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Abstract In this study, quartz, coesite, and stishovite were deformed concurrently with an olivine
reference sample at high pressure and 850 ± 50 °C. Olivine deformed with an effective stress exponent (n)
of 6:9þ3:1

−2:2 , which we interpret to indicate that the Peierls creep deformation mechanism was active in the
olivine. Quartz and coesite had very similar strengths and deformed by a mechanism with n = 2:8þ1:2

−0:9 and
2:9þ1:3

−0:9, respectively, which are consistent with previous measurements of power law creep in these phases.
Stishovite deformed with n = 8:1þ3:7

−2:7 and was stronger than both olivine and the other silica polymorphs.
The high stress exponent of stishovite is greater than that typically observed for power law creep, indicating
it is probably (but not certainly) deforming by Peierls creep. The rheology of SiO2 minerals appears therefore
to be strongly affected by the change in silicon coordination and density from fourfold in quartz and
coesite to sixfold in stishovite. If the effect of Si coordination can be generalized, the increase in Si
coordination (and density) associated with bridgmanite formation may explain the tenfold to 100‐fold
viscosity increase around 660 km depth in the Earth.

1. Introduction

Theprincipal phases of pure silica (SiO2), quartz, coesite, and stishovite are importantminerals in the Earth and
are amicrocosmof the diverse crystal structures found in silicateminerals. Quartz is the secondmost abundant
phase in the Earth's continental crust (after feldspar) and transforms to coesite above ~3 GPa (Bohlen &
Boettcher, 1982), around 90 km depth in the Earth. The presence of coesite is a defining feature of ultrahigh‐
pressuremetamorphic terrains and evidence that continental crust can be subducted deeper than 90 km before
being returned to the surface (e.g., Chopin, 2003). In the Earth, stishovite is stable above ~9GPa, ~275 kmdepth
(Ono et al., 2017; Zhang et al., 1993), and is a significant component of basaltic oceanic crust deeper than
~400 km (Perrillat et al., 2006). The decomposition products of aluminous stishovite have been found as inclu-
sions in ultradeep diamonds (Bulanova et al., 2010; Thomson et al., 2014; Zedgenizov et al., 2015).

The low‐pressure (<9 GPa) silica polymorphs (quartz, coesite, tridymite, and cristobalite) as well as low‐
pressure silica glass are formed from different arrangements of SiO4 tetrahedra. The tetrahedral units, within
which a silicon atom is surrounded by four equally spaced oxygen atoms, form the structural backbone for
the panoply of silicate minerals present in the Earth's rocky crust and upper mantle (e.g., Deer et al., 1992;
Liebau, 1985). Under pressure, the tetrahedral unit is replaced by octahedral, six‐coordinated silicon (SiO6),
which exhibits a much smaller number of crystal structures and generally higher density. The high‐pressure
structures are typified by rutile‐structured stishovite above ~10 GPa, CaCl2‐structured SiO2 above ~40 GPa,
and α‐PbO2‐structured seifertite above ~120 GPa (e.g., Grocholski et al., 2013; Murakami et al., 2003), all of
which contain corner‐sharing SiO6 octahedra. Very fewminerals have both four‐ and six‐coordinated silicon
(Finger & Hazen, 1991). Silicon coordinated with an odd number of oxygens is not found in natural miner-
als, although it has been shown to exist in high‐pressure silica glasses and melts (e.g., Wu et al., 2012); meta-
stable high‐pressure phases (Finkelstein et al., 2015a, 2015ab); and, very rarely, in synthetic crystalline solids
such as CaSi2O5 (Angel et al., 1996).

The increase of silicon coordination upon the formation of stishovite (ρ = 4.3 g/cm3) is reflected in it having
a significantly greater density than either quartz (ρ = 2.6 g/cm3) or coesite (ρ = 2.9 g/cm3). The change in Si
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coordination appears to have a significant effect on material properties. The rheology of quartz has been
measured in many studies (Blacic & Christie, 1984; Gleason & Tullis, 1995; Jaoul et al., 1984; Kronenberg
& Tullis, 1984; Xiao et al., 2002). Both Ingrin and Gillet (1986) and Langenhorst and Poirier (2002) inter-
preted Transmission ElectronMicroscope observations of coesite to say that it is less deformable than quartz,
yet it is still relatively weak under ultrahigh‐pressure metamorphic conditions (Renner et al., 2001). In con-
trast, polycrystalline stishovite is among the strongest known oxides with sufficiently high fracture tough-
ness and shear modulus that it is classified as a “superhard” material (Léger et al., 1996). Stishovite
supports extremely high differential stresses during compression in the diamond anvil cell (Singh et al.,
2012), and while it has been deformed to reasonable strain (Kaercher et al., 2015; Texier & Cordier, 2006),
its rheology has not been measured. The high hardness of stishovite is likely to persist at high temperatures
because of its extremely slow silicon diffusion (Shatskiy et al., 2010; Xu et al., 2017).

The rheology of stishovite and its associated Si‐coordination change therefore have potentially important
implications for the Earth. Its abundance in subducted slabs is perhaps sufficient for it to influence slab
rheology. However, the relative strength of the silica polymorphs, both among themselves and relative to
other mantle phases, is unknown. Here we report the results of deformation experiments on quartz, coesite,
and stishovite and discuss their broader implications for the deep Earth.

2. Experimental Method

The results reported here are further analyses of three experiments, initially reported by Hunt et al. (2014),
that were performed during commissioning of the DT‐Cup on the side‐station beamline X17B2ss at the
NSLS. The DT‐Cup is a modified split‐cylinder six to eight multianvil capable of controlled strain rate defor-
mation experiments (Hunt et al., 2014; Hunt & Dobson, 2017). The 〈111〉 axes of the inner cubic anvils are
aligned with the compression direction of the loading frame. The “top” and “bottom” cubic anvils are
replaced with hexagonal cross section anvils, the inner end of which has the same profile as that of the cubic
anvils they replace. These anvils are driven by secondary hydraulic actuators, thus enabling deformation.

