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Abstract— Measuring manual wheelchair activity by using 

wearable sensors is on the rise for rehabilitation and monitoring 

purposes. Stroke pattern is an important descriptor of the 

wheelchair user’s quality of movement. This paper evaluates the 

capability of inertial sensors located at different upper limb 

locations plus wheel, to classify two types of stroke pattern for 

manual wheelchairs: semicircle and arc. Data was collected using 

bespoke inertial sensors with a wheelchair fixed to a treadmill. 

Classification was done with a linear SVM algorithm, and 

classification performance was computed for each sensor location 

in the upper limb, and then in combination with wheel sensor. For 

single sensors, forearm location had the highest accuracy (96%) 

followed by hand (93%) and arm (90%). For combined sensor 

location with wheel, best accuracy came in combination with 

forearm. These results set the direction towards a wearable 

wheelchair monitor that can offer multiple on-body locations for 

increased usability.  

Keywords— manual wheelchair; inertial sensor; push style; 
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I. INTRODUCTION  

In 2011 the World Health Organization estimated that 

approximately 15% of the world population experiences some 

form of disability, with the number bound to rise as life 

expectancy increases [1]. Wheelchairs are one of the most 

common assistive technologies provided to enable independent 

mobility when people are unable, or struggle to walk. 

Wheelchair users account for approximately 10% of the whole 

disabled population [1]. Being able to move independently 

enables them to perform activities of daily living (ADLs), 

participate in social environments and better relate to other 

members of their community which, in turn has an important 

impact on their quality of life [2]. Furthermore, self-propelling 

a manual wheelchair also enables users to meet the suggested 

exercise requirements which aids in the prevention of 

cardiovascular and other non-communicable diseases (such as 

heart disease or diabetes) as well as to maintain musculoskeletal 

health [3]. However, wheelchair users do not often meet 

exercise requirements, with over 50% of the population 

exercising below the average requirements [4] .   

The main limitations of wheelchair usage come from 

environmental factors such as lack of accessibility, but also 

from inexperience. Poorly trained users find it difficult to self-

propel and manage their daily surroundings effectively [4]. 

Lack of a good technique when self-propelling a manual 

wheelchair can lead to straining muscles or joints, leading to 

wear over time and permanent injury, which in turn can lead to 

permanent immobility [5].  

 

The number of strokes when pushing, and the stroke pattern 

used when self-propelling are parameters that can describe the 

quality of the user’s propelling technique, and have an influence 

on the likelihood of injury incurrence [6]. 

The arc and semi-circular patterns are two representative 

examples of over-rim and under-rim propulsive strokes, 

respectively (see Fig. 3) [7]. A semi-circular pushing style is 

usually recommended when covering long distances, 

particularly on level ground, as it allows for a smoother and 

more efficient movement that reduces musculoskeletal strain 

when compared to a fast arc pattern[8]. However, the arc 

pattern is more suited to uphill propulsion as it allows the user 

to increase cadence and better control the wheelchair [9]. It 

therefore becomes of therapeutic interest to identify and 

monitor the actual pushing style of each user in their everyday 

settings, as it provides an insight of the users’ technique.  

 

The use of inertial sensors has been examined in response to the 

rising interest in quantifying movement in wheelchair users for 

monitoring and rehabilitation purposes, due to their size, 

inexpensiveness and the fact that are not bound to a clinical 

setting [10]. For example, accelerometers have been used to 

measure basic parameters such as bouts of mobility by 

Sonemblum et al [11] and to record more complex tasks which 

can then be combined with classifying algorithms to distinguish 

between wheelchair activities [12] or recognise wheelchair 

destabilizing conditions [13].  Less attention has been given to 

measuring stroke patterns with wearable sensors. Only two 

studies have begun to explore the measurement of quality of 

movement. First, French et al studied 4 types of propulsion 

patterns using a wrist inertial sensor and classified using two 

algorithms ( K-Nearest neighbours, and Support Vector 

Machine) [14]. Second, Holloway et al classified two push 

styles (semicircle and arc) outdoors and indoors with only a 



wrist inertial sensor [15]. Neither study investigated the ideal 

location of sensor. 

 

Currently, quantification of wheelchair activities through 

inertial sensors relies on placing them on the wheel, upper arm 

or wrist, with the last one being the most common body location 

[10][16].Varying the location of the sensor and the number of 

sensors used has been done with a practical approach, mainly 

with the purpose of increasing accuracy of measurements. For 

example, Hiremath et al  have used inertial sensors on the wrist, 

upper arm and wheel to classify 10 different wheelchair 

activities in 45 participants, and to determine which sensor is a 

better predictor for physical activities [17]. They concluded that 

multimodal measurement increases the accuracy of activity 

detection. Garcia-Masso et al have also compared performance 

of classifiers using accelerometers placed on both wrists, chest 

and waist, for identification of physical activity in 10 

categories. Their results showed that a combination of all 

sensors provided best performance [12].  

