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A B S T R A C T

Background: Tumor segmentation of glioma on MRI is a technique to monitor, quantify and report disease
progression. Manual MRI segmentation is the gold standard but very labor intensive. At present the quality of
this gold standard is not known for different stages of the disease, and prior work has mainly focused on
treatment-naive glioblastoma. In this paper we studied the inter-rater agreement of manual MRI segmentation of
glioblastoma and WHO grade II-III glioma for novices and experts at three stages of disease. We also studied the
impact of inter-observer variation on extent of resection and growth rate.
Methods: In 20 patients with WHO grade IV glioblastoma and 20 patients with WHO grade II-III glioma (defined
as non-glioblastoma) both the enhancing and non-enhancing tumor elements were segmented on MRI, using
specialized software, by four novices and four experts before surgery, after surgery and at time of tumor pro-
gression. We used the generalized conformity index (GCI) and the intra-class correlation coefficient (ICC) of
tumor volume as main outcome measures for inter-rater agreement.
Results: For glioblastoma, segmentations by experts and novices were comparable. The inter-rater agreement of
enhancing tumor elements was excellent before surgery (GCI 0.79, ICC 0.99) poor after surgery (GCI 0.32, ICC
0.92), and good at progression (GCI 0.65, ICC 0.91). For non-glioblastoma, the inter-rater agreement was
generally higher between experts than between novices. The inter-rater agreement was excellent between ex-
perts before surgery (GCI 0.77, ICC 0.92), was reasonable after surgery (GCI 0.48, ICC 0.84), and good at
progression (GCI 0.60, ICC 0.80). The inter-rater agreement was good between novices before surgery (GCI 0.66,
ICC 0.73), was poor after surgery (GCI 0.33, ICC 0.55), and poor at progression (GCI 0.36, ICC 0.73). Further
analysis showed that the lower inter-rater agreement of segmentation on postoperative MRI could only partly be
explained by the smaller volumes and fragmentation of residual tumor. The median interquartile range of extent
of resection between raters was 8.3% and of growth rate was 0.22mm/year.
Conclusion: Manual tumor segmentations on MRI have reasonable agreement for use in spatial and volumetric
analysis. Agreement in spatial overlap is of concern with segmentation after surgery for glioblastoma and with
segmentation of non-glioblastoma by non-experts.

1. Introduction

Glioma is the most common primary brain tumor in adults (Crocetti
et al., 2012; Ostrom et al., 2017). Gliomas are classified by histological
type and malignancy grade (Louis et al., 2007). Despite surgical

resection, radiotherapy and chemotherapy, the survival of glioma pa-
tients is limited, with a two-year survival of 15% for glioblastoma
(WHO grade IV) and 85% for diffuse low-grade glioma and a ten-year
survival of 2% and 58% respectively (Ostrom et al., 2017).

Although glioma segmentation on MRI is not generally considered
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to be part of standard care, it is useful in clinical practice for doc-
umentation, prediction of survival, treatment planning, assessment of
quality of care, and treatment response measurement. For diagnosis and
surgical planning, several MRI sequences are typically applied to assess
tumor location and extent (T1-, T2- and T2-FLAIR-weighted images)
and the integrity of the blood brain barrier (T1-weighted images after
administration of a gadolinium-based contrast agent). Tumors are
segmented on pre- and postoperative MR scans for volumetric analysis
and calculation of the extent of resection (EOR). The EOR is an im-
portant predictor of survival for gliomas (Brown et al., 2016; Lacroix
et al., 2001; Sanai and Berger, 2018). Tumor segmentation is standard
practice for planning of radiotherapy. During radiological follow-up the
tumor volume is monitored, and timing of second line treatment is
based on tumor growth. Quantitation of MRI tumor volumes has proven
to be valuable for studying autonomous growth (Gui et al., 2018;
Mandonnet et al., 2013; Mandonnet et al., 2008), quantification of the
effects of (pharmacological) interventions (Ben Abdallah et al., 2018b;
Mandonnet et al., 2010; Pallud et al., 2012a; Pallud et al., 2012b), and
statistical maps of care (De Witt Hamer et al., 2013; Mandonnet et al.,
2007) and disease mechanisms (Amelot et al., 2017; Ellingson et al.,
2013; Wang et al., 2014).

These examples show that examination of glioma on MRI by human
experts is important. Ideally, observer variation should be small.
Theoretically, this variation could be reduced or eliminated by semi-
automated or completely automated MRI segmentation algorithms, and
such algorithms are being developed (Cordova et al., 2014; Gooya et al.,
2012; Meier et al., 2016; Menze et al., 2015; Porz et al., 2016, 2014;
Zaouche et al., 2018). To date the work on automatic segmentation has
primarily focused on the segmentation of preoperative MR scans of
patients with glioblastoma. However, the most recent BRATS tumor
segmentation benchmarking challenges have put automatic detection of
tumor volume change on follow-up MR scans on the agenda (Crimi
et al., 2018, 2016).

