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Abstract 

Amyotrophic lateral sclerosis (ALS) is incurable and devastating. A dearth of 

therapies has galvanized experimental focus onto the cellular and molecular 

mechanisms that both initiate and subsequently drive selective motor neuron 

(MN) degeneration. A traditional view regarding ALS pathogenesis posits that 

disease-specific injury to a subtype of neurons is mechanistically cell-

autonomous. This “neuron-centric” view has biased past research efforts. 

However, a wealth of accumulating evidence now strongly implicates non-

neuronal cells as being major determinants of ALS. Although animal models have 

proven invaluable in basic neuroscience research, a growing number of studies 

confirm fundamental interspecies differences between popular model organisms 

and the human condition. This may in part explain the failure of therapeutic 

translation from rodent pre-clinical models. It follows that integration of a 

human experimental platform utilizing patient-specific induced pluripotent stem 

cells (hiPSCs) may be necessary to capture the complexity of human 

neurodegeneration with more fidelity. Integration of enriched human neuronal 

and glial experimental platforms into the existing repertoire of preclinical 

models might prove transformational for clinical trial outcomes in 

neurodegeneration. Such reductionist and integrated cross-modal approaches 

allow systematic elucidation of cell-autonomous and non-cell-autonomous 

mechanisms of disease, which may then provide novel cellular targets for 

therapeutic intervention. 
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Introduction 

Amyotrophic lateral sclerosis (ALS) is a rapidly progressive and universally fatal 

condition, which leads to selective motor neuron (MN) degeneration [1]. ALS 

cases are predominantly sporadic (sALS) but approximately 10% are familial 

(fALS), the two being indistinguishable on clinical examination. Historically the 

first mutations linked to fALS were identified in the superoxide dismutase 1 

(SOD1) gene in 1993 [2], followed by an almost decade-long hiatus before a 

second phase of productive genetic discovery. Indeed, more than 20 different 

genes have now been linked to ALS, including relatively common mutations in 

chromosome 9 open reading frame 72 (C9ORF72) [3] and rarer mutations in TAR 

DNA Binding Protein (TARDBP) [4], Fused in Sarcoma/Translocated in Sarcoma 

(FUS) [5] and Valosin Containing Protein (VCP) [6], among several others. Until 

recently, studies examining the interplay between human neurons and glia in 

neurodegeneration have been hampered by relative inaccessibility to these 

cellular populations. The advent of hiPSCs through reprogramming technology, 

together with directed differentiation techniques, have greatly increased access, 

allowing researchers to obtain - a la carte – enriched populations of specific 

neuronal and glial cell types [7-9].  In order to harness the full potential of hiPSC 

models, an understanding of developmental principles underpinning the 

generation of neuronal and glial diversity is a prerequisite. Studies using this 

platform for disease modeling have largely focused on cell-autonomous 

mechanisms of neuronal degeneration, leaving the role of glia in this context 

comparatively understudied. 

Cellular interplay in the central nervous system (CNS) is spatio-temporally 

regulated in both development and disease. The major cellular contributors 

include a diverse range of region-specific neuronal subtypes in addition to both 

macro- and microglia (MG). Neurons and macroglia, astrocytes (ACs) and 

oligodendrocytes, are developmentally ectodermal in origin, while microglia 

arise from the mesoderm (yolk-sac). CNS cells exhibit both homotypic and 

heterotypic interactions, and show profound region-specific functional 

heterogeneity. Glia and neurons in the CNS interact with one another through 

direct contact (e.g. gap junctions or receptor-mediated), secreted factors (e.g. 

molecules or exosomes) or a combination of these, which are crucial to establish 
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and refine functional structures, including the tripartite synapse. Given such 

intricate connectivity, it seems eminently reasonable – if not likely - that glial 

cells would play key roles in the majority of neurological diseases. Indeed, cell-

autonomous and non-cell-autonomous glial mechanisms of disease are now 

increasingly being implicated as playing diverse and pivotal roles in human 

ageing and neurodegeneration [10]. 