Even though many of the current wearable systems tested in 

literature [18] have been created as a precursor for the 

development of a tool for provision of feedback or monitoring 

to the wheelchair user, none of the current studies have 

motivated their sensor placement by the user’s preferences or 

needs.  

 

Carrington et al [16][19] and Malu et al [20]  have raised 

concerns about the lack of accessibility in wearable fitness 

trackers for manual wheelchair users. Carrington et al [16] 

interviewed 5 wheelchair athletes and 5 occupational therapists 

on their experience and expectations with activity tracking 

wearable technology. Their qualitative analysis identified that 

factors such as aesthetics, and device visibility and flexibility 

on their on-body location, are opportunity areas for tracking 

devices intended for wheelchair users and that when unmet, can 

limit their use. Malu et al [20] performed a study where 14 

wheelchair users evaluated two off the shelf wearable trackers 

(Fitbit One™ and Moov™) and reported their experience and 

perceptions. One output of this research was to identify the 

usage limitations that arise from the trackers physical design 

and placement. Seven users chose to wear the Fitbit™, which 

is a clip-on device, on their clothing (such as sleeve) 

mentioning that the location chosen was mainly due to ease of 

use. When evaluating the Moov™, whose watch-like form 

factor is widely accepted on non-disabled users, concerns were 

raised by 9 of the disabled users, due to difficulty of putting on 

the device independently with some mentioning the 

interference of wrist worn devices when self-propelling. 

Moreover, when users were asked for design suggestions on 

trackers, the interest of embedding them in gloves became a 

recurrent theme.  

 

In response to these findings, we performed a feasibility study 

to a) evaluate the possibility of using an inertial sensor at the 

back of the hand (instead of wrist), forearm and arm for 

classifying two representative pushing styles (arc or semi-

circular pattern); b) evaluate which of these on-body locations 

is better and c) which sensor from the inertial measurement unit 

(accelerometer and/or gyroscope provides more information on 

classification.  

 

This study will expand on the work presented in [15] and will 

set the direction for further research towards a wearable 

wheelchair monitor able to identify the quality of the propulsion 

technique of a user, and that can be worn at the user’s body 

preferable location.  

II. THE WEARABLE TRAINER : A PROPOSAL 

We propose that the wheelchair trainer becomes part of the 

everyday accessories of users, giving them a choice of locations 

to place the device according to their personal preferences and 

needs. The device can provide information that will work as a 

“trainer” of wheelchair skills for the user.  

In this case, we propose using the ARCCS sensor (Accessible 

Routes from Crowdsourced Cloud Services) [21] for data 

collection. The ARCCS sensor is a bespoke sensing unit with 

triaxial accelerometer, gyroscope, magnetometer and pressure 

sensor with wireless capabilities. Its compact size allows it to 

easily incorporate in different form factors, as illustrated in 

Fig.1. Allowing the user to make a choice of where to locate the 

sensor rather than imposing the position might increase the 

willingness to wear the technology. Wheelchair performance 

metrics can then be uploaded to a mobile phone and provide 

real-time feedback or off-line description of their activity. The 

system could not only integrate all validated methods for 

describing wheelchair user’s physical activity, but also a 

description of the quality of the movement through the type of 

pushing style.  

 

 
Fig. 1: Example of form factors for ARCCS sensor 

 

 

 

 



III. CLASSIFYING PUSH STYLE FROM UPPER LIMB MOVEMENT 

A. Data Collection  

To evaluate whether placing inertial sensors in different upper 

limb locations could be used to classify pushing patterns, and 

which location would be more suitable, we performed an in-

laboratory feasibility study with a manual wheelchair fixed to a 

wheelchair treadmill. The study took place at the Mobility 

Laboratory at the Royal National Orthopaedic Hospital, in 

Stanmore, UK.  

 

A physiotherapist trained on wheelchair provision and care was 

asked to perform several repetitions of level propulsions using 

one of two stroke patterns: arc, or semi-circular, at different 

self-selected speeds. The subject was wearing three ARCCS 

sensors (along with batteries) positioned at the top of the hand, 

the forearm, and upper arm as shown in Fig.2. In addition, one 

more sensor was attached on the wheelchair spokes. All four 

sensors logged triaxial acceleration and triaxial angular rate of 

rotation to a microSD card at a sampling rate of 100Hz. We 

used a CODA motion analysis system [22] to collect upper limb 

three-dimensional kinematic data that would serve as ground 

truth for classification of pushing style (Fig. 3). The body-worn 

sensors were safely attached to the subject with double sided 

tape, and markers for the CODA system were attached to hand 

and wrist. All trials were video recorded, and video analysis 

was used in combination with the CODA data to manually 

classify the type of stroke being performed, obtaining 48 

examples for arc pattern and 39 for semi-circular pattern.   

