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A B S T R A C T

Arctic System Reanalysis version 1 (ASRv1) forecasts of monthly precipitation over Greenland are compared
with gauge-based precipitation measured by the Danish Meteorological Institute (DMI) and precipitation re-
trieved from the Precipitation Occurrence Sensor System (POSS) at Summit. The ASRv1 precipitation generally
agrees with the corrected DMI gauge-based precipitation measured at coastal or near-coastal stations in
Greenland, but the corresponding data at Ikerasassuaq and Nuuk are not the case. ASRv1 precipitation at
Summit, i.e., in a higher continental environment, is overestimated compared with the POSS observations. The
North Atlantic Oscillation (NAO index and ASRv1 precipitation are moderately correlated over northern
Greenland, the North Atlantic, and the Greenland Sea regions (0.32–0.49). It is presumed that local wind events
have a larger influence on precipitation where smaller correlations occur. Suggested future work to understand
discrepancies between ASRv1 and DMI precipitation fields in Greenland coastal regions is to include case studies
of local wind events and corresponding precipitation variations utilizing in-situ measurements during both
strong positive and negative NAO phases. At high-altitude and inland areas, further observations are needed to
confirm the ASRv1 overestimation.

1. Introduction

The Greenland ice sheet (GrIS) has been losing mass in recent
decades (1992–2011) at an estimated rate of 142 ± 49 Gt per year,
with an increase in mass loss rate from 51 ± 65 Gt per year
(1992–2000) to 263 ± 30 Gt per year (2005–2010) (Shepherd et al.,
2012). Another estimate based on measurements by NASA's Gravity
Recovery and Climate Experiment (GRACE) showed similar mass loss
rate, 265 ± 25 Gt per year (2002–2015), corresponding to 0.72mm
per year average global sea level rise (Forsberg et al., 2017). This mass
loss has been dominated by increased ice sheet melt, which in recent
years has contributed more to GrIS mass loss than that from ice dy-
namics (Enderlin et al., 2014). While surface albedo primarily governs
ice sheet surface mass balance (SMB) (Bougamont et al., 2005; Tedesco
et al., 2011; Box et al., 2012; Fitzgerald et al., 2012), summer snowfall
events can counterbalance the positive melt-albedo feedback (Stroeve,
2001), by covering dark ice and/or metamorphosed snow with a highly
reflective fresh snow layer (Noël et al., 2015).

At the same time, large reductions in Arctic sea ice extent (SIE) have

occurred (e.g., Stroeve et al., 2012a; Serreze and Stroeve, 2015),
leading to strong solar heating of the upper ocean. Increased ocean
mixed layer heat content during summer results in large exchanges of
heat and moisture during autumn and winter as the ice reforms. En-
hanced heat and moisture fluxes from the ocean to the atmosphere are
one of the drivers behind increased moisture content of the Arctic at-
mosphere (Serreze et al., 2012) as well as Arctic Amplification (AA), the
outsized warming of the Arctic compared to the Northern Hemisphere
or the global average (Serreze et al., 2009; Screen and Simmonds,
2010). Increased moisture content of the Arctic atmosphere may, in
turn, be responsible for increased autumn and winter precipitation over
Siberia (Cohen et al., 2012; Ghatak et al., 2012; Orsolini et al., 2013) as
well as increases in Arctic snowfall extremes (Liu et al., 2012; Bintanja
and Selten, 2014). The impact of sea ice loss on Greenland accumula-
tion, however, remains less clear.

Expanding open water areas, however, do appear to be in part re-
sponsible for locally sourced moisture that could impact precipitation
over Greenland. Kopec et al. (2016) found an increase of the proportion
of moisture sourced from the Arctic concerning sea ice reductions in the
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Canadian Arctic and Greenland Sea regions over the past two decades.
However, precipitation observations do not show a significantly in-
creasing trend with respect to sea ice loss in these two regions. On the
other hand, several studies have examined how Arctic warming and
associated changes in turbulent fluxes may impact cyclone activity in
the Arctic (McCabe et al., 2001; Yin, 2005; Bengtsson et al. 2006, 2009;
Ulbrich et al., 2009; Inoue et al., 2012; Akperov et al., 2015; Koyama
et al., 2017). Some regional features have emerged, such as a northward
shift in cyclones tracking through the North Atlantic (Zhang et al.,
2004; Yin, 2005; Ulbrich et al., 2009; Koyama et al., 2017) with the
potential to impact GrIS precipitation. Koyama et al. (2017) showed an
increased potential for cyclogenesis around Greenland during low sea
ice years. The combination of more moisture availability and increased
cyclogenesis, may further increase the intensity of cyclones, and in-
crease the amount of cyclone-associated precipitation, leading to in-
creased snowfall.

