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Abstract
The Poisson distribution arises naturally when dealing with data involving 
counts, and it has found many applications in inverse problems and imaging. In 
this work, we develop an approximate Bayesian inference technique based on 
expectation propagation for approximating the posterior distribution formed 
from the Poisson likelihood function and a Laplace type prior distribution, 
e.g. the anisotropic total variation prior. The approach iteratively yields 
a Gaussian approximation, and at each iteration, it updates the Gaussian 
approximation to one factor of the posterior distribution by moment matching. 
We derive explicit update formulas in terms of one-dimensional integrals, and 
also discuss stable and efficient quadrature rules for evaluating these integrals. 
The method is showcased on two-dimensional PET images.

Keywords: Poisson distribution, Laplace prior, expectation propagation, 
approximate Bayesian inference

(Some figures may appear in colour only in the online journal)

1. Introduction

The Poisson distribution is widely employed to describe inverse and imaging problems involv-
ing count data, e.g. emission computed tomography [40, 44], including positron emission 
tomography and single photon emission computed tomography. The corresponding likelihood 
function is a Poisson distribution with its parameter given by an affine transform (followed by 
a suitable link function). Over the past few decades, the mathematical theory and numerical 
algorithms for image reconstruction with Poisson data have witnessed impressive progresses. 
We refer interested readers to [22] for a comprehensive overview on variational regularization 
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techniques for Poisson data and [4] for mathematical modeling and numerical methods for 
Poisson data. It is worth noting that the Poisson model is especially important in the low-count 
regime, e.g. [0, 10] photons, whereas in the moderate (or high) count regime, heteroscedastic 
normal approximations can be employed in the reconstruction, leading to a weighted Gaussian 
likelihood function (e.g. via the so-called Anscombe transform [2]). In this work, we focus on 
the Poisson model.

To cope with the inherent ill-posed nature of the imaging problem, regularization plays 
an important role in image reconstruction. This can be achieved implicitly via early stopping 
during an iterative reconstruction procedure (e.g. EM algorithm or Richardson–Lucy itera-
tions) or explicitly via suitable penalties, e.g. Sobolev penalty, sparsity and total variation. 
The penalized maximum likelihood (or equivalently maximum a posteriori (MAP)) is cur-
rently the most popular way for image reconstruction with Poisson models [12, 41]. However, 
these approaches can only provide point estimates, and the important issue of uncertainty 
quantification, which provides crucial reliability assessment on point estimates, is not fully 
addressed. The full Bayesian approach provides a principled yet very flexible framework for 
uncertainty quantification of inverse and imaging problems [27, 42]. The prior distribution 
acts as a regularizer, and the ill-posedness of the imaging problem is naturally dealt with. 
Due to the imprecise prior knowledge of the solution and the presence of the data noise, the 
posterior distribution contains an ensemble of inverse solutions consistent with the observed 
data, which can be used to quantify the uncertainties associated with a point estimator, via, 
e.g. credible interval or highest probability density regions.

For imaging problems with Poisson data, a full Bayesian treatment is challenging, due to 
the nonnegativity constraint and high-dimensionality of the parameter/data space. There are 
several possible strategies from the computational perspective. One idea is to use general-
purposed sampling methods to explore the posterior state space, predominantly Markov chain 
Monte Carlo (MCMC) methods [32, 37]. Recent scalable variants, e.g. stochastic gradient 
Langevin dynamics [47], are very promising, although these techniques have not been applied 
to the Poisson model. Then the constraints on the signal can be incorporated directly by dis-
carding samples violating the constraint. However, in order to obtain accurate statistical esti-
mates, sampling methods generally require many samples and thus tend to suffer from high 
computational cost, due to the high problem dimensionality. Further, the MCMC convergence 
is challenging to diagnose. These observations have motivated intensive research works on 
developing approximate inference techniques (AITs). In the machine learning literature, a 
large number of AITs have been proposed, e.g. variational inference [3, 6, 9, 24, 26], expec-
tation propagation [33, 34] and more recently Bayesian (deep) neural network [17]; see the 
survey [48] for a comprehensive overview of recent developments on variational inference. In 
all AITs, one aims at finding an optimal approximate yet tractable distribution within a fam-
ily of parametric/nonparametric probability distributions (e.g. Gaussian), by minimizing the 
error in a certain probability metric, prominently Kullback–Leibler divergence. Empirically 
they can often produce reasonable approximations but at a much reduced computational cost 
than MCMC. However, there seem no systematic strategies for handling constraints in these 
approaches. For example, a straightforward truncation of the distribution due to the constraint 
often leads to elaborated distributions, e.g. truncated normal distribution, which tends to make 
the computation tedious or even completely intractable in variational Bayesian inference.

In this work, we develop a computational strategy for exploring the posterior distribution 
for Poisson data (with two popular nonnegativity constraints) with a Laplace type prior based 
on expectation propagation [33, 34], in order to deliver a Gaussian approximation. Laplace 
prior promotes the sparsity of the image in a transformed domain, which is a valid assumption 
on most natural images. The main contributions of the work are as follows. First, we derive 
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explicit update formulas using one-dimensional integrals. It essentially exploits the rank-one 
projection form of the factors to reduce the intractable high-dimensional integrals to tractable 
one-dimensional ones. In this way, we arrive at two approximate inference algorithms, param-
eterized by either moment or natural parameters. Second, we derive stable and efficient quad-
rature rules for evaluating the resulting one-dimensional integrals, i.e. a recursive scheme for 
Poisson sites with large counts and an approximate expansion for Laplace sites, and discuss 
different schemes for the recursion, dependent of the integration interval, in order to achieve 
good numerical stability. Last, we illustrate the approach with comprehensive numerical 
experiments with the posterior distribution formed by Poisson likelihood and an anisotropic 
total variation prior, clearly showcasing the feasibility of the approach.

Last, we put the work in the context of Bayesian analysis of Poisson data. The predomi-
nant body of literature in statistics employs a log link function, commonly known as Poisson 
regression in statistics and machine learning (see, e.g. [3, 8]). This differs substantially from 
the one frequently arising in medical imaging, e.g. positron emission tomography, and in 
particular the crucial nonnegativity constraint becomes vacuous. The only directly relevant 
work we are aware of is the recent work [28]. The work [28] discussed a full Bayesian explo-
ration with EP, by modifying the posterior distributions using a rectified linear function on the 
transformed domain of the signal, which induces singular measures on the region violating the 
constraint. However, the work [28] does not consider the background.

The rest of the paper is organized as follows. In section 2 we describe the posterior dis-
tribution for the Poisson likelihood function and a Laplace type prior. Then we give explicit 
expressions of the integrals involved in EP update and describe two algorithms in section 3. 
In section 4 we present stable and efficient numerical methods for evaluating one-dimensional 
integrals. Last, in section 5 we present numerical results for three benchmark images. In the 
appendices, we describe two useful parameterizations of a Gaussian distribution, Laplace 
approximation and additional comparative numerical results for a one-dimensional problem 
with MCMC and Laplace approximation to shed further insights into the performance of EP 
algorithms.

2. Problem formulation

In this part, we give the Bayesian formulation for Poisson data, i.e. the likelihood function 
p(y|x) and prior distribution p(x), and discuss the nonnegativity constraint.

Let x ∈ Rn be the (unknown) signal/image of interest, y ∈ Rm1
+  be the observed Poisson 

data, and A = [aij] = [at
i]

m1
i=1 ∈ Rm1×n

+  be the forward map, where the superscript t denotes 
matrix/vector transpose. The entries of the matrix A are assumed to be nonnegative. For exam-
ple, in emission computed tomography, it can be a discrete analogue of Radon transform, or 
probabilistically, the entry aij of the matrix A denotes the probability that the ith sensor pair 
records the photon emitted at the j th site.