The six cubic and two hexagonal anvils compress a cell assembly consisting of a 7 mm chrome‐doped MgO
octahedron within which is a 4.7 mm‐long, 1.2 mm inner diameter, 200 μm wall thickness cylindrical gra-
phite furnace, which is enclosed at the ends by 0.5 mm‐thick steel end caps. Samples of San Carlos olivine
powder with a 20‐ to 50‐μm grain size and either finely ground amorphous silica glass or quartz powder (see
Table 1), with an initial length of ~0.8 mm, were loaded into the furnace. Outside the samples were 0.6‐mm‐

long corundum pistons, with the remaining space filled with crushable alumina. The samples were
separated from each other and the pistons by 25‐μm‐thick platinum disks, which also acted as strain
markers. The thermocouple was inserted through the octahedron in a radial configuration with respect to
the furnace. A thin layer of alumina cement was used to insulate the thermocouple hot junction from the
furnace. Illustrations of the cell were presented in Hunt et al. (2014).

Each experiment was pressurized over 2–3 hr and annealed at a thermocouple temperature of 800 °C for
between 2 and 4 hr prior to deformation. Because the thermocouple is outside of the furnace, the sample
temperature will have been greater than the thermocouple measurement. Subsequent tests, using the same
experimental cell design, with a thermocouple both inside and outside of the furnace have shown that the
temperature inside the furnace is always hotter than the external thermocouple reading. The difference in
temperature is as high as 10%, but it is highly dependent on the position of the external thermocouple junc-
tion relative to the outer edge of the furnace because this is where the largest thermal gradients are present in
the cell (Hernlund et al., 2006). We therefore expect our sample temperatures to be between 850 ± 50 °C.

The assembly was deformed by advancing the differential pistons at a fixed rate; two or three different defor-
mation rates were used in each experiment. X‐radiography images were acquired every 60 s during deforma-
tion, with an exposure time of 5 s, using a fluorescent yttrium‐aluminum garnet crystal scintillator and a
visible light camera. Diffraction patterns were acquired from the samples and corundum piston before defor-
mation and toward the end of each deformation‐rate step, using a MAR345 image plate with an exposure
time of 300 s. The image plate parameters and energy of the monochromatic X‐ray beam were calibrated
using a reference CeO2 diffraction pattern taken before the experiments started. Example radiographs and
diffraction patterns are shown in Hunt et al. (2014). After deformation the experiments were quenched
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and decompressed. Both the end load and the differential load were reduced over the same time period to try
and prevent damage to the samples.

The recovered samples were mounted in resin and polished for analysis in the X500 CrystalProbe field
emission gun Scanning Electron Microscope at the University of Liverpool. The final polish was a chemo‐
mechanical polish using 0.03 μm colloidal silica in an alkaline solution. Samples were coated with a thin
carbon layer before electron backscatter diffraction (EBSD) patterns were obtained using 20 kV accelerating
voltage, 35 nA beam current, and 25 mm working distance, with 0.5 μm grid spacing. These were automati-
cally indexed using Oxford Instrument's AZtec software package (Prior et al., 2009). The three expected silica
phases were listed as possible options during indexing, as well as olivine, enstatite, alumina, and platinum.
Indexing of the coesite in experiment SiO_38 was challenging; the sample deformation was heterogeneous,
and only the less distorted Kikuchi patterns, away from the most strained areas, could be indexed success-
fully. High residual strains and amorphization of the samples also hampered EBSD analyses. Due to similar
challenges, samples in SiO_40 (quartz and olivine) were therefore analyzed by Laue diffraction on beamline
12.3.2 at the Advanced Light Source (Kunz et al., 2009). The samples were placed with the polished surface at
45° geometry with respect to the X‐ray beam, which was focused to 2 × 2 µm. Patterns were collected in both
Laue mode (energy range 5–24 keV) and in monochromatic mode (10 keV) onto a Pilatus M1 detector posi-
tioned at 90° relative to the incident X‐ray beam. The detector position was calibrated using an unstrained Si
single crystal sample prior to measurements being performed. Data were processed using XMAS (Tamura,
2014). For the Laue (white beam) measurements, the footprint of the beam onto the sample is 2 × 3 µm, with
a penetration depth of about 100 μm; therefore, the diffracting volume is on the order of 600 μm3. The
footprint is larger (5 × 4 µm) for monochromatic experiments, but the penetration depth is smaller.

The recovered samples were too fragmented for it to be possible to measure their water content. Water solu-
bility in pure silica phases at low temperature is small (Gerretsen et al., 1989; Koch‐Müller et al., 2001), but
the samples are unlikely to be dry because no steps were taken to control water content before or during the
experiments. Even with fired cell parts and encapsulated samples, samples in solid‐media apparatus experi-
ments absorb water (e.g., Rubie et al., 1993), presumably gained from the atmosphere during preparation.
Since all samples were prepared in the same environment, following the same procedures and all experi-
ments were performed using the same cell design, we can tentatively assume that similar quantities of water
would have been available for hydration of nominally dry samples in each experiment.

