbert-Schmidt operators from H0 to H, i.e.,

L0
2 =

{
Φ ∈ L(H) :

∞∑
`=1

‖ΦQ 1
2 e`‖2 <∞

}
,

with the norm ‖ · ‖L0
2

defined by

‖Φ‖L0
2

=
( ∞∑
`=1

‖ΦQ 1
2 e`‖2

) 1
2

,

where {e`}∞`=1 is an orthonormal basis of H. This definition is independent of the choice of the basis. For any

Φ ∈ L2(0, T ;L0
2),
∫ t

0
Φ(s)dW (s) is well defined in the sense of stochastic integral [14, p. 95].

For any p ≥ 1, we define the space of H-valued p-integrable random variables by

Lp(Ω;H) =
{
v : E‖v‖p =

∫
Ω

‖v(ω)‖p dP(ω) <∞
}
,

with norm ‖v‖Lp(Ω;H) = (E‖v‖p)
1
p . Similarly, we define the space Lp(Ω;V ), for a Banach space V .

2.2. Malliavin calculus

In this part, we recall some concepts related to Malliavin derivatives of H-valued random variables, which
will be employed for deriving weak convergence rates. More details can be found in [3,30]. Let G∞p (Rn;R) be the
space of all infinitely many times Gâteaux differentiable mappings φ : Rn → R such that φ and all its derivatives
satisfy a polynomial bound. Let B(H;R) denote the Banach space of all bilinear mappings b : H × H → R
equipped with the norm

‖b‖B(H;R) = sup
06=u1,u2∈H

|b · (u1, u2)|
‖u1‖‖u2‖

.

For any ` ≥ 2, let Φ ∈ G2,`
p (H;R), with

G2,`
p (H;R) =

{
Φ : H → R, |Φ|G2,`

p (H;R) = sup
u∈H

‖Φ(2)(u)‖B(H;R)

(1 + ‖u‖`−2
H )

<∞
}
, (2.2)



TITLE WILL BE SET BY THE PUBLISHER 5

where Φ(2)(u) ∈ B(H;R) denotes the second-order Gâteaux derivative of Φ ∈ G2,`
p (H;R) at u ∈ H.

For q ∈ [2,∞], Sq(R) denotes the class of smooth cylindrical random variables of the form

F = f
(∫ T

0

φ1(s) dW (s), . . . ,

∫ T

0

φn(s) dW (s)
)
,

where f ∈ G∞p (Rn;R) and {φk}nk=1 ⊂ Lq(0, T ;L2(H;R)), n ∈ N. (Recall that the space L2(H;R) is defined by

L2(H;R) =
{

Φ ∈ L(H;R) :
∑∞
`=1 |ΦQ

1
2 e`|2R < ∞

}
, where L(H;R) denotes the Hilbert space of all bounded

operators from H to R and | · |R denotes the Euclidean norm in R.) For F ∈ Sq(R), we define the Malliavin
derivative by

DF (σ) =

n∑
j=1

∂jf
(∫ T

0

φ1(s) dW (s), . . . ,

∫ T

0

φn(s) dW (s)
)
⊗ φj(σ), σ ∈ [0, T ].

Note that DF (σ) is an H0-valued stochastic process.
Next, we recall the Malliavin derivative for H-valued random variables. Let Sq(H) be the space of all H-

valued random variables of the form Y =
∑m
i=1 vi ⊗ Fi with {vi}mi=1 ⊂ H, {Fi}mi=1 ⊂ Sq(R), m ∈ N, where ⊗

denotes the tensor product. Then the Malliavin derivative of Y ∈ Sq(H) is defined by

DY (σ) =

m∑
i=1

vi ⊗DFi(σ).

Since DFi(σ) is an H0-valued stochastic process, DY (σ) is an H ⊗H0 = L0
2-valued process.

For p ∈ [2,∞), q ∈ [2,∞], Sq(H) ⊂ Lp(Ω;H) is dense [3, Lemma 3.1]. Further, the operator D : Sq(H) →
Lp(Ω, Lq(0, T ;L0

2)) is closable [3, Lemma 3.2]. Let M1,p,q(H) be the closure of Sq(H) with respect to the norm

‖Y ‖M1,p,q(H) =
(
‖Y ‖pLp(Ω;H) + ‖DY ‖p

Lp(Ω;Lq(0,T ;L0
2))

) 1
p .

Then M1,p,q(H) are Banach spaces, densely embedded into L2(Ω;H), and M1,p,q(H) ⊂ L2(Ω;H) ⊂M1,p,q(H)∗

is a Gel’fand triple. Further, we denote M1,p(H) = M1,p,p(H) and M1,p(H)∗ = M1,p,p(H)∗

We shall use frequently Burkholder’s inequality ( [14, Lemma 7.2] and [3, Lemma 3.5]). For any exponent

p ≥ 1, p′ ≥ 1 denotes its conjugate exponent, i.e., p−1 + p′
−1

= 1.

Lemma 2.1. For p ≥ 2, let (Φ(t))t∈[0,T ] be a predictable and L0
2-valued stochastic process such that ‖Φ‖Lp(Ω;L2(0,T ;L0

2)) <
∞. Then there hold

‖
∫ T

0

Φ(t)dW (t)‖Lp(Ω;H) ≤ c‖Φ‖Lp(Ω;L2(0,T ;L0
2)), (2.3)

‖
∫ t

0

Φ(t)dW (t)‖M1,p(H)∗ ≤ c‖Φ‖Lp′ (Ω;Lp′ (0,T ;L0
2)). (2.4)

Last, we recall one result on the chain rule for Malliavin derivative [3, Lemma 3.3].

Lemma 2.2. Let U, V be two separable Hilbert spaces and γ ∈ C1(U ;V ) satisfy for u ∈ U

‖γ(u)‖V ≤ c(1 + ‖u‖1+r
U ) and ‖γ′(u)‖L(U ;V ) ≤ c(1 + ‖u‖rU ),

for some r ≥ 0. Then for u ∈M1,(1+r)p,q(U) with p > 1 and q ≥ 2, γ(u) ∈M1,p,q(V ) and

‖γ(u)‖M1,p,q(V ) ≤ c(1 + ‖u‖1+r
M1,(1+r)p,q(U)

) and D[γ(u)](σ) = γ′(u)D[u](σ), σ ∈ [0, T ].
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3. Numerical scheme

Now we develop a numerical scheme for problem (1.1) based on the Galerkin FEM with conforming piecewise
linear FEM in space, Grünwald-Letnikov formula in time, and L2-projection of the noise W (t). Let Th be a
shape regular quasi-uniform triangulation of the domain D, and Xh ⊂ H1

0 (D) be the space of continuous
piecewise linear functions on Th. On the FEM space Xh, we define the L2(D)-projection Ph : H → Xh by

(Phv, χ) = (v, χ), ∀v ∈ H,χ ∈ Xh.

Further, let Ah : Xh → Xh be the discrete analogue of the negative Laplacian A, defined by

(Ahv, χ) = a(v, χ), ∀v, χ ∈ Xh,

where a(v, χ) = (∇v,∇χ) is the bilinear form associated with A. Then the semidiscrete Galerkin FEM scheme
reads: Given uh(0) = Phu0, find uh(t) ∈ Xh such that

∂αt uh(t) +Ahuh(t) = 0I
γ
t PhẆ (t), ∀0 < t ≤ T. (3.1)

For the time discretization, let tn = nτ , n = 0, . . . , N , be a uniform partition of the interval [0, T ] and
τ = T/N the time step size. We approximate the Riemann-Liouville fractional integral / derivative 0I

γ
t v(tn) by

Grünwald-Letnikov formula (with vk = v(tk))

0I
γ
t v(tn) ≈ τγ

n∑
k=0

b
(−γ)
n−k v

k, (3.2)

where the weights b
(−γ)
j are generated by power series expansion (with δ(ζ) = 1− ζ):

δ(ζ)−γ =

∞∑
j=0

b
(−γ)
j ζj .

The coefficients b
(−γ)
j can be computed efficiently via a recursion formula. Since ∂αt u = 0I

−α
t (u− u(0)) [27, p.

91], upon letting f0 = 0 and

fk = τ−1Ph∆W k, with ∆W k = W (tk)−W (tk−1), k = 1, 2, . . . , N,

the numerical scheme for problem (1.1) reads: find Un ∈ Xh such that

τ−α
n∑
k=0

b
(α)
n−k(Uk − U0) +AhU

n = τγ
n∑
k=0

b
(−γ)
n−k f

k, n = 1, 2, . . . , N, (3.3)

with the initial data U0 = uh(0). We refer to Section 6.1 below for further implementation details of the term
fk. Note that at the time step n, the scheme employs all preceding numerical solutions Uk and source terms
fk, and thus the computational complexity per time step grows linearly, resulting a quadratic growth of the
overall complexity.