Glia as pertetrators of ALS 

A ‘neuron-centric’ theoretical construct of ALS has been increasingly challenged 

over the last decade or two. The mechanisms by which glia can exert deleterious 

effects on neighboring neurons include i) through failure of support or 

homeostatic function, ii) toxic gain of function and release of toxic substances or 

iii) a combination of these mechanisms. Such effects can be contact-dependent 

and/or operate through a soluble factor (see Figure 1). Temporal aspects are 

also important to consider in this context; i.e. acute vs chronic activation of glial 

cells may well determine how effective their responses are in ALS and it is 

possible that chronic activation states eventually become maladaptive and 

adversely affect MNs. Assays to investigate cell-cell interactions can be 

experimentally operationalized through a variety of approaches, including i) co-

seeding different cell types, ii) “sandwich” cultures where two established 

monolayers are brought into close proximity, iii) transwell-based co-culture, iv) 

microfluidic devices and v) conditioned medium transfer. These approaches with 

their respective strengths and weaknesses have been recently reviewed 

elsewhere [11]. The choice of paradigm depends on whether the experiment 

aims to discriminate contact-dependent from contact-independent mechanisms 

of non-cell-autonomous injury. An important consideration here is the existence 

of cell-autonomous glial pathology, which remains relatively understudied in 

ALS and may indeed contribute to the failure of supportive capacity. Illuminating 

non-neuronal mechanisms of disease raises the important prospect of designing 

innovative therapeutic approaches that target glial cells. Further relevant and 

open questions in the field are presented in Box 1. We now discuss 2 exemplar 

cell types implicated in mouse models of ALS: MG and ACs. 
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Lessons from rodent models of ALS 

Microglia-motor neuron dialogue: The role of MG as a non-cell autonomous 

driver in MN degeneration has been studied in different experimental platforms, 

and a number of mechanisms proposed (Figure 1). Important mouse-chimera 

studies using lineage-specific expression of mutant SOD-1 first demonstrated the 

role of MNs in disease onset and early progression, while implicating MG as key 

drivers of late-phase disease progression [12]. Moreover, a subsequent study 

found that significant alterations in microglial populations are present in SOD-1 

models at pre-symptomatic stages, with a decrease in microglia before onset and 

the emergence of two distinct populations after symptom manifestation [13]. Of 

the several specific MG mechanisms that have been proposed, one study found 

significantly increased levels of the oncoprotein c-RET in activated microglia in 

SOD1G93A mice. The increase was cell-type specific (MG>MN), age-dependent, 

and proposed to non-cell-autonomously impair GDNF signaling in MNs [14]. 

More recent experiments have shown that expression of mutant SOD-1 

significantly increases MG secretion of neurotoxic cytokines [15] and that 

perturbing pro-inflammatory MG activation through deletion of NF-κB – a 

master regulator of inflammation - rescues MNs from MG-mediated death in 

models of ALS [16]. Indeed a micro-RNA (miR-125b) has been found to play a 

salient role in microglial activation through direct repression of ubiquitin-editing 

enzyme A20, a potent suppressor of the NF-κB pathway [17]. Further evidence 

implicating MG in the most common genetic form of ALS comes from mice 

lacking the C9orf72 ortholog in all tissues. Among other immune-related 

phenotypes, perturbed immune responses in microglia were uncovered [18]. 

Following earlier confirmation of TDP-43 in the cerebrospinal fluid of patients 

with ALS [19], a recent study also demonstrated that extracellular TDP-43 

aggregates can trigger activation of the NF-kB pathway in MG, invoking secretion 

of IL-1b and IL-18 [20]. Interestingly, a MG-specific inducible conditional TDP-43 

knockout mouse line resulted in significant synaptic loss, while enhancing 

amyloid clearance [21].  The importance of MG in ALS pathogenesis is further 

reinforced by the finding of an early innate immune response in the motor cortex 

of ALS SOD1G93A mice [22]. 
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Astrocyte-motor neuron dialogue: Several studies have implicated ACs in the 

pathobiology of ALS through a number of mechanisms, including both active and 

secondary toxicity (Figure 2).  An early study addressing this issue reported that 

restricted expression of SOD1G86R in ACs causes astrocytosis but not MN 

degeneration [23].  However, ex-vivo SOD1G93A ACs have subsequently been used 

in physical co-culture and AC conditioned medium (ACM) experiments, 

confirming that they are toxic to both primary and mouse embryonic stem cell 

(mESC)-derived MNs [24, 25]. Nagai and coworkers demonstrated that both 

toxicity and vulnerability are cell-type specific as only mutant ACs (not 

fibroblasts or other cell types) produced non-cell-autonomous toxicity. 

