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Abstract
Multiple sclerosis (MS) is a major cause of disability in young adults. Following
an unknown trigger (or triggers), the immune system attacks the myelin sheath
surrounding axons, leading to progressive nerve cell death. Antibodies and
small-molecule drugs directed against B cells have demonstrated good efficacy
in slowing progression of the disease. This review focusses on small-molecule
drugs that can affect B-cell biology and may have utility in disease
management. The risk genes for MS are examined from the drug target
perspective. Existing small-molecule therapies for MS with B-cell actions
together with new drugs in development are described. The potential for
experimental molecules with B-cell effects is also considered. Small molecules
can have diverse actions on B cells and be cytotoxic, anti-inflammatory and
anti-viral. The current B cell–directed therapies often kill B-cell subsets, which
can be effective but lead to side effects and toxicity. A deeper understanding of
B-cell biology and the effect on MS disease should lead to new drugs with
better selectivity, efficacy, and an improved safety profile. Small-molecule
drugs, once the patent term has expired, provide a uniquely sustainable form of
healthcare.
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Introduction
Multiple sclerosis (MS) affects over two million people  
worldwide (National Multiple Sclerosis Society, https://www.
nationalmssociety.org/). The disease is characterised by an initial 
autoimmune-driven, inflammatory phase followed by immune-
mediated attack on the myelin surrounding nerve axons. Focal 
cortical lesions may develop in distinct locations. Eventu-
ally, the ensuing damage results in progressive nerve loss and  
increasing disability evident as disrupted motor function, visual 
disturbances, and bladder problems1. As disease onset is often  
reported in young adults, its course can affect people for most 
of their adult lives. MS is considered to present in several  
forms: relapsing-remitting MS (RRMS), secondary progressive 
MS (SPMS), primary progressive MS (PPMS) and progressive- 
relapsing MS (PRMS). Diagnosis of the disease is complex; 
there is no single test for MS, and multiple criteria, including  
magnetic resonance imaging (MRI) scans are used2.

The causes of the disease are multifactorial, with infectious,  
genetic and environmental factors, such as lack of sunlight  
(through vitamin D), playing a role (Figure 1)3. Large genome-
wide association studies (GWASs) have gradually allowed the  
risk genes associated with MS to be elucidated. Up to now,  

genetics alone has not proven useful in diagnosis4, but the iden-
tified risk genes have been informative about the mechanism 
and contributors to the disease and may be of aid in predicting  
severity5. Among the more than 200 risk genes, most with a 
link to immune function, identified as susceptibility factors, 
the strongest associations are with the HLA-DRB1 (human  
leucocyte antigen) locus in the major histocompatibility complex 
(MHC)4.

Although multiple types of immune cells have been impli-
cated in the pathology of MS [4], the role of B cells has recently 
come to the fore6; notable clinical successes for agents which 
target B cells, such as CD20-targeted antibodies, rituximab,  
ocrelizumab and ofatumumab, are reported. In addition, an  
analysis of agents used to treat MS indicated that activity against 
a specific subset of B cells, the CD19+CD27+ memory B cells,  
correlated with clinical efficacy7–9.

Despite this strong driver to develop new B cell–directed  
therapies, the current most popular animal model used to study  
MS-like pathologies, particularly inflammation and neurodegen-
eration—experimental autoimmune encephalomyelitis (EAE) 
in mice—does not allow an assessment of a causative role for  

Figure 1. Causes and progression of multiple sclerosis (MS). Several studies now indicate that Epstein–Barr virus infection is necessary 
(but not causal) for MS to develop. Genetic factors may explain 50% of MS susceptibility whereas environmental factors together with 
unknowns may combine to trigger immune activation and the subsequent destruction of myelin and oligodendrocytes. This eventually leads 
to axonal damage and nerve cell death resulting in disability. HERV, human endogenous retrovirus.
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B-cell involvement, complicating further development10. A 
review of animal models unsurprisingly points to primate models, 
such as the marmoset, as the most representative of the human  
disease11.

The recent focus on how B cells contribute to MS pathology 
also renews interest in the role of Epstein–Barr virus (EBV)  
infection in the aetiology of the disease. EBV is present in a 
high percentage of the human population, preferentially infects  
B cells, and establishes a lifelong infection in memory B 
cells12. The impact of EBV in MS is controversial; some  
convincing recent studies indicate that infection with EBV 
may underlie the development of MS. Over 99% of people 
with MS are infected with EBV, and it has been argued that  
methodological differences may account for the small number of  
EBV-negatives13. Although the effect of EBV has been exten-
sively investigated in B cells and is also present in astrocytes and  
microglia of people with MS (pwMS)14, the impact of EBV 
infection in the brain is relatively little studied. Thus, the  
extent and mechanism of the EBV effect remains somewhat 
obscure and more research is needed in this area. Numerous  
mechanistic links between EBV infection and MS pathology  
have been noted15. Some of the most persuasive arguments are  
summarised in Table 116–26.

Other infections such as human herpes virus 616 and pinworms17 
have also been implicated in MS.