The conditional probability density p (y i|x) of observing yi ∈ N given the signal x is given 
by

p(yi|x) =
(at

ix + ri)
yi e−(at

ix+ri)

yi!
,

where r = [ri]i ∈ Rm1
+  is the background. That is, the entry y i follows a Poisson distribution 

with a parameter at
ix + ri. The Poisson model of this form is popular in the statistical modeling 

of inverse and imaging problems involving counts, e.g. positron emission tomography [44]. If 
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the entries of y  are independent and identically distributed (i.i.d.), then the likelihood function 
p(y|x) is given by

p(y|x) =
m1∏

i=1

p(yi|x).

Note that the likelihood function p(y|x) is not well-defined for all x ∈ Rn, and suitable 
constraints on x are needed in order to ensure the well-definedness of the factors p (y i|x)’s. In 
the literature, there are three popular constraints:

 1.  C1 = {x|x > 0} := ∩i{x|xi > 0}; 
 2.  C2 = {x|Ax > 0} := ∩i{x|[Ax]i = at

ix > 0}; 
 3.  C3 = {x|Ax + r > 0} := ∩i{x|[Ax + r]i = at

ix + ri > 0}.

Since the entries of A are nonnegative, there holds C1 ⊂ C2 ⊂ C3. In practice, the first assump-
tion is most consistent with the physics in that it reflects the physical constraint that emission 
counts are non-negative. The last two assumptions were proposed to reduce positive bias in 
the cold region [30], i.e. the region that has zero count. In this work, we shall focus on the last 
two constraints.

The constraints C2 and C3 can be unified, which is useful for the discussions below.

Definition 2.1. For each likelihood factor p (y i|x) with the constraint C2, let

V+
i = {x|[Ax]i = at

ix > 0} and V−
i = Rn\V+

i .

For each likelihood factor p (y i|x) with the constraint C3, let

V+
i = {x|[Ax + r]i = at

ix + ri > 0} and V−
i = Rn\V+

i .

Then the constraints C2 and C3 are both given by V+ = ∩iV+
i  and V− = Rn\V+.

With the indicator function 1V+(x) of the set V+, we modify the likelihood function p(y|x) 
by

�(x) = p(y|x)1V+(x).

This extends the domain of p(y|x) from V+ to Rn, and it facilitates a full Bayesian treatment. 

Since the indicator function 1V+(x) admits a separable form, i.e. 1V+(x) =
∏m1

i=1 1V+
i
(x), �(x) 

factorizes into

�(x) =
m1∏

i=1

�i(x) with �i(x) = p(yi|x)1V+
i
(x).

To fully specify the Bayesian model, we have to stipulate the prior p(x). We focus on a 
Laplace type prior. Let L ∈ Rm2×n and Lt

i ∈ Rn×1 be the ith row of L. Then a Laplace type 
prior p(x) is given by

p(x) =
m2∏

i=1

pi(x) with pi(x) =
α

2
e−α|Lt

ix|.

The parameter α > 0 determines the strength of the prior, playing the role of a regularization 
parameter in variational regularization [23]. The choice of the hyperparameter α in the prior 
p(x) is notoriously challenging [23]. One may apply hierarchical Bayesian modeling in order 
to estimate it from the data simultaneously with the unknown x [3, 25, 46]. The prior p(x) is 
commonly known as a sparsity prior (in the transformed domain), which favors a candidate 
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with many small elements and few large elements in the vector Lx. The canonical total varia-
tion prior is recovered when the matrix L computes the discrete gradient. It is well known that 
the total variation penalty can preserve well edges in the image/signals, and hence it has been 
very popular for various imaging tasks [10, 38].

By Bayes’ formula, we obtain the Bayesian solution to the Poisson inverse problem, i.e. the 
posterior probability density function:

p(x|y) = Z−1
m1∏

i=1

�i(x)
m2∏

i=1

pi(x), (2.1)

where Z is the normalizing constant, defined by Z =
∫
Rn

∏m1
i=1 �i(x)

∏m2
i=1 pi(x)dx. The com-

putation of Z is generally intractable for high-dimensional problems, and p(x|y) has to be 
approximated.

3. Approximate inference by expectation propagation

In this section, we describe the basic concepts and algorithms of expectation propagation 
(EP), for exploring the posterior distribution (2.1). EP due to Minka [33, 34] is a popular varia-
tional type approximate inference method in the machine learning literature. It is especially 
suitable for approximating a distribution formed by a product of functions, with each factor 
being of projection form. Since its first appearance in 2001, EP has found many successful 
applications in practice, and it is reported to be very accurate, e.g. for Gaussian processes 
[36], and electrical impedance tomography with sparsity prior [19]. However, the theoretical 
understanding of EP remains quite limited [13, 14].

EP looks for an approximate Gaussian distribution q(x) to a target distribution by means 
of an iterative algorithm. It relies on the following factorization of the posterior distribution 
p(x|y) (with m = m1 + m2 being the total number of factors):

p(x|y) = Z−1
m∏

i=1

ti(x), with ti(x) =
{
�i(x), i = 1, . . . , m1,
pi−m1(x), i = m1 + 1, . . . , m.

 (3.1)
Note that each factor ti(x) is a function defined on the whole space Rn. Likewise, we denote 
the Gaussian approximation q(x) to the posterior distribution p(x|y) by

q(x) = Z̃−1
m∏

i=1

t̃i(x),

with each factor t̃i(x) being a Gaussian distribution N (x|µi, Ci), and Z̃  is the corresponding 
normalizing constant. Below we use two different parameterizations of a Gaussian distribu-
tion, i.e. moment parameters (mean and covariance) (µ, C) and natural parameters (h,Λ); see 
appendix A. Both parameterizations have their pros and cons: the moment one does not require 
solving linear systems, and the natural one allows singular covariances for the Gaussians ̃ti(x). 
The rest of this section is devoted to the derivation of the algorithms and their complexity.

3.1. Reduction to one-dimensional integrals

There are two main steps of one EP iteration: (a) form a tilted distribution ̂qi(x), and (b) update 
the Gaussian approximation q(x) by matching its moments with that of q̂i(x). The moment 
matching step can be interpreted as minimizing Kullback–Leibler divergence KL(q̂i||q) [19, 
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33, 34]. Recall that the Kullback–Leibler divergence from one probability distribution p(x) to 
another q(x) is defined by [29]

DKL( p||q) =
∫

Rn
p(x) log

p(x)
q(x)

dx.

By Jensen’s inequality, the divergence DKL( p||q) is always nonnegative, and it vanishes if and 
only if p(x) = q(x) almost everywhere.

The task at step (a) is to construct the ith tilted distribution q̂i(x). Let q\i(x) be the ith cavity 
distribution, i.e. the product of all but the ith factor, and defined by

q\i(x) = Z−1
i

∏
j�=i

t̃i(x)

with Zi =
∫
Rn

∏
j�=i t̃i(x)dx. It is Gaussian, i.e. q\i(x) = N (x|µ\i, C\i), whose moment and 

natural parameters are denoted by (µ\i, C\i) and (h\i,Λ\i), respectively. Then the ith tilted 
distribution q̂i(x) of the approximation q(x) is given by

q̂i(x) = Ẑ−1
i ti(x)

∏
j�=i

t̃i(x),

where Ẑi =
∫
Rn ti(x)

∏
j �=i t̃i(x)dx is the corresponding normalizing constant. With the exclu-

sion-inclusion step, one replaces the ith factor t̃i(x) in the approximation q with the exact one 
ti(x).

