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ABSTRACT
BACKGROUND: Fine motor skill impairments are common in autism spectrum disorder (ASD), significantly affecting
quality of life. Sensory inputs reaching the primary motor cortex (M1) from the somatosensory cortex (S1) are likely
involved in fine motor skill and specifically motor learning. However, the role of these connections has not been
directly investigated in humans. This study aimed to investigate, for the first time, the role of the S1-M1 connections
in healthy subjects in vivo and whether microstructural alterations are associated with motor impairment in ASD.
METHODS: Sixty right-handed neurotypical adult men aged 18 to 45 years, and 60 right-handed age- and sex-
matched subjects diagnosed with ASD underwent fine motor skill assessment and scanning with diffusion tensor
imaging (DTI). The streamlines of the hand region connecting S1-M1 of the motor-sensory homunculus were virtually
dissected using TrackVis, and diffusion properties were extracted. The face/tongue region connections were used as
control tracts.
RESULTS: The ASD group displayed lower motor performances and altered DTI measurements of the hand-region
connection. Behavioral performance correlated with hand-region DTI measures in both groups, but not with the face/
tongue connections, indicating anatomical specificity. There was a left-hemisphere association of motor ability in the
control group and an atypical rightward shift in the ASD group.
CONCLUSIONS: These findings suggest that direct interaction between S1 and M1 may contribute to the human
ability to precisely interact with and manipulate the environment. Because electrophysiological evidence indicates
that these connections may underpin long-term potentiation in M1, our findings may lead to novel therapeutic
treatments for motor skill disorders.
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The development of fine motor skills for precision grasping has
been crucial to achieving greater control of the environment
throughout evolution. This is particularly true for humans who
have acquired the finest ability to manipulate objects for a
wide range of activities that are characteristic of our species,
from tool making to writing and artistic expression. Skillful
hand motor ability depends on precise movement of the
thumb and forefingers, which is under the direct control of
the primary motor cortex (M1) (1).

The neurons of M1 are arranged according to a topo-
graphical map of the opposite body half. A distinct feature of
this map consists of the disproportionate representation of
neurons controlling those muscles capable of finely controlled
movements, generally referred to as the motor homunculus (2).
For instance, the largest areas in M1 are occupied by neurons
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controlling finger movements, followed by neurons for lips and
tongue movement. A similar topographical organization has
been described for the primary somatosensory cortex (S1) in
the parietal lobe (i.e., the somatosensory homunculus). Here,
areas dedicated to the representation of tactile and proprio-
ceptive information from the fingers and oral region are larger
than other body parts.

We have recently demonstrated in humans that the motor
and somatosensory homunculi are directly connected through
short U-shaped fibers running beneath the central sulcus (3).
The pattern of distribution of these fibers follows the topo-
graphical organization of M1 and S1. That is, greater con-
nections exist between finger regions compared with areas
controlling other body parts. The existence of these connec-
tions in humans is consistent with previous reports supporting
iological Psychiatry. This is an open access article under the
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Table 1. Subject Demographic Characteristics

Characteristic
Healthy Controls Subjects With Autism

(n 5 60) (n 5 60)

Age, Yearsa 29 (7) [18–45] 26 (7) [18–43]

WASI IQ Scorea

Full scale 111 (12) [88–133] 115 (12) [77–137]

Verbal 108 (13) [84–139] 112 (13) [71–137]

Performance 111 (13) [88–133] 115 (13) [75–137]

ADI-R Score

Total NA 39 (10) [21–62]

Social NA 18 (5) [9–28]

Communication NA 14 (4) [8–24]

Repetitive NA 5 (2) [2–10]

ADOS Scoreb

Total NA 11 (5) [1–23]
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the role of somatosensory inputs in motor learning and
precision grasping in animals (4–6). In monkeys, inactivation
of S1 leads to altered finger coordination, such as the inability
to oppose the thumb and forefinger and the inaccurate control
of grip forces (4,7). Furthermore, experimental studies in
healthy humans have demonstrated that in conditions of
digital anesthesia, where tactile sensation is absent, coordi-
nation of thumb and finger movements is impaired due to
misalignment of fingers and an imbalance of the pressure
applied (8). These studies suggest that direct connections
between S1 and M1 may play a crucial role in precision
grasping movements, although direct experimental evidence
for this is lacking in humans (9,10).