Manual segmentation by experts is still considered to be the gold
standard and therefore required for quantitative interpretation of MR
images and for the validation of automated segmentation algorithms.
Reproducibility of manual segmentations has been investigated pre-
viously by others (Ben Abdallah et al., 2018a, 2016; Bø et al., 2017;
Cattaneo et al., 2005; Gutman et al., 2013; Huber et al., 2015; Kleesiek
et al., 2016; Kubben et al., 2010; Provenzale et al., 2009; Provenzale
and Mancini, 2012; Sorensen et al., 2001; Weltens et al., 2001). Most of
this work was focused on manual segmentation of preoperative MRI in
glioblastoma, although a few of these studies consider longitudinal data
(Huber et al., 2015; Kleesiek et al., 2016; Kubben et al., 2010; Meier
et al., 2016). Two studies (Ben Abdallah et al., 2016; Huber et al., 2015)
have addressed the issue of required level of expertise, albeit for pre-
operative MRI. Both these studies indicated no significant influence of
either clinical expertise, or the years of experience on the reproduci-
bility of the segmentations. Since manual segmentation of 3D MRI is
labor intensive, even when semi-automated methods are used, many
studies are based on a limited number of included scans and raters.
Finally, most studies address segmentation of glioblastoma and rela-
tively few studies address lower grade gliomas, although in more recent
studies lower grade glioma segmentation is being studied as well (Ben
Abdallah et al., 2016; Bø et al., 2017).

In this study, we aim to establish the reproducibility of manual
raters in the case of glioma segmentation on MRI, and the impact on
extent of resection and growth rate measurements. We will therefore
analyze the reproducibility of glioma segmentations at three MRI scan
time points by eight raters with two levels of expertise for glioblastoma
and non-glioblastomas.

2. Methods

2.1. Patients

Patients were randomly selected from a cohort treated at the
Neurosurgical Center Amsterdam of the VU medical center
(Amsterdam, The Netherlands) between 2009 and 2013 with standard
T2-FLAIR-, T2-, T1-weighted images before and after contrast agent
administration. All series were obtained at 3 time points: 1) pre-
operative, i.e. before first-time resective surgery, 2) postoperative, and
3) at disease progression. For interpretation of post-surgical ischemia,
diffusion-weighted imaging on MRI after surgery was included as well.
MR data from 20 patients with histopathologically confirmed WHO IV
glioblastoma and from 20 patients with grade II-III glioma were in-
cluded. All 20 gadolinium-enhancing gliomas had a histopathological
diagnosis of glioblastoma WHO grade IV. Of the 20 non-enhancing
gliomas, 12 were astrocytoma WHO grade II, four oligodendroglioma
WHO grade II, three oligoastrocytoma WHO grade II, and one ana-
plastic astrocytoma WHO grade III, which we refer to as non-glio-
blastomas.

The preoperative MRI was made on average within one week before
resection. The MRI after surgery was made within 72 h after resection
for glioblastomas and on average at four months after resection for non-
glioblastomas. The MRI at progression was the scan that demonstrated
the first tumor progression according to tumor board meeting con-
sensus.

The institutional review board at the VU medical center Amsterdam
approved of this study (case nr. 2014.336), after which the data was
gathered retrospectively from the clinical workflow. All patients pro-
vided written informed consent for use of their clinical data for medical
research. The imaging was analyzed after anonymization in accordance
with the Personal Data Protection Act.

2.2. MR-imaging

Imaging was performed on a variety of systems (Siemens, model
Sonata or Avanto; GE medical systems, model Signa HDxt or DISCOV-
ERY MR750; Toshiba, model Titan3T; Philips, model Panorama HFO or
Ingenuity) with a field strength of 1 T (1% of all scans), 1.5 T (62% of
all scans) or 3 T (37% of all scans). The standardized protocol included
non-enhanced axial T1-weighted spin echo images [repetition time/
echo time (TR/TE) 520–600/8–12ms] with 5-mm slice thickness and
axial T2-weighted turbo spin echo images (TR/TE 5190–8670/
93–101ms) with 5-mm slice thickness. Sagittal 3D turbo fluid-atte-
nuated inversion-recovery (FLAIR) images [repetition time/echo time/
inversion time (TR/TE/TI) 6500/355/2200ms] with 1.3-mm slice
thickness and axial single shot spin echo echo-planar diffusion-
weighted (DWI) images (TR/TE 3400/122ms) with 5-mm slice thick-
ness were also derived. Diffusion gradients were applied along three
orthogonal directions using b-values of 0, 500 and 1000 s/mm2.
Apparent diffusion coefficient (ADC) maps were calculated from the
DWI images. Post-contrast (0.2 mmol/Kg) sagittal 3D T1-weighted
MPRAGE gradient-echo (T1c) images (TR/TE/TI 2300-2700/5-4.5/
950ms) with 1- to 1.5-mm slice thickness were obtained.