Additionally this effect was specifically directed towards MNs, while other 

neuronal subtypes including spinal GABAergic, dorsal root ganglion or mESC-

derived interneurons, were not affected. These aforementioned studies have 

established that toxic effects are mediated through a soluble factor and a BAX-

dependent mechanism [24, 25]. Di Giorgio and coworkers then confirmed that 

the same SOD1 non-cell-autonomous toxicity was evident when performing co-

cultures with hESC-derived MNs [26]. 

A number of alternative possible mechanisms exist through which AC-mediated 

MN injury can occur, either through loss of supportive function or active toxicity. 

These include perturbations in: expression of AC receptors / transporters, 

release or metabolism of AC transmitters, synthesis and release of chemokines, 

cytokines, and free radical generation or coupling of gap junctions (Figure 1B). 

SOD1G93A astrocytes were found to be a key driver of disease progression in an 

ALS model [27]. Indeed, transplanted ACs expressing mutant SOD1 induce MN 

degeneration in wild-type rats [28]. Particularly in SOD1 models, active AC 

toxicity to MNs has been observed, mediated by production of reactive oxygen 

species, which has been shown to induce MN hyper-excitability [29, 30] and MN 

degeneration through mitochondrial dysfunction in ACs [31]. Another proposed 

mechanism for direct non-cell autonomous toxicity to MNs is AC-mediated 

perturbation of MN autophagy, exacerbating underlying cell-autonomous 

toxicity by decreasing MN ability to handle accumulating misfolded proteins [32, 

33]. 
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Although relatively understudied, a number of non-cell autonomous mechanisms 

derive from loss of supportive capacity rather than active toxicity. For example, 

SOD1G93A fALS ACs induce MN death at least in part through reducing metabolic 

support (lactate release) and activating pro-nerve growth factor-p75 receptor 

signaling pathway at the expense of mature nerve growth factor production [34]. 

Converging lines of evidence suggest that regulation of the AC glutamate 

transporter EAAT2 in ALS non-cell-autonomously determines MN survival. The 

intuitive mechanism here is excitotoxicity through failure of AC glutamate 

clearance [35], although one study has suggested that sumoylated carboxy-

terminal fragments of EAAT2 accumulate in the AC nucleus and cause impaired 

axonal growth in co-cultured MNs independently of excitotoxicity [36]. Another 

example of loss of AC support is the disrupted GluR2-regulating capacity of 

mutant SOD1 ACs, which renders MNs vulnerable to excitotoxicty [37]. A BCL-2 

family protein called Bid is elevated in SOD1G93A ACs and acts as a key regulator 

for activating NF-κB [38]. In contrast to MG, selective NF-κB inhibition in ACs is 

not sufficient to rescue MN death [16]. NLRP3 ‘inflammasome’ complexes are 

crucial for the processing and release of IL1b and IL18, and are predominantly 

expressed in ACs [39]. To add further complexity, a regionally determined 

functional heterogeneity of ACs [40] might underlie region-specific responses to 

the same mode of injury. Furthermore, different phases of the same disease may 

invoke diverse responses in ACs.  

Beyond the glial-neuronal dialogue: Lineage specific translational profiling in a 

SOD1G37R model has revealed sequential changes first in MNs (ER stress, synapse 

and metabolic changes) followed by ACs (abnormal inflammatory responses and 

metabolism) and then oligodendrocytes (membrane and lipid signaling defects) 

reinforcing the concept of cell type-specific contributions to different phases of 

disease [41]. Indeed stereotyped intercellular interactions are likely also 

perturbed in a disease stage-specific manner (Figure 3).  In vivo, diminished AC 

SOD1G93A expression, in addition to slowing disease progression, also delayed 

MG activation [27]. Conversely, transplantation of SOD1G93A ACs into wild-type 

rats caused MN degeneration, at least in part, through MG activation [28]. 