4. Nonsmooth data estimates

In this part we prove certain nonsmooth data error estimates.
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4.1. Solution representations

First we give the solution representations, which are useful for nonsmooth error analysis below. Problem
(1.1) admits a unique mild solution of the form

u(t) = E(t)u0 +

∫ t

0

Ē(t− s) dW (s), (4.1)

where the solution operators E and Ē are respectively defined by

E(t) =
1

2πi

∫
Γ

eztzα−1(zα +A)−1dz and Ē(t) =
1

2πi

∫
Γ

eztz−γ(zα +A)−1dz. (4.2)

Here the contour Γ is a line in the complex plane C with <z = a > 0 for some a > 0. One can deform Γ to
Γθ,δ := {z ∈ C : z = re±iθ, r ≥ δ} ∪ {z ∈ C : z = δeiϕ, |ϕ| ≤ θ} for some θ > π/2, oriented with an increasing
imaginary part. The representation (4.1) can be derived from Laplace transform as follows. Let g : R+ 7→ H
be subexponential, i.e., for any ε > 0, the function t → g(t)e−εt belongs to L1(R+, H). We define Laplace
transform ĝ : C+ 7→ H by ĝ(z) =

∫∞
0
g(t)e−ztdt, where C+ = {z ∈ C, <z > 0}. Then by applying Laplace

transform to the following deterministic problem

∂αt u(t) +Au(t) = 0I
γ
t f(t),

with u(0) = u0, and using the identities ∂̂αt u(z) = zαû−zα−1u0 [27, p. 98, Lemma 2.24] and 0̂I
γ
t f(z) = z−γ f̂(z)

(for γ > 0) [27, p. 84, Lemma 2.14], we obtain

zαû(z)− zα−1u0 +Aû(z) = z−γ f̂(z),

i.e., û(z) = (zα + A)−1zα−1u0 + (zα + A)−1z−γ f̂(z). Then by inverse Laplace transform, we obtain (4.1). It
is worth noting that the operator Ē(t) differs from that for standard subdiffusion, due to the presence of the
fractional integral 0I

γ
t .

The analysis below relies on smoothing properties of E(t) and Ē(t) in the space Ḣr(D). For any r ∈ R, let

the space Ḣr(D) = D(A
r
2 ) with the norm given by |v|r = ‖A r

2 v‖. We use extensively the following estimates
on E(t) and Ē(t) below.

Lemma 4.1. For p, q ∈ R with 0 ≤ p− q ≤ 2, there hold

|E(t)v|p ≤ ct−α
p−q
2 |v|q and |Ē(t)v|p + t|Ē′(t)v|p ≤ ct−α

p−q
2 +(α+γ−1)|v|q.

Proof. Recall the resolvent estimate [6, Example 3.7.5 and Theorem 3.7.11]

‖(z +A)−1‖ ≤ cφ|z|−1, ∀z ∈ Σφ ≡ {0 6= z ∈ C : | arg(z)| ≤ φ}, ∀φ ∈ (0, π). (4.3)

Then simple computation gives ‖Ar(zα + A)−1‖ ≤ c|z|rα−α for z ∈ Σθ and r ∈ [0, 1]. Thus, taking δ = t−1 in
the contour Γθ,δ leads to

|E(t)v|p ≤
∫

Γθ,δ

e<zt|zα−1|‖A
p−q
2 (zα +A)‖|dz|‖A

q
2 v‖

≤ c|v|q
(∫ ∞

t−1

etρ cos θρ
p−q
2 α−1dρ+ ct−

p−q
2 α

∫ θ

−θ
dφ
)
≤ ct−

p−q
2 α|v|q.

This shows the desired estimate on E(t), and the other follows similarly. �
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Likewise, the semidiscrete solution uh(t) ∈ Xh to problem (3.1) is represented by

uh(t) = Eh(t)Phu0 +

∫ t

0

Ēh(t− s)PhdW (s),

with the discrete analogues of E(t) and Ē(t), defined by

Eh(t) =
1

2πi

∫
Γθ,δ

eztzα−1(zα +Ah)−1dz and Ēh(t) =
1

2πi

∫
Γθ,δ

eztz−γ(zα +Ah)−1dz. (4.4)

Next, we give a representation of the fully discrete solution Un to the scheme (3.3). For a given sequence

{fn}∞n=0, the generating function is given by f̃(ζ), i.e., f̃(ζ) =
∑∞
n=0 f

nζn. Next we introduce operators Bj by

B̃(ζ) =

∞∑
j=0

Bjζ
j with B̃(ζ) = 1 + ζ

(
τ−αδ(ζ)α +Ah

)−1
τγ−1δ(ζ)−γ . (4.5)

Proposition 4.1. The solution Un to the scheme (3.3) is given by

Un = Unh + τ

n∑
k=1

Bn−(k−1)f
k, with n = 1, 2, . . . , (4.6)

where Unh is the fully discrete solution to the homogeneous problem of (3.3).

Proof. We split Un into Un = Unh + Uni , where Unh and Uni are the solutions to the homogeneous and inhomo-
geneous problems of (3.3), respectively, where Uni satisfies

τ−α
n∑
k=0

b
(α)
n−kU

k
i +AhU

n
i = τγ

n∑
k=0

b
(−γ)
n−k f

k, n = 1, 2, . . . ,

with U0
i = 0. Multiplying both sides with ξn and summing over n from 1 to ∞ yield

τ−α
∞∑
n=1

( n∑
k=0

b
(α)
n−kU

k
i

)
ζn +

∞∑
k=1

(AhU
n
i )ζn = τγ

∞∑
n=1

( n∑
k=0

b
(−γ)
n−k f

k
)
ζn.

Since U0
i = 0 and f0 = 0, by discrete convolution rule and the definitions of Ũi(ζ) and f̃(ζ),

∞∑
n=1

( n∑
k=0

b
(α)
n−kU

k
i

)
ζn = δ(ζ)αŨi(ζ) and

∞∑
n=1

( n∑
k=0

b
(−γ)
n−k f

k
)
ζn = δ(ζ)−γ f̃(ζ),

from which it directly follows

Ũi(ζ) =
(
τ−αδ(ζ)α +Ah

)−1
τγδ(ζ)−γ f̃(ζ).

By the defining relation (4.5) of B̃ and noting f0 = 0, we have

Ũi(ζ) = τ
B̃(ζ)− 1

ζ
f̃(ζ) = τ

∞∑
n=1

( n−1∑
k=0

Bn−kf
k+1
)
ζn = τ

∞∑
n=1

( n∑
k=1

Bn−(k−1)f
k
)
ζn,

which implies directly the desired relation. �

The next result holds for the solution Unh to the homogeneous problem [24, Theorem 3.5].
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Lemma 4.2. Let u(tn) and Unh be the solution of homogeneous problem and its fully discrete approximation by
the scheme (3.3), respectively. Then there holds for 0 ≤ q ≤ 2

‖Unh − u(tn)‖ ≤ c(τt−1+ q
2α

n + h2t
q−2
2 α

n )|u0|q.

4.2. Nonsmooth data estimates

Now we derive some important error estimates for Ēh and Bj , which are crucial for the error analysis of
the scheme (3.3). First, we give spatial discretization errors. On the space Xh, for any r ∈ R, we define the

norm ‖|χ‖|r = ‖A
r
2

hχ‖L2(D), which is the discrete analogue of the norm | · |r. Clearly, ‖| · ‖|0 coincides the usual

L2(D)-norm. Further, on quasiuniform triangulations Th, for g ∈ Ḣr(D) with 0 ≤ r ≤ 1, there holds

‖|Phg‖|r ≤ c|g|r.

In fact, the case r = 0 follows by the L2(D)-stability of Ph, and the case r = 1 by the H1(D)-stability of Ph.
The case r ∈ (0, 1) follows by interpolation. Further, the following bound holds

‖A−
s
2

h PhA
s
2 ‖ ≤ c, 0 ≤ s ≤ 1. (4.7)

Indeed, the case s = 0 is trivial. Meanwhile, by [38, (3.15)], ‖A−
1
2

h Phv‖ ≤ |v|−1 for all v ∈ Ḣ−1(D). Hence,

‖A−1/2
h PhA

1/2‖ ≤ 1, and by interpolation, the bound (4.7) follows.
The operator Ēh(t) satisfies a smoothing property similar to Lemma 4.1. The proof follows from the resolvent

estimate for Ah [38, p. 93]:

‖(z +Ah)−1‖ ≤ cφ|z|−1, ∀z ∈ Σφ, ∀φ ∈ (0, π).

Lemma 4.3. For p, q ∈ R with 0 ≤ p− q ≤ 2, there holds

‖|Ēh(t)χ‖|p ≤ ct−α
p−q
2 +(α+γ−1)‖|χ‖|q ∀χ ∈ Sh.

The next lemma gives an error estimate on Ēh.

Lemma 4.4. Let 0 ≤ s ≤ 1 and 0 ≤ r ≤ 2 with r + s ≤ 2. Then there holds

‖A s
2 (Ē(t)− Ēh(t)Ph)‖ ≤ ct r2α+γ−1h2−s−r.

Proof. Fix g ∈ L2(D). In the case s = 0, by (4.2) and (4.4), there holds

‖
(
Ē(t)− Ēh(t)Ph

)
g‖ ≤

∫
Γθ,δ

e<zt‖((zα +A)−1 − (zα +Ah)−1Ph)g‖|z|−γ |dz|.