The task at step (b) is to compute moments of the ith tilde distribution q̂i(x), which are 
then used to update the approximation q(x). This requires integration over Rn, which is gener-
ally numerically intractable, if q̂i(x) were arbitrary. Fortunately, each factor ti(x) in (3.1) is of 
projection form and depends only on the scalar utx, with the vector u ∈ Rn being either ai or 
Li. This is the key fact rendering relevant high-dimensional integrals numerically tractable. 
Below we write the factor ti(x) as ti(ut

ix) and accordingly, the ith cavity function q̂i(x) as

q̂i(x) = Ẑ−1
i ti(ut

ix)N (x|µ\i, C\i),

upon replacing 
∏

j�=i t̃i(x) with its normalized version N (x|µ\i, C\i), and accordingly the nor-
malizing constant Ẑi.

Since a Gaussian is determined by its mean and covariance, it suffices to evaluate the 0th 
to 2nd moments of q̂i(x). The projection form of the factor ti allows reducing the moment 
evaluation of q̂i(x) to 1D integrals. Theorem 3.1 gives the update scheme for q(x) from q̂i(x).

Theorem 3.1. The normalizing constant Ẑi :=
∫
Rn ti(ut

ix)N (x|µ\i, C\i)dx is given by

Ẑi =

∫

R
ti(s)N (s|ut

iµ\i, ut
iC\iui)ds =: Zs

Then with the auxiliary variables ̄s ∈ R and Cs defined by

s̄ = Z−1
s

∫

R
ti(s)N (s|ut

iµ\i, ut
iC\iui)sds and Cs = Z−1

s

∫

R
ti(s)N (s|ut

iµ\i, ut
iC\iui)s2ds − s̄2,

 (3.2)

the mean µ = Eq̂i [x] and covariance C = Vq̂i [x] are given respectively by

µ = µ\i + C\iui(ut
iC\iui)

−1(s̄ − ut
iµ\i),

C = C\i + (ut
iC\iui)

−2(Cs − ut
iC\iui)C\iuiut

iC\i.

C Zhang et alInverse Problems 35 (2019) 085006
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Similarly, the precision mean hq̂i and precision Λq̂i are given respectively by

hq̂i = h\i + λ1,iui with λ1,i =
s̄

Cs
−

ut
iµ\i

ut
iC\iui

,

Λq̂i = Λ\i + λ2,iuiut
i with λ2,i =

1
Cs

− 1
ut

iC\iui
.

Proof. The expressions for Ẑi, µ and C were given in [19, section 3]. Thus it suffices to 
derive the formulas for (h,Λ). Recall the Sherman–Morrison formula [21, p 65]: for any in-
vertible B ∈ Rn×n, u, v ∈ Rn, there holds

(B + uvt)−1 = B−1 − B−1uvtB−1

1 + vtB−1u
. (3.3)

Let λ = (ut
iC\iui)

−2(Cs − ut
iC\iui). Then the precision matrix Λ is given by

Λ = (C\i + C\iuiλut
iC\i)

−1

= C−1
\i − ui(λ

−1 + ut
iC\iui)

−1ut
i

= Λ\i +
( 1

Cs
− 1

ut
iC\iui

)
uiut

i.

Similarly, the precision mean h := Λµ is given by

h =
[
Λ\i +

( 1
Cs

− 1
ut

iC\iui

)
uiut

i

]
[µ\i + C\iui(ut

iC\iui)
−1(s̄ − ut

iµ\i)]

= Λ\iµ\i + ui

( s̄
Cs

−
ut

iµ\i

ut
iC\iui

)
= h\i + ui

( s̄
Cs

−
ut

iµ\i

ut
iC\iui

)
.

This completes the proof of the theorem. □ 

In both approaches, the 1D integrals (Zs, s̄, Cs) are needed, which depend on ut
iµ\i and 

ut
iC\iui. A direct approach is first to downdate (the Cholesky factor of) Λ and then to solve a 

linear system. In practice, this can be expensive and the cost can be mitigated. Indeed, they can 
be computed without the downdating step; see lemma 3.1 below. Below we use the super- or 
subscript n and o to denote a variable updated at current iteration from that of the last iteration.

Lemma 3.1. Let c = ut
iΛ

−1
o ui = ut

iCoui , (h,Λ) be the natural parameter of q(x) and 
(λ1,i,λ2,i) be defined in theorem 3.1. Then the mean ut

iµ\i and variance ut
iC\iui of the Gauss-

ian distribution N (s|ut
iµ\i, ut

iC\iui) are respectively given by

ut
iµ\i =

ut
iΛ

−1
o h − cλo

1,i

1 − cλo
2,i

and ut
iC\iui =

c
1 − cλo

2,i
.

Proof. We suppress the sub/superscript o. By the definition of ut
iC\iui and the Sherman–

Morrison formula (3.3), we have

ut
iC\iui = ut

i(Λ− λ2,iuiut
i)
−1ui

= ut
i[Λ

−1 − Λ−1ui(−λ−1
2,i + c)−1ut

iΛ
−1]ui

= c − c(−λ−1
2,i + c)−1c =

c
1 − cλ2,i

,

C Zhang et alInverse Problems 35 (2019) 085006
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and similarly, we have

ut
iµ\i = ut

i(Λ− λ2,iuiut
i)
−1(h − λ1,iui)

= ut
i[Λ

−1 − Λ−1ui(−λ−1
2,i + c)−1ut

iΛ
−1](h − λ1,iui) =

ut
iΛ

−1h − cλ1,i

1 − cλ2,i
.

This completes the proof of the lemma. □ 

Since the quantities for the 1D integrals can be calculated from variables updated in the 
last iteration, it is unnecessary to form cavity distributions. Indeed, the cavity precision is 
formed by Λ\i = Λo − λo

2,iuiut
i, and the updated precision is given by Λn = Λ\i + λn

2,iuiut
i; 

and similarly for h. Thus, we can update Λ directly with (λo
2,i,λ

n
2,i) and h with (λo

1,i,λ
n
1,i); this 

is summarized in the next remark.

Remark 3.1. The differences λn
k,i − λo

k,i , k = 1, 2, can be used to update the natural param-
eter (h,Λ):

λn
1,i − λo

1,i =
s̄

Cs
− ut

iµo

ut
iCoui

and λn
2,i − λo

2,i =
1
Cs

− 1
ut

iCoui
.

Moreover, the sign of λn
2,i − λo

2,i determines whether to update or downdate the Cholesky fac-
tor of Λ.

3.2. Update schemes and algorithms

Now we state the direct update scheme, i.e. without explicitly constructing the intermediate 
cavity distribution q\i(x), for both natural and moment parameterizations.

Theorem 3.2. Let (h,Λ) and (µ, C) be the natural and moment parameters of the Gaussian 
approximation q(x), respectively. The following update schemes hold.

 (i)  The precision mean h and precision Λ can be updated by

hn = ho +
( s̄

Cs
− ut

iΛ
−1
o ho

ut
iΛ

−1
o ui

)
ui and Λn = Λo +

( 1
Cs

− 1
ut

iΛ
−1
o ui

)
uiut

i.

 (ii)  The mean µ and covariance C can be updated by

µn = µo +
s̄ − ut

iµo

ut
iCoui

Coui and Cn = Co +
( Cs

(ut
iCoui)2 − 1

ut
iCoui

)
(Coui)(ut

iCo).

Proof. The first assertion is direct from theorem 3.1 and remark 3.1, and it can be rewritten 
as

Λn = Λo + (λn
2,i − λo

2,i)uiut
i and hn = ho + (λn

1,i − λo
1,i)ui.