Indeed, AC activation by ALS MNs stimulates secretion of lipocalin (lcn2) in rats, 

which in turn orchestrates and amplifies various downstream effects through 
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actions on quiescent ACs, MG and MNs [42]. Subsequent studies have suggested 

that AC-derived TGF-β1 accelerates disease progression in vivo by interfering 

with the neuroprotective functions of MG and T cells [43]. MG-AC signaling can 

also lead to the acquisition of toxic functions in ACs. Specifically, a recent study 

demonstrated that by secreting Il-1α, TNF and C1q, activated microglia induce a 

toxic AC phenotype, which impairs their ability to promote neuronal survival, 

synaptogenesis and phagocytosis [44]. An intriguing set of experiments has also 

raised the possibility of cell fate transition from MG into AC-like cells, which 

coincides with disease onset in a model of inherited ALS [45]. Clearly there will 

exist myriad cellular mechanisms of disease beyond MNs, MG and ACs. Indeed 

there is an early but evolving literature in ALS implicating several other neuronal 

subtypes (e.g. interneurons [46, 47]), glia (e.g. oligodendrocytes [48, 49]) and 

immune cells including CD4+ regulatory T cells, cytotoxic CD8+ T cells and 

natural killer cells [50-52].  

Limitations of animal ALS models: From the selected examples above, it is clear 

that animal models are indispensible and have provided invaluable insight into 

issues of cellular autonomy in ALS. It is noteworthy, however, that the vast 

majority of studies have been performed in overexpression SOD1 models, which 

do not convey mutant proteins at pathophysiological levels. Crucially, SOD1 

mutations do not exhibit the major pathological hallmark of TDP-43 

proteinopathy as observed in >97% of human ALS cases [53]. This pathological 

difference reinforces the importance of validating findings from SOD1 models in 

other experimental platforms that recapitulate this hallmark feature. More 

broadly, there has been an overwhelming failure of translation from animal pre-

clinical models of neurodegeneration to impactful clinical therapies, possibly 

reflecting underlying interspecies differences. Many clear evolutionary 

differences exist between mice and man, including at gross neuroanatomical, 

circuit, cellular and molecular levels [54]. To capture the complexity of the 

human clinical disease state with precision, it seems imperative to complement 

existing animal-based approaches with human experimental pre-clinical models, 

such as hiPSCs but also with postmortem tissue. We will now focus on how 

human platforms can help to directly elucidate issues of cellular autonomy in 
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neurodegeneration (see Box 2), while the wider relevance of hiPSCs in 

regenerative neurology has recently been reviewed elsewhere [55]. 

Delineating cellular autonomy in human ALS 

Human post-mortem tissue: laser capture microdissection of human post-mortem 

tissue seems an attractive approach to deconvoluting cell type-specific 

contributions in neurological disease. However, this method introduces bias 

towards the cellular soma and away from the axon and dendrites (which are less 

efficiently captured). Likewise, the neuropil often ‘contaminates’ attempts to 

isolate glial cells using this approach. A large selection of post-mortem samples 

across different age groups raises the prospect of uncovering age-dependent 

changes in the human brain, which represents a crucial risk factor for 

neurodegeneration. Indeed bioinformatic approaches have recently been 

successfully utilized to deconvolute cell-type specific transcriptional signatures 

upon ageing from microarray-based studies of heterogeneous postmortem tissue 

[56]. It is also possible to ‘immunopan’ specific cell types from postmortem 

tissue, as was recently performed across a diverse age range to characterize 

temporal changes in the AC transcriptome [57]. A similar study conducted 

transcriptome-wide analyses on purified MG from mouse and human tissue and 

reported a divergence in age-related expression patterns, further reinforcing the 

importance of validating key experimental findings with human samples [58]. 