The developing picture for MS is of a disease caused by the  
interaction of multiple risk factors (Figure 1), one being EBV 

infection. EBV could initiate changes in infected cells that lead 
to immune activation and a pro-inflammatory state. This alone 
is not sufficient to cause MS, but genetic and environmental  
factors then can be activated, interact and trigger the disease. Treat-
ments defined as disease-modifying therapies (DMTs) are usually 
immune-modulators, other drugs treat symptoms such as limb 
spasticity, bladder problems, or pain. There are as yet no therapies 
approved to treat neurodegeneration18. New immunomodulators 
have transformed the treatment of RRMS; at least 16 drugs are 
now licensed by the US Food and Drug Administration (FDA)  
(https://www.nationalmssociety.org/Treating-MS/Medications) 
and these have generated a $20 billion market19. Although the  
number and severity of relapses have been reduced, neurological 
damage still occurs from onset and the disease often continues to 
the progressive form. Furthermore, those patients with diagnosed 
PPMS have historically had no DMTs available to them.

Notably, the first drug indicated for PPMS, the anti-CD20  
antibody ocrelizumab (Ocrevus®), was approved by the FDA in  
201720. Ocrelizumab and other anti-CD20 therapies rapidly  
deplete circulating B cells. Their effectiveness in patients with 
PPMS and RRMS points to an important role for B cells in  
multiple MS forms. In a phase 3 trial, ocrelizumab was associ-
ated with lessened disease activity and progression in patients  
with RRMS compared with interferon beta-1a21. Along the 
same lines, a 2018 study compared rituximab (an anti-CD20  
antibody approved for other conditions) as an initial treatment 
for patients with RRMS and found its clinical efficacy to be  
notably superior to that of several other first-line DMTs, including 
dimethyl fumarate, natalizumab and fingolimod22.

Table 1. Supporting and opposing arguments for EBV involvement in MS.

Supporting arguments Opposing arguments (partly from 16)

•  Epstein–Barr virus (EBV) infects and is latent in memory B cells, the same cell 
type shown to be critical in multiple sclerosis (MS) by successful CD20 antibody 
and cladribine treatment. 
•  Genome-wide association studies (GWASs) have identified a correlation between 
anti-EBV nuclear antigen-1 (EBNA-1) IgG titres and MS27. Human leucocyte antigen 
(HLA) single-nucleotide polymorphisms showed the strongest correlation with two 
other genes: EVI5 and EOMES28. 
•  GWAS analysis reveals genetic overlap between susceptibilities to Hodgkin’s 
lymphoma (caused by EBV) and MS29. 
•  In B cells transformed into immortalised lymphoblasts by EBV infection, the 
vitamin D receptor (VDR) (nuclear receptor) interacts with the EBV nuclear protein 
EBNA3. This results in inhibition of VDR-promoted gene expression and provides a 
mechanistic link between vitamin D, EBV and MS30. 
•  EBV uses HLA DRB1 and HLA DRQ allelic variants as entry co-receptors. This 
is widely assumed to have immune consequences. A link between HLA variants 
and infectivity by EBV has not yet been made, although this has been proposed for 
rheumatoid arthritis31. 
•  Infectious mononucleosis is caused by EBV infection and is associated with an 
increased risk of MS32. 
•  EBV is found to activate the human endogenous retroviruses HERV-W/MSRV/
Syncytin-1 (human endogenous retrovirus type W/multiple sclerosis–associated 
retrovirus/Syncytin-1) in blood and brain cells taken from people with MS (pwMS). 
MSRV specifically has been reported to correlate with progression to MS33 and with 
infectious mononucleosis. 
•  A virus closely related to EBV, the γ1-herpesvirus CalHV3, infects marmosets, 
is resident in memory B cells, and is implicated in the marmoset experimental 
autoimmune encephalomyelitis model of experimental MS34.

•  Seropositivity for pwMS infected with EBV does 
not reach 100%, especially for children with early-
onset MS35. The high background of people infected 
with EBV clouds the interpretation. 
•  Serum EBNA-1 antibodies are associated with 
MS, but no target has been found, and antibody 
levels are not associated with disease activity36. 
•  EBV seroconversion may just be a hygiene 
marker, and other parasites could be responsible for 
the development of MS37.
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These agents have been paradigm-changing in providing the  
first DMT for patients with PPMS, a potentially more effective 
first line of treatment for RRMS, as well as turning the therapeutic  
focus from T cells (previously thought of as the main autoim-
mune effector cell in MS) to B cells. The remarkable clinical  
evidence with these drugs clearly illustrates that B cells play 
a central role in MS pathogenesis. Although this is exciting, 
there does remain a critical need for improvements to existing  
treatments in RRMS and new stand-alone treatments for SPMS 
and PPMS that serve to minimise adverse effects and the burden  
of high expense.

This review focusses on small-molecule approaches to immune-
related MS therapy, covering agents on the market, in clinical 
trials, and some new research approaches. We specifically  
emphasise potential B cell–targeted therapies and the effects 
of already-available therapies on the B-cell population because  
of the recent notable success of ocrelizumab and other anti- 
CD20 antibodies.