Since ‖((zα +A)−1 − (zα +Ah)−1Ph)g‖ ≤ ch2‖g‖ for all z ∈ Σθ (cf. [19, p. 820] or [8, Lemma 3.4]), we have

‖(Ē(t)− Ēh(t)Ph)g‖ ≤ ctγ−1h2‖g‖.

Meanwhile, by Lemmas 4.1 and 4.3 and the triangle inequality,

‖(Ē(t)− Ēh(t)Ph)g‖ ≤ ctα+γ−1‖g‖.

Similarly, for s = 1, there hold

‖A 1
2 (Ē(t)− Ēh(t)Ph)g‖ ≤ ctγ−1h‖g‖ and ‖A 1

2 (Ē(t)− Ēh(t)Ph)g‖ ≤ ctα2 +γ−1‖g‖.
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Now the desired assertion follows by interpolation. �

Now we analyze the temporal error of the approximation BnPh. We begin with an integral representation of
BnPh.

Lemma 4.5. For g ∈ H, the function V n = BnPhg is given by (with Γτθ,δ = {z ∈ Γθ,δ : |=z| ≤ π
τ })

V n =
1

2πi

∫
Γτθ,δ

eztn(τ−αδ(e−zτ )α +Ah)−1τγδ(e−zτ )−γPhg dz.

Proof. Direct computation gives (with V 0 = 0)

Ṽ (ζ) =

∞∑
n=0

V nζn =

∞∑
n=1

BnPhgζ
n =

( ∞∑
n=1

Bnζ
n
)
Phg.

The defining relation (4.5) for B̃(ζ) and Bn leads to

Ṽ (ζ) = (B̃(ζ)− 1)Phg = (τ−αδ(ζ)α +Ah)−1τγ−1δ(ζ)−γζPhg.

By Cauchy integral formula, we have, for small ρ > 0:

V n = BnPhg =
1

2πi

∫
|ζ|=ρ

ζ−n−1Ṽ (ζ) dζ.

The assertion follows by changing variables ζ = e−zτ and then deforming |ζ| = ρ into Γτθ,δ. �

With Lemma 4.5 and the resolvent estimate on Ah, the following smoothing property and error estimate on
Bn follow easily (see, e.g., [24]).

Lemma 4.6. For any s ∈ [0, 1], there hold

‖A
s
2

hBn‖ ≤ t
(1− s2 )α+γ−1
n+1 and ‖A

s
2

h (Ēh(tn)−Bn)Ph‖ ≤ cτ t
(1− s2 )α+γ−2
n+1 .

For any s ∈ [0, 1], we define an index s∗ ≡ s∗(α, γ) by

s∗ =

{
∞, if (1− s

2 )α+ γ − 1 ≥ 0,
2

2−2(α+γ)+sα , otherwise.

For s∗ ≥ 2, s should satisfy the condition s ≤ 2− 1−2γ
α . Then the following property holds for Bn.

Lemma 4.7. For any s ∈ [0, 1] with s < 2− 1−2γ
α and p ∈ [2, s∗), there hold

τ

n∑
j=1

‖Bn−jPh‖pL0
2
≤ c‖A− s2 ‖pL0

2
.

Proof. By Lemma 4.6, we deduce

τ

n∑
j=1

‖Bn−jPh‖pL0
2
≤ τ

n∑
j=1

‖A
s
2

hBn−j‖
p‖A−

s
2

h PhA
s
2 ‖p‖A− s2 ‖pL0

2

≤ cτ
n∑
j=1

t
((1− s2 )α+γ−1)p
n−j+1 ‖A− s2 ‖pL0

2
<∞.
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where the second line follows from (4.7) and the choice of the exponent p. �

Last, we give an important error estimate. It is the main result of this section, and crucial to both strong
and weak convergence. Recall that p′ is the conjugate exponent of p ≥ 1.

Theorem 4.1. For any 0 ≤ s ≤ 1, p ∈ [1, s∗), there holds

( n−1∑
j=0

∫ tj+1

tj

‖A s
2

(
Ē(tn − t)−Bn−jPh

)
‖p ds

)1/p

≤ c(t
rα
2 +γ− 1

p′
n h2−s−r + tmax(η−1,0)

n τµ),

with η = (1− s
2 )α+ γ − 1

p′ and the exponents r and µ given respectively by

r ∈

 ( 2
α (p′−1 − γ), 2− s], p′γ < 1,

(0, 2− s], p′γ = 1,
[0, 2− s], p′γ > 1,

and µ =

 η, η < 1,
1− ε, η = 1,
1, η > 1.

Proof. By the triangle inequality, we split the left hand side (LHS) into

LHS ≤
( n−1∑
j=0

∫ tj+1

tj

‖A s
2 (Ē(tn − t)− Ēh(tn − t)Ph)‖p dt

)1/p

+
( n−1∑
j=0

∫ tj+1

tj

‖A s
2 (Ēh(tn − t)Ph − Ēh(tn − tj)Ph)‖pdt

)1/p

+
( n−1∑
j=0

∫ tj+1

tj

‖A s
2 (Ē(tn − tj)−Bn−jPh)‖pdt

)1/p

:=

3∑
i=1

I
1/p
i .

It suffices to bound the three terms Ii. By the choice of the exponent r, ( rα2 + γ − 1)p > −1, and thus, by
Lemma 4.4,

I1 ≤ ch(2−s−r)p
∫ tn

0

(tn − t)( rα2 +γ−1)pdt

≤ ct(
rα
2 +γ−1)p+1

n h(2−s−r)p.

For the second term I2, simple interpolation between s = 0, 1 allows replacing A with Ah, and thus

I2 ≤
n−2∑
j=0

∫ tj+1

tj

‖A
s
2

h (Ēh(tn − t)− Ēh(tn − tj))Ph‖pdt

+

∫ tn

tn−1

‖A
s
2

h (Ēh(tn − t)− Ēh(τ))Ph‖pdt := I2,1 + I2,2.

For the summation I2,1, by Hölder inequality and the smoothing property of Ē′h(s),

I2,1 =

n−2∑
j=0

∫ tj+1

tj

‖
∫ s

tj

A
s
2

h Ē
′
h(tn − t)Phdt‖pds

≤
n−2∑
j=0

∫ tj+1

tj

τ
p
p′

∫ s

tj

‖A
s
2

h Ē
′
h(tn − t)Ph‖pdtds
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≤ cτp
∫ tn

τ

‖A
s
2

h Ē
′
h(t)‖pdt ≤ cτp

∫ tn

τ

t((1−
s
2 )α+γ−2)pdt.

By the definition of η, p((1− s
2 )α+ γ − 2) = p(η − 1)− 1, and then direct computation leads to

I2,1 ≤ c


τpη, η < 1,
τp`n, η = 1,

τpt
p(η−1)
n , η > 1,

with `n = ln(1 + tn/τ). For the term I2,2, by the triangle inequality and Lemmas 4.3 and 4.6, we deduce

I2,2 ≤ c
∫ τ

0

‖A
s
2

h Ēh(t)‖pdt+ c

∫ τ

0

‖A
s
2

h Ēh(τ)‖pdt

≤ c
∫ τ

0

t((1−
s
2 )α+γ−1)pdt+ cτ ((1− s2 )α+γ−1)p+1 ≤ cτpη,

where the last step is due to the choice of the exponent p ∈ [1, s∗). For the last term I3, by Lemma 4.6,

I3 =

n−1∑
j=0

∫ tj+1

tj

‖A s
2 (Ēh(tn − tj)−Bn−j)‖p dt

≤ cτp+1
n−1∑
j=0

(tn+1 − tj)((1− s2 )α+γ−2)p ≤ c


τpη, η < 1,
τp`n, η = 1,

τpt
p(η−1)
n , η > 1.

Combining the preceding estimates on Iis completes the proof of the theorem. �

Remark 4.1. Note that for p ∈ [1, s∗), η > 0 and 2
α (p′−1 − γ) < 2 − s, and thus the condition on r makes

sense. The fractional orders α, γ, the noise regularity index s, and the integrability index p all enter into the
final error estimate, and their properly balancing gives the best possible rate.

5. Strong and weak convergence

This part gives the strong and weak error estimates of the numerical approximation by the scheme (3.3).

5.1. Strong convergence

Now we can state a strong convergence result in Lp(Ω;H) with p ≥ 2.

Theorem 5.1. Let u(tn) and Un be the solutions of problems (1.1) and (3.3), respectively. If ‖A− s2 ‖L2
0
< ∞

for some s ∈ [0, 1] with s < 2− 1−2γ
α , then for any p ∈ [2, s∗) and u0 ∈ Lp(Ω; Ḣq(Ω)), 0 ≤ q ≤ 2, there holds

‖u(tn)− Un)‖Lp(Ω;H) ≤c(τt
−1+ q

2α
n + h2t

q−2
2 α

n )‖u0‖Lp(Ω;Ḣq(D)) + c(t
rα
2 +γ− 1

2
n h2−s−r + tmax(η−1,0)

n τµ).

with η = (1− s
2 )α+ γ − 1

2 and the exponents r and µ given respectively by

r ∈

 ( 2
α ( 1

2 − γ), 2− s], γ < 1
2 ,

(0, 2− s], γ = 1
2 ,

[0, 2− s], γ > 1
2 ,

and µ =

 η, η < 1,
1− ε, η = 1,
1, η > 1.
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Proof. By the triangle inequality, we have

‖u(tn)− Un‖Lp(Ω;H) ≤ ‖(Ē(tn)−BnPh)u0‖Lp(Ω;H)

+ ‖
n−1∑
j=0

∫ tj+1

tj

(Ē(tn − t)−Bn−jPh)dW (t)‖Lp(Ω;H) := I + II.