Human post mortem tissue additionally permits ex-vivo culture of certain cell 

types, which has proved a valuable resource for studies of human AC-mediated 

non-cell-autonomous injury [59, 60] (discussed further below). An important 

consideration of human postmortem tissue is that it represents a late stage of 

disease, and cannot therefore effectively inform on early pathogenic events. 

Indeed, even in cases obtained early in their disease course, it is important to 

recognize that at a molecular and cellular level, the disease processes are 

underway years before clinical symptoms appear and even these cases will 

therefore not allow elucidation of early molecular pathogenic events. The use of 

post-mortem tissue is further complicated by varying post-mortem intervals of 

delay, which can introduce significant variability between studies, but 

nevertheless represents a crucial approach in understanding cellular autonomy 
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in neurodegeneration (particularly when integrated with the other experimental 

model systems discussed in this review). 

HiPSCs: the state-of-the-art. The iPSC platform offers the ability to direct 

differentiation to any human lineage in an ontogeny-recapitulating manner. A 

fundamental prerequisite to establishing iPSC models is therefore a robust 

understanding of the developmental programmes of morphogenetic cues 

required to direct differentiation to regionally specified neuronal and glial 

subtypes; as recently reviewed elsewhere [10, 61-64]. This presents the 

experimental opportunity to resolve molecular mechanisms that underlie 

distinct stages of lineage restriction to different neuronal and glial subtypes by 

faithfully recapitulating human neurodevelopment [65]. This is a crucial 

advantage as a recognized phase of compensated dysfunction occurs prior to 

clinical manifestation of neurodegenerative disease. Furthermore, patient-

specific iPSCs convey mutations at pathophysiological levels (or the underlying 

genetic complement in sporadic cases). These attributes together make hiPSCs a 

powerful experimental tool capable of deconvoluting the complexity of 

heterologous cell-cell interactions in health and disease.   

Where underlying developmental programmes are well understood and defined 

neuronal subtypes can be specified, hiPSC biology has led to a step change in the 

discovery of cellular and molecular phenotypes or therapeutic potential [66-74]. 

Elucidation of cell-autonomous mechanisms of disease is eminently achievable 

through enriched monoculture of a particular cell type. Indeed, generating 

regionally distinct populations of neurons (e.g. spinal motor neurons and cortical 

neurons) can help to discriminate neuronal subtype vulnerability [75] or identify 

shared mechanisms in multi-regional disorders (e.g. the spectrum of ALS and 

frontotemporal lobar dementia [76]). Researchers can build on these early 

phenotyping studies by probing neuronal or glial monoculture responses to 

physiological stimuli [77, 78] or by incrementally adding cellular complexity 

through co-culture paradigms [79]. These approaches permit deeper 

understanding of non-cell-autonomous mechanisms of disease as they combine 

some of the complexity of in vivo circuitry with the ability to ‘control’ the in vitro 

system. Human iPSC-based models also allow fully human co-culture paradigms, 

which addresses concern over species-specific aspects of intercellular 
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communication. Techniques such as high-content imaging (HCi) have provided 

crucial insights into cellular vulnerability by increased assay sensitivity when 

compared with traditional cross-sectional imaging methods [79-82]. However, 

one of the main rate-limiting factors has been elucidating the developmental 

programme of morphogenetic cues to direct differentiation to regionalized 

subtypes of neurons in high enough enrichment. For example, studies 

systematically examining upper MNs (i.e. cortical layer V) in ALS using hiPSCs 

are lacking. This is largely due to the difficulty in specifying distinct cortical 

layers reproducibly and in an enriched manner. The lack of reliable cell surface 

markers for cortical MNs further compounds this problem.  