While the quantitative link between precipitation and SIE remains
poorly constrained, Appenzeller et al. (1998) found a linear relationship
between snow accumulation and the North Atlantic Oscillation (NAO)
(Hurrell, 1995) index in western central Greenland. The NAO describes
a tendency toward simultaneous strengthening or weakening of the
subpolar (Icelandic) Low and the subtropical (Azores) High, impacting
general climate conditions for the North Atlantic Ocean basin and the
strength of meridional transport (Koerner and Russell, 1979).
Bromwich et al. (1999) utilized an indirect dynamic approach over
Greenland and estimated the precipitation from wind, geopotential
height, and moisture fields. While this approach can be referred to Chen
et al. (1997), the ω equation method based on an equivalent isobaric
geopotential height in σ coordinates allows a vertical motion compu-
tation over high mountain regions. By computing the advection and
adiabatic variations of the temperature and specific humidity, excess
water through a layer can be obtained by removing supersaturation
from the specific humidity field. Subsequently, falling water, satura-
tion, and evaporation through multiple layers are computed. The pre-
cipitation and latent heat release can be derived in the end. The results
showed that increased precipitation in southern Greenland occurs with
variations in the position and intensity of the Icelandic Low, which is
related to the NAO. Mosley-Thompson et al. (2005) documented that
the NAO influence on Greenland precipitation weakens along the west-
central side of the ice sheet and strengthens in the southeastern region
when the temperature rises. Box et al. (2012) discussed on strong an-
ticyclonic circulation centered over Greenland that associated with a
persistent negative summer NAO index in 2000–2011. Such conditions
enhance warm air advection along the western ice sheet and reduce
cloudiness and summer snowfall precipitation. These are amplifying
mechanisms to maximize the albedo feedback. Fettweis et al. (2013)
showed that anticyclonic conditions over Greenland gauged by negative
NAO indexes were increased. Hanna et al. (2014) studied record surface
melting of the GrIS in July 2012 and showed that a blocking high
pressure feature in the mid-troposphere over Greenland for the summer
was associated with negative NAO conditions. Sea surface temperature
and sea-ice cover anomalies seem to have played a minimal role during
this period.

As the sea ice is simulated to continue to decline through the end of
the twenty-first century (e.g., Stroeve et al., 2012b; Massonnett et al.,
2012; Stroeve and Notz, 2015; Jahn et al., 2016; Notz and Stroeve,
2016), precipitation over the Arctic Ocean is projected to increase
(Kattsov et al., 2007; Bintanja and Selten, 2014), with the potential to
increase the GrIS SMB if the precipitation falls as snow. When the
precipitation falls as rain, only the part of rainfall that refreezes can
contribute to mass gain, and it decreases surface albedo which enhances
surface melt (Vizcaíno et al., 2014). On the other hand, Lim et al.
(2016) found that the negative phase of the NAO is associated with
warm and dry conditions for the GrIS, leading to SMB decreases. Thus,
it is important to understand better how precipitation has and may
change in the future, as a warmer troposphere is more likely to produce

rainfall rather than snowfall. Unfortunately, such an assessment has not
been attainable due to the lack of observations. Observations of
Greenland precipitation are limited, and the ones that exist (e.g., gauge
measurements) suffer from wind effects contamination and are gen-
erally confined to the coastal regions.

The lack of reliable and accurate observations of precipitation has
led to many studies using atmospheric reanalysis data to evaluate
changing Arctic precipitation (Serreze et al., 2015; Kopec et al., 2016).
Atmospheric reanalyses are retrospective forms of numerical weather
forecasts that assimilate observational data into a short-term forecast
model using the observations as a first guess of the state of the atmo-
sphere. Recently, an Arctic-focused reanalysis product was developed to
specifically assess and monitor variability and change over the greater
Arctic region under a U.S. program, the Study of Environmental Arctic
Change (SEARCH). The Arctic System Reanalysis (ASR) (Bromwich
et al., 2010) was developed as a synthesis tool for assessing and mon-
itoring variability and change in the Arctic system. Bromwich et al.
(2016) compared the ASR forecast monthly precipitation totals with
gauge observations on land from the Global Historical Climate Network
version 2 (GHCN2) (Peterson and Vose, 1997) and the Adjusted His-
torical Canadian Climate Data (AHCCD) (Mekis and Hogg, 1999) within
the ASR domain, including Greenland, for the period December 2006 to
November 2007. While they showed that the ASR precipitation is
generally less (more) during cool (warm) months than observed, the
comparison was performed for a limited time, over 12 months. They
also compared the monthly total precipitation for the ASRv1 and the
European Center for Medium-Range Weather Forecasts (ECMWF) In-
terim Re-Analysis (ERA-Interim) (Dee et al., 2011). However, the
comparison was performed where the GHCN2 and AHCCD gauges are
located at for the period December 2006–November 2007. Thus, they
utilized a small set of over-land locations' data, and the results did not
include the spatial distribution over Greenland and the surrounding
waters.

This study aims to assess the accuracy of the ASR precipitation fields
along the coastal region of Greenland for the entire ASR time-period
(2000–2012) through comparisons with ground-based station data and
X-band Doppler radar measurements at Summit. The results of our
study complement the findings of Bromwich et al. (2016) by utilizing
different observations over a different study period and a different re-
gion. Additionally, we explore the relationship between the NAO index
and ASR precipitation over Greenland.