By Lemma 4.2, it suffices to bound II. By Burkholder’s inequality (2.3), since ‖A− s2 ‖L2
0
<∞, there holds

II2 ≤ c
n−1∑
j=0

∫ tj+1

tj

‖Ē(tn − t)−Bn−jPh‖2L0
2
dt

≤ c‖A− s2 ‖2L0
2

n−1∑
j=0

∫ tj+1

tj

‖A s
2 (Ē(tn − t)−Bn−jPh)‖2dt.

Then the desired assertion follows from Theorem 4.1 with p = 2. �

Remark 5.1. The condition s < 2 − 1−2γ
α requests that the noise W (t) should not be too rough, and the

condition always holds for trace class noise, since α+γ > 1/2, cf. (1.2). This restriction stems from the limited
smoothing property of the solution operator Ē(t), cf. Lemma A.1. For u0 = 0 and trace class noise, i.e., s = 0,
the following statements hold:

(i) The spatial convergence rate is O(h2− 1−2γ
α −ε) for γ < 1/2, and O(h2) for γ > 1/2. The former is due

to the limited smoothing property of Ē(t), and it may be enhanced to O(h2) for smoother noise.

(ii) The temporal convergence rate is O(τmin(1,α+γ− 1
2−ε)). When γ = 1− α, it is O(τ

1
2−ε), which coincides

with that for the stochastic heat equation [39], but the spatial convergence rate is O(h2) only if α < 1/2
or the noise has extra regularity.

These convergence rates agree with the regularity results in Theorems A.1 and A.2 in Appendix A.

5.2. Weak convergence

For the weak convergence, first we give a Malliavin regularity of the solution to problem (1.1).

Proposition 5.1. If ‖A− s2 ‖L2
0
< ∞ for some s ∈ [0, 1] with s ≤ 2− 1−2γ

α , then for any p ≥ 2 and q ∈ [2, s∗),

and for any u0 ∈ Lp(Ω; Ḣq(Ω)), 0 ≤ q ≤ 2, up to modification, there exists a unique stochastic process u :
[0, T ]× Ω→ H satisfying (4.1) such that u ∈ C([0, T ];M1,p,q(H)).

Proof. The proof is similar to [2, Proposition 4.4], and thus we only give a sketch. First, we show u ∈
L2(0, T ;M1,2(H)). This can be done by first proving ‖Un‖M1,2(H) +‖Un‖M1,p,2 <∞, by straightforward calcu-
lation of the term D[Un](σ) (see [2, Proposition 4.3]), and then proving the error estimate of ‖u(tn)−Un‖L2(Ω;H),

by the argument of [2, Theorem 4.2]. Then a limiting procedure gives u ∈ L2(0, T ;M1,2(H)).
Since u ∈ L2(0, T ;M1,2(H)), we may apply [18, Proposition 3.5 (ii)] or [3, (3.8)] to obtain the Malliavin

derivative of the solution u: for any σ ∈ [0, T ],

D[u(t)](σ) =

{
D[E(t)u0](σ) +D[

∫ t
0
Ē(t− s) dW (s)](σ), σ ≤ t ≤ T,

0, 0 < t < σ,

=

{
Ē(t− σ), σ ≤ t ≤ T,
0, 0 < t < σ.

Then the smoothing property of Ē(t) in Lemma 4.1 implies

‖D[u(t)]‖q
Lp(Ω;Lq(0,T ;L0

2))
= ‖D[u(t)]‖q

Lp(Ω;Lq(0,t;L0
2))
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=‖Ē(t− ·)‖q
Lq(0,t;L0

2)
=

∫ t

0

‖Ē(t− s)‖qL0
2
ds

≤c‖A− s2 ‖qL0
2

∫ t

0

s((1− s2 )α+γ−1)qds <∞,

where the last inequality is due to the choice of the exponent q. �

The next result gives a similar bound on the discrete solution Un.

Proposition 5.2. If ‖A− s2 ‖L2
0
< ∞ for some s ∈ [0, 1] with s ≤ 2− 1−2γ

α , then for any p ≥ 2 and q ∈ [2, s∗),

and u0 ∈ Lp(Ω; Ḣq(Ω)), 0 ≤ q ≤ 2, the solution Un to (3.3) satisfies ‖Un‖M1,p,q(H) ≤ c.

Proof. By the representation (4.6), we have

‖Un‖Lp(Ω;H) ≤ ‖Unh ‖Lp(Ω;H) +
∥∥∥∫ T

0

n−1∑
j=0

χ[tj ,tj+1)(s)Bn−jPhdW (s)
∥∥∥
Lp(Ω;H)

:= I1 + I2.

In view of Lemma 4.2, it suffices to bound the second term I2. By Burkholder’s inequality (2.3) and Lemma
4.7 with p = 2, we get

I2 ≤ c‖
n−1∑
j=0

χ[tj ,tj+1)(s)Bn−jPh‖L2(0,T ;L0
2) = c

(
τ

n−1∑
j=0

‖Bn−jPh‖2L0
2

) 1
2 <∞.

This directly implies ‖Un‖Lp(Ω;H) ≤ c. Next we bound the Malliavin derivative D[Un](σ) of Un, σ ∈
[0, T ]. By applying the Malliavin derivative to the representation (4.6) termwise and noting the identity

D[
∫ tj+1

tj
Bn−jPhdW (s)](σ) = χ[tj ,tj+1)(σ)Bn−jPh [3, Proposition 3.16], we obtain

D[Un](σ) =

n−1∑
j=0

χ[tj ,tj+1)(σ)Bn−jPh, σ ∈ [0, T ].

Hence, by Lemma 4.7, there holds

‖D[Un]‖q
Lp(Ω;Lq(0,T ;L0

2))
= ‖

n−1∑
j=0

χ[tj ,tj+1)(s)Bn−jPh‖qLp(Ω;Lq(0,T ;L0
2))

=‖
n−1∑
j=0

χ[tj ,tj+1)(s)Bn−jPh‖qLq(0,T ;L0
2)

= τ

n−1∑
j=0

‖Bn−jPh‖qL0
2
<∞.

This completes the proof of the proposition. �

Last, we can give the weak convergence of the approximation Un.

Theorem 5.2. Let u(tn) and Un be the solutions of (1.1) and (3.3), respectively, and Φ ∈ G2,2
p (H;R). If

‖A− s2 ‖L2
0
<∞ for some s ∈ [0, 1] with s < 2− 1−2γ

α , then for any p ∈ [2, s∗) and u0 ∈ Lp(Ω; Ḣq(D)), 0 ≤ q ≤ 2,
there holds

|E[Φ(u(tn))− Φ(Un)]| ≤ c(τt−1+ q
2α

n + h2t
q−2
2 α

n )‖u0‖Lp(Ω;Ḣq(D)) + c(t
rα
2 +γ− 1

p
n h2−s−r + tmax(η−1,0)

n τµ),
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with η = (1− s
2 )α+ γ − 1

p and the exponents r and µ given respectively by

r ∈


( 2
α ( 1

p − γ), 2− s], γp < 1,

(0, 2− s], γp = 1,
[0, 2− s], γp > 1,

and µ =

 η, η < 1,
1− ε, η = 1,
1, η > 1.

Proof. In view of the Gel’fand triple M1,p(H) ⊂ L2(Ω;H) ⊂ M1,p(H)∗ and the definitions of the norms
‖ · ‖M1,p(H) and ‖ · ‖M1,p(H)∗ , there holds

|E[Φ(u(tn))− Φ(Un)]| = |E[(

∫ 1

0

Φ′(ρu(tn) + (1− ρ)Un) dρ, u(tn)− Un)]|

≤ ‖
∫ 1

0

Φ′(ρu(tn) + (1− ρ)Un) dρ‖M1,p(H)‖u(tn)− Un‖M1,p(H)∗ .

Now we claim any p ∈ [2, s∗), ‖
∫ 1

0
Φ′(ρu(tn) + (1−ρ)Un)dρ‖M1,p(H) <∞. Actually, by Lemma 2.2 with γ = Φ′

and r = 1 and q = p, p ∈ [2, s∗), we get

‖Φ′(ρu(tn) + (1− ρ)Un)‖M1,p(H)

≤c(1 + ‖ρu(tn) + (1− ρ)Un‖M1,p(H))

≤c(1 + ‖u(tn)‖M1,2p,p(H) + ‖Un‖M1,2p,p(H)).