AC-mediated non-cell-autonomous mechanisms of disease that were first 

described in ALS animal models over the last decade or so, have been broadly 

validated and extended in a variety of human models (hiPSCs and ex-vivo 

cultures derived from port-mortem cases); representative studies are 

summarized in table 1. Evidence thus far points clearly to release of toxic 

substances by ACs, although failure of supportive mechanisms remains relatively 

understudied in the human context. Importantly, the hiPSC platform also allows 

dissection of early AC cell autonomous effects in ALS [78-80], which adds an 

additional layer of complexity to the intricate cellular interplay. AC survival 

defects are often difficult to capture through traditional cross-sectional analysis 

due to the fact that astrocytes retain proliferative capacity, thus reinforcing the 

utility of a HCi approach [82]. Another crucial aspect to consider is the level of 

maturation and functional activation achievable in glial cultures derived from 

patient-specific iPSCs. Although iPSC-AC populations have been functionally 

characterized in vitro [80, 83, 84], a comprehensive functional comparison with 

in vivo ACs has only been attempted recently in one elegant study [85]. Few 

studies have attempted to define basal human iPSC-derived AC reactivity state, 

and how this might be manipulated (i.e. to induce quiescence or reactivity) in 

order to examine their effects in different disease paradigms [78, 86, 87]. 

Increasing recognition of region-specific functional heterogeneity of ACs [40, 88, 

89] also argues for studies focusing on their regional specification from hiPSCs; 

indeed spinal and cortical AC specification has already been accomplished [84]. 

Directed differentiation of MG from hiPSCs has also been achieved [90], and this 
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will be an important tool to resolve cell-autonomous and non-cell-autonomous 

effects of human MG in ALS, following on from earlier rodent studies 

summarized above.  

It remains unresolved how early molecular disturbances begin and the 

hypothesis that adult-onset neurogenetic disorders may be manifest at 

molecular and cellular levels during neurodevelopment is supported by the 

numerous hiPSC studies demonstrating clear phenotypes in what is essentially a 

developmental system (reviewed in [10, 55]). Indeed, existing evidence suggests 

that hiPSC derivatives upon terminal differentiation resemble a fetal 

maturational state [67, 91, 92]. One strategy to ‘preserve’ the age of the donor 

cell is to bypass induction of pluripotency and directly ‘transdifferentiate’ 

fibroblasts into a target neuronal or glial population [93], although this approach 

has the disadvantage of limited expansion of the target population. Recent 

studies have also pharmacologically induced ageing using the telomerase 

inhibitor 2-[(E)-3-naphtha- len-2-yl-but-2-enoylamino]-benzoic acid (BIBR1532) 

[94] or expression of Progerin, a truncated form of lamin A that is associated 

with premature aging [67]. In other cases researchers have successfully cultured 

cells over a protracted period of time to uncover age-related phenotypes [95]. 

Cellular ageing in vitro is likely to result from a complex interplay of different 

factors and gene expression programs [92, 93]. Future protocols to induce 

cellular ageing in vitro are likely to use a combinatorial approach, including co-

culture with non-neuronal cell types. Clearly the in vivo environment may readily 

compensate such initiating molecular perturbations but their identification is 

crucial in guiding mechanistically targeted therapies. Furthermore, delineation 

of culprit cell types and how they conspire in neurodegeneration will clearly be 

of paramount importance in considering therapeutic strategy. Given the 

developmental nature of the hiPSC paradigm, the stability of cellular identity is 

also worthy of consideration, particularly in the setting of co-cultures where 

either cellular component may encounter a range of unfamiliar extrinsic cues. 

Another noteworthy limitation of hiPSC studies so far is the lack of ordered 

architecture in cell-cell interactions. While neurons and glia in vivo interact 

within the context of organized circuitry (e.g. upper MN to lower MN to muscle), 

most hiPSC in vitro models lack the ability to organize into a cellular 
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configuration that resembles the original circuit architecture in vivo due to facile 

culture substrates used. This can potentially be overcome by exploiting the 

interface between stem cell technology and bioengineering approaches to 

impose basic characteristics like directionality to approximate physiologically 

functional circuits. Introducing 3D culture systems to hiPSC modeling is also 

noteworthy here. Several “organ-on-chip” systems have been developed 

specifically for recapitulating aspects of neurodevelopment in vitro, including: (i) 