2. Datasets and methodology

Two datasets are used to evaluate the ASR version 1 (ASRV1) pre-
cipitation data around Greenland: gauge-based precipitation measured
by the Danish Meteorological Institute (DMI) (Cappelen, 2014); and
precipitation retrieval from the Precipitation Occurrence Sensor System
(POSS), which is a bistatic, continuous-wave, X-band Doppler radar
utilized in the Integrated Characterization of Energy, Clouds, Atmo-
spheric state and Precipitation at Summit (ICECAPS) project (Sheppard
and Joe, 2008; Castellani et al., 2015). The first dataset, ASRv1, spans
2000–2012 and the spatial coverage extends beyond the boundaries of
the Arctic Ocean. The spatial resolution of ASRv1 is 30 km, and the
temporal resolution is 3-hourly. Among six produced ASRv1 datasets
for users, variables designated as “accumulated total grid scale pre-
cipitation” and “accumulated total cumulus precipitation” stored in the
“ASR Final 30 km 2D surface forecast product” are utilized to derive
total precipitation since they are non-convective and convective pre-
cipitation, respectively. The accumulated amount of this total pre-
cipitation over a month is defined as the ASRv1 monthly precipitation
in this study. Note that cumulus convection is not accurately re-
presented in numerical models and excessive precipitation tends to be
produced (Fonseca et al., 2015). Bromwich et al. (2016) reported that
convective precipitation over land in summer is excessive, but the issue
is resolved in version 2 (ASRv2). ASRv2 also has improved the spatial
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resolution of 15 km, and while fields of precipitation and radiation are
expected to be improved, ASRv2 was not available in time for this
study.

The second dataset is the DMI historical data collection 1873–2012

for Greenland. Eighty-eight DMI weather stations are located in coastal
or near-coastal (less than 100m a.s.l.) regions. Comprehensive quality
control was applied to the whole dataset, and erroneous data were re-
moved. Measurement periods of the DMI gauges vary significantly
among these stations resulting in many stations lacking data during our
study period. DMI stations where numbers of observations reached
more than a third of the study period of the data available from the
ASRv1 (156 months of data from 2000 to 2012) are selected for com-
parison, i.e., stations having at least 52 monthly observations during
the 13 years. This selection was aimed to secure a reasonable degree of
confidence and resulted in only ten stations being identified for com-
parison with the ASRv1 precipitation. Also, the observed data quality
among stations may vary due to differences in the automated ob-
servation system and frequencies of maintenance and calibration
(Cappelen, 2014). Table 1 and Fig. 1 show the locations of those se-
lected stations including the Summit POSS (described below). To derive
24 h accumulated precipitation, considering wind-induced undercatch,
wetting loss, and trace precipitation amounts, a precipitation bias is
corrected following Yang et al. (1999):

= + + +P CR P P P P
100

( Δ Δ ) Δc g w e t

where PC, Pg, ΔPw, ΔPe, and ΔPt in millimeters are corrected pre-
cipitation, gauge-measured precipitation, wetting loss, evaporation
loss, and trace precipitation, respectively. ΔPw, i.e., wetting loss, is
varied by precipitation type and the number of times the gauge is
emptied. ΔPe, i.e., evaporation loss, depends on gauge type and time of
the year. ΔPt, i.e., trace precipitation, is generally an unmeasurable
quantity of precipitation, but inversely proportional to the gauge-
measured annual precipitation and this correction is important in
northern Greenland (Yang et al., 1999). Daily catch ratio (CR in %) is a
function of daily wind speed and three precipitation types: snow, rain,
and mixed precipitation. Although precipitation types were unknown at

Table 1
Information about the selected DMI stations and POSS.

Station ID Location Monthly
data
numbers

Latitude Longitude Elevation
(a.s.l.)

04310 Station Nord 58 81.6°N 16.7°W 36m
04320 Danmarkshavn 71 76.8°N 18.7°W 11m
04339 Ittoqqortoormiit 108 70.5°N 22.0°W 65m
04360 Tasiilaq 142 65.0°N 37.6°W 53m
04390 Ikerasassuaq 127 60.0°N 43.2°W 26m
04270 Mitt. Narsarsuaq 105 61.2°N 45.4°W 27m
04272 Qaqortoq 150 60.7°N 46.1°W 32m
04250 Nuuk 110 64.2°N 51.8°W 54m
04231 Kangerlussuaq 111 67.0°N 50.8°W 50m
04220 Aasiaat 111 68.7°N 52.8°W 43m
POSS Summit 27 72.6°N 38.5°W 3260m

Fig. 1. DMI stations used for this study and Summit where the POSS is located.

Table 2
Correlation coefficients between the ASRv1 precipitation and the DMI/POSS
precipitation. All values are statistically significant (p≤ 0.05).

Station ID 1×1 patch 3× 3 patch 5× 5 patch

04310 0.83 0.80 0.75
04320 0.78 0.77 0.75
04339 0.81 0.82 0.82
04360 0.80 0.82 0.82
04390 0.59 0.59 0.57
04270 0.84 0.83 0.80
04272 0.85 0.86 0.84
04250 0.37 0.38 0.40
04231 0.66 0.67 0.62
04220 0.70 0.72 0.76
POSS 0.57 0.54 0.50

Table 3
Mean values of monthly precipitation of DMI (POSS) and the corresponding
ASRv1 values from the three different coverage size.

Station DMI (POSS)
[mm]

ASR 1×1
[mm]

ASR 3×3
[mm]

ASR 5×5
[mm]

04310 23.1 40.5 35.3 30.7
04320 14.9 23.8 24.0 25.1
04339 36.3 54.8 54.9 58.6
04360 67.0 84.6 90.6 99.8
04390 138.3 166.9 154.0 143.4
04270 50.1 85.9 100.9 118.4
04272 73.6 76.4 81.6 94.7
04250 84.3 54.0 60.8 66.5
04231 14.9 21.5 24.3 31.4
04220 26.9 32.1 32.5 33.4
POSS 5.5 13.6 13.7 14.1
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the selected stations, a simple assumption based on the near-surface air
temperature was made to determine the type of precipitation. If all the
observations in a single day indicate below (above) zero Celsius, i.e.,
freezing point, the daily precipitation type is snow (rain), and other-
wise, it is mixed precipitation. The monthly DMI precipitation used for
the comparison is represented as the accumulations of those daily
corrected precipitation data, which is based on the reported 24-h ac-
cumulated precipitation (Cappelen, 2014).