3. Data Analysis

Strain in the samples was determined from the X‐radiographs. The position of the platinum marker foils in
the images was tracked using the cross‐correlation method described in previous work (Hunt et al., 2012; Li

Table 1
Experimental Conditions, Differential Stresses, Strain Rates and Recovered Grain Sizes Measured in Both the Olivine and SiO2 Samples

SiO2 phase
Force

Pressure
during

deformation
Differential

stress
Strain rate Strain

rate ratio

Total strain
accumulated

by both samples
at steady statea

Recovered
grain size
(diameter)

Experiment Loaded Made kN GPab GPa Olivine (s−1) SiO2 (s
−1) SiO2/olivine %

Olivine
(μm)

Silica
(μm)

SiO_40 Quartz Quartz 113 ~3 — 3.1(2) × 10−6 4.3(3) × 10−6 1.40(15) 8.1 — —

— 3.3(3) × 10−5 1.1(1) × 10−5 0.33(4) 28.1
SiO_38 Glass Coesite 390 ~2 0.51(6) 9.0(11) × 10−7 2.1(2) × 10−6 2.30(33) 1.0 3.5 2.3

0.93(6) 1.3(1) × 10−5 8.2(5) × 10−6 0.64(5) 12.8
0.81(6) 3.9(3) × 10−5 8.4(7) × 10−6 0.22(2) 10.2

SiO_39 Glass Stishovite 946 ~9.5 0.73(12) 5.4(4) × 10−7 1.8(3) × 10−7 0.33(7) 2.5 3.7 1.8
1.15(11) 1.6(3) × 10−6 5.4(18) × 10−7 0.34(13) 3.1
1.25(12) 6.8(4) × 10−6 3.4(3) × 10−6 0.50(6) 4.3

Note. The numbers in parentheses are one standard error of the least significant digit of the value. All the data were collected at ~850± 50 °C. The reported grain
diameters are the mean area of the grains in the electron backscatter diffraction maps (Figure 5) converted to a diameter assuming circular grains.
aThe sum of the strains here is less than the total strains reported previously by Hunt et al. (2014) because any transient deformation arising after the change in
strain rate has been discarded. bPressures as reported by Hunt et al. (2014); errors are of order 1.5 GPa.
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et al., 2003). Sample strains were calculated from the change in length of each sample (Figure 1). Strain rates
were calculated as the ordinary least squares fit of a first degree polynomial to the strain after discarding any
transient conditions arising from the change in imposed shortening rate. The strain rate error is the standard
error on the fit accounting for the assumed ±10 pixel error in the length of the samples.

Stress in the samples was calculated from the diffraction patterns. Not using low‐scattering X‐ray windows
along the X‐ray beam path resulted in the sample diffraction peaks (olivine and SiO2) being overlaid by
diffraction from the pyrophyllite gaskets and MgO pressure medium. Integrating around the entire Debye
rings made the diffraction peaks from the silica sufficiently distinct for the phase of silica to be identified.
Hunt et al. (2014) calculated the pressure in these experiments by integration of the corundum diffraction
patterns and fitting the corundum peaks using Multifit (Merkel & Hilairet, 2015). The unit‐cell volume
was calculated from the fitted peaks and the pressure determined using the equation of state of
Dubrovinsky et al. (1998; K = 258[2], K′ = 4.88, αT = 2.6[2] × 10−5 + 1.81[9] × 10−9 T − 0.67[6]/T2). The
measured pressure dropped significantly during annealing and crystallization of the coesite and stishovite
samples. In the coesite experiment the pressure apparently dropped from ~8.8 to ~2 GPa. This is common
during synthesis of coesite because of the large volume change between silica glass and coesite. During
deformation of the coesite, the actual pressure is probably >3 GPa because no significant quartz was
observed in the recovered sample.

Calculating differential stress was more difficult and was not done in our previous paper. Further interroga-
tion of the diffraction patterns has enabled us to extract stress estimates from some of the diffraction data. To
estimate differential stress, the diffraction peaks were integrated into 20° wide azimuthal segments using
Fit2D (Hammersley et al., 1995, 1996). The first three corundum diffraction peaks (the [012], [104], and
[110] peaks) were complete and distinguishable from the pyrophyllite background. The presence of multiple
broad and ill‐defined pyrophyllite peaks prevented the utilization of automated diffraction peak fitting soft-
ware (e.g., Multifit, Merkel & Hilairet, 2015). Therefore, each integrated diffraction segment was interpo-
lated with a cubic spline and the maxima in the location of the corundum peaks selected as the
peaks' centroids.

Differential stresses were calculated from the variations in peak position with azimuth (Figure 2) using
Polydefix (Merkel & Hilairet, 2015) and the Al2O3 bulk (K) and shear (G) moduli of Higo et al., (2018;
K = 251.2 GPa, K′ = 4.21, dK/dT = −0.025 GPa/K, G = 164.1 GPa, G′ = 1.59, dG/dT = −0.021 GPa/K)
and thermal expansion of Dubrovinsky et al. (1998). For each experiment the Bulk and Shear moduli at
the conditions of the experiment were calculated and used as fixed values in the Polydefix calculation.
The corundum, from which the stress is calculated, is not in the hot spot of the furnace and is close to the

Figure 1. Strain and stress during experiment SiO_38. Black and green dots are the measured lengths of the olivine and
coesite samples, respectively. Blue lines are the fits for the strain rates, which are denoted by the text; the numbers in
parentheses are one standard error of the least significant digit. The strain rates were changed during the gaps in the data,
when X‐ray diffraction patterns were also acquired.
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tungsten carbide anvils. It is therefore at a significantly lower temperature than the sample. The temperature
in the alumina was assumed to be 400 °C because of the thermal gradient in the cell. Changing the assumed
temperature or pressure had little effect on the calculated differential stresses, and variations were
significantly smaller than the error in the stress.

This approach to picking peaks worked well for experiment SiO_38 (coesite) in which each of the diffraction
peaks followed the expected cos2 relationship with azimuth (e.g., Singh et al., 1998) and gave acceptable (i.e.,
positive and finite) stresses for the corundum (Figure 2). For SiO_39 (the stishovite experiment), only the
(110) corundum peak gave acceptable stress values. No consistent stresses could be calculated for the quartz
experiment (SiO_40) because the corundum diffraction peaks in this experiment were less distinct than for
the other two experiments. The pressure calculated for the experiments using this method does not corre-
spond to the pressure calculated previously by Hunt et al. (2014). This is probably due to the overlaps
between the corundum and pyrophyllite diffraction peaks. Within each experiment though, there is little
change between diffraction patterns in the size and shape of the overlapping peaks; therefore, the relative
magnitudes of the stress in each experiment are considered to be internally consistent.