bioengineering solutions to physically guide axonal extension while segregating 

different cell types in different chambers to evaluate drug-treatments and 

cellular interactions [96-98], in some cases permitting direct recording of 

neuronal activity [99]; (ii) co-culture of different neuronal populations to create 

complex networks but in an organized fashion, resembling in vivo neuronal 

circuitry [100]; (iii) generating 3D structures form hiPSC-derived neural 

precursors, either using artificial scaffolds [101-103] or creating brain 

‘organoids’ [104-106]. Combining these approaches allows for a more complex 

culture system in vitro, permitting multi-lineage disease modeling. Recent 

examples relevant to ALS include bioengineered neuromuscular junctions in 

vitro [107, 108]. These approaches extend disease modeling beyond enriched 

monoculture of an individual cell type to recapitulation of neuronal circuits, 

which will in turn evolve to multilineage co-cultures permitting insight into the 

cascade of cellular and molecular events that initiate disease and underlie 

progression. 

Summary  
 
To systematically gain insight into the cellular interplay underlying 

neurodegeneration, it is crucial to first elucidate cell-autonomous phenotypes in 

monoculture. This then serves as a useful reference for co-culture experiments. 

Additionally, discerning whether specific mechanisms of non-cell-autonomous 

injury require cell-cell contact or are diffusible in nature will help to inform 

optimal approaches to therapy development. To complement this human in-vitro 

modeling approach, in-vivo studies can provide crucial insight into the sequence 

of cellular involvement in a specific disease. Likewise, human postmortem tissue 

can then provide useful information about later stages of a disease process by 

correlating neuropathology with the clinical history [109-113]. It is important to 
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recognize that each disease model alone does not capture the full complexity of 

human pathophysiology, and so integrating human and animal experimental 

models with human post-mortem tissue work is a key step to driving high-

confidence cross-modal discovery science. The overarching purpose of 

uncovering cell-autonomous and non-cell-autonomous mechanisms of disease is 

to identify which processes within (and between) neurons and glia represent 

crucial ‘tipping’ points from a state of compensated dysfunction to irreversible 

decompensation and neurodegeneration. This approach will help to prioritise 

therapeutic efforts around these specific salient events, which will likely have 

real impact on slowing down, stopping or ultimately reversing human ALS. 
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Figure 1. Microglial non-cell autonomous toxicity. A number of non-cell 

autonomous mechanisms of toxicity have been observed in MG-MN interactions, 

placing MG as important players in driving pathology. Active toxicity 

mechanisms (A) include increased levels of c-RET, secretion of pro-inflammatory 

factors and direct toxicity via secretion of yet unidentified mediators. MG 

dysfunction has also been observed as a consequence of exposure to stress 

response factors produced by cell-autonomous MN toxicity mechanisms (B). 
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Figure 2. Astrocyte non-cell autonomous toxicity. AC non-cell autonomous 

toxicity to MNs has been demonstrated in a wide range of models and definitely 

has a central role in disease progression. Several direct gain of toxic function 

mechanisms have been described (A) including: production of ROS, secretion of 

mutant proteins (e.g. SOD1) in the extracellular space, or other secondary 

dysfunction. ACs can also inhibit key coping mechanisms that exacerbate 

underlying MN cell-autonomous toxicity, for example autophagy. A range of 

putative loss of functional mechanisms have been reported (C), including 

reduced EAAT2 expression or failure to regulate GluR2 expression in MNs, both 

leading to excitotoxicity. Similarly depletion of functional AC populations due to 

cell autonomous glial toxicity is noteworthy here. 
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Figure 3. A cycle of cellular autonomy in ALS pathobiology. The complex 

interplay between MNs, AC and MG changes during different phases of disease 

and the non-cell autonomous effects of glial cells can be both causes and 

consequences of cell-autonomous toxicity in MNs. For example, during the early 

phases of disease, cell-autonomous toxicity and non-cell autonomous active 

toxicity from ACs causes damage to the MN populations and release of stress 

response factors and mutant proteins; this in turn acts as a trigger for the 

activation of a neuro-inflammatory response in MG cells, which then become 

more toxic to the MN population. 
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