Thus the claim follows from Propositions 5.1 and 5.2. It remains to bound ‖u(tn) − Un‖M1,p(H)∗ . By the
triangle inequality,

‖u(tn)− Un‖M1,p(H)∗ ≤‖(E(tn)−BnPh)u0‖M1,p(H)∗

+ ‖
∫ tn

0

Ē(tn − t)dW (t)−
n−1∑
j=0

∫ tj+1

tj

Bn−jPhdW (t)‖M1,p(H)∗ := I + II.

In view of Lemma 4.2, it suffices to bound the term II. By Burkholder inequality (2.4), we have

IIp
′
≤ c

n−1∑
j=0

∫ tj+1

tj

‖Ē(tn − t)−Bn−jPh‖p
′

L0
2
dt

≤ c‖A− s2 ‖p
′

L0
2

n−1∑
j=0

∫ tj+1

tj

‖A s
2 (Ē(tn − t)−Bn−jPh)‖p

′
ds.

Then Theorem 4.1 with p′ ∈ (1, 2) completes the proof. �

Remark 5.2. The condition s < 2 − 1−2γ
α ensures that s∗ > 2 so that the choice p ∈ [2, s∗) is valid. We

specialize Theorem 5.2 to u0 = 0 and trace class noise W (t), i.e., s = 0, and distinguish two cases for the weak
error estimates: (a) α+ γ ≥ 1 and (b) α+ γ < 1:

(a) The exponent p can be arbitrarily large. Thus, the spatial convergence rate is O(h2) for any γ ≥ 1− α,
and the temporal one O(τmin(1,α+γ−ε)). When γ = 1−α, the temporal rate is O(τ1−ε), which coincides
with that for the stochastic heat equation, but the spatial rate is O(h2) only if α < 1/2 or W (t) has extra
regularity.

(b) The largest possible exponent p is p = 1
1−α−γ − ε > 2. Hence, the spatial rate is O(h2) for γ > 1−α

2 ,

and O(h4− 2(1−2γ)
α −ε) for γ ≤ 1−α

2 (note that 4− 2
α (1− 2γ) ∈ (0, 2] under the designated conditions (1.2)

and γ ≤ 1−α
2 ). The temporal rate is always O(τα+γ−ε).
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Remark 5.3. Note that our analysis relies only on Laplace transform and resolvent estimate. Hence, it applies
also to slightly more general positive kernels, for which however we are not aware of any physical modeling with
fractionally integrated Gaussian noise.

Remark 5.4. Since both analytical and numerical solutions can be represented explicitly via a variation of
constants formula (cf. (4.1) and (4.6)), alternatively one may employ a (more classical) approach based on
Kolmogorov’s equation to derive weak convergence rates. In [29, Theorem 4.3], an error representation formula
comparing functionals of prescribed time evaluations of such processes (weak convergence) is given for parabolic
problems with a positive memory, and upon suitable modifications, it may be combined with the nonsmooth
deterministic error estimates in Section 4 to obtain weak convergence rates. However, this approach works only
in the linear case and is nontrivial to extend to semilinear stochastic time-fractional PDEs, to which, in contrast,
the duality approach can be extended naturally (see, e.g., [2] for stochastic Volterra equations).

6. Numerical experiments and discussions

Now we present numerical results for the model (1.1) with 0 < α < 1 and 0 ≤ γ ≤ 1 to support the analysis.

6.1. Implementation details

First, we describe the implementation of the noise term W (t), following [39]. We consider only the case
the covariance operator Q shares the eigenfunctions with the operator A. Recall the Fourier expansion of the
Wiener process W (t) in (2.1):

W (t) =

∞∑
`=1

γ
1
2

` e`β`(t),

where β`, ` = 1, 2, . . . , are i.i.d. Brownian motions, and γ` and e` are the eigenvalues (ordered nondecreasingly,
with multiplicity counted) and eigenfunctions of Q. Thus the L2(D)-projection PhW (t) ∈ Xh is given by (with
L term truncation)

(PhW (t), χ) =

∞∑
`=1

γ
1
2

` β`(t)(e`, χ) ≈
L∑
`=1

γ
1
2

` β`(t)(e`, χ), ∀χ ∈ Xh.

Since β`(t)s are i.i.d. Brownian motions, the increments ∆βk` are given by

∆βk` = β`(tk)− β`(tk−1) ∼
√
τN (0, 1), k = 1, 2, . . . , N,

where N (0, 1) denotes the standard Gaussian distribution. Further, the fractionally integrated noise PhẆ (tk)
is approximated by backward difference

PhẆ (tk) ≈ PhW (tk)− PhW (tk−1)

τ
,

and with PhẆ (t0) = 0. Using Grünwald-Letnikov formula (3.2), the term 0I
γ
t PhẆ (tn) is approximated by

0I
γ
t PhẆ (tn) ≈ τγ

n∑
k=1

β
(−γ)
n−k

[ L∑
`=1

γ
1
2

` Phe`
∆βk`
τ

]
.

It is well known that for a quasi-uniform triangulation Th, it is sufficient to take L ≥ Nh in the truncation [39],
with Nh being the FEM degree of freedom, in order to preserve the desired convergence. The truncation number
L = Nh is employed in our numerical experiments.



TITLE WILL BE SET BY THE PUBLISHER 17

Below we present numerical results separately for one- and two-dimensional examples, and with u0 = 0. In
the 1D case, the domain D is the unit interval D = (0, 1). The eigenfunctions e`(x) are given by

√
2 sin(`πx),

` = 1, 2, . . . , and let γ` = `−m,m ≥ 0 (The borderline for trace class noise is m = 1, and m = 0 corresponds
roughly to s = −1). In the 2D case, the domain D is the unit square (0, 1)2. The eigenfunctions ei,j(x) are
given by 2 sin(iπx) sin(jπy), i, j = 1, 2, . . . , let γi,j = (i2 + j2)−

m
2 ,m ≥ 0 (The borderline for trace class noise is

m = 1). In the 1D case, the domain D = (0, 1) is divided into M subintervals of length h = 1/M , and similarly,
for the 2D, each side (0, 1) is divided into M subintervals of length h = 1/M , and the diagonals are connected
to obtain a uniform triangulation. The time step size τ is fixed at τ = t/N , where t is the time of interest. To
check the convergence rate, we choose the L2(Ω;H) norm for strong convergence, and Φ(u(t)) =

∫
D
u(t)2dx for

weak convergence. All the expected values are computed with 100 trajectories.

6.2. Numerical results for temporal convergence in 1D

In this set of experiments, we fix the final time t at t = 0.01 and M = 100. The reference solution is computed
with a much finer temporal mesh with N = 3200. The numerical results for various fractional orders α and γ
and trace class noise (with m = 2) are given in Table 2. In the table, the numbers in the bracket in the last
column denote the theoretical rates predicted by Theorems 5.1 and 5.2 (and Remarks 5.1 and 5.2), and for each
α value, the first and second rows give the strong and weak errors, respectively. When s = 0, the theoretical
rate is nearly O(τmin(α+γ− 1

2 ,1)) and O(τmin(α+γ,1)) (up to possibly a logarithmic factor) in the strong and weak
sense, respectively. Overall, the empirical rates agree well with the theoretical ones. The convergence rate
improves steadily as the fractional orders α and γ increase, due to the improved temporal solution regularity.
Further, the weak rate is generally not twice the strong one, unlike the case for the stochastic heat equation.

By Theorems 5.1 and 5.2, the regularity of W (t) also affects the temporal convergence via the term ‖A− s2 ‖L2
0
:

it is slower for white noise than trace class noise, cf. Table 3. By the asymptotics O(`2) of the 1D negative
Laplacian A, m = 0 corresponds to roughly s = 1, and thus Theorems 5.1 and 5.2 yield the theoretical rates
O(τmin(α2 +γ− 1

2 ,1)) and O(τmin(α+2γ−1,1)) in the strong and weak convergence, respectively; see Table 3. The
empirical rates are slightly higher than the theoretical one. Further, noise regularity (indicated by m) beyond
trace class affects very little the temporal convergence; see the results for m = 2, 3 in Table 3.

6.3. Numerical results for spatial convergence in 1D

Next we examine the spatial convergence. Here, we fix the number M of time steps at M = 200 and the final
time t at t = 1, and compute the reference solution at N = 480. The numerical results are given in Table 4 for
trace class noise (with m = 2) with various α and γ values. A convergence rate O(h2) is consistently observed
for all combinations, concurring Theorems 5.1 and 5.2.

The influence of the noise regularity (indicated by m) on the convergence rates is shown in Table 5. It
is observed that for m = 2, the weak and strong rates saturate at O(h2), due to the use of linear finite
elements, despite the improved noise regularity. However, it deteriorates when the noise regularity is lowered
to the borderline of trace class (i.e., m = 1) or white noise (i.e., m = 0): for m = 1, the strong and weak

rates are predicted to be O(h2− 1−2γ
α ) and O(h2), respectively; and for m = 0, they are O(h1− 1−2γ

α ) and
O(h1−min(1−2γ−α2 ,0)), respectively. The empirical rates are much higher than the theoretical ones when m = 0,
indicating an interesting superconvergence phenomenon, whose precise mechanism remains to be ascertained.