 

 
Fig. 2: Location of ARCCS sensors for experimental set up. 1 = upper arm,  

2 = forearm, 3 = hand, 4 = wheel. 

B. Data Analysis 

Raw accelerometer and gyroscope data retrieved by the 

ARCCS sensors were plotted in Matlab 2017b (Fig. 4), along 

with the 3D position of the hand markers as collected with 

CODA. Orientation angles of each inertial sensor (yaw, pitch 

and roll) were calculated using the Madgwick filter [23]. We 

then divided the ARCCS data into non-overlapping sliding 

windows that covered each occurance of a wheelchair stroke. 

The window length was 1.25s, determined empirically from  

observing the ground truth plots. For each sample of push 

pattern we calculated a total of 18 features: mean and standard 

deviation of acceleration, angular rate and orientation angles 

across each of the 3 dimensional axes. We then used the 

features to train a linear Support Vector Machine (SVM) 

classifier, tested with a 10-fold cross validation. We reported 

on precision, recall and accuracy (1-3) as metrics of 

classification performance for each sensor body location, and 

for 5 different feature groups: those related to i). accelerometer 

data, ii). gyroscope data, iii). gyroscope and accelerometer 

combined, iv). Euler angles and v). all together. All calulations 

were completed using custom-made code in Matlab2017b. 

We then repeated the same procedure by combining predictors 

of each body-worn sensor with the ones from the wheel. No 

other combinations were evaluated as we considered that for 

better usability, the number of wearable sensors should be 

restricted to only one.  

 

Precision = true positive / (true positive + false positive)    (1) 

 

Recall = true positive / (true positive+ false negative)       (2)             

 

Accuracy = total correctly classified/ no. of cases         (3) 

 

 

C. Results  

The classifier performance metrics for single inertial sensors at 

locations 1, 2, 3 and 4 from Fig. 2 can be seen in Table I.  

The activity classifiers trained with data collected from on-body 

ARCCS sensors presented a better accuracy relative to the ones 

positioned on the wheel. The highlighted cells in Table I 

indicate the highest accuracy for each body location. Overall, 

the sensor which presented the best accuracy was the one 

located in the forearm, with a 96.6% accuracy when trained 

with all 18 predictors. The second-best accuracy was found 

with the sensor placed on the hand, presenting a 92.0% 

accuracy when using acceleration-related only predictors, 

followed by upper arm classifier trained with all 18 features 

(90.8%). Table II presents classification performance when the 

SVM was trained with data from each on-body inertial sensor 

combined with the wheel. In this case, forearm plus wheel 

presented the highest accuracy (97.7% with all features), 

followed by arm plus wheel (88.5% for gyroscope) and hand 

plus wheel (87.4 accuracy for both accelerometer and all 

features).  

Addition of wheel features to hand location decreased 

performance for acceleration-related features but increased the 



gyroscope only performance. In the case of the wheel-forearm 

combination, performance increased in all options except for 

acceleration only ones. Combination of arm and wheel features 

decreased accuracy across all feature groups.  

 

 
Fig. 3: Motion of CODA markers on shoulder, elbow and hand along X-Z axis 

(sagittal plane) as measured in the study. The graph on the left corresponds to 
an arc stroke pattern as seen from the hand trajectory presented in black. The 

graph on the right corresponds to a semi-circular stroke pattern (blue). Signals 

in green and red correspond to elbow and shoulder markers, respectively.  
 

 

 
Fig. 4: Acceleration and angular rate across three orthogonal axes (X,Y,Z) as 
collected by ARCCS sensor, from forearm location. Vertical blue lines separate 

each stroke window.  