The relationship between stress and strain rate in a material is controlled by the active deformation
mechanisms. The strain rate ( _ε ) of a sample is the sum of strain rates of all active, independent
mechanisms:

_εtotal ¼ _εpower−law þ _εdiffusion creep þ _εGBS þ _εPeierls creep; (1)

where GBS indicates grain boundary sliding. In each of these deformation mechanisms the strain rate is a
function of differential stress and temperature among other factors.

At high temperatures, the general form of a thermally activated flow law (e.g., power law or diffusion
creep) is

_ε ¼ A
σn

dp
fH2O

r exp −
E*þ PV*

RT

� �
; (2)

where _ε is the strain rate, σ the differential stress, n is the stress exponent, d is the grain size, p the grain‐size
exponent, fH2O is the water fugacity with exponent r, E* is the activation enthalpy of the thermally driven
process, V* the activation volume, P is the pressure, R is the gas constant, T the temperature, and A is the
constant of proportionality. Very often, Q is used as the activation energy and is equal to E* + PV* (see
Hirth & Kohlstedt, 2003).

The stress exponent (n) is the power coefficient relating the differential stress (σ) to the strain rate (_ε). The
value of n (and those of the other parameters) varies to reflect a given deformation mechanism. Diffusion
creep mechanisms have n ~ 1 and are grain‐size sensitive (p > 0), while for power law creep in olivine

Figure 2. Variation of Al2O3 d‐spacing with azimuth during at the highest strain rate during experiment SiO_38. Top,
middle, and bottom are the (012), (104), and (110) diffraction peaks, respectively. Circles are the measured d‐spacings,
and the line is the fit produced in polydefix (Merkel & Hilairet, 2015).
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n > 3.5 and p ~ 0. An intermediate mechanism, which is observed to occur at the transition between disloca-
tion creep and diffusion creep, is dislocation accommodated grain boundary sliding, sometimes known as
DisGBS (Warren & Hirth, 2006).

In solids deforming at low temperatures, plasticity, or Peierls creep, is generally the dominant mechan-
ism. This deformation mechanism has a stress‐dependent activation energy for creep and a flow law with
the form

_ε ¼ Aσ2 exp −
Q
RT

1−
σ
τ

� �ph iq� �
; (3)

where Q is the thermal activation energy at zero stress, τ is the Peierls stress, and p and q are exponents with
limits 0 ≤ p ≤ 1 and 1 ≤ q ≤ 2, respectively (Frost & Ashby, 1982). The stress exponent here is not a simple
function of stress and an effective stress exponent calculated from this flow law will be both (a) strain rate
dependent and (b) greater than the typical values for power law creep.

We determined the stress exponent in our samples using a total least squares (Markovsky & Van Huffel,
2007; Van Huffel & Vandewalle, 1989) fit to the ln(σ) – ln(_ε) data (listed in Table 1). For olivine we also deter-
mined V* from the two experiments that gave good differential stresses again using a total least squares fit.
The standard errors on the σ and _ε are symmetrical in linear space and therefore asymmetrical in log‐log
space. To account for the asymmetrical errors, a Monte Carlo method (e.g., Anderson, 1976) was used to
calculate the errors in n and V*. Monte Carlo error propagation is widely used and returns answers consis-
tent with algebraic answers for weighted fitting problems in which the algebra is known. In the Monte Carlo
calculation here, 105 independent models were generated; in each model the stresses and strain rates were
drawn from a random distribution of the values and their associated Gaussian errors. The pressure and tem-
perature in eachmodel were also selected using their estimated errors of 1.5 GPa and 50 °C, respectively. The
reported values of n and V* (Table 2) are the mean and standard deviation of the array of calculated values.
Because the distribution of n values is lognormal, the value of n determined from the values in Table 1 is
somewhat different to that returned by the Monte Carlo calculation.

The overlapping peaks in the diffraction patterns prevented the determination of differential stresses for
experiment SiO_40 (quartz deformation). To enable the calculation of a stress exponent for quartz and to
validate interpretation of the coesite and stishovite results, differential stresses were calculated using pre-
viously published olivine flow laws (listed in Table 3). These differential stresses were then combined with
the silica phase strain rates to predict the stress exponent.

The differential stresses were calculated for the measured olivine strain rates at the pressure and tem-
perature conditions of the experiments. The pressures in the models were assumed to be those reported
in Table 1 with an error of 1.5 GPa, except for experiment SiO_38 where the pressure was assumed to be
3 GPa. The temperatures were taken to be 850 ± 50 °C, and, where required, the grain size was taken to
be the values reported in Table 1. For SiO_40 no grain size was measured, so the mean of the values
from the other experiments was used. The grain size has only a small effect on the calculated stress
exponents because the stress exponent (n) is independent of grain size (d; equation (2)). As
intracrystalline water content could not be determined, it was assumed that samples were dry. The stress
exponents of the silica phases are the gradients of a total least squares fit of a straight line to the olivine
flow‐law‐derived differential stresses and the silica strain rates.

Errors in the stress exponents were calculated from the flow‐law parameters and strain rate uncertainties
using a similar Monte Carlo calculation to that used earlier. In this Monte Carlo calculation, 105 sets of
differential stresses were calculated from each flow law, accounting for the uncertainties in the reported
flow‐law parameters, pressure, temperature, and our measured olivine strain rates. After discarding mod-
els that had negative differential stresses, the computed differential stresses and the measured silica
strain rates were used to determine a stress exponent. The reported values of the stress exponents in
Table 2 are the mean and standard deviation of the 105 modeled stress exponents. For most of the mod-
els the distribution of values is approximately Gaussian and the most probable value almost the same as
the mean. The models for which a Gaussian distribution is not a good approximation for are the Peierls
creep flow law of Raterron et al. (2004) and flow laws that combine multiple deformation mechanisms;
histograms of the calculated stress exponents are shown in Figures S1–S14 in the supporting information.
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For the Peierls creep models, we also calculated the effective olivine stress exponent by the same total
least squares method.