6.4. Numerical results in 2D

Now we present numerical results for the two-dimensional case. Since the computation in the 2D is far more
expensive (one convergence rate in the tables below can take about one hour, in MATLAB 2018a on a laptop with
2.5 GHz CPU and 8.00 GB RAM), we only present two sets of numerical results, one for temporal convergence
and the other for spatial convergence; see Tables 6 and 7.

For temporal convergence, we fix the final time t at t = 0.01 and M = 40. The reference solution is computed
with a finer temporal mesh with N = 1280. The numerical results for various (α, γ) pairs are given in Table
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Table 2. The L2(Ω;H)-error for trace class noise (m = 2) at t = 0.01.

γ α\N 40 80 160 320 640 rate
0.3 0.2 6.68e-1 6.38e-1 6.07e-1 5.55e-1 4.98e-1 0.10 (−−)

3.82e-1 3.70e-1 3.26e-1 2.79e-1 2.23e-1 0.19 (−−)
0.4 1.19e-1 9.85e-2 8.14e-2 6.86e-2 5.83e-2 0.25 (0.20)

1.76e-2 1.37e-2 7.58e-3 6.30e-3 3.37e-3 0.60 (0.70)
0.6 1.05e-2 7.53e-3 5.13e-3 3.80e-3 2.58e-3 0.50 (0.40)

2.65e-4 2.22e-4 3.71e-5 1.05e-5 1.49e-5 1.03 (0.90)
0.8 1.22e-3 8.46e-4 5.61e-4 3.67e-4 2.36e-4 0.59 (0.60)

2.64e-5 1.56e-5 7.95e-6 3.49e-6 3.31e-7 1.40 (1.00)
0.5 0.2 5.86e-2 5.10e-2 4.16e-2 3.34e-2 2.78e-2 0.26 (0.20)

4.23e-3 3.36e-3 2.65e-3 1.48e-3 7.26e-4 0.63 (0.70)
0.4 9.96e-3 7.16e-3 4.98e-3 3.81e-3 2.64e-3 0.47 (0.40)

3.90e-4 2.33e-4 1.13e-4 5.75e-5 1.64e-5 1.14 (0.90)
0.6 9.97e-4 6.73e-4 4.43e-4 2.97e-4 1.85e-4 0.60 (0.60)

2.79e-5 1.33e-5 4.59e-6 3.19e-6 1.67e-6 1.01 (1.00)
0.8 6.00e-4 3.90e-4 2.30e-4 1.37e-4 8.29e-5 0.71 (0.80)

2.41e-6 1.64e-6 8.49e-7 2.74e-7 2.16e-7 0.87 (1.00)
0.7 0.2 4.95e-3 4.17e-3 3.21e-3 2.33e-3 1.75e-3 0.37 (0.40)

5.45e-5 4.27e-5 2.53e-5 1.68e-5 2.11e-5 0.34 (0.90)
0.4 4.39e-4 2.98e-4 2.15e-4 1.51e-4 1.08e-4 0.50 (0.60)

5.50e-6 2.81e-6 1.32e-6 7.69e-7 4.36e-7 0.91 (1.00)
0.6 4.39e-4 3.12e-4 2.06e-4 1.31e-4 7.20e-5 0.65 (0.80)

1.90e-6 1.56e-6 5.88e-7 3.78e-7 2.03e-7 0.80 (1.00)
0.8 2.44e-4 1.40e-4 6.75e-5 3.67e-5 1.93e-5 0.91 (1.00)

4.36e-7 1.37e-7 1.16e-7 5.97e-8 1.83e-8 1.14 (1.00)
0.9 0.2 1.38e-4 7.94e-5 4.83e-5 2.69e-5 1.56e-5 0.78 (0.60)

1.67e-6 8.28e-7 4.38e-7 2.35e-7 1.28e-7 0.92 (1.00)
0.4 2.90e-4 2.00e-4 1.31e-4 8.44e-5 5.50e-5 0.59 (0.80)

8.79e-7 2.83e-7 1.50e-7 3.12e-9 6.37e-8 0.94 (1.00)
0.6 1.85e-4 1.03e-4 5.35e-5 3.07e-5 1.76e-5 0.84 (1.00)

3.57e-7 1.53e-7 7.42e-8 4.94e-8 2.46e-8 0.96 (1.00)
0.8 9.94e-5 5.28e-5 2.50e-5 1.28e-5 5.72e-6 1.02 (1.00)

1.76e-7 1.12e-7 4.05e-8 1.50e-8 8.36e-9 1.09 (1.00)

6, where the choice m = 1 corresponds to the borderline case of trace class noise. The theoretical rate is
nearly O(τmin(α+γ− 1

2 ,1)) and O(τmin(α+γ,1)) (up to possibly a logarithmic factor) in the strong and weak sense,
respectively. Overall, the empirical rates agree excellently with the theoretical ones from Theorems 5.1 and 5.2,
although the weak convergence rate suffers from a slight loss when the fractional order α is small, whose precise
mechanism is to be ascertained. Like before, the convergence rate improves steadily as the fractional orders α
and γ increase, due to the improved temporal solution regularity. For spatial convergence, we fix M at M = 200
and the final time t at t = 1, and compute the reference solution at N = 201. The numerical results are given
in Table 4 for trace class noise (with m = 2) with various α and γ values. Due to the good spatial regularity of
the noise, a convergence rate O(h2) is consistently observed in both strong and weak norms for all pairs (α, γ),
agreeing well with the theoretical predictions from Theorems 5.1 and 5.2.

In summary, all the numerical results in one- and two-dimensional domains indicate that the convergence
rates in Theorems 5.1 and 5.2 are nearly sharp. However, the rate in either strong or weak norm is limited to
O(h2) and O(τ), due to the use of low-order FEM and backward Euler convolution quadrature.
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Table 3. The L2(Ω;H)-error at t = 0.01 with γ = 0.4 and noise regularity index m.

m α\N 40 80 160 320 640 rate
0 0.3 1.13e-1 1.02e-1 8.91e-2 7.33e-2 6.06e-2 0.22 (0.05)

8.12e-3 6.36e-3 6.71e-3 4.74e-3 5.50e-3 0.14 (0.10)
0.5 2.21e-2 1.83e-2 1.48e-2 1.15e-2 8.41e-3 0.34 (0.15)

1.09e-3 7.45e-4 4.78e-4 3.18e-4 1.94e-4 0.62 (0.30)
0.7 4.47e-3 3.30e-3 2.36e-3 1.67e-3 1.11e-3 0.50 (0.25)

8.24e-5 4.78e-5 3.19e-5 1.90e-5 8.09e-6 0.83 (0.50)
0.9 1.66e-3 1.11e-3 7.17e-4 4.53e-4 2.75e-4 0.64 (0.30)

7.49e-6 6.08e-6 2.11e-6 1.25e-6 6.04e-7 0.90 (0.70)
1 0.3 9.76e-2 8.46e-2 7.08e-2 6.23e-2 5.06e-2 0.23 (0.20)

9.32e-3 7.89e-3 6.72e-3 4.52e-3 2.74e-3 0.44 (0.70)
0.5 1.37e-2 1.03e-2 7.82e-3 5.79e-3 4.08e-3 0.43 (0.40)

5.50e-4 3.66e-4 1.33e-4 7.44e-5 4.19e-5 0.92 (0.90)
0.7 1.84e-3 1.23e-3 8.28e-4 5.44e-4 3.41e-4 0.60 (0.60)

4.09e-5 1.90e-5 6.90e-6 2.82e-6 2.68e-6 0.98 (1.00)
0.9 9.01e-4 5.50e-4 3.29e-4 2.03e-4 1.18e-4 0.73 (0.80)

5.54e-6 2.37e-6 1.55e-6 5.69e-7 1.95e-7 1.20 (1.00)
2 0.3 9.04e-2 7.83e-2 6.85e-2 5.82e-2 4.48e-2 0.25 (0.20)

7.91e-3 5.70e-3 2.47e-3 6.43e-4 7.08e-4 0.87 (0.70)
0.5 1.10e-2 8.10e-3 5.76e-3 4.07e-3 2.82e-3 0.49 (0.40)

2.70e-4 1.93e-4 1.02e-4 5.61e-5 1.82e-5 0.97 (0.90)
0.7 1.03e-3 7.44e-4 5.11e-4 3.27e-4 2.01e-4 0.59 (0.60)

1.49e-5 2.73e-6 1.70e-6 1.25e-6 8.04e-7 1.05 (1.00)
0.9 7.15e-4 4.22e-4 2.60e-4 1.48e-4 8.82e-5 0.75 (0.80)

4.34e-6 2.50e-6 1.34e-6 3.97e-7 2.89e-7 0.97 (1.00)
3 0.3 9.22e-2 7.53e-2 6.14e-2 5.44e-2 4.05e-2 0.29 (0.20)

9.75e-3 6.80e-3 4.67e-3 2.39e-3 1.47e-3 0.68 (0.70)
0.5 1.00e-2 6.86e-3 5.06e-3 3.26e-3 2.07e-3 0.57 (0.40)

2.92e-4 1.17e-4 4.47e-5 2.53e-5 2.61e-5 0.87 (0.90)
0.7 9.06e-4 6.16e-4 4.21e-4 2.85e-4 1.81e-4 0.57 (0.60)

1.81e-5 1.04e-5 3.52e-6 2.28e-6 6.66e-7 1.19 (1.00)
0.9 6.59e-4 3.99e-4 2.23e-4 1.38e-4 7.36e-5 0.79 (0.80)

3.13e-6 1.08e-6 6.53e-7 5.00e-7 1.46e-7 1.10 (1.00)

7. Concluding remarks

In this work, we have developed a numerical scheme for approximating the stochastic time-fractional diffusion
problem driven by fractionally integrated Gaussian noise. The scheme employs the Galerkin finite element
method in space, Grünwald-Letnikov formula in time (for both Caputo fractional derivative and Riemann-
Liouville fractional integral) and L2-projection for the noise. We have presented a thorough error analysis of
the scheme in both strong and weak sense, using novel nonsmooth data error estimates. Our extensive numerical
results in one spatial dimensional indicate that the convergence rates are nearly sharp.