By Sherman–Morrison formula (3.3), the covariance Cn = Λ−1
n  is given by

C Zhang et alInverse Problems 35 (2019) 085006
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Cn = (Λo + (λn
2,i − λo

2,i)uiut
i)
−1

= Λ−1
o − Λ−1

o ui

( 1
λn

2,i − λo
2,i

+ ut
iCoui

)−1
ut

iΛ
−1
o

=: Co + η2(Coui)(ut
iCo),

where the scalar η2 := −( 1
λn

2,i−λo
2,i
+ ut

iCoui)
−1 can be simplified to

η2 = −
λn

2,i − λo
2,i

1 + (λn
2,i − λo

2,i)u
t
iCoui

= − 1
ut

iCoui
+

Cs

(ut
iCoui)2 ,

where the second identity follows from remark 3.1. Similarly, the mean µn := Cnhn is given by

µn = [Co + η2(Coui)(ut
iCo)][ho + (λn

1,i − λo
1,i)ui]

= µo + (λn
1,i − λo

1,i)Coui + η2ut
iµoCoui + η2(λ

n
1,i − λo

1,i)u
t
iCouiCoui =: µo + η1Coui,

where, in view of remark 3.1, η1 := (λn
1,i − λo

1,i) + η2ut
iµo + η2(λ

n
1,i − λo

1,i)u
t
iCoui can be sim-

plified to

η1 =
(λn

1,i − λo
1,i)− (λn

2,i − λo
2,i)u

t
iµo

1 + (λn
2,i − λo

2,i)u
t
iCoui

=
s̄ − ut

iµo

ut
iCoui

.

This completes the proof of the theorem. □ 

All matrix operations in theorem 3.2 are of rank one type, which can be implemented sta-
bly and efficiently with the Cholesky factors and their update/downdate; see section 3.3 for 
details. Thus, in practice, we employ Cholesky factors of the precision Λ and covariance C, 
denoted by Λchol and Cchol, respectively, instead of Λ and C. Further, we also use the auxiliary 
variables (λ1,i,λ2,i) defined in theorem 3.1, and stack {(λ1,i,λ2,i)}m1+m2

i=1  into two vectors

λ1 = [λ1,i]i, λ2 = [λ2,i]i ∈ Rm1+m2 ,

which are initialized to zeros. Thus, we obtain two inference procedures for Poisson data with 
a Laplace type prior in algorithms 1 and 2.

The rigorous convergence analysis of EP is outstanding. Nonetheless, empirically, it often 
converges very fast, which is also observed in our numerical experiments in section  5. In 
practice, one can terminate the iteration by monitoring the relative change of the parameters 
or fixing the maximum number K of iterations. The important task of computing 1D integrals 
will be discussed in section 4 below.

Algorithm 1. Expectation propagation for Poisson data (natural parametrization).

 1: Input: (A, y), hyper-parameter α, and maximum number K of iterations
 2: Initialize h, Λchol, λ1 and λ2;
 3: for k = 1, 2, . . . , K do
 4:    Randomly choose an index i to update;
 5:    Compute the mean and variance for 1D Gaussian integral by lemma 3.1;
 6:    Evaluate ̄s and Cs in (3.2);
 7:    Calculate and update λ1,i and λ2,i;
 8:    Update h and Λchol by theorem 3.2;
 9:    Check the stopping criterion.
10: end for
11: Output: (h,Λchol)
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3.3. Efficient implementation and complexity estimate

The rank-one matrix update A ± βuut, for A ∈ Rn×n, u ∈ Rn and β > 0, can be stably and 
efficiently updated/downdated with the Cholesky factor of A with 

√
βu. The update step of A 

can be viewed as an iteration from Ak to Ak+1. Let the upper triangular matrices Rk and Rk+1 be 
the Cholesky factors of Ak and Ak+1 respectively, i.e. Ak = Rt

kRk  and Ak+1 = Rt
k+1Rk+1. There 

are two possible cases:

 (i)  If Ak+1 = Ak + βuut, Rk+1 is the Cholesky rank one update of Rk with 
√
βu.

 (ii)  If Ak+1 = Ak − βuut, Rk+1 is the Cholesky rank one downdate of Rk with 
√
βu.

The update/downdate is available in several packages. For example, in MATLAB, the function 
cholupdate implements the update/downdate of Cholesky factors, based on LAPACK sub-
routines ZCHUD and ZCHDD.

Next, we discuss the computational complexity per inner iteration. The first step picks one 
index i, which is of constant complexity. For the second step, i.e. computing the mean and 
variance for 1D integrals, the dominant part is linear solve involving upper triangular matrices 
and matrix-vector product for natural and moment parameters. For either parameterization, it 
incurs O(n2) operations. The third step computes ̄s and Cs from the one dimensional integrals. 
For Poisson site, the complexity is O(yi), and for Laplace site, it is O(1). Last, the fourth 
step is dominated by Cholesky factor modifications, and its complexity is O(n2). Overall, the 
computational complexity per inner iteration is O(n2 + yi). In a large data setting, yi � n, and 
thus the complexity is about O(n2).

In passing, we note that in practice, the covariance/precision matrix may admit additional 
structures, e.g. sparsity, which translate into structures on Cholesky factors. For the general 
sparsity assumption, it seems unclear how to effectively exploit it for Cholesky update/down-
date for enhanced efficiency, except the diagonal case, which can be incorporated into the 
algorithm straightforwardly.

4. Stable evaluation of 1d integrals

Now we develop a stable implementation for the three 1D integrals: Zs, s̄ and Cs in theorem 
3.1. These integrals form the basic components of algorithms 1 and 2, and their stable, accu-
rate and efficient evaluation is crucial to the performance of the algorithms. By suppressing 
the subscript i, we can write the integrals in a unified way:

Jj =

∫

R
t(s)N (s|m,σ2)s jds, j = 0, 1, 2,

where the factor t(s) is either Poisson likelihood or Laplace prior. Then we can express ̄s and 
Cs in terms of Jj  by

s̄ =
J1

J0
and Cs =

J2

J0
− s̄2.

Note that the normalizing constants in Jj  cancel out in ̄s and Cs, and thus they can be ignored 
when evaluating the integrals. In essence, the computation boils down to stable evaluation 
of moments of a (truncated) Gaussian distribution. This task was studied in several works 
[11, 39]: [11] focuses on Gaussian moments, and [39] discusses also evaluating the integrals 
involving Laplace distributions. Below we derive the formulas for the (constrained) Poisson 
likelihood and Laplace prior separately.
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4.1. Poisson likelihood

Throughout, we suppress the subscript i, write V+ etc in place of V+
i  etc and introduce the 

scaler variable s  =  atx. Then the constraint on x transfers to that on s: atx  >  0 corresponds to 
s  >  0 and atx  +  r  >  0 to s  >  −r, respectively. We shall slightly abuse the notation and use 
1V+(s) as the indicator for the constraint on s. Then the Poisson likelihood t(x) can be equiva-
lently written in either x or s as

t(x) =
(atx + r)ye−(atx+r)

y!
1V+(x) and t(s) =

(s + r)ye−(s+r)

y!
1V+(s).

Note that the factorial y! cancels out when computing ̄s and Cs, so it is omitted in the deriva-
tion below. For a fixed N (s|m,σ2), the integrals Jy ,j  depend on the observed count data y  and 
moment order j :

Jy,j =

∫ ∞

b
(s + r)ys je−(s+r)N (s|m,σ2)ds.

where the lower integral bound b  =  0 or b  =  −r, which is evident from the context. Note that 
the terms e−(s+r) and N (s|m,σ2) in Jy ,j  together give an unormalized Gaussian density. This 
allows us to reduce the integrals Jy ,j  into (truncated) Gaussian moment evaluations of the type:

Iy =

∫ ∞

b
(s + r)yN (s|m − σ2,σ2)ds,

and accordingly ̄s and Cs. This is given in the next result.