All the DICOM images of pre-, postoperative MRI and at progression
were loaded in the Elements environment (BrainLab™ GmBH,
Feldkirchen, Germany) and were rigidly registered to the post-contrast
T1-weighted MRI per time-point using the Image Fusion tool to facil-
itate visual comparison of scans. For non-glioblastomas, both im-
mediate and late postoperative MRI were available to raters to discern
regions of postsurgical diffusion restriction from residual tumor.

2.3. Manual segmentation

Four experts and four novices segmented each glioma at each time-
point as rater. The experts consisted of three neuro-radiologists (E1, E2
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and E3) and one neurosurgeon (E4) with 8, 20, 18, and 20 years of
clinical experience, respectively. The novices consisted of three neu-
rosurgical residents (N1, N3 and N4), and one neuro-radiology resident
(N2) with 1, 5, 3, and 3 years of clinical experience.

Raters were blinded for histopathological diagnosis and clinical
follow-up of patients. Raters were asked to delineate both the non-en-
hancing and the contrast-enhancing tumor elements - if present - for all
three MRI time points in each of 40 patients. To facilitate MRI inter-
pretation, raters were acquainted with the VASARI-criteria (Visually
AcceSAble Rembrandt Images, as proposed by The Cancer Imaging
Archive (Clark et al., 2013)), but no segmentations rules were imposed.
The raters were asked to segment the enhancing tumor elements on post
contrast T1-weighted images and to include enclosed necrosis or cysts.
Furthermore, they were requested to segment the non-enhancing tumor
elements on T2/FLAIR-weighted images. A volume of zero was assigned
when a rater determined absence of enhancing or non-enhancing ele-
ments.

Segmentations were made with the semi-automatic SmartBrush tool
(Elements©, BrainLab™ GmBH, Feldkirchen, Germany) approved for
use in clinical practice. Raters were instructed with the use of the
software and practiced their skills with MRI sets for preoperative,
postoperative and progression time points from two test patients, one
contrast-enhancing case and one non-enhancing case. Afterwards they
received feedback on their use of the software and on the requirements
for the segmentations. From this point on no further feedback was
provided. Raters were blinded for segmentations of the co-raters and
received the 40 MRI sets in identical order. The order of the MRI sets
was randomized to ensure mixing of glioma gradings.

2.4. Statistical analysis

First, we evaluated the agreement in the detection of any enhancing
or non-enhancing tumor tissue between expert and novice raters using
bar plots, as raters may not necessarily agree on tumor presence.

Second, we determined the inter-rater agreement in volume mea-
surements derived from the segmentations using the intra-class corre-
lation coefficient (ICC) (McGraw and Wong, 1996) and (Shrout and
Fleiss, 1979). The specific ICC model used for this purpose is the
ICC(A,1) from (McGraw and Wong, 1996) to quantify the inter-rater
agreement on volume. ICC scores below 0.4 were considered as poor
agreement, 0.4–0.6 as reasonable, 0.6–0.7 as good, and 0.7–1 as ex-
cellent (Bartko, 1991; Cicchetti, 1994).

Third, we determined the inter-rater agreement in spatial overlap
using the generalized conformity index (GCI) (Kouwenhoven et al.,
2009) that quantifies the spatial overlap among multiple spatial objects.
This a mathematical generalization of the well-known Jaccard score,
which quantifies the overlap of two volumes, as the ratio between the
volume of the cross-section and the union of both volumes. When the
segmented set by rater j is indicated as Aj and its volume by Vol(Aj), the
GCI is expressed as:

=
∑ ∩

∑ ∪

>

>

GCI
A A

A A

Vol( )

Vol( )
i j i j

i j i j

pairs( )

pairs( ) (1)

where ∑ …
>i jpairs( ) indicates summation over all combinations of unique

pairs of raters. For two raters the GCI equals the Jaccard score,
GCI=Vol(A1 ∩A2)/Vol(A1 ∪A2). The GCI was calculated separately for
experts and novices, for each MRI time point of every patient. Raters
who detected no tumor in a patient, i.e. a volume of zero, were omitted
from the GCI calculation for that patient. A GCI of zero denotes no
spatial overlap at all and a GCI of one denotes complete spatial overlap
among raters. Scores of 0.7–1.0 are regarded as excellent (Bartko, 1991;
Zijdenbos et al., 1994). The distributions of spatial overlap scores were
visualized in scatter plots and boxplots. Differences in distributions
between experts and novices were tested using the Fisher-Pitman per-
mutation test (Ludbrook and Dudley, 1998).

Fourth, to evaluate when expert knowledge is required, we also
determined the Jaccard indices between expert consensus and novice
consensus segmentations. Majority voting over multiple raters is a well-
established method to obtain a consensus segmentation that is a better
ground truth than single rater's segmentation (Kittler et al., 1996). For
these consensus segmentations, a voxel-wise majority vote of at least
two of four raters was used.