 

 

 

 

 

 

TABLE I: PERFORMANCE OF SVM FOR CLASSIFYING WHEELCHAIR PUSHING STYLE WITH INERTIAL SENSORS  
AT DIFFERENT BODY LOCATIONS  

Body 

location 

Feature 

groups 

Confusion Matrix (Semicircle = Class 1, 

Arc=Class 0) 

Semicircle (Class 1) Arc (Class 0) 
Overall 

Accuracy 

[%] 
true 1, 

predict 0 

true 1, 

predict 1 

true 0, 

predict 0 

true 0, 

predict 1 

Precision Recall Precision Recall  

H
an

d
 

Accelerometer 2 46 34 5 0.90 0.96 0.94 0.87 92.0 

Gyroscope 9 39 31 8 0.83 0.81 0.78 0.79 80.5 

Acc + Gyro 3 45 34 5 0.90 0.94 0.92 0.87 90.8 

Euler angles  5 43 22 17 0.72 0.90 0.81 0.56 74.7 

All features  1 47 29 10 0.82 0.98 0.97 0.74 87.4 

A
rm

 

Accelerometer 8 40 22 17 0.70 0.83 0.73 0.56 71.3 

Gyroscope 3 45 32 7 0.87 0.94 0.91 0.82 88.5 

Acc + Gyro 3 45 31 8 0.85 0.94 0.91 0.79 87.4 

Euler angles  8 40 30 9 0.82 0.83 0.79 0.77 80.5 

All features  3 45 34 5 0.90 0.94 0.92 0.87 90.8 

F
o

re
ar

m
 

Accelerometer 4 44 37 2 0.96 0.92 0.90 0.95 93.1 

Gyroscope 8 40 23 16 0.71 0.83 0.74 0.59 72.4 

Acc + Gyro 4 44 35 4 0.92 0.92 0.90 0.90 90.8 

Euler angles  0 48 35 4 0.92 1.00 1.00 0.90 95.4 

All features  0 48 36 3 0.94 1.00 1.00 0.92 96.6 

W
h

ee
l 

Accelerometer 7 41 24 15 0.73 0.85 0.77 0.62 74.7 

Gyroscope 16 32 31 8 0.80 0.67 0.66 0.79 72.4 

Acc + Gyro 12 36 31 8 0.82 0.75 0.72 0.79 77.0 

Euler angles  14 34 14 25 0.58 0.71 0.50 0.36 55.2 

All features  15 33 30 9 0.79 0.69 0.67 0.77 72.4 

 



IV. DISCUSSION  

This feasibility study showed it is possible to classify two stroke 
modalities: semicircle and arc, by placing inertial sensors in 
three locations in the upper limb different to the wrist, along with 
a linear SVM classifier trained using predictors extracted from 
basic kinematic variables. The forearm, followed by the hand, 
appear to be the most suitable locations for wearable inertial 
units, with accuracies for semicircle identification, comparable 
to the ones from [14] ( between 70 – 100%) and slightly below 
the accuracy reported by [15] (98%) both using wrist worn 
sensors. This latter’s difference in accuracy could be attributed 
to our smaller sample size which can lead to relatively wide 
confidence intervals when comparing to those studies. 

It is also observed that the most useful sensor features are 

relative to the sensor placement. In the hand and wheel 

placements, the accelerometer gives the most information, 

while in the upper arm and forearm positions, the gyroscope 

and Euler angles are the dominant factors. 
 

Better performance of the forearm sensor can be attributed to the 
pushing stroke motion being aligned to the sagittal plane, 
showing a clearer distinction between motion axial components 
which allows for a clearer classification of movement. Even 
though the hand motion is clearly describing the semi-circular 
or arc trajectory, it has a lower accuracy compared to forearm.  

TABLE II: PERFORMANCE OF SVM FOR CLASSIFYING WHEELCHAIR PUSHING 

STYLE WITH INERTIAL SENSORS AT DIFFERENT LOCATIONS ON BODY+ WHEEL 

 
This could be explained due to the complexity of hand 
movement when performing a stroke; the orientation 
components of the sensor located at the back of the hand account 
for the translation of the hand, but also the extension and 
supination of the wrist, and radial and ulnar deviation. The 
complexity of this movement makes it difficult to use basic 
kinematic parameters. As for the case of arm, movement 
amplitude is smaller than the forearm and differentiation 
between patterns becomes less accurate.   

Combining features from on-body sensors with the wheel did 
not improve accuracy for arm and hand placements, but it did 
provide the highest performance of them all (including precision 
and recall) when combined with forearm (97.7%). Using inertial 
sensors on the wheel to measure basic activity metrics such as 
distance travelled or bouts of mobility has already been 
validated and tested in the wild [24]. Our results show that 
combining both sensors increases the quality and amount of 
information to describe wheelchair user’s activity and 
performance. 

From the results in Table 1, it can be observed that using only 
accelerometer data can potentially be enough to train algorithms 
for pushing style classification for on-body sensors. In the case 
of hand location, the best performance (92.0%) was achieved 
when using only acceleration-derived features. As for the 
forearm inertial sensor, even though best performance (96.6%) 
was found when using predictors from both accelerometer and 
gyroscope, acceleration-related predictors provided an accuracy 
of 93.0%, which is still relatively high. The possibility of using 
only accelerometer data for feature extraction can have a 
positive impact in the battery life of the device.  