Theorem 4.1. The scalars ̄s and Cs can be computed by

s̄ =
Iy+1

Iy
− r and Cs =

Iy+2

Iy
−
( Iy+1

Iy

)2
.

Proof. First, we claim that with α = e
σ2
2 −m−r , there hold the following identities

Jy,0 = αIy, Jy,1 = α(Iy+1 − rIy), and Jy,2 = α(Iy+2 − 2rIy+1 + r2Iy).
 

(4.1)

Let cσ = (2πσ2)−
1
2. Then by completing the square, we obtain

e−(s+r)N (s|m,σ2) = cσe−r−s− (s−m)2

2σ2 = cσe
σ2
2 −m−re−

(s−(m−σ2))2

2σ2 .

Algorithm 2. Expectation propagation for Poisson data (moment parametrization).

 1: Input: (A, y), hyper-parameter α, and maximum number K of iterations
 2: Initialize µ, Cchol, λ1 and λ2;
 3: for k = 1, 2, . . . , K do
 4:    Randomly choose an index i to update;
 5:    Compute the mean and variance for 1D Gaussian integral by lemma 3.1;
 6:    Evaluate ̄s and Cs in (3.2);
 7:    Calculate and update λ1,i and λ2,i;
 8:    Update µ and Cchol by theorem 3.2;
 9:    Check the stopping criterion.
10: end for
11: Output: (µ, Cchol)
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The claim follows directly from the trivial identities

(s + r)ys = (s + r)y+1 − r(s + r)y,

(s + r)ys2 = (s + r)y+2 − 2r(s + r)y+1 + r2(s + r)y.

The desired identities follow from the definitions and the recursions in (4.1) by

s̄ =
Jy,1

Jy,0
=

α(Iy+1 − rIy)

αIy
=

Iy+1

Iy
− r,

Cs =
Jy,2

Jy,0
− s̄2 =

α(Iy+2 − 2rIy+1 + r2Iy)

αIy
−

( Iy+1

Iy
− r

)2
=

Iy+2

Iy
−

( Iy+1

Iy

)2
.

This completes the proof. □ 

However, directly evaluating Iy  can still be numerically unstable for large y . To avoid the 
potential instability, we develop a stable recursive scheme on Iy .

Lemma 4.1. For y � 2, the following recursion holds

Iy = (m − σ2 + r)Iy−1 + σ2(y − 1)Iy−2 +
σ2(b + r)y−1

√
2πσ2

e−
(b−m+σ2)2

2σ2 .

Proof. Let c = m − σ2, d = σ2 and f (s) = 1√
2πσ2

e−
(s−c)2

2d . The definition of Iy  implies

Iy =

∫ ∞

b
(s + r)yf (s)ds =

∫ ∞

b
(s + r)y−1

(
d

s − c
d

+ c + r
)

f (s)ds

= −d
∫ ∞

b
(s + r)y−1

(
− s − c

d

)
f (s)ds + (c + r)

∫ ∞

b
(s + r)y−1f (s)ds.

Next we employ the trivial identity d
ds f (s) = − s−c

d f (s) and apply integration by parts to the 
first term

∫ ∞

b
(s + r)y−1

(
− s − c

d

)
f (s)ds

= (s + r)y−1f (s)|∞b −
∫ ∞

b
(y − 1)(s + r)y−2f (s)ds

= −(b + r)y−1f (b)− (y − 1)Iy−2.

Collecting the terms shows the desired recursion on the integral Iy . □ 

For b  =  −r, we have a simplified recursive formula for Iy :

Iy = (m − σ2 + r)Iy−1 + σ2(y − 1)Iy−2.

Lemma 4.1 uses a two-term linear recurrence relation for Iy ’s. The coefficients of Iy −1 
and Iy −2 are raised by power when expanding Iy  in terms of I0 and I1, and thus the com-
putation of Iy  is susceptible to the evaluation errors of I0 and I1 for large y . This moti-

vates a reciprocal recursive scheme by introducing a ratio sequence {Ly}y  defined by 

Ly =
yIy−1

Iy
, for r  =  0 or b  =  −r, in order to restore the numerical stability. Note that Ly  also 

admits a recursive scheme Ly =
y

(m−σ2+r)+σ2Ly−1
, and further Iy  can be recovered from {Ly } 

by ln Iy = ln y! + ln I0 −
∑y

i=1 Li.
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We can compute s̄ and Cs directly from Ly . The identities follow from straightforward 
computation.

Theorem 4.2. If r  =  0 or b  =  −r, the ratios for calculating ̄s and Cs are given by

Iy+1

Iy
= (m − σ2 + r) + σ2Ly and

Iy+2

Iy
= eln(y+1)+ln(y+2)−ln Ly+1−ln Ly+2 .

Last, we discuss the computation of the first three integrals I0, I1 and I2, which are needed 
for the recursion. We employ three different forms according to the integration range with 
respect to the auxiliary variable

η =
σ2 − m + b√

2σ2
.

The formulas are listed in table 1, where erf and erfc denote the error function and com-
plementary error function, respectively, and erfcx(η) = eη

2
(1 − erf(η)). Since the value 

of 1 − erf(η) is vanishingly small for large η value, we use Scheme 2 to avoid underflow. 
Scheme 3 is useful when the η value is large, since both 1 − erf(η) and erfc(η) suffer from 
numerical underflow. Note that when η is small, Scheme 3 is not as accurate as Scheme 2, 
so we use Scheme 2 in the intermediate range. In our experiments, we use Scheme 1 for 
η ∈ (−∞, 5), Scheme 2 for η ∈ [5, 26) and Scheme 3 for η ∈ (26,∞). To use Scheme 3, we 

construct Ĩi =
Ii
I0

, i = 0, 1, 2, and L̃y =
ỹIy−1

Ĩy
, y ∈ N+. Then similar identities for computing ̄s 

and Cs hold, i.e. s̄ = Ĩy+1

Ĩy
− r and Cs =

Ĩy+2

Ĩy
− (

Ĩy+1

Ĩy
)2, with Ĩy+1

Ĩy
= (m − σ2 + r) + σ2L̃y and 

Ĩy+2

Ĩy
= eln(y+1)+ln(y+2)−ln L̃y+1−ln L̃y+2.

4.2. Laplace potential

Now we derive the formulas for evaluating the 1D integrals for the Laplace potential 
t(x) = α

2 e−α|�tx|. For any fixed � ∈ Rn, we divide the whole space Rn into two disjoint half-
spaces V+ and V−, i.e. Rn = V+ ∪ V−, with V+ = {x|�tx > 0} and V− = {x|�tx � 0}. Then 
we split the Laplace potential t(x) into

Table 1. Three schemes for evaluating I0, I1 and I2, with c1 = m − σ2 + b + 2r and 
c2 = m − σ2 + r .

Scheme Formulae η

1 I0 = 1
2 (1 − erf(η)), I1 =

√
σ2

2π e−η2
+ c2

2 (1 − erf(η)) (−∞, 5)

I2 =
√

σ2

2π c1e−η2
+

c2
2+σ2

2 (1 − erf(η))

2 I0 = 1
2 erfc(η), I1 =

√
σ2

2π e−η2
+ c2

2 erfc(η) [5, 26]

I2 =
√

σ2

2π c1e−η2
+

c2
2+σ2

2 erfc(η)

3 Ĩ0 = 1, Ĩ1 =
√

2σ2

π
1

erfcx(η) + c2
(26,∞)

Ĩ2 =
√

2σ2

π
c1

erfcx(η) + c2
2 + σ2
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t(x) =
α

2
e−α�tx1V+

(x) +
α

2
eα�

tx1V−(x).