Fifth, to evaluate the impact on clinical volumetric analysis, we
calculated the extent of resection based on the pre- and postoperative
MRI and the growth rate based on the postoperative and progression
MRI for each rater. The extent of resection was based on volumes of
enhancing elements for glioblastoma and on volumes of non-enhancing
elements for non-glioblastoma:

=
−

×EOR
V V

V
100%pre post

pre (2)

where Vpre and Vpost are the pre- and postoperative volumes of one
rater.The growth rate was calculated as difference between the mean
tumor diameters divided by the time-interval in years (Mandonnet
et al., 2008), in which:

= ×D V(2 )mean
1
3 (3)

where Dmean is the mean tumor diameter of the volume V of one rater.
For the clinical volumetric analyses we used the interquartile range as
measure of dispersion between the non-normal measurements of raters
per case.

3. Results

3.1. Patient characteristics

Patients with glioblastoma had a mean age of 61.4 years (range
41.8–72.6) and consisted of 10 females and 10 males. Patients with
non-glioblastoma had a mean age of 36.9 years (range 18.6–53.7) and
consisted of 8 females and 12 males. The time between preoperative
MRI and surgery was on average 7.8 days for glioblastoma and
53.6 days for non-glioblastoma. The time between surgery and the
postoperative MRI was on average 1.2 days for glioblastoma and
4.11months for non-glioblastoma. The time between surgery and the
progressive MRI was on average 13.7 months (range: 5.6–30.7) for
glioblastoma and 28.9months (range 6.2–60.7) for non-glioblastoma.
Enhancing and non-enhancing tumor were not treated as mutually ex-
clusive by the raters, therefore overlap is present between the seg-
mentations of enhancing and non-enhancing tumor. The average con-
trast-enhancing (with enclosed necrosis) tumor volume was 32.2mL for
glioblastoma and 0.8 mL for non-glioblastoma on the preoperative MRI,
2.7 and 0.0mL on the postoperative MRI, and 24.2 and 5.2mL on the
progressive MRI. The average non-enhancing tumor volume was
88.6 mL for glioblastoma and 45.3 mL for non-glioblastoma on the
preoperative MRI, 37.2 and 8.4 mL on the postoperative MRI, and 78.0
and 25.7 mL on the progressive MRI. The tumor was located in the left
hemisphere in 8 patients with glioblastoma, and in 9 patients with non-
glioblastoma. Detailed patient characteristics are presented in Table 1.

3.2. Tumor tissue detection

The number of raters that identified any tumor are plotted in Fig. 1.
Zero raters would represent perfect agreement on absence of tumor,
and four raters would represent perfect agreement on presence of
tumor.

Experts and novices perfectly agreed on the presence of any en-
hancing tumor for glioblastoma and on any non-enhancing tumor for
non-glioblastoma patients on preoperative MRIs. Few experts and even
fewer novices detected enhancing tumor in non-glioblastoma patients
preoperatively. In postoperative MRIs both experts and novices

M. Visser, et al. NeuroImage: Clinical 22 (2019) 101727

3



considerably disagreed on the presence of enhancing tumor in glio-
blastoma patients. Experts more frequently agreed perfectly on en-
hancing tumor presence than novices; novices more frequently agreed

perfectly on enhancing tumor absence in postoperative MRIs. Experts
generally agreed on tumor presence in non-glioblastoma patients
postoperatively, whereas novices disagreed in one third of these

Table 1
Patient characteristics.

Glioblastoma Non-glioblastoma

Pat Path Sex Age T1 T2 T3 Pat Path Sex Age T1 T2 T3

1 GB F 67,1 13 0 415 21 A2 F 53,7 26 91 1746
2 GB F 72,1 6 1 229 22 O2 M 44,7 1 111 1033
3 GB M 65,3 2 0 920 23 A2 F 23,1 67 111 188
4 GB F 66,1 2 1 310 24 A2 M 30,1 53 77 861
5 GB M 66,7 1 1 474 25 A2 M 18,6 1 184 1477
6 GB F 64,0 15 1 274 26 A2 F 21,8 9 92 1538
7 GB M 45,4 4 3 591 27 O2 M 52,6 67 143 1595
8 GB M 52,8 9 3 255 28 A2 F 35,5 46 108 1820
9 GB M 61,3 7 0 279 29 A2 M 30,8 255 102 686
10 GB M 70,5 2 0 184 30 A2 F 28,6 111 127 207
11 GB M 75,5 1 1 188 31 OA2 M 34,8 109 1 191
12 GB F 66,2 8 2 540 32 A2 F 48,2 2 99 573
13 GB M 71,6 10 1 825 33 A2 M 29,1 12 101 1438
14 GB M 55,1 2 3 770 34 A2 M 23.0 60 145 965
15 GB F 42,3 5 1 732 35 A2 M 41,6 1 90 903
16 GB M 73,0 18 1 329 36 OA2 F 39,5 1 61 183
17 GB F 47,2 3 1 168 37 A3 M 52,8 8 170 306
18 GB F 41,8 21 1 267 38 A2 M 37,8 52 161 186
19 GB F 72,6 8 1 204 39 O2 F 44,3 68 380 402
20 GB M 51,4 19 2 278 40 OA2 M 46,7 126 112 1038

T1: time of preoperative scans (days before surgery), T2: time of postoperative scans (days after surgery), T3: time of progression, GB: glioblastoma, A2: astrocytoma
grade II, O2: Oligodendroglioma grade II, OA2: oligoastrocytoma grade II, A3: anaplastic astrocytoma grade III.