The third dataset is from the POSS located at Summit, one of the
highest elevation locations within the Arctic, and is used to assess
ASRv1 precipitation within the interior of the ice sheet. POSS operated
from September 2010 to present, resulting in 27 months of snowfall
data that overlap with the ASRv1 dataset. Snowfall retrieval from POSS

is based on the so-called Z-S relationship between the equivalent re-
flectivity factor and water equivalent (w.e.) snowfall rate using the T-
matrix scattering model (Mishchenko, 2000). The Z-S relationship is
expressed as =Z BSβ, where Z is the equivalent reflectivity factor or
reflectivity, S is snowfall rate, and B and β are coefficients. These
coefficients depend on crystal habits and the snow size distribution,
which are not observed, leading to a certain level of uncertainty in the
POSS snowfall rate. Associated with the time-space comparison, the
effective uncertainty of POSS reflectivity is likely to be within 3 dB,
which is equivalent to a factor two uncertainty in snowfall (Castellani
et al., 2015). Consequently, the POSS monthly precipitation used for
the comparison consists of this daily precipitation accumulated over a
month. Further information about POSS and/or radar-based snowfall

Fig. 2. Scatterplot of the ASRv1 1x1-patch monthly precipitation and the DMI/POSS monthly precipitation and numbers at top right corners show the correlation
coefficients. Solid lines indicate linear regressions. Statistical significance of the correlation can be found in Table 2.
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retrievals can be found in Matrosov (2007), Matrosov et al. (2009),
Sheppard and Joe (2008), and Castellani et al. (2015).

The nearest ASRv1 grid point to each DMI station or the POSS lo-
cation was initially selected for comparison. Recalling that precipitation
depends on subgrid-scale physical processes, we do not know whether
precipitation amount at the nearest ASRv1 grid point represents that at
the corresponding station with acceptable uncertainty. To find an
adequate area to represent each measurement location, three patches of
various sizes (1× 1, 3×3, and 5×5 grid points) are defined. While a
1× 1 patch is equal to the nearest grid point to the measurement site,
3× 3 and 5×5 patches are the areas having the nearest grid points in
the center. Consequently, monthly ASR 1x1-patch precipitation is the
same as the ASRv1 monthly precipitation at the nearest point to the
measurement site, and the corresponding spatial mean values are de-
fined as 3x3-and 5x5-patch monthly precipitation. The Pearson's cor-
relation coefficient between the ASRv1 monthly precipitation and the
DMI (POSS) monthly precipitation is computed to measure the linear
correlation. The seasonal and interannual variability of the DMI,
ASRv1, and POSS monthly precipitation are visually examined at each
site.

The NAO index data used in this study is obtained from the National
Oceanic and Atmospheric Administration (NOAA) Climate Prediction
Center (CPC; www.cpc.ncep.noaa.gov/products/precip/CWlink/pna/
nao.shtml). The monthly NAO index is defined as a principal compo-
nent of the Atlantic centered rotated empirical orthogonal function
analysis of the monthly mean 500-mb height north of 20°N. Further
information can be found on the CPC website.

3. Results

3.1. Comparison of monthly precipitation

Table 2 lists the correlation coefficients between the DMI (POSS)
precipitation and the ASRv1 precipitation obtained from the three
different coverage sizes described in the previous section. These cor-
relations are all statistically significant at p≤ 0.05. Overall, they are
positively correlated, and the range is from 0.37 to 0.86, indicating that
temporal representativeness of the ASRv1 precipitation varies strongly
by location. While the ASRv1 1x1-patch and the DMI precipitation have
larger correlations in the south and northeast of Greenland, correlation
coefficients with respect to the 5x5-patch are larger than those with
respect to the 1x1-or 3x3-patches in eastern and western Greenland.
However, correlation coefficients for the 3× 3 and 5×5 patches
generally only differ by ± 0.04, suggesting precipitation at the nearest
ASRv1 grid point is representative of the corresponding DMI station.
Table 3 summarizes the mean values of monthly precipitation from DMI
(POSS) and the corresponding ASRv1 values derived from the three
different coverage sizes. In general, the ASRv1 1x1-patch values show
the best agreement with the DMI (POSS) values, further confirming the
nearest ASRv1 grid point is sufficient to represent the corresponding

DMI station. The following figures only show results for the 1×1
patch.