Small molecules have unique and beneficial properties as  
therapies. The advantages include the ability to access intracel-
lular targets and penetrate the central nervous system (CNS), 
low cost of manufacture, ease of administration, and the option 
to withdraw therapy rapidly. The primary disadvantage of small 
molecules is their potential lack of cellular specificity. The low 
cost of manufacture of small molecules compared with biologi-
cal or cell-based therapies is often overlooked, but with increasing  
healthcare demands, a path to sustainable and affordable  
treatments is required for the future.

Identifying the genes and proteins key to multiple 
sclerosis pathophysiology as potential drug targets
Large GWASs have identified multiple genes associated with MS 
(reviewed in 4). Of note, HLA-DRB1*15:01 has an odds ratio 
(OR) of about 3.5; OR is the ratio of people with a proposed  
disease-specific allele to those who do not have the disease, 
where 1 is no association and more than 1 indicates an increased  
risk. In total, 31 HLA genes have been found23. Non-HLA genes 
have also been indicated to contribute to genetic susceptibility; 
in particular, a very recent communication by the International  
Multiple Sclerosis Genetics Consortium (IMSGC) (Supplementary 
Table 1, Table 1) lists over 200 genes, showing the non- 
HLA-related genes23.

The study builds on an earlier publication by the IMSGC  
detailing 97 non-HLA genes24. The later gene set does not 
cover all of the earlier genes. For this review, we used the  
UniprotKB curated database to provide high-quality informa-
tion on the gene sets (Supplementary Table, Table 1) and use this  
information to relate the genes to specific cell types.

B cells
In the 2018 IMSGC set, the UniprotKB database indicates that 
31 genes either are highly expressed in or have some B-cell  
function noted (Supplementary Table, Table 2). Only two of these 
genes appear to have been drugged: CTLA4 (ipilimumab) and the 
cannabinoid receptor 2, CNR2 (cannabidiol).

Epstein–Barr virus
In the IMSGC gene set from 2013, four genes (PXT1, ZMIZ1, 
EOMES and TRAF3) are linked to EBV. Further investigations 
have identified 47 EBV genes from transcriptomes of B cells 
and EBV cells infected at Latency III (LCLs) associated with  
MS25. This study highlights the EBV-encoded cell surface  
protein LMP1 and its signalling pathway as a potential target for 
MS.

Vitamin D
Two well-recognised MS susceptibility genes—CYP27B1 and 
CYP24A1—control metabolism of vitamin D (1,25-dihydroxy-
vitamin D3) for its receptor (VDR)3. Lack of 1,25-dihydroxy-
vitamin D3 is associated with several immune diseases. The 
synthesis of 1,25-dihydroxyvitamin D3 is enhanced by sunlight 
and thus provides a mechanistic basis for the observed latitude 
dependence of MS. Further studies highlighted ZMIZ1,  
ZMIZ1-AS1 (AS stands for anti-sense, signifying that the single-
nucleotide polymorphism is on the anti-sense strand) and IRF8.  
The VDR influences the expression and function of many other 
genes. TAGAP (T-cell activation RhoGTPase activating protein, 
which has a role in Th17 differentiation) and IL2RA were also 
identified by the GWASs and as 1,25-dihydroxyvitamin D3  
target genes in a study on CD4+ T cells26.

In the 2017 IMSGC report on the 200-plus gene set, the authors 
acknowledge that CNS genes may be under-represented. They 
partly address this by conducting an RNA-Seq study on cortex 
material to provide a data set more representative of CNS genes 
altered by the disease pathology. Only two of the RNA-Seq genes 
are represented in the 2013 IMSGC GWAS set: GALC and RGS14. 
In the 2017 IMSGC set, RGS14 and PVR are common genes.

Astrocytes
Five genes in the GWAS sets are expressed in or linked to  
astrocyte function (CLEC16A, IL22RA2, TNFRSF1A, CYP24A1 
and PHGDH). Also, seven genes from these sets have a link to 
neurodegeneration excluding that of MS (GALC, PITPNM2,  
DIKKL1, SLC2A4RG, FCRL1 and PHDGH). One other gene 
links to neurodegeneration (NPEPPS); this gene codes for an  
aminopeptidase which may regulate neuropeptide activity and  
tau levels38,39.

Oligodendrocytes
Three genes—OLIG3 (oligodendrocyte transcription factor), 
ZNF365 (DISC1-binding zinc finger protein) and BCAS—are 
key to oligodendrocyte function. BCAS was recently reported 
as being present in MS lesions40; mice lacking this gene  
display hypomyelination41. The interaction database STRING 
links BCAS1 to QKI, a gene thought to play a major role in  
oligodendrocyte differentiation and myelination42.