The integrals involving t(x)N (s|µ,σ2) (slightly abusing µ) can be divided into two parts:
∫

R+

α

2
sie−αsN (s|µ,σ2)ds =

α

2
e

α2σ2
2 e−αµ

∫

R+

siN (s|µ− ασ2,σ2)ds

︸ ︷︷ ︸
:=I+i

,

∫

R−

α

2
sieαsN (s|µ,σ2)ds =

α

2
e

α2σ2
2 eαµ

∫

R−

siN (s|µ+ ασ2,σ2)ds

︸ ︷︷ ︸
:=I−i

.

By the change of variable t = s−µ±ασ2

σ  for I±i  respectively, we have

I+i =
e−αµ

√
2π

∫ +∞

−µ
σ+ασ

(σt + µ− ασ2)ie−
t2
2 dt,

I−i =
(−1)ieαµ√

2π

∫ +∞

µ
σ+ασ

(σt − µ− ασ2)ie−
t2
2 dt.

These integrals can be expressed using the cumulative distribution function Φ of the standard 
Gaussian distribution. We shall view I±i  as functions of µ and let Ii = I+i (µ) + (−1)iI+i (−µ). 
Then we have

s̄ =
I1

I0
and Cs =

I2

I0
−
(

I1

I0

)2

.

To avoid the potential underflow of direct evaluation of Φ, we use the following well known 
(divergent) asymptotic expansion [1, item 7.1.23]

1 − Φ(η) =

∫ ∞

η

e−
t2
2 dt = e−

η2

2

(
η−1 +

∞∑
k=1

(−1)k(2k − 1)!
2k(k − 1)!

η−(2k+1)

)

= N (η|0, 1)η−1
∞∑

n=0

(−1)n(2n − 1)!!η−2n

︸ ︷︷ ︸
:=g(η)

.

This formula follows by integration by parts, and allows accurate evaluation for large positive 
η. It was shown in [18] that the error of evaluating 1 − Φ(η) with a truncation of the asymp-
totic expansion is less than 10−11 for η > 5 with more than 8 terms in the summation of g(η). 
For η � 5, 1 − Φ(η) can be accurately evaluated directly. Then we introduce a ratio

β =
I+0 (−|µ|)
I+0 (|µ|)

= e2α|µ| (ασ
2 − |µ|)g(ασ + |µ|

σ )

(ασ2 + |µ|)g(ασ − |µ|
σ )

.

With the ratio β, the two fractions I1
I0

 and I2
I0

 can be evaluated by
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I1

I0
= µ+ ασ2sgn(µ)

(
1 − 2

1 + β

)
,

I2

I0
= −2ασ3

√
2π

e−( µ2

2σ2 +
α2σ2

2 )I−1
0 + (σ2 + α2σ4 − µ2) + 2µ

I1

I0
.

To avoid potential numerical instability of the first term in I2
I0

, we use the identity

−2ασ3
√

2π
e−( µ2

2σ2 +
α2σ2

2 )I−1
0 =

−2ασ2(−|µ|+ ασ2)

g(− |µ|
σ + ασ)(1 + β)

.

To avoid potential numerical instability of the term σ2 + α2σ4, we use the exp-log trick

σ2 + α2σ4 = exp
(
− 2 log

1
ασ2 + log

(
1 +

1
α2σ2

))
,

where log(1 + 1
α2σ2 ) is evaluated by the MATLAB builtin function log1p. Thus, s̄ 

and Cs can be evaluated by s̄ = I1
I0

 and Cs = − 2ασ2(−|µ|+ασ2)

g(− |µ|
σ +ασ)(1+β)

+ exp[−2 log 1
ασ2 +  

log(1 + 1
α2σ2 )]− (µ− I1

I0
)2.

5. Numerical experiments and discussions

Now we numerically illustrate one EP algorithm on realistic images. In the implementa-
tion, we employ the natural parameter parameterization, i.e. algorithm 1, which appears to 
be numerically more robust. We measure the accuracy of a reconstruction x* relative to the 
ground truth x† by the standard L2-error ||x∗ − x†||2, the structural similarity (SSIM) index 
(by MATLAB built-in ssim), and peak signal-to-noise ratio (PSNR) (by MATLAB built-in 
psnr with peak value 1 for Shepp–Logan and PET phantom, and 5 for IRT phantom). 
For comparison, we also present MAP, computed by a limited-memory BFGS algorithm 
[31] with constraint C1. The hyperparameter α in the prior p(x) is determined in a trial-and-
error manner. Unless otherwise stated, the EP algorithm is run for four sweeps through the 
sites.

5.1. Simulated data with two benchmark images

First, we take simulated data: the ground-truth images are Shepp–Logan and PET 
[15] phantoms of size 128 × 128; The map A is a discrete Radon transform, formed using 
MATLAB built-in function radon with 185 projections per angle and three different angle 
settings, i.e. [0 : 2 : 179], [0 : 4 : 179] and [0 : 8 : 179], and accordingly, the matrix A is of size 
A ∈ R16 650×16 384, A ∈ R8325×16 384 and A ∈ R4255×16 384. For each image, we consider two 
count levels: the moderate count case is obtained from A, and the low count case from A/3 (so 
that the measured counts are mostly below 10). The original image, sinogram and observed 
Poisson data are shown in figures 1 and 2 for Shepp–Logan and PET, respectively. The numer-
ical results are summarized in tables 2 and 3, figures 3, 4, 5 and 6. The EP mean is mostly 
comparable with MAP in all three metrics for both moderate count and low count cases, and 
the reconstruction quality improves steadily as the number of projection angles increases. 
Interestingly, the shape of the EP variance resembles closely the outer boundary of the phan-
tom, whereas within the boundary, there is little difference in the magnitudes. This might 
indicate that the algorithm is rather certain in the cold regions where the error is close to zero 

C Zhang et alInverse Problems 35 (2019) 085006



16

and more uncertain about the region where the error is potentially larger. It is observed that the 
computational complexity of the EP grows with the amount of the data. This is attributed to 
the following fact: the number of sweeps is fixed at four, and the complexity increases with the 
number of projection angles. Since the computing time is presented only for one reconstruc-
tion at each case, these numbers should be viewed as a representative instead of an absolute 
measure for algorithmic performance. Roughly, EP is about two orders of magnitude more 
expensive than the MAP approach (computed by limited memory BFGS [31]).

The Poisson model is especially useful for low count data, where a naive Gaussian approx-
imation can fail to give reasonable reconstructions. The EP results for the low-count case 
are shown in figures 4 and 6. Just as expected, the reconstruction accuracy deteriorates as 
the count level decreases. Nonetheless, the EP means remain largely comparable with MAP 
results both qualitatively and quantitatively. Note that for the PET image, the reconstruction 
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Figure 1. The exact image, sinograms and data with three different As for Shepp–
Logan phantom. The top and bottom rows refer to the moderate count and low count 
cases, respectively.

Table 2. Comparisons between EP mean and MAP for the Shepp–Logan phantom. 
The top and bottom blocks refer to the moderate count and low count cases, respectively.

Angle [0:2:179] [0:4:179] [0:8:179]

α 6 4 3
Method EP MAP EP MAP EP MAP
L2 error 5.32 5.36 5.64 5.67 6.09 6.11
SSIM 0.74 0.78 0.70 0.75 0.67 0.72
PSNR 18.58 18.53 17.97 17.93 17.29 17.27
CPU time (s) 80 187.88 124.44 46 031.95 55.55 29 274.16 27.23

α 1.3 2 1

Method EP MAP EP MAP EP MAP
L2 error 4.07 4.09 6.15 6.24 6.14 6.19
SSIM 0.57 0.79 0.51 0.72 0.48 0.70
PSNR 19.50 19.47 17.53 17.42 17.18 17.15
CPU time (s) 82 125.92 42.25 47 110.50 29.69 29 756.10 15.20
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accuracy for both EP and MAP suffers significantly in that the fine details such as vertical bars 
in the true image disappear, especially when the number of projection angles is small. The 
computing times for the moderate count and low count cases are nearly the same; see tables 2 
and 3. Thus, EP is still feasible for the low-count case.