Fig. 2 shows the ASRv1 1x1-patch precipitation against the DMI
(POSS) precipitation at each station location. Table 4 lists the corre-
sponding linear regression coefficients, and the bias and root mean
square errors (rmse). In general, precipitation at the DMI stations lo-
cated on the east side of Greenland (04310, 04320, 04339, 04360,
04270, and 04272) show the best agreement with the corresponding
ASRv1 precipitation, with correlation coefficients in the range of
0.75–0.86. ASRv1 precipitation at three northeastern stations, 04310,
04320, 04339, and a southern station 04270 exhibit apparent positive
biases that are not dependent on precipitation amount received. On the
other hand, ASRv1 precipitation at stations 04360 and 04272 show
positive biases during light precipitation periods and negative biases
when the monthly precipitation amount exceeded 150mm. While
moderate correlations (0.57–0.76) appear at stations 04390, 04231,
and 04220, station 04250 (Nuuk) shows the lowest correlation (0.37)
among all the DMI stations. Nuuk receives about 100mm per month of
precipitation (Aðalgeirsdóttir et al., 2009), and the majority of the
corresponding ASRv1 data show a negative bias.

It is known that there are challenges in measuring solid precipita-
tion, such as blockage of the gauge orifice by snow capping the gauge;
accumulation on the side of the orifice walls; wind undercatch of snow
due to the formation of updrafts over the gauge orifice; the unknown
role of turbulence on gauge catch; and the large variability in gauge
catch efficiency for a given gauge and wind speed (Rasmussen et al.,
2012). Thus, the wind field around the gauge can significantly affect the
quality and accuracy of precipitation data. While gale-force winds fre-
quently occur in Southern Greenland from westerly or easterly tip jets,
northeasterly barrier winds, or northwesterly katabatic winds (Moore
et al., 2016), topography-induced airflow can also influence local pre-
cipitation. The effects of area-specific variability in winds are less likely
to be reflected in the coarse resolution ASRv1 precipitation estimates
where the terrain is complex. For example, Nuuk at the mouth of Nuup
Kangerlua is part of the large Nuuk fjord system, and the smoother
topography used in the model can cause high bias in surface wind
forecast there. Moore et al. (2016) documented that a horizontal grid
size on the order of 15 km is needed to characterize the impact that
Greenland's topography has on the regional wind field and climate.
Station 04390 (Ikerasassuaq) shows a large scatter between the station
data and ASRv1, and this too may also be a result of topographic effects.
Moore and Renfrew (2005) studied surface winds over Southern
Greenland from December to February using Quick Scatterometer
(Quick-SCAT) data and found highly localized maxima wind speeds just
to the south and east of Cape Farewell, which is near Ikerasassuaq. It is
plausible that the ASRv1 forecast precipitation error is likely to be
larger when the stronger wind is observed.

Fig. 3 shows the time series of the ASRv1 1x1-patch and DMI pre-
cipitation at the target DMI stations, respectively. The blue line shows
local polynomial regression fitting, and the light blue shading shows the
95% confidence intervals. The month-to-month variability at each sta-
tion is large as well as the rmse values in Table 4 display. Thus, it is
difficult to detect seasonal variability from the monthly data over 13
years. Consequently, the majority of the ASRv1 precipitation values are
outside of the 95% confidence intervals and the following discussion is
based on the regression curves. Interannual variability at stations
04270 and 04272 are similar to each other as they are located in the
vicinity in the southern coast of Greenland (Fig. 3a). Gradual pre-
cipitation increase (decrease) is observed from 2000 to 2004
(2006–2008) at the two stations. Trends at stations 04310 and 04320
located on the northeastern coast of Greenland are also similar to each
other. Local maximum values appear in 2006 at both stations, which are
reflections of the extremely large observed values (Fig. 3a). Similar to
the ASRv1 precipitation trends, the majority of the DMI precipitation
values are outside of the 95% confidence intervals of the local poly-
nomial regression fitting (Fig. 3b). It is not appropriate to discuss the

Table 4
Linear regression constants and accuracy measures between the ASRv1 pre-
cipitation and the DMI/POSS precipitation.

Station ID Intercept [mm] Slope Bias [mm] Root Mean Square Error [mm]

04310 7.0 1.1 10.3 18.2
04320 11.4 1.4 17.5 24.7
04339 21.6 1.0 22.3 33.3
04360 34.7 0.8 19.3 35.7
04390 73.8 0.6 17.0 81.2
04270 33.8 1.21 44.3 58.8
04272 27.0 0.7 1.5 31.1
04250 49.9 0.1 −28.4 161.7
04231 11.3 1.1 12.3 19.4
04220 13.2 0.9 9.7 19.8
POSS 10.0 0.7 8.2 9.5
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trends from the available DMI data since some stations have dis-
continuous observations in addition to the sample size limitations, but
the stations 04220, 04231, 04272, and 04390 show increasing trend at
the end of the study period. The lowest Arctic sea ice extent during the
satellite era was recorded in this year. The station 04250 trend looks
unique since it shows an extreme precipitation amount (over 1500mm
per month). However, it is reasonable to assume this extreme value is
an erroneous observation. Maximum values of the time series at other
locations such as the stations 04220, 04270, and 04320 also might be
erroneous. While DMI claimed the data series in question, not all have
been tested for homogeneity nor homogenized (Cappelen, 2014), we
had not performed additional quality control to maintain the sample

size. In-situ precipitation measurements are supposed to be the most
reliable data even if uncertainty due to undercatch occurs. Since stea-
dily accurate measurement in the Arctic has been unattainable due to
the harsh environment, a sustained effort must be made for improved
hydrometeorological analyses.

Fig. 4 shows the time series of precipitation at Summit, the POSS
and ASRv1 1x1-patch precipitation. As we see in Fig. 2, the ASRv1
precipitation is larger than the retrieved POSS precipitation and the
trend lines for the two datasets do not agree. However, the period of
available monthly precipitation data (a little over two years) is not
sufficient time to adequately identify interannual variability at Summit.