The calculated differential stresses in some of these models have formal error greater than half a log unit
(Figures S1–S14, part a), which derives primarily from poorly constrained pre‐exponential factors (such as
A; equation (1)). The large stress errors do not significantly affect the error on the silica polymorphs' stress
exponents because n is a small number compared to the differential stresses. The grain size and water fuga-
city used in the calculations do not affect the calculated stress exponent, only the stresses.

4. Results
4.1. Rheological Data

The phase of silica identified in each experiment along with the measured strain rates and diffraction‐
derived differential stresses are presented in Table 1 and the stress‐strain rate relationship for the coesite
and stishovite samples is shown in Figure 1a. No reasonable stresses could be calculated for the quartz

Table 3
Stress Exponents Calculated From Each Candidate Olivine Flow Law

Flow‐law
Deformation
mechanism

Olivine Silica stress exponent (n)
Representative
flow‐law stress.

Stress exponent
(nolivine)

a
Effective stress

exponent Quartz Coestite Stishovite Log10 (MPa)

Faul and Jackson (2007) Diffusion Creep 1.37(6) 0.6(1) 0.6(1) 1.7(2) −1.7(12)
Hansen et al. (2011) Grain Boundary Sliding 2.9(3) 1.2(2) 1.2(2) 3.5(6) 3.6(6)
Nishihara et al. (2014) Grain Boundary Sliding 3 1.2(2) 1.3(1) 3.7(5) 4.2(10)
Karato and Jung (2003) Power Law Creep 3.0(1) 1.2(2) 1.3(1) 3.7(5) 5.0(6)
Wang et al. (2010)b Grain Boundary Sliding 3.5(1) 1.4(2) 1.5(1) 4.3(6) 1.4(1)
Nishihara et al. (2014) Power Law Creep 3.5 1.4(2) 1.5(1) 4.3(5) 4.4(9)
Chopra and Paterson (1984) Power Law Creep 3.60(22) 1.4(2) 1.5(2) 4.4(7) 4.0(5)
Kranjc et al. (2016) Peierls Creep 6.3(1)c 2.6(3)c 2.7(2)c 7.1(10)c 2.4c

Raterron et al. (2004) Pearls Creep 9.2(56) 3.6(18) 3.7(19) 10.0(56) 2.5(5)
Demouchy et al. (2013) Peierls Creep 9.5(28) 3.8(11) 4.0(11) 11.0(33) 2.9(3)
Mei et al. (2010) Peierls Creep 13.1(26) 5.3(12) 5.6(12) 15.4(36) 3.3(1)
Evans and Goetze (1979) Peierls Creep 26.9(19)c 10.6(14)c 11.6(10)c 32.6(39)c 3.6c

Hirth and Kohlstedt (2003) Combined (power law and diffusion creep) 3.2(15) 1.3(4) 1.3(4) 3.7(12) 4.5(8)
Nishihara et al. (2014) Combined (power law and diffusion creep) 4.8(34) 1.7(4) 1.8(4) 5.1(14) 4.0(11)

Note. The distributions of the silica stress exponents are shown in Figures S1–S14. The numbers in parentheses are the standard error on the least significant
figure. The representative differential stresses in the last column are those for the slowest strain rate point in the coesite experiment (_εolivine¼8:96 96ð Þ×10−7/s;
P = 3 GPa; T = 850 °C).
aValues in this column are reported in previous studies; all other values are calculated as part of this study. bUsing the flow‐law parameters reported by Hansen
et al. (2011). cErrors on these numbers are nonexistent or significantly less that the others because no errors were associated with the flow‐law coefficients in
the source manuscripts.

Table 2
Calculated Stress Exponents and Activation Volumes

Olivine Silica polymorphs
Experiment n V* (cm3/mol) nquartz ncoesite nstishovite

SiO_38 7:4þ2:5
−1:9 2:7þ0:8

−0:6

SiO_39 5:2þ3:2
−2:0 6:6þ4:9

−2:8

Combined 6:9þ3:1
−2:2 4:6þ2:2

−1:5 2:8þ1:2
−0:9

a 2:9þ1:3
−0:9

a 8:1þ3:7
−2:7

a

Note. The values are the mean and standard deviation of the lognormal distribution to values returned by the Monte
Carlo estimation; the stress exponents calculated from the unweighted values in Table 1 differ from these values by less
than 0.3, except for Stishovite which is different by 0.7.
aCalculated from the linear scaling relationship between stress exponents in Table 3 and combined stress exponent of
olivine; see text for details.
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sample, so it is not includable in this plot. Despite the fact that there is significant scatter in the data, it is
evident in Figure 1a that at similar stresses stishovite is stronger than coesite, deforming over an order of
magnitude slower.

Direct comparison of the strength of quartz with the higher pressure silica phases is only possible via the
measured olivine strain rates. Figure 1b shows that in our experiments the quartz and coesite deformed at
very similar strain rates relative to olivine. Both quartz and coesite have higher strain rates than olivine

for _εolivine ≲ 5 × 10−6/s and lower strain rate for _εolivine > 5 × 10−6/s. Thus, their strength may be comparable
to that of olivine, and both phases must have a stress exponent smaller than that of olivine. On the other
hand, quartz and coesite are weaker (i.e., deform at faster rates) than stishovite under all the conditions
explored in our experiments. The strain rates in stishovite are lower than those in olivine, and the ratio, _εSiO2

=_εolivine, increases with olivine strain rate (Table 1). The ratio for stishovite varies between 0.33 and 0.5, indi-
cating that in our experiment stishovite is two to three times stronger than olivine.