To further illustrate the approximation, we plot in figure  7 the cross-sections and 95% 
highest posterior density (HDP) region, which is estimated from the EP covariance. The EP 
mean is close to MAP, and thus also suffers slightly from a reduced magnitude, as is typical 
of the total variation penalty in variational regularization [10]. This also concurs with the error 
metrics in tables 2 and 3. The thrust of EP is that it can also provide uncertainty estimates via 
covariance, which is unavailable from MAP. In sharp contrast, the popular Laplace approx-
imation (see appendix B) can fail to yield a reasonable approximation for nonsmooth priors 
such as anisotropic total variation, whereas MCMC tends to be prohibitively expensive for 
large images, though being asympotically exact; see appendix C for further numerical results. 
So overall, EP represents a computationally feasible approach to deliver uncertainty estimates 
for these benchmark images with Poisson data.

5.2. Convergence of the EP algorithm

Next, we present an experimental evaluation of the convergence of the EP algorithm, which 
is a long outstanding theoretical issue, on the following experimental setup: Shepp–Logan 
phantom and Radon matrix A ∈ R4255×16 384 (i.e. 185 projections per angle and [0 : 8 : 179], 
moderate count case). We denote the mean and covariance after k outer iterations (i.e. sweeps 
through all the sites) by µk  and Ck, respectively, and the converged iterate tuple by (µ∗, C∗). 
The EP mean µk  converges rapidly, and visually it reaches convergence after five iterations 
since thereafter the cross-sections graphically overlap with each other; see figure 8. Thus, in 
the numerical experiments, we have fixed the number of outer iterations to four, and the com-
plexity of the reconstruction algorithm is of order O(mn2). Figure 9 shows the errors of the 
iterate tuple (µk, Ck) with respect to (µ∗, C∗), where the errors

δµ = µk − µ∗ and δC = Ck − C∗

Table 3. The comparisons between EP mean and MAP for the PET phantom. The top 
and bottom blocks refer to the moderate and low count cases, respectively.

Angle [0:2:179] [0:4:179] [0:8:179]

α 1.6 1.4 1.2
Method EP MAP EP MAP EP MAP

L2 error 7.37 7.45 8.55 8.64 8.81 8.87
SSIM 0.72 0.81 0.61 0.75 0.57 0.70
PSNR 19.82 19.79 18.42 18.35 17.35 17.28
CPU time (s) 91 263.00 110.05 53 863.77 78.69 31 537.05 28.20

α 1.2 9 × 10−1 7.5 × 10−1

Method EP MAP EP MAP EP MAP

L2 error 8.96 9.04 9.30 9.35 10.13 10.17
SSIM 0.55 0.72 0.49 0.67 0.43 0.62
PSNR 17.66 17.61 16.93 16.89 15.84 15.81
CPU time (s) 82 542.76 52.97 47 263.64 32.43 29 737.91 18.01
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are measured by the L2-norm and spectral norm, respectively. This phenomenon is also 
observed for all other experiments, although not presented. Hence, both mean and covariance 
converge rapidly, showing the steady and fast convergence of EP.

5.3. Real data

Last, we illustrate the inference procedure with a dataset taken from Michigan Image 
Reconstruction Toolbox2. The ground truth image is denoted by IRT. The map 
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Figure 2. The exact image, sinograms and observed data with three different A’s for 
the PET phantom. The top and bottom rows refer to the moderate count and low count 
cases, respectively.

0 0.5 1 -1 0 1 0 0.5 1 -1 0 1 0 0.5 1
10-3

Figure 3. MAP versus EP with anisotropic TV prior for the Shepp–Logan phantom, 
moderate count case. Rows from top to bottom: [0:2:179], [0:4:179] and [0:8:179]. 
Columns from left to right: MAP, MAP error, EP mean, EP error and EP variance.
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A ∈ R24 960×16 384 is assembled by A = diag(ci)G, where G is the system matrix and ci is 
an attenuation vector, by setting the mask to all values being unity and other parameters to 
default. The exact image and data are shown in figure 10; see figure 11 for reconstructions, 
obtained with a regularization parameter α = 0.4. The L2 error, SSIM and PSNR for EP and 

0 0.5 1 -1 0 1 0 0.5 1 -1 0 1 0 0.005 0.01

Figure 4. MAP versus EP with anisotropic TV prior for the Shepp–Logan phantom, 
low count case. Rows from top to bottom: [0:2:179], [0:4:179] and [0:8:179]. Columns 
from left to right: MAP, MAP error, EP mean, EP error and EP variance.

0 0.5 1 -1 0 1 0 0.5 1 -1 0 1 0 0.005 0.01

Figure 5. MAP versus EP with anisotropic TV prior for the PET phantom, moderate 
count case. Rows from top to bottom: [0:2:179], [0:4:179] and [0:8:179]. Columns from 
left to right: MAP, MAP error, EP mean, EP error and EP variance.
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MAP are, respectively, 13.46 and 13.48, 0.62 and 0.83, and 25.66 and 25.64. Thus, the EP 
results and MAP are comparable, and the preceding observations remain valid.

These numerical results with different experimental settings show clearly that EP can pro-
vide comparable point estimates with MAP as well as uncertainty information by means of 
the variance estimate.

0 0.5 1 -1 0 1 0 0.5 1 -1 0 1 0 0.005 0.01

Figure 6. MAP versus EP with anisotropic TV prior for the PET phantom, low count 
case. Rows from top to bottom: [0:2:179], [0:4:179] and [0:8:179]. Columns from left 
to right: MAP, MAP error, EP mean, EP error and EP variance.

Figure 7. The 50th cross-sections of the two phantoms and 0.95-HPD regions, moderate 
count case. From left to right: Shepp–Logan phantom and PET phantom.

2 https://web.eecs.umich.edu/~fessler/code/, last accessed on July 30, 2018.
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6. Conclusion

In this work, we have developed inference procedures for the constrained Poisson likelihood 
arising in emission tomography. They are based on expectation propagation developed in the 
machine learning community. The detailed derivation of the algorithms, complexity and their 

0 0.5 1

µ1 µ2 µ3 µ4 µ5

µ6 µ7 µ8 µ9 µ10

Figure 8. The convergence of the mean µk  by EP after k outer iterations for the 
Shepp–Logan phantom, moderate count case.
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Figure 9. The convergence of the mean µ and covariance C after each outer iteration, 
moderate count case.
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Figure 10. The exact image, sinograms and observed data for IRT phantom.
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stable implementation are given for a Laplace type prior. Extensive numerical experiments 
show that the EP algorithm (with natural parameters) converges rapidly and can deliver an 
approximate posterior distribution with the approximate mean comparable with MAP, together 
with uncertainty estimate, and can handle real images of medium size. Thus, the approach can 
be viewed as a feasible fast alternative to the general-purposed but expensive MCMC for rapid 
uncertainty quantification with Poisson data.