Fig. 3. (a) time series of the ASRv1 1x1-patch monthly precipitation at the DMI stations and (b) corresponding DMI precipitation. Each graph is plotted in the
optimized range for precipitation (y-axis) at the corresponding location. The blue line shows local polynomial regression fitting, and the light blue shading shows the
95% confidence intervals.
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3.2. The Northern Atlantic oscillation (NAO) and precipitation

The spatial distribution of precipitation is governed by atmospheric
circulation, proximity to large bodies of water, and topography. Thus, it
is better to divide Greenland and surrounding waters into regions with
similar characteristics to study the relationship between local pre-
cipitation and the NAO index. Greenland is divided into four regions,
based on the major ice sheet topographical divides following Stroeve
et al. (2017): Northwest (NW), Southwest (SW), Southeast (SE), and
Northeast (NE). Also, the surrounding waters, i.e., the Baffin Bay (BB),
Davis Strait (DS), North Atlantic (NA), Greenland Sea (GS), Lincoln Sea
(LS), Arctic Basin (AB), are defined as shown in Fig. 5. Note that the
entire AB is not depicted in the figure due to the map projection (the
Lambert conformal conic). The defined AB is approximately bordered
by the continental shelves of Eurasia and North America.

Fig. 6 shows the relationship between the area averaged monthly
ASRv1 precipitation over the divided regions and the corresponding
monthly NAO index. The spatially averaged precipitation is derived
from monthly ASRv1 precipitation at all available grid points in the
region. The data period is from 2000 to 2012, and all 12 months of data
are utilized as well as the monthly precipitation analysis. Correlation
coefficients for the NW, SW, NE, and SE regions are −0.36, 0.09, 0.32,
and 0.25, respectively. These values are statistically significant
(p≤ 0.05) except for the SW (p-value of 0.24). Fig. 7 shows the re-
lationship between the regionally averaged ASRv1 precipitation over
surrounding waters, the BB, NA, GS, and AB regions, and the NAO
index, in which the correlation coefficients are −0.27, 0.49, 0.46, and
−0.14, respectively. The correlation coefficients are statistically sig-
nificant (p≤ 0.05) for the BB, NA, and GS regions. The corresponding
scatter plots for the LS and DS regions are not shown here, but their

Fig. 3. (continued)
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correlation coefficients are 0.01 and 0.11, respectively. Since the NAO
is strongest and its most climatologically effective expression occurs
during the cold season months (Rogers, 1984; Hurrell, 1995; Jones
et al., 1997), the same analysis during the colder months (Septem-
ber–April) is performed. The colder months’ correlation coefficients for
the NW, SW, SE, SW, BB, DS, NA, GS, LS, and AB are −0.42, −0.01,
0.09, 0.39, −0.32, −0.01, 0.50, 0.48, 0.10, and −0.14, respectively.
Among these values, the results for the NW, NE, BB, NA, and GS are
statistically significant (p≤ 0.05), and their magnitudes are larger than
the corresponding coefficients derived from the entire period except for
the GS.

4. Discussion

In the Arctic, precipitation arrives as snow during nearly nine
months out of the year, and sublimation directly returns moisture to the
atmosphere (Liston and Sturm, 2004). Given that strong and frequent
winds prevent us from measuring accurate precipitation, it is extremely
challenging to observe precipitation at any place in the Arctic. There-
fore, it is beneficial to understand the characteristics of the newly de-
veloped ASRv1 precipitation data for Arctic climate research. Arctic sea
ice decline has increased the heat flux from the ocean to the atmosphere
in autumn and early winter (Vihma, 2014). Consequently, sea ice loss is
strongly tied to increased tropospheric moisture, precipitation and

cloud cover (e.g., Francis et al., 2009; Kay and Gettelman, 2009; Screen
et al., 2013; Abe et al., 2016; Vazquez et al., 2017). Regarding the GrIS
SMB, changes in accumulation, mostly driven by precipitation, may
help to counter ice mass loss from increased ice melt. Mernild et al.
(2015) investigated coastal annual precipitation trends and showed
positive (negative) trends in western (southern and eastern) Greenland
over the 1991–2012 period. Similarly, Wong et al. (2015) showed po-
sitive annual precipitation trends at Thule air base in northwestern
Greenland over the 1981–2012 period. While their results were based
on gauge observations, mean precipitation in the interior of the GrIS
was estimated from snow pits and ice cores in both studies and negli-
gible changes in precipitation in the GrIS interior were found.

Note that uncertainty of observed precipitation in the Arctic tends to
be larger than that in the lower latitude. Serreze and Barry (2014)
provided major issues regarding measurement of precipitation: sig-
nificant gauge undercatch of solid precipitation, the sparse station
network, and large biases in precipitation estimates based on satellite
observations or from atmospheric reanalyses. We can also assume that
spatial and temporal patterns of precipitation are linked to moisture
circulation caused by multi-scale dynamics. Thus, it is difficult to reach
a solid understanding of ASRv1 precipitation utilizing a few sets of
analyses. Future comprehensive work will entail a further under-
standing of precipitation in the Arctic. For example, precipitation data
from regional climate models forced by reanalysis datasets (e.g., Noël
et al., 2015; Fettweis et al., 2017; Langen et al., 2017; Niwano et al.,
2018) are worthy to access the reliability to cover insufficient in-situ
observations in the Arctic.