Intracellular organelles
Mitochondria. Mitochondrial dysfunction is thought to play a 
role in neurodegeneration43. In the GWAS and RNA-Seq studies, 
23 genes, including the CYP24A1 vitamin D susceptibility gene,  
link to mitochondria. Several others are linked to oxidation  
reduction and the electron transport chain: COXM1, WWOX, 
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PRDX5, IPYR2, CYB and ALDH2 (Supplementary Table,  
Table 6). Previous studies highlight the electron transport chain 
as a dysregulated pathway in MS lesions, although the differ-
ently expressed genes listed in these studies (Supplementary 
table, Table 7) differ from those reported in the GWAS studies. 
Only two genes—CYTB (cytochrome b [complex III subunit 3,  
mitochondrially encoded]) and CASQ1 (calsequestrin-1 [calmi-
tine])—were reported by both the IMSG RNA-Seq 2017 study and 
the 2012 study. Cytochrome b is, of course, intimately involved 
in the generation of the proton gradient that ultimately produces  
ATP. Defects in the electron transport chain are also linked  
to reactive oxygen species (ROS) generation. Calsequestrin-1 
is a calcium binding protein in muscle. Deletion of the gene in  
mice or mutations in the human gene or both cause muscle  
atrophy and mitochondrial dysfunction44. Defects in this  
pathway underscore the rationale for anti-oxidant approaches, 
such as Nrf-2 activation (dimethylfumarate)45 or permeability pore  
inhibition via mitochondrial cyclophilin D46.

The picture is broadly reflective of MS pathology. However,  
very few of these genes have been pursued as drug targets and 
even fewer taken into clinical trials. A recent study attempted to  
concatenate all of the GWAS data and has produced two more 
restricted gene lists for pwMS versus control and pwMS  
undergoing treatment. This study identified interferon-gamma 
signalling as the major pathway involved47. Importantly, the  
multiple genes associated with B-cell function/dysfunction and 
EBV support a role in MS pathology.

Immune cells: small-molecule drugs
In Table 2, a method of assessing the likely CNS penetration of 
a compound is given where there are no published data. The  
scoring method used is the multiparameter optimisation  
method48.

Adenosine deaminase: clues to the mode of action of 
cladribine (Mavenclad)
Adenosine deaminase is often highlighted in discussions on 
the mechanism of action of cladribine as the active metabolite 
of the drug is unable to be broken down by this enzyme49.  
Children with adenosine deaminase deficiency have severe 
combined immunodeficiency disease characterised by reduced  
B and T lymphocyte counts50. The lack of adenosine deami-
nase leads to an increase in dNTP levels (Figure 2), which 
can lead to cytotoxicity by a number of different mechanisms.  
dNTPs are selectively toxic towards T and B cells51 and this  
susceptibility has been rationalised by examining the levels of 
the enzymes involved in maintaining NTP levels. Lymphocytes  
contain low levels of the NTP catabolic enzyme 5′-nucleotidase 
which favours high NTP levels in the absence of adenosine  
deaminase52.

In the case of cladribine action, the drug enters the cell via  
nucleoside transporters and is successively phosphorylated 
to the triphosphate (Figure 2). The rate-limiting step for this  
process is the initial phosphorylation by cytidine kinase, an  
enzyme that is highly expressed in lymphocytes (Figure 2)53.  
Owing to the inability of cladribine triphosphate to be broken  

down by adenosine deaminase and the low levels of 5′ nucleoti-
dase in lymphocytes, this active metabolite incorporates into 
DNA, leading to single-stranded DNA breaks and ribonucleotide  
reductase inhibition. This is thought to be the major cause of 
lymphocyte toxicity. Other mechanisms include disruption of  
DNA repair and an epigenetic effect.

Cladribine has medium oral absorption (37%–51% bioavailable) 
with a half-life of 5.7 to 19.7 hours54. The drug achieves very 
good levels in cerebrospinal fluid (25% of plasma levels) and is  
metabolised mostly in the blood (in contrast to most drugs)55. 
The testing and registration of cladribine for MS have a long and  
tortuous history56 culminating in the CLARITY (Cladrib-
ine Tablets Treating Multiple Sclerosis Orally) phase 357 and  
CLARITY extension2 study. The drug is efficacious in reduc-
ing relapses following short courses of treatment (4–5 days) at  
3.5 or 5.25 mg/kg with reductions in relapse rate of 57.6% and 
54.5% versus placebo, respectively. Side effects such as lympho-
penia and infection were predictable in line with an agent that  
depletes B and T cells. Cladribine is licensed for hairy cell  
leukaemia and B-cell chronic lymphocytic leukaemia. In 2017,  
it was approved for MS in Europe58 and is marketed by Merck 
KGaA (EMD Serono in the US) as Mavenclad. Merck filed  
for FDA approval on 30 July 2018.

Inosine-5′-monophosphate dehydrogenases (IMPDH1 
and IMPDH2)
IMPDH1 and IMPDH2 catalyse the conversion of inosine  
5-phosphate to xanthosine 5-phosphate. IMPDH2 is the rate-
limiting enzyme for guanosine biosynthesis59, and there are  
similarities with the mechanism of cladribine above. Inhibitors of 
these enzymes are generally immune-suppressive. Mycophenolate 
mofetil is an old drug which has recently shown some clinical  
benefit in MS60,61. It is a non-selective inhibitor of IMPDH1 
and 2 and has Ki values of 40 and 10 nM, respectively62. The  
mechanism of immune suppression has been characterised in  
systemic lupus erythematosus63 as slowing B-cell proliferation 
and plasmablast formation. The lack of selectivity for mycophe-
nolate and other older drugs has led to a search for more selective  
inhibitors. Sanglifehrin is a natural product with immune- 
suppressive properties that only recently have been character-
ised as working through inhibition of IMPDH264. The spiroketal  
moiety of sanglifehrin is responsible for this activity, forming a  
ternary complex between IMPDH2, sanglifehrin, and cyclophilin 
A. Sappanone is a covalent and selective inhibitor of IMPDH2 
over IMPDH1, binding to the Cys140 on the protein65, and this  
type of compound may offer promise for an effective treatment  
with fewer side effects.