In the present study we therefore sought evidence of the
role of S1-M1 connections in fine motor skill and precision
grasping ability. To investigate this, first we combined behav-
ioral measurements of fine motor skill performance with
diffusion tensor tractography in a group of 60 healthy adults
to understand the association between grasping performance
and microstructural properties of U-shaped fibers connecting
S1 to M1 of the hand region. As a control tract we also
investigated the U-shaped connections of the face/tongue
region, the microstructure of which would not be predicted to
correlate with finger dexterity.

Second, we obtained diffusion tractography and grasping
performance in a group of adults with a neurodevelopmental
disorder in which precision grasping abnormalities are preva-
lent, namely autism spectrum disorder (ASD). ASD affects
approximately 1% of the population and is diagnosed on the
basis of social-communication impairments, alongside repet-
itive and stereotypic behaviors (11). Motor abnormalities have
been reported in up to 79% of people with ASD (12). These
abnormalities include precision grasping impairments (13).
Motor impairments are present across the spectrum of autism
(14) and are reported to be some of the earliest signs of ASD
to emerge in infancy (15). Motor difficulties can significantly
reduce day-to-day quality of life because of altered peer group
interactions through sport and other social activities and
increased dependence on others (16). Furthermore, motor
proficiency is a necessary prerequisite for interaction with
the environment, which underpins the development of social
and language skills (17), highlighting the importance of inves-
tigating motor deficits in ASD. ASD is also associated with the
abnormal development of white matter connections. A large
number of studies have found that children and adults with
ASD display structural differences in white matter tracts and
across multiple brain regions (18). We therefore investigated
whether abnormal structure of the S1-M1 U-shaped fibers
underpins precision grasping difficulties in 60 right-handed
adult men with ASD.
Social NA 6 (3) [1–14]

Communication NA 3 (2) [0–7]

Repetitive NA 1 (1) [0–6]

Data are mean (SD) [range].
ADI-R, Autism Diagnostic Interview-Revised; ADOS, Autism Diag-

nostic Observation Schedule; NA, not applicable; WASI, Wechsler
Abbreviated Scale of Intelligence.

aNo significant between-group differences were found in age, full-
scale IQ, verbal IQ, or performance IQ (all p . .05, 2-tailed).

bInformation was available for 58 subjects with autism.
METHODS AND MATERIALS

Participants

Sixty neurotypical adult men aged 18 to 45 years, and 60 age-
and sex-matched subjects with a diagnosis of ASD were
recruited at the Institute of Psychiatry, Psychology and Neuro-
science, King’s College London, or the Autism Research
Centre, University of Cambridge, as part of the UK Medical
212 Biological Psychiatry February 1, 2017; 81:211–219 www.sobp.or
Research Council Autism Imaging Multicentre Study. Approx-
imately equal ratios of cases to controls were recruited at each
site: Institute of Psychiatry, Psychology and Neuroscience,
34:32, University of Cambridge, 26:28. All participants were
right-handed, as indicated by a score of 140 or higher on the
Edinburgh Handedness Inventory (19).

Exclusion criteria for all subjects included any medical
illness affecting brain function or history of epilepsy, intellec-
tual disability, major psychiatric disorder such as psychosis
and attention-deficit/hyperactivity disorder (ADHD), head
injury, or genetic disorder associated with autism. Participants
taking any current psychotropic medications, including anti-
psychotic medication, mood stabilizers, benzodiazepines,
stimulants, and selective serotonin reuptake inhibitors, or with
a history of substance abuse were excluded. ASD participants
met the ICD-10 research criteria. This was confirmed with the
Autism Diagnostic Interview-Revised (20). All cases with ASD
met Autism Diagnostic Interview-Revised algorithm cutoff
values in the three domains of impaired reciprocal social
interaction, communication, and repetitive behaviors; how-
ever, one point below cutoff in one of the domains was
permitted (Table 1).