There are several avenues for future works. First, it is of enormous interest to analyze the 
convergence rate and accuracy of EP, and more general approximate inference techniques, 
e.g. variational Bayes, which have all achieved great practical successes but largely defied 
theoretical analysis. Second, it is important to further extend the flexibility of EP algorithms 
to more complex posterior distributions, e.g. lack of projection form. One notable example 
is isotropic total variation prior that appears frequently in practical imaging algorithms. This 
may require introducing an additional layer of approximation, e.g. in the spirit of iteratively 
reweighed least-squares or (quasi-)Monte Carlo computation of low-dimensional integrals. 
Third, many experimental studies show that EP converges very fast, with convergence reached 
within five sweeps for the Poisson model under considerations. However, the overall O(mn2) 
computational complexity per sweep of all current implementations [20] is still very high, and 
not scalable well to large images that are required in many real world applications. Hence, 
there remains great demand to further accelerate the algorithms, e.g. via low-rank structure 
of the map A and diagonal dominance of the posterior covariance. Fourth and last, it is also 
important to derive rigorous error estimates for the quadrature rules developed in section 4.

Appendix A. Parameterizing Gaussian distributions

For a Gaussian N (x|µ, C) with mean µ ∈ Rn and covariance C ∈ Sn
+, the density π(x|µ, C) 

is given by

π(x|µ, C) = (2π)−
n
2 |C|− 1

2 e−
1
2 (x−µ)tC−1(x−µ) = eζ+htx− 1

2 xtΛx,

where the parameters Λ ∈ Sn
+, h ∈ Rn and ζ ∈ R are respectively given by

Λ = C−1, h = Λµ, and ζ = −1
2
(n log 2π + log |Λ|+ µtΛµ).

Thus, the density π(x|µ, C) is also uniquely defined by Λ and h. In the literature, Λ is often 
referred to as the precision matrix and h as the precision mean and the pair (h,Λ) is called the 
natural parameter of a Gaussian distribution.

It is easy to check that the product of k Gaussians {N (x|µk, Ck)}m
k=1 is also a Gaussian 

N (x|µ, C) after normalization, and the mean µ and covariance C of the product are given by

0 5 -5 0 5 0 5 -5 0 5 0 0.005 0.01

Figure 11. MAP versus EP with anisotropic TV prior for the IRT phantom. From left 
to right: MAP, MAP error, EP mean, EP error and EP variance.
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µ = C
m∑

k=1

C−1
k µk and C =

( m∑
k=1

C−1
k

)−1
,

or equivalently

h =

m∑
k=1

hk and Λ =

m∑
k=1

Λk.

Appendix B. Laplace approximation

In the engineering community, one popular approach to approximate the posterior distribu-
tion p(x|y) is Laplace approximation [5, 43]. It constructs a Gaussian approximation by the 
second-order Taylor expansion of the negative log-posterior − log p(x|y) around MAP x̂. 
Upon ignoring the unimportant constant and smoothing the Laplace potential, the negative 
log-posterior J(x) is given by

J(x) =
m1∑

i=1

(−yi log(at
ix + ri) + at

ix + ri) + α

m2∑
i=1

((Lt
ix)

2 + ε2)1/2,

where ε > 0 is a small smoothing parameter to restore the differentiability. The gradient 
∇J(x) and Hessian ∇2J(x) are given respectively by

∇J(x) =
m1∑

i=1

(− yi

at
ix + ri

+ 1)ai + α

m2∑
i=1

((Lt
ix)

2 + ε2)−1/2(Lt
ix)Li,

∇2J(x) =
m1∑

i=1

yi

(at
ix + ri)2 aiat

i + αε2
m2∑

i=1

((Lt
ix)

2 + ε2)−3/2LiLt
i.

Since ∇J(x̂) = 0, the Taylor expansion reads

J(x) ≈ J(x̂) +
1
2
(x − x̂)t∇2J(x̂)(x − x̂), (B.1)

and ∇2J(x̂) approximates the precision matrix. When ε � |Lt
ix̂|, the second term in ∇2J(x) 

can be negligible and thus the Hessian of the negative log-likelihood is dominating; whereas 
for ε � |Lt

ix̂|, the second term is dominating. In either case, the approximation is problem-
atic. In practice, it is also popular to combine smoothing with an iterative weighted approx-
imation (e.g. lagged diffusivity approximation [45]) by fixing ((Lt

ix)
2 + ε2)1/2 in ∇J(x) at 

((Lt
ix̂)

2 + ε2)1/2, which leads to a modified Hessian:

∇̃2J(x) =
m1∑

i=1

yi

(at
ix + ri)2 aiat

i + α

m2∑
i=1

((Lt
ix̂)

2 + ε2)−1/2LiLt
i.

The Hessians ∇2J(x̂) and ∇̃2J(x̂) will be close to each other, if |Lt
ix̂| are all small, which is 

expected to hold for truly sparse signals, i.e. Lt
ix ≈ 0 for i = 1, . . . , m2. One undesirable fea-

ture of Laplace approximation is that the precision approximation depends crucially on the 
smoothing parameter ε.
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Appendix C. Comparison with MCMC and Laplace approximation

Numerically, the accuracy of EP has found to be excellent in several studies [19, 36], although 
there is still no rigorous justification. We provide an experimental evaluation of its accuracy 
with Markov chain Monte Carlo (MCMC) and Laplace approximation. The true posterior 
distribution p(x|y) can be explored by MCMC [32, 37]. However, usually a large number 
of samples are required to obtain reliable statistics. Thus, to obtain further insights, we con-
sider a one-dimensional problem, i.e. a Fredholm integral equation of the first kind [35] over 
the interval [−6, 6] with the kernel K(s, t) = φ(s − t) and exact solution x(t) = φ(t), where 
φ(s) = 10 + 10 cos π

3 sχ[−3,3]. It is discretized by a standard piecewise constant Galerkin 
method, and the resulting problem is of size 100, i.e. x ∈ R100 and A ∈ R100×100. We imple-
ment a random walk Metropolis–Hastings sampler with Gaussian proposals, and optimize 
the step size so that the acceptance ratio is close to 0.23 in order to ensure good convergence 
[7]. The hyperparameter α in the prior distribution is set to 1. The chain is run for a length of 
2 × 107, and the last 107 samples are used for computing the mean and covariance.

To compare the Gaussian approximation by EP and MCMC results, we present the mean, 
MAP, covariance and 95% HPD region. Both approximations concentrate in the same region, 
and the shape and magnitude of 95% HPD/covariance are mostly comparable; see figures C1 
and C2, showing the validity of EP. However, there are noticeable differences in the recovered 
mean: the EP mean is nearly piecewise constant, which differs from that by MCMC. So EP 
gives an intermediate approximation between the MAP and posterior mean. In comparison 
with MAP, EP provides not only a point estimate, but also the associated uncertainty, i.e. 
covariance. Interestingly, the covariance is clearly diagonal dominant, which suggests the use 
of a banded covariance or its Cholesky factor for potentially speeding up the algorithm.

The Laplace approximation described in appendix B depends heavily on the smoothing 
parameter ε, and clearly there is a tradeoff between accuracy of MAP and the variance approx-
imation; see figure C3 for the numerical results corresponding to four different smooth param-
eters ε, based on the approximation (B.1). This tradeoff is largely attributed to the nonsmooth 
Laplace type prior, which pose significant challenges for constructing the approximation. 
Thus, it is tricky to derive a reasonable approximation to the target posterior distribution.  
In contrast, the EP algorithm only involves integrals, which are more amenable to 
 non-differentiability, and thus can handle nonsmooth priors naturally.

In passing, we note that the uncertainty estimate from the posterior probability distribu-
tion differs greatly from the concept of noise variance [16], which is mainly concerned with 
the sensitivity of the reconstruction with respect to the noise in the input data y . It is derived 
using chain rule and implicit function theorem, under the assumptions of good smoothness 
and local strong convexity of the associated functional [16]. In contrast, the uncertainty in 
the Bayesian framework as in this work originates from imprecise knowledge of the inverse 
solution encoded in the prior and the statistics of the data. Thus, the results of these two 
approaches are not directly comparable.
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