Dihydroorotate dehydrogenase inhibitors: teriflunomide
Dihydroorotate dehydrogenase (DHODH) is a critical mitochon-
drial enzyme involved in the de novo biosynthesis of pyrimidines.  
Inhibiting this enzyme limits the available pyrimidine reserve 
needed for the increased proliferation of T and B lymphocytes 
seen in patients with MS66,67. This lowers the inflammatory 
response to auto-antigens by decreasing the number of activated 
T and B cells available to cross the blood–brain barrier into the  
CNS.
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Figure 2. Mechanism of action of cladribine. Cladribine is taken up into cells by nucleoside transporters and then is phosphorylated to 
the mono-phosphate (the rate-limiting step) by deoxycytidine kinase, highly expressed in lymphocytes. Subsequent phosphorylation steps 
produce the active species, the triphosphate. The triphosphate cannot be efficiently degraded by adenosine deaminase, and 5′-nucleotidase 
has low expression in lymphocytes. This leads to high levels of the cladribine triphosphate, which is toxic to cells by a number of mechanisms, 
including incorporation into DNA leading to single-stranded breaks.

Teriflunomide acts primarily as a non-competitive and selec-
tive inhibitor of DHODH and is approved for the treatment of 
relapsing forms of MS (RRMS). The registration and approval 
of teriflunomide were due to the success of three randomised  
placebo-controlled trials in relapsing MS, which demonstrated 
that daily oral dosing of 7 to 14 mg is effective versus placebo in  
three key measures: relapses, disability progression and brain 
lesions. Clinical trial III (Oral teriflunomide for patients with a 
first clinical episode suggestive of multiple sclerosis, or TOPIC)  
showed that 72% of patients remained relapse-free on teriflu-
nomide 14 mg versus 62% with placebo96. A recent study on the 
effect of teriflunomide on different immune cell subpopulations 
in patients with MS indicated that, while teriflunomide signifi-
cantly reduces absolute counts of total CD19+ B cells and mature  
and regulatory B-cell subsets, it affects T-cell numbers to a  
noticeably lesser extent and shows no detectable effect on natu-
ral killer (NK) cell numbers97. However, the reduction in memory 
B cells is modest, and a more recent study suggests that when  

teriflunomide is used as a second-line treatment, relapse rates 
of patients with RRMS were increased compared with those 
who switched to dimethyl fumarate98. Oral bioavailability 
of teriflunomide is about 100%, and peak plasma levels are  
achieved within 1–2 hours of ingestion99. Teriflunomide is the 
active metabolite of leflunomide (Table 2)100,101. Further data on  
teriflunomide were presented at the 2018 European Committee 
for Treatment and Research in Multiple Sclerosis (ECTRIMS)  
meeting to indicate a reduction in T-cell receptor (TCR)  
repertoire diversity in patients with RRMS. Metabolic analysis of  
T cells of patients showed increased metabolic potential over 
controls; the authors consider that teriflunomide can improve  
energy production in T cells via dihydroorotate inhibition102.

Epstein–Barr virus as a target
Should EBV be established as the trigger for MS or as a contribu-
tor to the pathology, then specific EBV anti-virals might also offer 
a route to treatment. A small study using autologous EBV-specific  
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T-cell therapy has been reported103 noting promising clinical 
improvement. Unfortunately, however, the state of EBV anti-viral 
chemotherapy is poor104.

Maribavir, a nucleoside anti-viral, has been investigated in detail 
for inhibition of EBV replication105. This drug initially stalled in 
development for cytomegalovirus (CMV) but achieved success 
in the treatment of haemopoietic stem cell transplant and solid  
organ transplant patients106. It has recently been granted  
breakthrough status by the FDA. It is, however, not currently 
being developed for EBV107. Maribavir works through the EBV  
protein kinase BGLF4105 rather than through a standard nucle-
oside target. Phosphonate anti-viral nucleosides, including  
HPMP-5-azaC, have shown EBV efficacy in vitro and in animal 
models108. Herpes viruses may incorporate their own viral  
thymidine kinase and this is responsible for the high selectivity 
and low toxicity of agents such as acyclovir. Although viral EBV  
thymidine kinase has restricted specificity compared with other 
herpes virus thymidine kinases109, some nucleosides such as  
KAY-2-41 and KAY-39-149 show high activity against EBV110. No 
development of these agents is reported. The similarity between  
the mode of action of cladribine and that of anti-viral nucle-
osides is obvious, but there is currently no report of the activity  
(if any) of cladribine against EBV-infected cells. The development 
of EBV vaccines is problematic111, but efforts are continuing and 
some recent success was observed in animals112.