Fig. 1. Bar plots of the number of patients with corresponding number of expert (EX) and novice (NO) raters detecting any enhancing tumor and any non-enhancing
tumor for glioblastoma and non-glioblastoma in MRIs preoperative, postoperative and at progression.
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patients. At progression, experts and novices generally agreed on the
presence of any enhancing tumor in glioblastoma and perfectly agreed
on any non-enhancing tumor in non-glioblastoma patients. Experts
more frequently identified enhancing tumor in non-glioblastoma pa-
tients at progression than novices. All experts and novices identified
non-enhancing tumor in all glioblastoma and non-glioblastoma pa-
tients.

3.3. ICC of tumor volume

The ICCs of tumor volumes are shown in Table 2. Agreement in
volume measurements among experts is excellent at all three time
points for enhancing tumor elements in glioblastoma patients and ex-
cellent for non-enhancing tumor elements in non-glioblastoma patients
(ICC≥ 0.8). In contrast, the non-enhancing elements in glioblastoma
patients have poor to fair agreement for both experts and novices. The
agreement among experts is generally better than among novices.

3.4. Spatial overlap

Results for spatial agreement are represented as box-plots of the GCI
between raters in Fig. 2, demonstrating that experts generally achieve a
higher agreement in spatial overlap than the novices. For non-enhan-
cing tumor segmentations of glioblastoma on postoperative MRI, ex-
perts had a significantly higher spatial overlap than novices with a
median GCI of 0.30 versus 0.15 (p= .002). For non-enhancing tumor
segmentations of non-glioblastoma at all MRI time points, experts had a
significantly higher spatial agreement than novices with a median GCI
of 0.79 versus 0.67 (p= .001) on preoperative MRI, 0.52 versus 0.35
(p= .007) on postoperative MRI and 0.64 versus 0.38 (p < .001) at
progression.

The spatial agreement was invariably highest for preoperative seg-
mentations and lowest for postoperative segmentations.

Agreement on enhancing tumor in glioblastoma was excellent
among both experts and novices on preoperative MRI and at progres-
sion. Spatial agreement was lowest for enhancing tumor in glioblastoma
on postoperative MRI, whereas this was affected by a substantial inter-

Table 2
Intra-class coefficient with 95% confidence intervals for experts and novices.

Histology group Contrast Rater Preoperative Postoperative Progression

GB Enhancing Experts 0.99 (0.98–1.00) 0.92 (0.85–0.97) 0.91 (0.82–0.96)
GB Enhancing Novices 0.98 (0.96–1.00) 0.60 (0.39–0.78) 0.97 (0.95–0.99)
GB Non-enhancing Experts 0.61 (0.41–0.79) 0.25 (0.05–0.52) 0.53 (0.24–0.76)
GB Non-enhancing Novices 0.55 (0.24–0.78) 0.15 (0.00–0.38) 0.40 (0.09–0.67)
Non-GB Enhancing Experts 0.28 (0.07–0.55) ⁎ 1.00 (1.00–1.00)
Non-GB Enhancing Novices 0.57 (0.35–0.77) ⁎ 0.66 (0.47–0.83)
Non-GB Non-enhancing Experts 0.92 (0.81–0.97) 0.84 (0.70–0.93) 0.80 (0.65–0.91)
Non-GB Non-enhancing Novices 0.73 (0.40–0.89) 0.55 (0.32–0.76) 0.73 (0.46–0.88)

GB: glioblastoma.
⁎ No enhancing elements were identified for non-glioblastomas in the postoperative MRI, with the exception of 2 disjoint residual volumes each by a different

rater.

Fig. 2. Box plots of the spatial overlap among ex-
perts (EX) and novices (NO) measured as generalized
conformity index for enhancing tumor and non-en-
hancing tumor segmentations of 20 glioblastoma and
20 non-glioblastoma patients in MRIs taken at pre-
operative, postoperative and progression time
points. Each dot represents the agreement among
raters for one patient's MRI. Indices above 0.7 are
considered excellent. The median of measurements
and interquartile distances are plotted as boxes,
which were omitted when fewer than five data
points were present. Few data points were available
for enhancing tumor segmentations in non-glio-
blastoma, because the generalized conformity index
could not be calculated when fewer than two ob-
servers detected tumor.
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observer disagreement on the presence of any enhancing tumor.
Agreement on non-enhancing tumor was excellent among experts seg-
menting non-glioblastoma, and lowest among novices segmenting non-
enhancing tumor for glioblastoma.

Spatial overlap agreement was generally higher for enhancing
tumor in glioblastoma than for non-enhancing tumor in non-glio-
blastoma at all MRI timings.