Current symptoms were assessed using the Autism Diag-
nostic Observation Schedule (21) but not as inclusion criteria.
All participants underwent a neuropsychological test battery
(22). This included the Wechsler Abbreviated Scale of Intelli-
gence (23) as a measure of overall intellectual ability. All
participants fell within the high-functioning range on the
autism spectrum as defined by a full-scale IQ of .70. Written
consent was acquired for all participants after a complete
description of the study was given, in accordance with ethics
approval by the National Research Ethics Committee, Suffolk,
England.
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Figure 1. (A) The frontoparietal U-shaped connections of the foot, hand,
and face/tongue regions, and (B) relation between diffusion measures of the
hand-region tract and performance (C) in healthy controls. *Statistically
significant at p , .025.
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Motor Assessment

The Purdue Pegboard Test was selected to assess fine motor
skill (24). The Purdue Pegboard is an established test of finger
and hand dexterity and precision grasping ability with good test-
retest reliability in both healthy subjects (25) and clinical pop-
ulations (26). The participant is verbally instructed to place pins in
one of two columns on a test board within a specified time period
(Figure 1). There are five subtests giving five subscores. These
are right hand (dominant hand), left hand (nondominant hand),
both hands alternately (both hands), and a bimanual “assembly”
task (Supplement). The fifth score is a composite of performance
on the right hand + left hand + both hand tasks (R + L + B).

Diffusion Tensor Imaging Data Acquisition and
Preprocessing

Participants were scanned at the Centre for Neuroimaging
Sciences, Institute of Psychiatry, Psychology and Neuro-
science, King’s College London, and the Department of
Radiology, University of Cambridge, using two identical 3T
GE Signa System scanners (General Electric, Milwaukee, WI). A
total of 60 contiguous slices were acquired using a sequence
fully optimized for diffusion tensor imaging (DTI), providing
isotropic (2.4 3 2.4 3 2.4 mm) resolution and whole head
coverage. There were 32 diffusion-weighted volume directions
and 6 nondiffusion weighted volumes. The diffusion weighting
was equal to a b value of 1300 s/mm2. DTI processing was
performed using Explore DTI (http://www.exploredti.com). The
data were corrected for eddy current distortion and subject
motion, and the b matrix was accordingly reoriented (27). The
tensor model was fitted using a nonlinear least square fitting
Biological Psy
procedure (28). DTI scalar maps, including fractional aniso-
tropy, mean diffusivity, and perpendicular diffusivity, were
calculated and exported. Whole-brain tractography was per-
formed using an Euler-like streamline propagation algorithm
with a step-size of 1 mm, fractional anisotropy threshold of 0.2,
and an angle threshold of 351 (29). The whole-brain tractog-
raphy was imported into TrackVis for virtual dissections (30).
Tractography and Virtual Dissections

Virtual in vivo dissections of the tracts of interest for the left
and right hemispheres were performed using TrackVis. The
connections were dissected in regions corresponding to the
hand, face/tongue, and foot regions of the motor-sensory
homunculus (Figure 1). The foot and face/tongue region
connections were dissected as control tracts (Supplement).

The dissector was blinded to subject identity and diagnosis.
Thirty-one data sets (25.8%) were reversed around the midline
to ensure blindness to side. All dissections were completed
after ensuring intrarater reliability. This was tested with the use
of 10 subjects from the present study, dissected twice by the
same dissector. Reliability was tested using a two-way mixed
intraclass correlation coefficient (ICC) (31). For the hand and
face/tongue tracts, the ICC for single measures reached .0.90
(32). We found that the foot connections consisted of only one
or two individual streamlines and were not present in a number
of participants. Diffusion properties for the foot streamlines did
not reach .0.90 on the ICC and were therefore excluded from
all further analyses.