Proteasome inhibitors bortezomib and carfilzomib
Bortezomib is a proteasome inhibitor used for the treatment of  
multiple myeloma and mantle cell lymphoma, two B cell– 
associated cancers. Bortezomib preferentially affects plasma 
cell differentiation and survival through its action on the nuclear  
factor-kappa B (NF-κB) pathway. This pathway is also key in 
inflammatory and autoimmune diseases113. The proteasome is 
also directly involved with processing of MHC class I peptides114.  
Following B-cell activation, B cells become more susceptible 
to proteasome inhibition115. Thus, bortezomib has some selec-
tivity in inducing apoptosis in activated B cells (plasma cells).  
Bortezomib has been trialled in the autoimmune diseases  
refractory systemic lupus erythematosus and neuromyelitis 
optica spectrum disorder116 and demonstrated some efficacy117. A  
negative aspect of bortezomib is the reported chemotherapy-
induced peripheral neuropathy. This is caused by dysregulation 
of sphingosine-1-phosphate receptor-1 in astrocytes, which can 
be treated with fingolimod118. Carfilzomib is a recently approved 
proteasome inhibitor for lymphomas. A recent study showed that 
carfilzomib together with other proteasome inhibitors had an  
effect on activated B cells and on naïve and—importantly from 
an MS perspective—memory B cells119. There appears to be 
potential for the use of proteasome inhibitors in MS, particularly 
if their action on different subtypes of B cells becomes better  
understood and if the side effects are minimised.

Bruton’s (B-cell) tyrosine kinase inhibitors
Bruton’s (B-cell) tyrosine kinase (BTK) is an essential kinase 
for the maturation of B cells together with phosphatidylinositol  
3-kinase isoform p110delta (PI3Kδ). This pathway is important 

for autoimmune diseases and B-cell malignancies. In MS, BTK  
inhibitors show potential for highly specific removal of B cells 
and potential to diminish autoantibody release in rheumatoid  
arthritis models120. The first covalent BTK inhibitor to be marketed 
was ibrutinib, a covalent tyrosine kinase inhibitor with activity 
against BTK and now licensed for the B-cell malignancies man-
tle cell lymphoma, del17p chronic lymphocytic leukaemia121, 
and Waldenström’s macroglobulinemia122. Although no develop-
ment of ibrutinib for MS has been reported, two other inhibitors 
have reached development: evobrutinib (Merck KGgA) has 
reported positive phase IIB data, and PRN2246 (Principia/Sanofi) 
is still at an earlier stage123. Quite recently, at the 2018 Congress 
of the ECTRIMS, Merck presented clinical data using evobru-
tinib in patients with RRMS and illustrated positive results by  
reduction of T1+Gd lesions compared with placebo, justifying 
future clinical studies124.

PI3Kδ inhibitors
As indicated above, PI3Kδ inhibitors can prevent the matura-
tion of B cells and therefore are candidates for MS therapy. In  
contrast to BTK, this protein is also expressed in T cells. The 
expression of this enzyme is not restricted to B cells and thus 
could exhibit off-target effects. The gene PIK3R1—phos-
phatidylinositol 3-kinase regulatory subunit alpha (PI3-kinase  
regulatory subunit alpha)—has been listed as a priority gene 
from an interaction map analysis of GWAS data23. PIK3R1 is 
linked to a primary immunodeficiency resulting in low or absent  
circulating B cells125. So far, there have been no reports of  
development of idelalisib or other PI3Kδ inhibitors for MS. A  
black box warning has been issued for idelalisib which may  
hamper its use126.

B cell–activating factor and tumour necrosis factor 
alpha regulators
B cell–activating factor (BAFF) is a member of the tumour  
necrosis factor (TNF) family of receptors127 and is a key survival 
factor for B-cell subsets encoded by the TNFSF13B gene. A  
secreted cytokine, it is a ligand for three TNF receptors: TACI, 
BCMS and BAFF-R. The interaction between BAFF and  
BAFF-R activates the canonical NF-κB signalling pathway for  
B-cell survival and activation. The association of BAFF with MS 
has been known since the early 2000s; BAFF is upregulated in 
astrocytes within MS lesions128. A recent study demonstrated an 
association of a variant of TNFSF13B (BAFF-var) with MS129.  
The same study showed no involvement of BAFF-var with  
multiple T-cell traits, consistent with an effect on B cells and  
particularly on memory B cells. Biological therapies that  
target this cytokine are available. This gene appears to be a rare 
example of one that is associated with the disease by genetics 
and has also been drugged. The actions of this cytokine and  
others on B cells and on the course of the disease have not been 
fully elucidated. Atacicept—a fusion protein of BAFF and a  
proliferation-inducing ligand (APRIL)—worsens MS, an effect 
ascribed to an increase in memory B cells7.

CP-25 is a derivative of the natural product paeoniflorin130, which 
is able to inhibit B-cell proliferation in a similar manner to  
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rituximab (CD20 B-cell targeting antibody) and etanercept 
(TNF receptor chimera) and also downregulate the expression of  
BAFF-R on B cells. The mechanism of these effects is not  
reported131. It will be interesting to note the progression of 
this compound and ones with a similar mode of action. The 
effect of CP-25 on B-cell subsets was more modest than that of  
rituximab131.