The relative strength of the silica phasesmeasured here is at an unknownwater fugacity. All the silica phases
have been shown to take small amounts of water into their structures (Gerretsen et al., 1989; Mosenfelder,
2000; Pawley et al., 1993). Quartz weakens significantly under hydrous conditions (e.g., Blacic & Christie,
1984), and olivine has been shown to weaken by a factor of between 1.3 and 2.5 between nominally dry
and wet conditions (Girard et al., 2013; Mackwell et al., 1985). The effect of water fugacity on the rheology
of coesite and stishovite is unknown. The equivalent treatment of all the samples and experimental assem-
blies means it is reasonable to assume a similar and relatively low water activity in all the experiments.
However, it should be noted that if the effect of water on viscosity of the silica polymorphs is very different
and our experiments are unexpectedly wet, then our results might not be representative.

For our coesite and stishovite experiments, stress exponents could be calculated directly from the differential
stresses (Figure 3a). The values reported in Table 2 are the mean and standard deviation of the lognormal
distribution of bootstrapped n values; the stress exponents calculated from the values in Table 1 differ from
these values by less than 0.3, except for stishovite which is different by 0.7. From experiment SiO_38, the ncoe-
site derived here agrees, within error, with Renner et al. (2001)'s value of 3 ± 1, but the corresponding olivine
stress exponent is very high for power law creep. Conversely, the nolivine from SiO_39 is within error of pre-
viously published values for power law creep (e.g., Table 2). The nolivine values from the two experiments are

within error of each other. Combining the two experiments (Figure 4) gives nolivine = 6:9þ3:1
−2:2, a value that is

significantly higher than the widely accepted power law stress exponent of 3 to 3.5. Assuming the pressure

experiments SiO_38 and SiO_39 was 9.5 and 3 GPa, respectively, the activation volume is 4:6þ2:2
−1:5 cm

3/mole,
within the range of previously published high pressure values (Kaboli et al., 2017; Nishihara et al., 2014).
However, the validity of activation volume is dependent on the deformation mechanisms in the two olivine
sample being the same.

4.2. Recovered Microstructures

Despite numerous attempts, it was not possible to index the quartz or olivine in experiment SiO_40 by EBSD.
Laue microdiffraction from the sample showed that both the quartz and olivine grain sizes are much smaller
than the beam size (2 × 2 µm FWHM, ~600 μm3 diffraction volume) and have highly distorted crystal
lattices. Subsequent powder diffraction indicated that both quartz and olivine are crystalline with significant
peak broadening, indicating a small grain size and/or extremely high dislocation densities (Figures 5a
and 5b). Quartz appears to show no preferred orientation, whereas slight lattice preferred orientation may
be observed in olivine.

The olivine sample deformed concurrently with coesite developed a strong deformation fabric and signifi-
cant reduction from the loaded 20‐ to 50 μm diameter grain size (Figure 5c). In the olivine sample there
are large, distorted grains with subgrains and large populations of smaller grains with a crystallographic pre-
ferred orientation (CPO). These samples were deformed to high strains (>50%), and their microstructures
show evidence for dynamic recrystallization (subgrain rotation recrystallization with minor grain boundary
migration—Figure 5d) that is characteristic of a dislocation‐mitigated deformation mechanism (e.g.,
Bystricky et al., 2000). The interiors of large grains in the coesite sample are well indexed by EBSD
(Figure 5c). Some grains exhibit internal lattice distortions that indicate the presence of dislocations.
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Samples in SiO_39 (stishovite + olivine) were deformed to significantly less total strain than that imposed on
the lower pressure phases (Table 1). Therefore, fabrics in these samples are less well developed. The maxi-
mum grain size observed in the olivine (Figure 5f) is of order 20 μm, and the mean diameter is ~3.7 μm,
which is a reduction of the initial 20‐ to 50 μm‐diameter grain‐size. Additionally, both the olivine and stisho-
vite phases show disequilibrium grain boundaries, with many quadruple junctions and highly serrated grain
boundaries. The relative lack of lattice distortion within grains points to a low dislocation density, consistent
with the smaller total strain in these samples. The total strain in both samples for the stishovite experiment
(SiO_39) is ~10% while the total strain in the quartz (SiO_40) and coesite (SiO_39) experiments was closer to
60 %. Thus, the samples in the lower‐pressure experiments have significantly more strain in which to
develop strong fabrics and CPO.

The numerically smaller olivine stress exponent calculated for the stishovite experiment (Table 2) might be
due to different deformation mechanism activity in the olivine sample, the difference in CPO and total
strains. However, we have no evidence for this here beyond the stress‐exponent measurements and the mea-
sured olivine stress exponents are within error of each other. Thus, it is reasonable to assume that to first
order the olivine samples have the same deformation mechanism and the calculated activation volume for
creep is valid within this assumption.

4.3. Flow‐Law Modeling

Stress exponents for the silica phases were predicted from a suite of pre-
viously published olivine flow laws. The flow laws used and the stress
exponents calculated are listed in Table 3; the stress‐strain rate relation-
ship for each flow law and the histogram of theMonte Carlo‐derived stress
exponents are in Figures S1–S14.

The predicted stress exponent in the SiO2 phases scales linearly with
nolivine (Table 3). Olivine flow laws with a stress exponent close to 1
(e.g., Faul & Jackson, 2007) give unrealistically low‐stress exponents
for both the quartz and coesite (n ~ 0.6) and differential stresses of order
20 Pa (Table 3). Olivine flow laws with 2.9 < nolivine < 3.5 (equation (2),
dislocation creep with or without grain boundary sliding) predict stress
exponents for quartz and coesite between 1.2 and 1.5 and, for stishovite,
between 3.7 and 4.4. The calculated differential stresses for these mechan-
isms are all greater than ~3 GPa, apart fromWang et al. (2010), where the
stresses are <50 MPa (Table 3). The two flow laws that combined power
law creep and diffusion creep (Hirth & Kohlstedt, 2003; Nishihara et al.,
2014) have bimodal distributions for n, with maxima that reflect the dom-
inance of either diffusion or power law creeps (Figures S13 and S14). For

Figure 4. Stress versus strain rate plot for the olivine in experiments SiO_38
and SiO_39. Ellipsoids denote the errors on the values. Heavy lines are the fit
to all the data, and the dashed lines are the fit to each data set individually.