Our results show good agreement between the gauge and ASRv1
precipitation data at coastal locations except for stations at
Ikerasassuaq and Nuuk. Nevertheless, there is a significant discrepancy
between the ASRv1 precipitation and retrieved POSS precipitation at
Summit, as well as their trends (Figs. 2 and 4). The ASR monthly pre-
cipitation is always larger than the corresponding POSS retrievals
(Fig. 4). The correlation coefficient is about 0.5 and the rmse is
9.47mm as shown in Tables 2 and 4, respectively. As for the estimated
POSS precipitation, the annual values for 2011 and 2012 are 51.8 and
79.1 mm water equivalent (w.e.), respectively. Assuming the re-
flectivity uncertainty is a factor of two, the maximum limits of the es-
timations are 103.6 and 158.2 mm w.e. for 2011 and 2012, respec-
tively. These uncertainties are inevitable due to the inherent indirect
nature of radar observations. According to observations by Castellani
et al. (2015), the mean annual POSS snowfall based on measurements
from September 2010 to October 2013 was 92.5mm w.e. with a po-
tential spread between 81.1 and 126.7mm w.e. due to uncertainty in
the assumed undercatch ratio. On the other hand, the ASRv1 annual
precipitation at Summit is 134.3 and 192.2mm w.e. for 2011 and 2012,
respectively. Therefore, the estimated POSS precipitation amounts are
still smaller than the ASRv1 estimate at Summit. This result is not
conclusive since the comparison is over only 27 months and the p-value

Fig. 4. Time series of the POSS and ASRv1 1x1-patch monthly precipitation at the corresponding location. The blue line shows local polynomial regression fitting,
and the gray shading shows the 95% confidence intervals.

Fig. 5. Map of Greenland regions and surrounding waters, comprising
Northwest (NW), Southwest (SW), Southeast (SE), Northeast (NE), the Baffin
Bay (BB), the Davis Strait (DS), the North Atlantic (NA), the Greenland Sea
(GS), the Lincoln Sea (LS), and the Arctic Basin (AB).
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is 0.30. In fact, other estimations of the annual precipitation based on a
pit or regional climate modeling studies are in the range of
170–200mm w.e. in the area near Summit (Bales et al., 2001; Ettema
et al., 2009). Berkelhammer et al. (2016) discussed that little to no net
water vapor exchange occurs at the surface at Summit in winter, and
the hydrological budget in summer is controlled by condensation,
sublimation/evaporation, and synoptic storm events. Thus, we can as-
sume that annual precipitation at Summit is substantially affected by
the frequency of synoptic-scale cyclones, which can deliver precipita-
tion to this high-altitude site. Koyama et al. (2017) documented that
distinct changes in the frequency of winter Arctic cyclones (December
through February) are not observed in the post-satellite era. Thus, the
difference between our results and other estimates is likely to be related
to Arctic cyclone activities in the warm season. While ASRv1 provides a
good perspective on extreme cyclones, the ability to capture mesoscale
high-latitude cyclones is still limited (e.g., Tilinina et al., 2014). Also,
the precipitation microphysics and its parameterization cannot be ex-
pected to reproduce sub-grid scale precipitation processes. It is plau-
sible to assume that annual POSS precipitation values evaluated here
are reasonable as well as the values estimated by pits or regional cli-
mate models.

The results suggest that the phase of the NAO locally influence
precipitation over Greenland and the surrounding waters. Thus, we
need to pay attention to the geographical conditions. Where negative
correlation coefficients appear, NW, BB, and AB, precipitation tends to
decrease along with the increasing NAO index (Figs. 6 and 7). When
NAO is positive, the greater pressure gradient between the subpolar low

and the subtropical high can induce stronger westerlies, with speeds
8m/s greater during high NAO winters than low NAO winters and
anomalous northerly flow occurs across western Greenland (Hurrell,
1995). Consequently, the southwesterly flow that brings moisture to
Greenland is weakened and results in a reduction of precipitation. Box
et al. (2012), Fettweis et al. (2013), and Hanna et al. (2014) discussed
the potential linkage between the negative NAO phase and precipita-
tion amount in a different manner. Negative NAO indexes can induce an
anticyclonic circulation or a blocking high system over Greenland,
which can enhance southerly warm air advection. On the other hand,
regions on the east side of Greenland: NE, SE, GS, and NA, show posi-
tive correlation coefficients (Figs. 6 and 7); precipitation over those
regions tends to increase along with the increasing NAO index. When
the NAO is in a positive phase, the Arctic Front occurring along the
southeastern Greenland coast is possibly enhanced by the Icelandic
Low, which can lead to increased pre-frontal rainfall over eastern
coastal Greenland. Crawford and Serreze (2016) calculated the max-
imum Eady growth rate (EGR) which indicates the potential for cy-
clogenesis using the National Aeronautics and Space Administration's
(NASA) Modern-Era Retrospective Analysis for Research and Applica-
tions (MERRA; Rienecker et al., 2011). Their results showed larger
values over the southeastern coastal area of Greenland on average EGR
map for winter (December–February). This implies that the corre-
sponding coastal area is favorable for cyclonic activity and precipitation
eventually. Almost no correlations appear over the rest of the regions,
SW, DS, and LS between monthly precipitation and the NAO index.
Sodemann et al. (2008) applied a Lagrangian method to the ERA-40