For each tract fractional anisotropy, perpendicular diffusiv-
ity and mean diffusivity were calculated. Alterations in these
measures reflect microstructural differences that may include
altered axonal integrity, compactness of fiber bundles, and
myelination (33). Fractional anisotropy reflects the degree of
directionality of water motion within a voxel. Although highly
sensitive to microstructural differences, fractional anisotropy
does not provide information on the contribution of axial or
perpendicular diffusion to this process. Therefore, perpendic-
ular diffusivity, a measure of water motion perpendicular to the
fiber tract, was also included. Perpendicular diffusivity may be
particularly sensitive to alterations in myelination (34). Mean
diffusivity was also included.
Statistical Analysis

Statistical comparisons of the data were performed using
SPSS software version 21 for PC (SPSS Inc., Chicago, IL).
A Student t test (two-tailed) for independent samples was
used to investigate differences between controls and individ-
uals with ASD. A paired samples t test was used to analyze
behavioral lateralization of pegboard performance. For all t test
comparisons, Cohen’s d effect sizes are reported (35). For
the paired samples t test this is corrected for dependence
between means (36). To control for possible confounds, DTI
tractography outcome measurements between groups were
also compared using a general linear model, with age and
center included as covariates. A two-tailed Pearson correlation
analysis was calculated between DTI indices and pegboard
measures for the control and ASD groups individually, con-
trolling for age and center. The results of the correlation
chiatry February 1, 2017; 81:211–219 www.sobp.org/journal 213
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Table 2. Correlations Between Pegboard Performance and Hand-Region Tract-Specific Measurements for the Control
Group (Controlling for Age and Center)

Pegboard

Diffusion Tensor Measures of Hand-Region Frontoparietal U Tract

Left Hemisphere Right Hemisphere

Fractional Perpendicular Mean Fractional Perpendicular Mean
Anisotropy Diffusivity Diffusivity Anisotropy Diffusivity Diffusivity

Right .074 2.213 2.305a 2.140 .030 2.008

Left .352b 2.376b 2.315a 2.057 .049 .077

Both .199 2.157 2.051 .169 2.192 2.212

R + L + Both .244 2.316a 2.287a .021 2.095 2.116

Assembly .183 2.157 2.090 .002 .005 .009

Values are Pearson’s r.
R + L + Both, right hand 1 left hand 1 both composite score.
ap , .025.
bp , .01.
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analysis were considered significant after Bonferroni correc-
tion for multiple comparisons. Because both the subscales of
the pegboard and tract-based DTI indices are highly interre-
lated, multiple comparison correction was calculated based on
the number of tracts analyzed, leaving a threshold of p , .025.
A z observation analysis was used to determine differences in
Pearson’s correlation coefficient 1) between hemispheres
(within group), 2) between tracts (hand-region and face/tongue
region tracts) (within group), and 3) between groups.
Table 3. Comparison of Purdue Pegboard Test Scores
Between Control and Autism Groups

Purdue Pegboard Test Control Autism t

Right 14 (2) 13.1 (2.4) 2.08a

Left 13.3 (2) 12.6 (2.8) 1.57

Both 13.6 (2.9) 12.6 (4.3) 1.39

R 1 L 1 Both 40.7 (4.8) 38.3 (7.8) 2.01a

Assembly 34.6 (8.2) 28.3 (8.9) 3.97b

Values are mean (SD).
L, left hand; R, right hand.
ap , .05.
bp , .001.
RESULTS

Relation Between Manual Dexterity and Tract
Properties in the Control Group

Participants showed statistically significant faster performance
when executing the task with their right hand than with the left
hand (t 5 3.11, p 5 .003, d 5 0.40). Tractography-based
measurements of the hand-region U-shaped fibers in the left
hemisphere correlated with performance on the pegboard test
when subjects used their right or left hand (Table 2, Figure 1C).
There were no significant correlations for the U-shaped fibers
of the face/tongue region and pegboard performances
(Supplement). In addition, no significant correlations were
found between any right-hemisphere diffusion measurement
and pegboard performances.