Figure 3. (a) Differential stress versus silica polymorph strain rate and (b) SiO2 polymorph strain rate versus olivine strain rate. Solid lines are linear fit to the data.
The ellipsoids delimit the strain rates' standard errors, and in (b) the black dashed line is the 1:1 equal strain rate line.
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both flow laws, the Monte Carlo simulations prefer the power law creep mechanism and, like the power law
flow laws, predict very high differential stresses. Assuming a Peierls mechanism for olivine (equation (3);
e.g., Raterron et al., 2004), with an exponential stress dependence, gives much larger effective stress
exponents (6 > n > 27). The Peierls mechanisms with effective stress exponents between 3 and 9 have
differential stress on the order of ~250 MPa and the predicted differential stresses increase with n. All
Peierls deformation mechanisms give high stress dependency for stishovite (7 > n > 33).

In Table 3 the silica polymorph stress exponents scale linearly with nolivine. Using these relationships, and

our measured value of nolivine = 6:9þ3:1
−2:2 (Table 2), we get nquartz = 2:8þ1:2

−0:9 , ncoesite = 2:9þ1:3
−0:9 , and nstishovite

= 8:1þ3:7
−2:7 :

Figure 5. Integrated microdiffraction patterns or inverse pole figure electron backscatter diffraction (EBSD) maps, plotted with respect to Y (stress direction), of
the recovered samples. (a and b) Quartz deformation experiment, (c and d) coesite deformation experiment, and (e and f) stishovite deformation experiment.
(a), (c), and (e) are silica samples, and (b), (d), and (f) are the olivine samples. (a and b) Diffraction patterns collected at 10 keV (wavelength = 1.2398 Å) and radially
integrated with 0.01° resolution in 2 θ; red lines: Predicted location of quartz or olivine peaks. Inset: raw data. Inserts to (c)–(f): color‐coded legends for inverse pole
figure maps (EBSD reference frame is reported in c). The mean grain diameters are reported in Table 1.
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5. Conclusions

In this study quartz and coesite have very similar strengths, and both are weaker than stishovite (Figure 3b).
The strength of stishovite increases relative to the other silica phases and olivine with reductions in strain
rate. The unmeasured water concentration of the samples in this study mean that the absolute strength of
the phases analyzed is poorly constrained here. Unless, however, stishovite undergoes significantly more
hydrolytic weakening than quartz, it must be stronger than quartz at mantle strain rates. The ability to
use the data here as a guide to strength contrast between the silica phases in the mantle depends on the
deformation mechanisms active in this study.

For the olivine in this study, we measured nolivine = 6:9þ3:1
−2:2 andV

* ¼ 4:6þ2:2
−1:5 cm

3/mole. The stress exponents
for the individual experiments are within error of this combined value (Table 2). Although it has large errors,
this stress exponent is within one standard error of the effective stress exponents estimated for the flow laws
of Kranjc et al. (2016), Raterron et al. (2004), and Demouchy et al. (2013) and is significantly greater than the
measured stress exponents for power law creep (Table 3; e.g., Kaboli et al., 2017; Nishihara et al., 2014). The
differential stresses predicted by the Peierls creep flow laws with n< 10 are similar in magnitude to our mea-
sured stresses, unlike those for the diffusion creep and most of the power laws, which are unreasonably high
and low, respectively (Table 3), at the conditions of our experiments (Table 1). The olivine in these experi-
ments is therefore deforming by Peierls creep.

No activation volume has been previously reported for Peierls creep in olivine. The activation volume
measured here is within the range of previously measured values for deformation by diffusion and power
law creep (0–15 cm3/mol; e.g., Kaboli et al., 2017; Nishihara et al., 2014).

Microstructural evidence from the olivine supports our choice of dislocation‐mitigated deformation
mechanisms but does not uniquely distinguish between Peierls or power law creep. It must be noted that
in this study we have no evidence in support of, or against, the activity of grain boundary sliding during
dislocation creep.

The stress exponents for coesite calculated directly from the data (2:7þ0:8
−0:6 ) and using the combined olivine

stress exponent (2:9þ1:3
−0:9) are within error of each other and of the only other previously published stress expo-

nent for power law creep in coesite, 3 ± 1 (Renner et al., 2001). This supports the interpretation of Peierls
creep as the active deformation mechanism in the olivine.

No direct measurement of the stress exponent in quartz was possible, but an exponent of 2:8þ1:2
−0:9 was esti-

mated from the combined olivine stress exponent and the stress exponent scaling relations apparent in
the modeling (Table 3). Although subject to more uncertainty than a directly measured value, it is close to
the value of nquartz = 2.97 for quartz deforming by “dislocation creep, with some contribution from grain‐
boundary sliding” (Rutter & Brodie, 2004) and is consistent with previous measurements for power law
creep in quartz (nquartz = 2, Shelton & Tullis, 1981; nquartz = 2.3 ± 0.1 and 2.4 ± 0.4, Jaoul et al., 1984). In
quartz, the transition temperature between Peierls and power law creep is around 600 °C (Evans &
Goetze, 1979); therefore, power law creep is expected to be the active deformation mechanism in this
experiment.

Similarly to the coesite, the directly measured (nstishovite =6:6þ4:9
−2:8) and scaled (nstishovite =8:1þ3:7

−2:7) stress expo-
nents for stishovite are within error of each other. They are higher than typically reported for power law
creep exponents in silicate minerals and greater than the n= 5 stress exponent seen during dislocation climb
controlled creep in some metals. It is most likely therefore (but not certain) that stishovite is deforming by
Peierls creep.