Fig. 6. Area-averaged monthly ASRv1 precipitation and the NAO index over four regions in Greenland. Dotted lines indicate linear regressions and numbers at top
right corners show the correlate coefficients.
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reanalysis and showed that the North Atlantic and Nordic Seas are
moisture sources for Greenland precipitation. They found that the lo-
cation of the identified moisture sources strongly varied with the NAO
phase. Calder et al. (2008) studied a relationship between Greenland ice
core-derived accumulation and NAO, and identified the linear accu-
mulation-NAO relationship is stronger in western Greenland. Wong
et al. (2015) confirmed that recent (1981–2012) changes in northwest
Greenland annual precipitation are likely a response to a weakening
NAO. Note that the ASRv1 monthly precipitation amount in the inland
GrIS is still subject to errors as the results at Summit show. Validation of
precipitation using gauge is not possible over the surrounding waters in
parallel. Therefore, further investigation is preferable to discuss how
the NAO phase affects precipitation over Greenland the extended area.
A possible approach is utilizing measurements by the Millimeter-wave
Cloud Radar (MMCR) at Summit, one of the ICECAPS instruments in
addition to conventional estimation using data from snow pits.

5. Summary

In this study, monthly ASRv1 precipitation was compared with bias-
corrected DMI precipitation around coastal Greenland and precipitation
retrieved from POSS at Summit. While three different spatially aver-
aged ASRv1 values are compared to the DMI precipitation to evaluate
the spatial representativeness of the individual ASR grid point, the
differences in the correlation coefficients between modeled data and
observations for the different spatial averaging was found to be negli-
gible (Table 2). Thus, ASRv1 precipitation data at the nearest grid point
to the stations were used for comparison. The ASRv1 and DMI

precipitation on the east and south side of Greenland showed good
agreement, but uncertainty at Ikerasassuaq, the station nearest to Cape
Farewell, South Greenland, in both datasets, appears to be larger
(Fig. 2). The ASRv1 precipitation at Nuuk, the capital city of Greenland
on the west coast of Greenland on the shore of the Labrador Sea,
showed a negative bias when the observations exceeded 100mm per
month. One of the suspected causes is that local wind events account for
the differences between the reanalysis and gauge data there. Even al-
lowing for the reflectivity uncertainty of the POSS, which is a Doppler
radar, the ASRv1 precipitation is overestimated at Summit, a high-
elevation and inland research station (Fig. 2). While no independent
precipitation gauges exist there, it is advisable to have further ob-
servations for comparison to confirm the ASRv1 overestimation.

The time series of precipitation illustrate pronounced high-fre-
quency variability: each monthly precipitation value from both ob-
served and modeled data is often beyond the 95% confidence intervals
of the local polynomial regression fitting (Fig. 3). The ASRv1 fitted local
polynomial regression of the southern stations show similar trends to
each other as well as trends from the northeastern stations. It can be
assumed that the similarity is coming from the numerical model's re-
production of synoptic-scale circulation effects on precipitation. How-
ever, the DMI regression results do not show similar trends among the
stations and this suggests that local effects on precipitation, including
several types of wind events and/or orographic effects, can surpass
synoptic-scale circulation patterns in the observations and that these
local effects are not captured in the ASRv1 data.

The relationship between the NAO index and ASRv1 precipitation
over Greenland and surrounding waters is explored for different

Fig. 7. Same as Fig. 6, but for four regions of the surrounding waters.
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geographical areas of Greenland (split into four regions based on the
major ice sheet topographical divides in this study) and the surrounding
waters (Figs. 5–7). The NAO index is moderately related to precipita-
tion amount over northern Greenland, the North Atlantic, and Green-
land Sea, where the magnitude of the correlation coefficients are be-
tween 0.32 and 0.49. Since the NAO is associated with changes in the
surface westerlies across the North Atlantic and into Europe (Hurrell,
1995), moisture from the Labrador Sea can also vary along with NAO
phases. However, the large and cold Greenland plateau can cause dis-
tinct local wind events originating from different mechanisms, such as
westerly and easterly tip jets, barrier winds, katabatic wind, and cy-
clones that can significantly affect precipitation amount and its spatial
distribution. While it is feasible to have a low correlation depending on
the geographical effects, further study is necessary to understand the
relationship.

Overall, the ASRv1 precipitation agrees with the corrected DMI
gauge-based precipitation measured at coastal or near-coastal stations
in Greenland, but the corresponding data at Ikerasassuaq and Nuuk are
not the case. The ASRv1 precipitation at Summit, i.e., in a higher
continental environment, is overestimated compared with the POSS
observations. While similar variability is not found in the ASRv1 and
DMI precipitation, the limited study period is not adequate for a de-
tailed discussion. The NAO index and ASRv1 precipitation show mod-
erate correlation over northern Greenland, the North Atlantic, and
Greenland Sea. It is suspected that local wind events have a larger in-
fluence on precipitation where smaller correlation coefficients appear.
Suggested future work to understand the discrepancies between the
ASRv1 and DMI precipitation in Greenland coastal regions is to study
various local wind events and the associated precipitation variations
utilizing in-situ measurements during both strong positive and negative
NAO phases. At high-altitude and inland areas, further observations are
needed to confirm the ASRv1 overestimation.
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