To explore potential causes of the low spatial overlap agreement of
postoperative enhancing tumor in glioblastoma patients, we hypothe-
sized that lower object volumes and higher level of fragmentation may
contribute to this. The scatter plots in Fig. 3A confirm that in particular
enhancing tumor volumes smaller than 10mL in glioblastoma come
with a strikingly lower agreement. As tumor volumes on postoperative
MRI are typically smaller than 10mL, this may partly explain the low
agreement. A similar small volume effect was observed in non-enhan-
cing tumor segmentations of non-glioblastomas in Fig. 3B.

To take this one step further, we artificially dilated the enhancing
tumor segmentations of glioblastomas with a 10mm spherical structure
element and recalculated the overlap of the dilated volumes (grey
symbols, middle panel Fig. 3A). Although the overlap increases, it is
still lower than undilated object volumes of similar size. Therefore, the
lower agreement could not be fully explained by a small volume effect.

In addition, we compared the fragmentation of the tumor segmen-
tations by calculating the number of connected components for patients
with an enhancing tumor volume smaller than 10mL. The average
number of fragments was 2.14 ± 1.35 (SD) on postoperative MRI and
1.92 ± 1.96 at progression. Therefore, fragmentation of tumor seg-
mentations did not fully explain the lower agreement on postoperative
MRI either.

3.5. Majority voting consensus

Subsequently the spatial overlap agreement was determined be-
tween each rater's segmentations and the majority vote for experts and
novices combined (Fig. 4). The plots shown in Fig. 4 show a similar
trend as the group-wise analysis shown in Fig. 2. Again, the highest
agreement was observed on preoperative MRIs, followed by MRIs at the
time of progression, and lowest agreement for postoperative MRIs. The
comparison against the majority vote allowed for scrutiny on the in-
dividual level, showing for the non-glioblastoma patients that one no-
vice (N4) performed at a level similar to that of the experts. We also
compared the majority vote for experts and for novices (Fig. 5) which
shows that the novice consensus is comparable to the expert consensus
for enhancing tumor on preoperative MRI and at progression for glio-
blastoma and for non-enhancing tumor on preoperative MRI for non-
glioblastoma. Novice consensus shows only moderate agreement with
expert consensus for enhancing tumor on postoperative MRI for glio-
blastoma and for non-enhancing tumor on postoperative MRI and at
progression for non-glioblastoma.

3.6. Clinical volumetric analysis: extent of resection and growth rate

The variation in extent of resection and growth rate between raters
is plotted in Fig. 6. The agreement between raters on the extent of re-
section of glioblastoma is excellent with a median interquartile range of
1.2% and below 10% in 18 (90%) of 20 cases. At higher extents of
resection the variation between raters is lower. For non-glioblastoma,
the agreement between raters on the extent of resection is less than
glioblastoma but still reasonable with a median interquartile range of

Fig. 3. Spatial overlap agreement as generalized conformity index versus tumor volume (average over experts) of enhancing tumor (A) and non-enhancing tumor (B)
segmentations for glioblastomas and non-glioblastomas at subsequent MRI timings. Each dot represents the agreement of spatial overlap among experts on one
patient's MRI. For enhancing tumor at postoperative phase it is shown that spatial overlap increases after artificial dilation of segmentation (grey dots), however not
to the level of progression segmentation of the same volume.
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8.3% and below 10% in 10 (50%) of 20 cases. A correlation between
extent of resection and variation between raters seems absent.

The agreement between raters on the growth rate of glioblastoma is
quite high with a median interquartile range of 0.42mm/y and below
1mm/y in 16 (80%) of 20 cases. The agreement on growth rate is not
correlated with growth rates. For non-glioblastoma, the agreement on
growth rate was higher than for glioblastoma with a median inter-
quartile range of 0.22mm/y and below 1mm/y in 18 (90%) of 20
cases. At lower growth rates the variation between raters is lower.

4. Discussion

In this study we present a comprehensive and systematic analysis of
inter-rater agreement in glioma segmentations addressing glioblastoma
and non-glioblastoma, at different stages of disease, and comparing
experts, with extensive clinical experience, and novices, with limited
training. Our main findings are that (1) the agreement on presence and
overlap of preoperative tumor segmentations was high and of post-
operative tumor segmentations was low, (2) experts demonstrated
higher levels of agreement than novices, in particular for non-enhan-
cing tumor segmentations in non-glioblastoma and (3) the agreement
on enhancing tumor in non-glioblastoma and on non-enhancing tumor
in glioblastoma was very low.