There are several avenues for further research. First, the computational complexity of the discrete scheme
is fairly high, due to nonlocal nature of the fractional-order derivative / integral and the approximation of the
expectation. The former may be alleviated by sum of exponential approximations [7], and the latter partly
by multilevel Monte Carlo type techniques [20]. It is important to study these computational techniques both
numerically and theoretically for stochastic fractional diffusion. Second, this work focuses exclusively on linear
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Table 4. The L2(Ω;H)-error with trace class noise (m = 2) at t = 1.

γ α\M 10 20 40 80 160 rate
0.2 0.3 7.65e-3 2.01e-3 5.15e-4 1.27e-4 2.96e-5 2.00 (−−)

4.60e-3 1.17e-3 2.92e-4 7.17e-5 1.64e-5 2.03 (−−)
0.5 6.07e-3 1.63e-3 4.21e-4 1.05e-4 2.44e-5 1.98 (2.00)

2.48e-3 6.33e-4 1.58e-4 3.88e-5 8.87e-6 2.03 (2.00)
0.7 4.82e-3 1.32e-3 3.46e-4 8.74e-5 2.03e-5 1.97 (2.00)

1.30e-3 3.35e-4 8.40e-5 2.06e-5 4.71e-6 2.02 (2.00)
0.9 4.05e-3 1.12e-3 2.96e-4 7.52e-5 1.76e-5 1.96 (2.00)

8.79e-4 2.25e-4 5.65e-5 1.38e-5 3.17e-6 2.02 (2.00)
0.6 0.3 2.39e-3 6.25e-4 1.59e-4 3.93e-5 9.09e-6 2.01 (2.00)

4.68e-4 1.19e-4 2.97e-5 7.29e-6 1.66e-6 2.03 (2.00)
0.5 2.30e-3 6.02e-4 1.53e-4 3.80e-5 8.78e-6 2.00 (2.00)

4.22e-4 1.07e-4 2.68e-5 6.58e-6 1.50e-6 2.03 (2.00)
0.7 2.26e-3 5.92e-4 1.50e-4 3.73e-5 8.64e-6 2.00 (2.00)

4.02e-4 1.02e-4 2.56e-5 6.27e-6 1.43e-6 2.03 (2.00)
0.9 2.27e-3 5.94e-4 1.51e-4 3.75e-5 8.67e-6 2.00 (2.00)

4.09e-4 1.04e-4 2.60e-5 6.37e-6 1.45e-6 2.03 (2.00)

Table 5. The L2(Ω;H)-error at t = 1 with γ = 0.4, and noise regularity index m.

m α\M 10 20 40 80 160 rate
0 0.3 9.58e-3 3.48e-3 1.25e-3 4.36e-4 1.38e-4 1.52 (0.33)

1.62e-3 4.44e-4 1.15e-4 2.89e-5 6.69e-6 1.98 (0.95)
0.5 9.20e-3 3.40e-3 1.23e-3 4.33e-4 1.37e-4 1.51 (0.60)

1.26e-3 3.51e-4 9.22e-5 2.32e-5 5.37e-6 1.96 (1.00)
0.7 8.75e-3 3.30e-3 1.21e-3 4.29e-4 1.36e-4 1.49 (0.72)

1.02e-3 2.87e-4 7.60e-5 1.92e-5 4.46e-6 1.95 (1.00)
0.9 8.27e-3 3.17e-3 1.19e-3 4.24e-4 1.36e-4 1.48 (0.78)

9.13e-4 2.56e-4 6.81e-5 1.72e-5 4.01e-6 1.95 (1.00)
1 0.3 5.11e-3 1.48e-3 4.16e-4 1.12e-4 2.79e-5 1.87 (1.33)

1.20e-3 3.11e-4 7.83e-5 1.92e-5 4.40e-6 2.02 (2.00)
0.5 4.70e-3 1.38e-3 3.95e-4 1.07e-4 2.69e-5 1.86 (1.60)

8.84e-4 2.29e-4 5.77e-5 1.41e-5 3.24e-6 2.02 (2.00)
0.7 4.34e-3 1.30e-3 3.75e-4 1.03e-4 2.59e-5 1.84 (1.72)

6.90e-4 1.79e-4 4.53e-5 1.11e-5 2.55e-6 2.01 (2.00)
0.9 4.09e-3 1.23e-3 3.59e-4 9.95e-5 2.51e-5 1.83 (1.78)

6.27e-4 1.63e-4 4.11e-5 1.01e-5 2.31e-6 2.02 (2.00)
2 0.3 3.62e-3 9.49e-4 2.41e-4 6.00e-5 1.38e-5 2.00 (2.00)

1.06e-3 2.71e-4 6.79e-5 1.66e-5 3.80e-6 2.03 (2.00)
0.5 3.17e-3 8.39e-4 2.15e-4 5.35e-5 1.23e-5 2.00 (2.00)

7.59e-4 1.93e-4 4.83e-5 1.18e-5 2.70e-6 2.03 (2.00)
0.7 2.87e-3 7.63e-4 1.96e-4 4.89e-5 1.13e-5 1.99 (2.00)

5.83e-4 1.48e-4 3.72e-5 9.12e-6 2.08e-6 2.03 (2.00)
0.9 2.74e-3 7.28e-4 1.87e-4 4.67e-5 1.08e-5 1.99 (2.00)

5.35e-4 1.36e-4 3.41e-5 8.36e-6 1.91e-6 2.03 (2.00)
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Table 6. The L2(Ω;H)-error for noise with (m = 1) at t = 0.01.

γ α\N 20 40 80 160 320 rate
0.4 0.3 2.96e-2 2.63e-2 2.40e-2 1.95e-2 1.43e-2 0.26 (0.20)

1.25e-3 1.18e-3 9.32e-4 7.07e-4 5.01e-4 0.33 (0.70)
0.5 6.13e-3 4.72e-3 3.65e-3 2.61e-3 1.72e-3 0.45 (0.40)

8.38e-5 6.82e-5 4.12e-5 2.57e-5 1.41e-5 0.64 (0.90)
0.7 9.12e-4 5.96e-4 3.88e-4 2.39e-4 1.38e-4 0.68 (0.60)

7.96e-6 3.56e-6 1.98e-6 9.20e-7 3.92e-7 1.08 (1.00)
0.9 3.73e-4 2.36e-4 1.48e-4 8.81e-5 4.78e-5 0.74 (0.80)

1.09e-6 3.56e-7 2.24e-7 1.05e-7 5.29e-8 1.09 (1.00)
0.8 0.3 1.55e-4 1.05e-4 7.29e-5 4.70e-5 2.70e-5 0.63 (0.60)

2.43e-7 2.15e-7 9.49e-8 5.21e-8 2.06e-8 0.89 (1.00)
0.5 1.12e-4 7.92e-5 5.35e-5 3.31e-5 1.97e-5 0.62 (0.80)

1.96e-7 1.05e-7 4.43e-8 2.01e-8 1.56e-9 1.74 (1.00)
0.7 7.97e-5 4.78e-5 2.80e-5 1.58e-5 7.99e-6 0.82 (1.00)

2.28e-9 1.73e-8 5.20e-9 2.11e-9 1.27e-10 1.04 (1.00)
0.9 4.57e-5 2.45e-5 1.23e-5 6.16e-6 2.88e-6 0.99 (1.00)

2.85e-8 1.77e-8 9.14e-9 4.12e-9 1.49e-9 1.06 (1.00)

Table 7. The L2(Ω;H)-error with noise (m = 2) at t = 1.