In which case, the transition temperature between Peierls and power law creep is greater in stishovite than
in quartz and coesite. Peierls creep, or plasticity, is dominated by gliding of dislocations without any contri-
bution from diffusion controlled dislocation climb, which is the controlling factor in power law creep. The
absence of diffusion control in Peierls creep is reflected in the relative temperature independence of the
deformation mechanism. The probable higher temperature transition between deformation mechanisms
in stishovite is therefore consistent with the low diffusion rates in stishovite and faster diffusion rates in
quartz and coesite. The preference for Peierls over power law creep implies that power law creep is much
stronger in stishovite under the conditions of these experiments, again consistent with slow diffusion
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rates. At some temperature higher than those here (850 ± 50 °C), the dominant deformationmechanismwill
change to power law creep, weakening the stishovite somewhat. But because of the very slow diffusion rate
of Si, stishovite will remain stronger than quartz and coesite.

Shishovite has a smaller unit cell than either quartz or coesite, and the typical slip‐system Burgers vector is
also shorter (e.g., Idrissi et al., 2008; Texier & Cordier, 2006). The higher strength of stishovite indicates
therefore that the dislocation mobility cannot be significantly greater in stishovite than in quartz or coesite
and is probably much lower. This is consistent with very slow silicon and oxygen diffusion observed in
stishovite (Xu et al., 2017). All three silica phases studied here are tectosilicates, so, unlike in olivine, Si‐O
bonds must be broken and reformed for motion of dislocations to occur in the crystals. The Si‐O electrostatic
bond strength in stishovite is less than that in quartz and coesite (Gibbs et al., 2008, 2009), but silicon and
oxygen diffusion in octahedral stishovite is significantly slower than in tetrahedral phases. The increase in
silicon coordination and the higher density of stishovite may therefore generate geometric difficulties that
retard diffusion and impede the dislocation mobility in stishovite relative to the other phases.

As with the pure SiO2 system, a pressure‐induced change in silicon coordination and concurrent increase in
density is seen in the (Mg,Fe)O‐CaO‐SiO2 system, which dominates the chemistry of the Earth's mantle.
Above ~20 GPa Ca(Si,Ti)O3 perovskite becomes the main carrier of calcium, with a framework of fully
corner‐sharing (Si,Ti)O6 silica octahedra. Above ~23 GPa the magnesium silicate components of the mantle
([Mg,Fe]SiO3 and [Mg,Fe]2SiO4) transform into (Mg,Fe)SiO3 bridgmanite ± (Mg,Fe)O; here the silicate is an
orthorhombic perovskite (GdFeO3‐type structure) that forms ~70 vol.% of the Earth's lower mantle between
25 and 110 GPa. At greater depths bridgmanite transforms into the CaIrO3‐structured “post‐perovskite”
phase, which also contains octahedrally coordinated silica units, arranged as corner‐ and edge‐sharing
sheets (Murakami et al., 2004; Oganov & Ono, 2004).

Like stishovite, bridgmanite is both dense (ρ = 4.1 g/cm3; Sugahara et al., 2006) and shows extremely slow
diffusion of both Mg and Si cations (Ammann et al., 2010; Dobson et al., 2008; Holzapfel et al., 2003;
Yamazaki et al., 2000). High temperature deformation experiments on bridgmanite, with and without ferro-
periclase, shows that bridgmanite is very resistant to deformation (Girard et al., 2016; Tsujino et al., 2016)
and that it supports larger differential stresses than less dense, lower‐pressure phases (Chen et al., 2002).
Our qualitative experience of crushing bridgmanite samples for X‐ray powder diffraction studies also sug-
gests that it is significantly harder than the other polymorphs of MgSiO3. Geophysical evidence implies that
the lower mantle has between 10 and 100 times higher viscosity than the upper mantle. Due to the depth at
which it occurs, the viscosity contrast is widely associated with the formation of bridgmanite and may there-
fore be associated with the formation of octahedrally coordinated silicon in bridgmanite.

However, the formation of bridgmanite convolves other effects with the increase in silicon coordination, for
example, changes in cation coordination and network connectivity of the silica units in the magnesium sili-
cate crystal structures. Cation coordination and valence play a role in the strength of phases, for example, the
substitution of 2Al3+ by Si4+ + Mg2+ in pyrope garnet weakens the mineral (Hunt et al., 2010) as does the
substitution of Fe2+ into forsterite (Bollinger et al., 2015). In general substitution of multivalent and less
strongly charged cations reduces the strength of minerals. The formation of bridgmanite from Mg2SiO4

involves a change in the Mg‐Si and Si‐O ratio, which may also affect the strength. This ratio change is not
present in the MgSiO3 system, where stiff bridgmanite is formed from majorite, which is weak (Hunt
et al., 2010). Like the silica polymorphs, bridgmanite is a tectosilicate with a three‐dimensional structure
of interlocking silica units, and the formation of bridgmanite increases the network of the silica units.
Postperovskite, which not a tectosilicate, is weak (Ammann et al., 2010; Hunt et al., 2009), but this appears
to be related to enhanced diffusivity of Mg and Si and not uniquely weak glide planes. There are though no
obvious general relationships between the strength of silicates and their crystal symmetry or the network
coordination of their silica units.

These structural and cation ambiguities are not present in the silica polymorphs, all of which consist of fully
corner‐sharing SiO4 or SiO6 frameworks and have the same silicon‐oxygen ratio. The present study shows for
the first time that stishovite is significantly stronger than either quartz or coesite. We have argued that silica
coordination (and an associated density increase) may play a significant role in the strength of the silicate
phases. By analogy, the increase in Si coordination between MgSiO3 and Mg2SiO4 lower pressure

10.1029/2018GC007842Geochemistry, Geophysics, Geosystems

HUNT ET AL. 1986



polymorphs and bridgmanite may cause the increased strength of bridgmanite and thus explain the tenfold
to 100‐fold increase in viscosity around 660 km depth in the Earth.
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