The inter-rater agreement on postoperative MRI is problematic.
Raters disagree considerably on tumor presence, experts and novices
alike, and even more so for enhancing tumor in glioblastoma than for
non-enhancing tumor in non-glioblastoma. A possible explanation is
that MRIs made a few days after glioblastoma surgery suffer from
surgical artefacts, such as blood clots, luxury perfusion of post resection

ischemia or contusion, distortion of tissue and blood vessels.
Misinterpretation of these surgical artefacts may be diminished by
subtraction of the T1-weighted MRI before contrast from the T1-
weighted MRI after contrast. Many of these artefacts have resolved in
the months after non-glioblastoma resection, which explains the higher
agreement between raters in this patient population. This time to
postoperative MRI is not available in patients with glioblastoma be-
cause radiotherapy, inducing further treatment artefacts, usually fol-
lows shortly. Segmentation for non-enhancing tumor in glioblastomas
on postoperative MRI has a low inter-rater agreement and is deemed to
be ill-defined as a ground truth due to poor spatial overlap and volume
agreement. The main reason is that some raters attempted to distin-
guish non-enhancing tumor portions from pure edema in glioblastoma
within T2/FLAIR hyper-intense regions, whereas others considered all
hyper-intensity to be tumor. A clear instruction to include all hyper-
intensity may improve the agreement. Common reasons for disagree-
ment of enhancing portions consisted of small linear enhancement at
the border of the resection cavities, which was considered to be sulcal
vasculature or gliosis by some raters and residual tumor by others.
Furthermore, some raters identified small multifocal enhancing nodules
at distance from the resection cavity that were overlooked or con-
sidered normal vasculature by others, which resulted in poor volume
overlap. In non-enhancing tumor segmentations of lower-grade glioma,
novices typically identified tumor in the uncus adjacent to the tumor on
T2/FLAIR-weighted MRI, which contained intensities similar to the
contralateral uncus according to experts. Similarly novices included the
hyper-intensity of the cortex adjacent to the sulci, where experts re-
stricted their segmentation from sulcus to sulcus.

The inter-rater agreement on MRI at progression was slightly lower

Fig. 4. Box plots of agreement between majority vote of all eight raters and each of the individual raters, as Jaccard index for enhancing tumor and non-enhancing
tumor segmentations in glioblastoma and non-glioblastoma at the three MRI time points. Each dot represents the agreement between the consensus and the
individual rater for one patient's segmentation. The first four subplots represent the experts, the second four refer to the novices. The median of measurements and
interquartile distances are plotted as boxes, which were omitted when fewer than five data points were measured.
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than the inter-rater agreement on preoperative MRI, and higher than on
postoperative MRI, which is in agreement with the relative volumes.
The agreement in spatial overlap for non-glioblastoma segmentation
found in this study, with a GCI of 0.60 among experts, is in agreement
with that found by others (Gui et al., 2018) based on two experts seg-
menting two MRIs. Novices can replace experts in segmentations of
enhancing tumor in glioblastoma on MRI at progression. Nevertheless,
experts seem to be required for non-enhancing tumor segmentation in
non-glioblastomas on MRI at progression. MRIs at progression of non-
glioblastomas are difficult to interpret because these suffer from arte-
facts from radiation therapy that cannot be discerned from disease
progression (Tensaouti et al., 2017).

The combination of results from experts and novices may in-
correctly overlook performance of individual raters and therefore be an
oversimplification. Interestingly, the comparison of individual raters
with the consensus of all raters shows that one novice (the last in Fig. 4)
seems to provide segmentations of similar quality as experts.

For glioblastomas, the spatial overlap agreement between raters was
high on preoperative MRI, which is not surprising due to the un-
ambiguous distinction of contrast enhancing tumor to non-enhancing
surrounding tissue. At progression the contrast becomes more ambig-
uous due to treatment effects such as pseudo-progression or radiation
induced necrosis (Tensaouti et al., 2017). The contrast becomes even
more ambiguous on postoperative MRI with small fragmented residual
tumor in the presence of surgical artefacts. Of note is that despite the
lack of spatial overlap agreement, the volume ICC scores in glio-
blastoma are high, particularly among experts, in contrast to findings
by others (Kubben et al., 2010). Perhaps this discrepancy is due to the
agreement on absence of residual tumor in several of our patients,
whereas in the previously published study (Kubben et al., 2010) all 8
patients had postoperative residue. Our data support that, despite low
agreement in spatial overlap, the agreement in volume measurements is
reasonable, which is commonly used for determining the extent of re-
section.

The impact of inter-rater disagreement on common clinical volu-
metric analyses such as the extent of resection and the growth rate
appear to be limited. The extent of resection calculations for glio-
blastoma justifies use of exact percentages by a single rater for cohort
reports. Extent of resection calculations for non-glioblastoma are sub-
ject to more variation, and therefore would likely be better represented
by categories of near-complete, subtotal and partial resections, for in-
stance. Furthermore, the growth rate calculation agreements justify use
of exact growth rates by a single rater, even more so for non-glio-
blastoma than glioblastoma.

An important aspect that impact scores like Dice and Jaccard (of
which the GCI is an extension) is the effect of small volumes, which
biases these scores to be lower as volume decreases. Distance measures
are considered less susceptible to this small volume bias (e.g.
(Dubuisson and Jain, 1994; Steenbakkers et al., 2005)), but require
correlated surfaces to establish a distance measure and this is undefined
in case of multiple tumor fragments, as is common for glioma seg-
mentations. Possible causes for the poor to moderate spatial overlap
agreement as described by the GCI for postoperative data include the
relative small volumes and tumor fragmentation. However, we showed
that the enhanced tumor segmentations at progression of glioblastoma
patients have similar fragmentation but were associated with a higher
spatial overlap. Even when the postoperative segmentations were ar-
tificially dilated to reduce the volume effect the overlaps stayed well
below those of the results at progression. Therefore, we conclude that
segmentations on postoperative imaging are more complex than those
at progression.