Dimethylfumarate: Tecfidera
Dimethylfumarate (DMF) is an old drug originally used to treat 
psoriasis. Rapid metabolism converts DMF to monomethyl-
fumarate, the main species in circulation. This compound can  
react with glutathione to trigger an anti-oxidant response. The 
main mechanism of action is thought to be via activation of the 
transcription factor Nrf2, thus inducing a protective effect on  
cells45, although different targets of DMF have been observed132. 
Multiple actions on the immune system in pwMS have  
been noted133, including a potentially important decrease in 
CD19+CD27+ memory B cells134. This may in fact be a main  
mechanism of action due to the dramatic effects observed  
with other B cell–targeted therapies.

Janus kinase inhibitors
Janus kinases (JAKs) are downstream effectors of cytokine  
receptors and thus are potentially useful in MS given the impor-
tance of cytokines in driving MS. Although JAK inhibitors,  
such as tofacitinib, are in trials for many autoimmune diseases,  
MS is not currently a disease indication for inhibitors of this  
type135. The JAK2 gene is listed as a priority gene from the protein 
interaction analysis in the recent GWAS23.

Sphingosine-1-phosphate receptor inhibitors
Fingolimod is a prodrug that is activated by phosphorylation 
with sphingosine kinases. The phosphate form can then bind and  
initially activate receptors sphingosine-1-phosphate 1 (S1P1), 
S1P3, S1P4 and S1P5136. The action on the S1P1 receptor is  
thought to mediate as a functional antagonism with removal  
of the receptor from the membrane and proteasomal degrada-
tion. The S1P1 receptor is essential for lymphocyte trafficking 
from lymph nodes. Although the mechanism was thought to be  
primarily through T cells, studies also point to an effect on 
astrocytes and microglia137 and this may be via the S1P3  
receptor138. Despite increasing serum levels of BAFF in pwMS,  
fingolimod did not activate memory B cells or plasma cells139. 
The overall beneficial effects of fingolimod in MS are tempered  
by side effects140 and have stimulated the development of more 
selective drugs such as siponimod ponesimod and ozanimod136.  
Only detailed clinical analysis will establish the relative  
effectiveness of these compounds, particularly as they must now  
compete with the emerging B cell–directed therapies.

Aryl hydrocarbon receptor
Laquinimod, a quinolone-3-carboxamide derivative, is an  
innovative oral anti-inflammatory drug developed for the treatment 
of RRMS, PPMS and Huntington’s disease. Preclinical studies 
have shown that laquinimod reduces inflammatory cell infiltrates  
in the CNS. Furthermore, laquinimod suppresses clinical signs 

in EAE models and decreases the formation of meningeal B-cell 
aggregates in EAE mice141–143. Three phase 3 studies evaluating 
the efficacy and safety of laquinimod 0.6 mg as a treatment for  
RRMS have been conducted. The first study (ALLEGRO, or 
Assessment of Oral Laquinimod in Preventing Progression in  
Multiple Sclerosis) showed statistically significant differ-
ences between laquinimod and placebo in reducing the risk 
of sustained disability progression and rate of MRI-measured  
brain volume loss144. The second study (BRAVO) did not reach 
the primary endpoint of the trial but indicated a significant  
reduction in disability progression and brain atrophy145. 
CONCERTO (The Efficacy and Safety and Tolerability of  
Laquinimod in Subjects With Relapsing Remitting Multiple  
Sclerosis) was the third study to be completed, and it failed 
to meet its primary endpoint of a difference between patients 
receiving laquinimod 0.6 mg/day and those receiving equiv-
alent placebo in confirmed 3-month disease progression;  
however, it did demonstrate a significant effect on reducing brain 
volume loss and clinical relapses146.

The therapeutic effect of laquinimod was recently found to be 
dependent on aryl hydrocarbon receptor (AhR) activation and 
has been shown to induce several genes downstream linked with 
the AhR pathway. Among these genes were CYP1A1 and AHRR,  
showing the highest average fold change in both naïve and EAE 
mice147. AhR activation via laquinimod alters the phenotype of  
antigen-presenting cells and autoreactive T and B cells, reducing 
the humoral response associated with MS143,148.

Topoisomerase II inhibitors: mitoxantrone
Topoisomerase II is a nuclear enzyme that modifies the topology 
of DNA by catalysing the transient breaking and rejoining of 
the phosphodiester backbone149. Topoisomerase II inhibitors  
block the action of these DNA enzymes, interrupting their  
catalytic cycle, and are thought to give rise to the presence of  
protein-associated double-strand breaks, which may be lethal to a 
cell150,151. Two forms of topoisomerase II exist, possibly products  
of a gene duplication event, topoisomerase II α and β. Mitox-
antrone, a synthetic antineoplastic anthracenedione, was shown 
to target both topoisomerase II α and β and consequently  
interfere with DNA repair152. By inhibiting DNA replication 
and DNA-dependent RNA synthesis, mitoxantrone makes the 
cell incapable of dividing, thus suppressing the proliferation of  
autoreactive T cells, B cells, macrophages and other antigen- 
presenting cells that mediate myelin degradation153. Mitox-
antrone was initially proven to be effective in EAE154. In  
addition, it has proven efficacy in the treatment of worsening  
RRMS, SPMS and PRMS as assessed in three controlled  
clinical trials155–157. However, the risks of severe adverse events 
of mitoxantrone are similar to those seen with other anthracy-
clines—myelosuppression and cardiotoxicity—and it has seen  
decreased use because of the introduction of newer therapies  
such as fingolimod158.