One of the factors that influences the adoption of wearable 
devices is battery life and device size, which affect the device 
perceived ease of use [25]. As size restrictions mean battery 
capacity cannot be increased, diminishing energy consumption 
is the alternative approach to increase battery life. The ARCCS 
unit allows the flexibility of selecting type of data to be collected 
(i.e. acceleration only) and even changing sampling frequency, 
a feature unlikely to be modifiable in off-the-shelf devices and 
that also contributes to saving energy [21].  

A limitation of this study is that for this preliminary stage, data 
collection took place in a controlled setting and with the 
wheelchair in a fixed position. Classifier performance needs to 
be tested with larger datasets from more subjects collected 
outdoors and indoors, over different surfaces and obstacles that 
account for the actual users’ settings. In addition, the classifiers 
high accuracy was only for two distinguishable classes of 
pushing style: semi-circular and arc. Future versions of the 
system should consider classification of the other two over-rim 
and under-rim patterns identified in literature: single loop over 
propulsion (SLOP) and double-loop over propulsion (DLOP), 
which are variations of the arc and semi-circular pattern, 
respectively [26][7], as well as accounting for intermediate 
patterns.  

Finally, as this method only intended to evaluate the trade-off 
between attributes used and location of sensors, it only used an 
SVM with basic predictors such as mean and standard deviation. 
As a design consideration towards the wearable trainer, using 
basic predictors would mean less computing time and better 
chances for providing real-time feedback to users. Future 
experiments will involve a thorough evaluation of a more 
complex feature space and evaluating other algorithms such as 
neural network classifiers in an attempt to learn the features 
instead of handcrafting them. 

V. CONCLUSION 

This work studied the feasibility of using inertial sensors for 

classifying push styles in self-propelled manual wheelchairs. 

Body 

location 

 

Features 

Semicircle 

(Class 1) 
Arc (Class 0) 

Accurac

y [%] 
Precision Recall Precision Recall 

H
an

d
 +

 W
h
ee

l Accelerometer 0.89 0.88 0.85 0.87 87.4 

Gyroscope 0.82 0.94 0.91 0.74 85.1 

Acc + Gyro 0.84 0.90 0.86 0.79 85.1 

Euler 

angles 
0.69 0.94 0.86 0.49 73.6 

All features 0.85 0.94 0.91 0.79 87.4 

A
rm

 +
 W

h
ee

l 

Accelerometer 0.76 0.77 0.71 0.69 73.6 

Gyroscope 0.87 0.94 0.91 0.82 88.5 

Acc + Gyro 0.86 0.90 0.86 0.82 86.2 

Euler 
angles 

0.80 0.83 0.78 0.74 79.3 

All features 0.84 0.79 0.76 0.82 80.5 

F
o

re
ar

m
 +

 W
h

ee
l Accelerometer 0.86 0.88 0.84 0.82 85.1 

Gyroscope 0.86 0.90 0.86 0.82 86.2 

Acc + Gyro 0.90 0.94 0.92 0.87 90.8 

Euler 

angles 
0.91 1.00 1.00 0.87 94.3 

All features 0.96 1.00 1.00 0.95 97.7 



Two common pushing styles (i) semi-circular and (ii) arc were 

considered and tested using empirical data on treadmill. Inertial 

sensors were placed in four different positions for a 

comparative study (arm, forearm, hand and wheel). A linear 

SVM was used to classify the two pushing styles. 

Forearm position results showed the highest accuracy of 

classification (both recall and precision) for when 

accelerometer and gyroscope related attributes were used. Arm 

and Hand placements are similarly ranked second in terms of 

accuracy, and wheel placement comes last. Results also 

suggested the possibility of using only acceleration data when 

placed in the forearm and hand, for classification of pushing 

styles with reasonable accuracy (> 90%).   

Future work will include evaluating the inertial sensor 

classification capabilities in outdoors and indoors settings with 

real wheelchair users, and evaluation of more complex feature 

space and algorithms to increase performance. 

The results show great potential that a wearable inertial sensor 

such as the ARCCS can be used to classify push strokes and 

push styles. This research helps set the scene towards a 

wearable wheelchair monitor and possible trainer that allows 

the user to place the sensor at the most convenient body 

position, which would potentially improve its usability within 

the manual wheelchair population. As a sensor is only useful 

when used, this could help to increase activity levels in the 

manual wheelchair population if co-designed and developed 

with the targeted community. 
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