This study has some limitations. We have used a commercial semi-
automatic segmentation tool, which may not be available to other
users. We have selected this tool, because it is time-efficient and in-
tuitive and is in common use in clinical settings for the treatment of
patients with brain tumors. Furthermore, we adopted the VASARI-cri-
teria for radiological definitions of glioblastoma, which are based on
standard T1- and T2-weighted sequences. These standard sequences are

Fig. 5. Boxplots of agreement between rater and
majority vote consensus of experts and novices
combined measured as Jaccard index for enhancing
and non-enhancing tumor segmentations in glio-
blastoma and non-glioblastoma at three MRI timings.
Each dot represents the agreement between a rater's
segmentations and the majority vote consensus of all
raters for one patient's segmentation. Indices above
0.7 are considered excellent. The median of mea-
surements and interquartile distances are plotted as
boxes, which were omitted when fewer than five
data points were measured.
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Fig. 6. The variation in extent of resection and growth rate for glioblastoma and non-glioblastoma between eight raters per patient. In each plot patients are sorted by
median extent of resection and growth rate, respectively. Each dot represents the calculation for one patient of one rater. Experts and novices are labelled according
to the legend. The median of measurements and interquartile distances are plotted as boxes. The quartile coefficients of dispersion are plotted below the boxplots.

Table 3
An overview of previous studies on inter-rater agreement.

Authors Year Low grade High grade #Exp #Nov Context

Pre Post Prog Pre Post Prog

Weltens et al., 2001 2001 4 6 3 Added value of MRI to CT for segmentation.
Cattaneo et al., 2005 2005 7 5⁎ idem
Provenzale et al., 2009 2009 22⁎⁎ 8 Reproducibility of 2D tumor dimensions.
Kubben et al., 2010 2010 8 8 2 1 Manual PreOp/PostOp glioblastoma segmentation
Gooya et al., 2012 2012 10 2a GLISTR
Provenzale and Mancini, 2012 2012 5 5b 3 4 Reproducibility of 2D tumor dimensions.
Cordova et al., 2014 2014 37 37 1e 2 Semi-automatic segmentation.
Porz et al., 2014 2014 25 1c 1c BraTumIA
Menze et al., 2015 2015 14 51 4 BRATS
Huber et al., 2015 2015 5 5 4 8 Evaluation of inter-rater variability
Ben Abdallah et al., 2016 2016 9 3b 13 Idem
Porz et al., 2016 2016 19 4 BraTumIA
Kleesiek et al., 2016 2016 15 15 2 Semi-automatic segmentation
Meier et al., 2016d 2016 14 14 14 1 1 BraTumIA (longitudinal)
Bø et al., 2017 2017 23 1 Intra-rater assessment
Zaouche et al., 2018 2018 4 2 Semi-automatic segmentation
Gui et al., 2018 2018 4 2 Quantification of progression
This Study 2018 20 20 20 20 20 20 4 4 Evaluation of inter-rater variability

a Unspecified type of rater.
b Moment after surgery not specified.
c Supervised by expert neuro-radiologist.
d This study has multiple longitudinal moments after postoperative.
e Expert used as ground truth, novices test semi-automated method.
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known to have poor performance to distinguish tumor infiltration from
normal brain (Verburg et al. 2017). Perhaps better performance can be
expected from (combinations of) advanced imaging, which should then
be used to improve tumor segmentation.

Our study is an extension of the current literature, summarized in
Table 3, which often focuses on glioblastoma with manual segmenta-
tions on preoperative MRI as reference to evaluate novel (semi-) auto-
matic tumor segmentation algorithms. In the recent literature, more
and more expert segmentations are made publically available (e.g.
BRATS data (Menze et al., 2015) and (Bakas et al., 2017)) and are being
used for the validation of (semi-) automatic algorithms (e.g. (Zaouche
et al., 2018)). However, such data sets are of limited value when each
segmentation results from a single rater and the inter-rater variability is
unknown.

Experts generally have higher agreement than novices, suggesting
that expert segmentations are better than those of novices in particular
for non-enhancing tumor segmentations in non-glioblastomas, although
novices have similar agreement for enhancing tumor segmentations of
glioblastomas on preoperative MRI and at progression. Our results in-
dicate that preoperative tumor segmentation is done reliably by novices
and experts. For other applications of tumor segmentation, such as
assessment of quality of care, treatment response measurement, and
evaluation of progression, segmentations are less reliable and sensi-
tivity analysis of different raters would be needed. In practice, it is not
realistic to obtain consensus segmentations from multiple experts. A
promising future strategy could be to use standardized fully automated
tumor segmentation algorithms which is probably more reproducible
than manual segmentations, but which may be inaccurate as well. To
determine the accuracy of segmentations, ground truth histopatholo-
gical correlation of tumor presence would be required.
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