Glatiramer acetate
Glatiramer acetate (Copaxone) is a simple but random polymer 
of the amino acids Ala, Glu, Lys and Tyr159. Originally conceived 
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to mimic basic myelin, the drug is an immunomodulator and  
shows activity in the EAE animal model. A Cochrane review  
concluded that it had no effect on disease progression but  
showed some efficacy in “relapse related clinical outcomes”160. In 
common with effects of other agents, its effects were thought to 
be T cell–related, but recent studies have pointed to a correlation  
with B-cell activity161.

Discussion
The study of the genetics associated with MS continues to  
improve our understanding of its mechanism, further implicating 
B cells and EBV in MS pathogenesis. However, an indication 
of the limitation of the genetic approach and the importance 
of other factors is that genetic susceptibility has thus far not  
proven useful in diagnosis. Even individuals with a high genetic 
susceptibility are unlikely to develop the disease4. The ideal  
scenario for genetic studies is that a key target that triggers the  
disease or is crucial in the pathology will emerge. This idea 
is, of course, best illustrated by the anti-cancer drug Gleevec, 
which targets the bcr-abl kinase. However, even with mono-
genic diseases, such as Huntington’s, therapies can be slow to  
appear162. For Alzheimer’s disease, there have been several  
discoveries linking particular genes and proteins to the disease 
but this has not produced any therapies to date. Complex  
multifactorial diseases such as MS would seem to be unlikely  
candidates for a magic bullet resulting from genetic studies.

The effectiveness of the new B cell–targeted agents, such as the 
CD20 antibodies and cladribine, has placed B-cell therapies  
at the centre of MS therapy. These therapies, however, have a 
non-optimal therapeutic index, and investigation of alternative  
B-cell agents is warranted. With cheap and effective small 
molecules such as cladribine already available, new agents  
need to demonstrate significantly improved side-effect profiles. 
This review concentrated on the promise of new small-molecule 
agents as B cell–directed drugs. Clearly, agents such as the BTK 
inhibitor evobrutinib have already shown some potential in  
clinical trials123.

Accumulating evidence places EBV as central to the disease, but 
no effective control of EBV has been achieved as yet. The only 
advanced therapy likely to have EBV efficacy, maribavir, has 
not been trialled for EBV. Maribavir is effective in human CMV  
therapy, and a trial in MS would be justified. Maribavir shows 
good CNS penetration, allowing it to access CNS cells such as  
astrocytes that are known to be infected with EBV. If EBV is 
responsible only for activation of the immune system, then  

EBV-specific treatment will have an effect similar to that of  
current immune therapies; however, if significant EBV infection 
affects other cells such as astrocytes, then a more pronounced 
effect should be evident. While debate continues on the role of 
EBV in MS, it will be difficult to address this question without an  
effective EBV therapy. B-cell therapies remove only the latent 
form and do not eliminate the virus elsewhere in the body. The  
marmoset model is perhaps superior to rodent models as a way 
to evaluate MS therapies; testing anti-EBV therapies would  
require that the CalHV3 virus show a sensitivity similar to that  
of EBV to the anti-viral agent.

Treatment options for patients with MS have improved enor-
mously over the last few decades; however, current therapies are  
expensive and ultimately do not prevent disease progression. 
Small molecules represent a more affordable and sustainable 
class of drugs that are favourable for MS in particular because of  
higher blood–brain barrier penetration. Here, we have discussed 
small molecules that target B cells, and EBV-infected B cells, 
and are currently being pursued or warrant future investigation 
in the context of MS. However, few of the genes and pathways  
targeted affect MS susceptibility genes that are implicated in 
the mechanism of the disease. The noteworthy progress of  
anti-CD20 antibodies and cladribine has brought the role of  
B cells in MS pathology to the forefront of current research. 
This opens the door to numerous exciting possibilities to develop  
unique, affordable and easily maintainable therapies.

Methodology
Gene and protein data were downloaded from UniprotKB, a  
curated high-quality database. Gene lists were inputted to https://
www.uniprot.org/uploadlists/, and the data were downloaded  
in tab format and saved in Excel (Supplementary Table). Selected 
gene data were supplemented with PubMed searches. Gene  
lists were taken from the following sources: Patsopoulos  
201723, Beecham 201324 (both IMSGC), Fischer43, Sevastou163 
(RNA-Seq mouse EAE) and EBV genes Afrasiabi 201825.
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Supplementary Table 1 - Gene lists

Click here to access the data
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