γ α\M 10 20 40 80 160 rate
0.4 0.3 5.50e-3 1.57e-3 4.12e-4 1.03e-4 2.44e-5 1.95 (2.00)

1.13e-3 3.29e-4 8.57e-5 2.14e-5 4.85e-6 1.96 (2.00)
0.5 4.09e-3 1.17e-3 3.14e-4 8.03e-5 1.84e-5 1.94 (2.00)

5.38e-4 1.56e-4 4.04e-5 1.06e-5 2.26e-6 1.97 (2.00)
0.7 2.95e-3 8.74e-4 2.40e-4 6.00e-5 1.38e-5 1.93 (2.00)

2.43e-4 7.15e-5 1.95e-5 4.70e-6 1.00e-6 1.98 (2.00)
0.9 2.58e-3 7.59e-4 2.00e-4 5.16e-5 1.21e-5 1.93 (2.00)

2.13e-4 6.12e-5 1.55e-5 3.99e-6 8.65e-7 1.98 (2.00)
0.8 0.3 1.20e-3 3.43e-4 8.94e-5 2.16e-5 5.37e-6 1.95 (2.00)

5.05e-5 1.49e-5 3.86e-6 9.04e-7 2.21e-7 1.95 (2.00)
0.5 1.03e-3 3.04e-4 7.95e-5 2.01e-5 4.55e-6 1.95 (2.00)

3.75e-5 1.11e-5 2.90e-6 7.40e-7 1.53e-7 1.98 (2.00)
0.7 1.02e-3 2.87e-4 7.72e-5 1.95e-5 4.53e-6 1.95 (2.00)

3.71e-5 1.02e-5 2.76e-6 7.07e-7 1.52e-7 1.98 (2.00)
0.9 8.34e-4 2.54e-4 6.55e-5 1.65e-5 3.91e-6 1.93 (2.00)

2.32e-5 7.22e-6 1.83e-6 4.67e-7 1.02e-7 1.95 (2.00)

stochastic fractional PDEs. It is of much interest to extend the analysis to more complex situations, e.g.,
semilinear or quasi-linear problems. Third and last, it is important to develop temporally high-order schemes
with optimal strong and weak convergence rates. This is conjectured for a certain regime of α + γ, for which
the solution has good temporal regularity.
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Appendix A. Regularity theory

In this appendix, we describe some regularity results for problem (1.1). First, we state a result on Ē(t).

Lemma A.1. Let condition (1.2) hold, and let (with ε > 0 small)

κ =


2, if 1/2 < γ ≤ 1,
2− ε, if γ = 1/2,

2− 1−2γ
α , if 0 ≤ γ < 1/2.

(A.1)

Then there holds
‖Ē(s)‖L2(0,t;Ḣκ(D)) ≤ ct

(2−κ)α2 +γ− 1
2 .

Proof. By Lemma 4.1, for any κ ∈ [0, 2], there holds ‖Aκ
2 Ē(t)‖ ≤ ct(1−κ2 )α+γ−1, and consequently∫ t

0

‖Aκ
2 Ē(s)‖2ds ≤ c

∫ t

0

s(2−κ)α+2γ−2ds.

Under Assumption 1.2 and the choice of the exponent κ in (A.1), (2− κ)α+ 2γ − 2 > −1 (except for the case
0 ≤ γ < 1/2 and κ = 2 − 1−2γ

α )), thus we obtain the desired result upon integration. In the exceptional case,
(2− κ)α+ 2γ − 2 = −1, and the assertion follows from direct computation. �

Remark A.1. For γ ∈ (1/2, 1], Ē(t) has a maximum order two smoothing in space. However, for γ ∈ [0, 1/2),
κ is restricted to [0, 2− 1−2γ

α ]. This again reflects a certain limited smoothing property of Ē(t), and also restricts
the best possible strong and weak spatial convergence rates.

Now we can state the spatial regularity of the mild solution (4.1).

Theorem A.1. Let condition (1.2) hold, and κ be defined by (A.1), and r, q ∈ R with 0 ≤ r − q ≤ 2. For

u0 ∈ Lp(Ω; Ḣq(D)), let u(t) be the mild solution of problem (1.1) defined in (4.1). Then there holds

‖u(t)‖Lp(Ω;Ḣr(D)) ≤ ct
−α r−q2 ‖u0‖Lp(Ω;Ḣq(D)) + ct(1−

κ
2 )α+γ− 1

2 ‖A
r−κ
2 ‖L0

2
.
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Proof. By Lemma 4.1, it suffices to bound the stochastic integral. By Burkholder’s inequality (2.3),(
E‖
∫ t

0

A
r
2 Ē(t− s) dW (s)‖p

)2/p

≤ c
∫ t

0

‖A r
2 Ē(s)‖2L0

2
ds ≤ ‖A

r−κ
2 ‖L0

2

∫ t

0

‖Aκ
2 Ē(s)‖ds,

Then Lemma A.1, the representation (4.1) and the triangle inequality complete the proof. �

To study the temporal regularity of the mild solution in (4.1), we need an elementary inequality.

Lemma A.2. For 0 ≤ t1 < t2 and θ ∈ (1/2, 3/2), then with c = (3− 2θ)−
1
2 (θ − 1

2 )−1, there holds
∫ t2
t1

( ∫ t1
0

(t−

s)2(θ−2)ds
) 1

2 dt ≤ c(t2 − t1)θ−
1
2 .

Proof. Since θ ∈ (1/2, 3/2), i.e., 3 − 2θ > 0, straightforward computation gives for t > t1
∫ t1

0
(t − s)2(θ−2)ds ≤

(3− 2θ)−1(t− t1)2θ−3. Thus simple computation gives
∫ t2
t1

( ∫ t1
0

(t− s)2(θ−2)ds
) 1

2

dt ≤ c(t2− t1)θ−
1
2 , completing

the proof. �

Now we can state the temporal Hölder regularity of the mild solution in (4.1).

Theorem A.2. Let condition (1.2) hold, and κ be defined in (A.1). Let u(t) be defined in (4.1). Let q, r ∈ [0, 2]

with 0 ≤ r − q ≤ 2, and s ∈ [0, 1] with max(0, 2(α+γ)−3
α + ε) ≤ r + s ≤ κ. Then for any 0 < t1 < t2 < T and

p ≥ 2 and u0 ∈ Lp(Ω; Ḣq(D)), there holds

‖u(t2)− u(t1)‖Lp(Ω;Ḣr(D)) ≤ ct
−(1+α r−q2 )
1 (t2 − t1)‖u0‖Lp(Ω;Ḣq(D)) + c(t2 − t1)(1− r+s2 )α+γ− 1

2 ‖A− s2 ‖L0
2
.

Proof. By the representation (4.1), we have the splitting

u(t2)− u(t1) =(E(t2)u0 − E(t1)u0) +

∫ t1

0

(Ē(t2 − s)− Ē(t1 − s))dW (s)

+

∫ t2

t1

Ē(t2 − s)dW (s) := I + II + III.

Next we bound the three terms separately. The first term can be bounded directly by Lemma 4.1. Next, for
α+ γ 6= 1 (the case α+ γ = 1 is similar), by stochastic Fubini theorem [14, Theorem 4.33],

II =

∫ t1

0

(Ē(t2 − s)− Ē(t1 − s))dW (s) =

∫ t2

t1

∫ t1

0

Ē′(t− s)dW (s)dt.

Thus by Burkholder’s inequality (2.3) and Lemma 4.1, we have (with θ = α+ γ − r+s
2 α)

‖II‖Lp(Ω;Ḣr(D)) ≤
∫ t2

t1

‖
∫ t1

0

A
r
2 Ē′(t− s)dW (s)‖Lp(Ω;H)dt

≤ c
∫ t2

t1

(∫ t1

0

‖A
r+s
2 Ē′(t− s)‖‖A− s2 ‖L0

2

)2

ds
) 1

2

dt

= c

∫ t2

t1

(∫ t1

0

(t− s)2(θ−2)ds
) 1

2

dt‖A− s2 ‖L0
2
.

For 1/2 < α + γ < 3/2, the condition on r + s ensures θ ∈ (1/2, 3/2). Similarly, for α + γ ≥ 3/2 and

r ∈ ( 2(α+γ)−3
α , 2], we have also θ ∈ (1/2, 3/2). Thus, Lemma A.2 implies

‖II‖Lp(Ω;Ḣr(D)) ≤ c(t2 − t1)θ−
1
2 ‖A− s2 ‖L0

2
.
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Last, by Burkholder’s inequality (2.3) and Lemma 4.1 with p = r + s and q = 0, we deduce

‖III‖2
Lp(Ω;Ḣr(D))

≤ c
∫ t2

t1

‖A
r+s
2 Ē(t2 − s)A−

s
2 ‖2L0

2
ds

≤ c‖A− s2 ‖2L0
2

∫ t2

t1

(t2 − s)2θ−2 ds = c(t2 − t1)2θ−1‖A− s2 ‖2L0
2
.

Combining these estimates together completes the proof of the theorem. �

Remark A.2. The condition max(0, 2(α+γ)−3
α + ε) ≤ r + s ≤ κ is only for α + γ ≥ 3/2 and restricts the

discussion to Hölder continuity in time. For u0 = 0 and trace class noise, i.e., s = 0, r = 0,

‖u(t2)− u(t1)‖L2(Ω;H) ≤ c(t2 − t1)α+γ− 1
2 ‖Q 1

2 ‖HS .

The case of α = 1 and γ = 0 recovers the well known regularity result of the stochastic heat equation.