Z observation analysis revealed that Pearson’s correlation
between pegboard performance of the right hand and mean
diffusivity of the hand-region tracts in the left hemisphere were
higher than the correlation between right-hand performance
and right-hemisphere hand-region tracts (z 5 21.64, p 5 .05).
Correlations between the fractional anisotropy of the hand-
region tracts in the left hemisphere and pegboard performance
with the left hand were significantly higher than the correla-
tions for the face/tongue tract (z 5 2.04, p 5 .021), and the
correlation between left-hand performance and the hand-
region tracts in the right hemisphere (z 5 2.27, p 5 .012).
There were also significantly higher correlations between the
left-hemisphere hand-region perpendicular (z 5 22.37, p 5

.009) and mean diffusivity (z 5 22.15, p 5 .016) and left-hand
pegboard performance, compared with correlations with the
hand-region tract of the right hemisphere and the left-hand
pegboard performance.
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Comparison of Manual Dexterity Performance
Between the Control and ASD Groups

Behavioral asymmetry in participants with ASD was lower than
for controls, and differences between right- and left-hand
performances were not statistically significant (t 5 1.96, p 5

.055). Statistically significant differences in pegboard perform-
ance between the ASD and control groups were evident for a
number of measurements and included lower performance of
the ASD group 1) when using their right hand (t 5 2.08, p 5

.040, d 5 0.38); 2) on the bimanual assembly task (t 5 3.98,
p5 .001, d5 0.74); and 3) on a composite score of right hand +
left hand + both hands (t 5 2.01, p 5 .047, d 5 0.37) (Table 3).
Performances with the left hand were not significantly different
from those of healthy controls.
Comparison of Tract Properties Between the Control
and ASD Groups

The tractography analysis showed that in comparison with the
healthy control group, in the ASD group there was significantly
decreased fractional anisotropy (t 5 3.55, p 5 .001, d 5 0.65)
and significantly increased perpendicular diffusivity (t 5 23.51,
p 5 .001, d 5 0.65) and mean diffusivity (t 5 23.24, p 5 .002,
d 5 0.59) of the U-shaped fibers of the hand-region in the left
hemisphere (Figure 2A). In the right hemisphere, there was
significantly decreased fractional anisotropy (t 5 2.29, p 5 .024,
d 5 0.43) and significantly increased perpendicular diffusivity
(t 5 22.48, p 5 .015, d 5 0.46) and mean diffusivity (t 5 22.46,
g/journal
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Figure 2. Between-group differences in fractional anisotropy, mean diffusivity, and perpendicular (Perp.) diffusivity. These were significant for (A) the hand-
region connection but not for (B) the face/tongue tract. Data are mean and SD. Statistically significant at *p , .025, **p , .01, ***p , .001. ASD, autism
spectrum disorder; n.s., not significant.
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p 5 .015, d 5 0.46) of the U-shaped fibers of the hand-region;
however, this did not remain significant when controlling for
age and center. When controlling for age and center, only the
left-hemisphere differences remained significant.

There were no significant between-group differences of the
face/tongue tracts in both hemispheres (Figure 2B).
Table 4. Correlations Between Pegboard Performance and Hand-Region Tract-Specific Measurements for the ASD Group
(Controlling for Age and Center)

Pegboard

Diffusion Tensor Measures of Hand-Region Frontoparietal U Tract

Left Hemisphere Right Hemisphere

Fractional Perpendicular Mean Fractional Perpendicular Mean
Anisotropy Diffusivity Diffusivity Anisotropy Diffusivity Diffusivity

Right 2.029 2.053 2.112 .080 2.175 2.158

Left .175 2.135 2.121 .116 2.214 2.221

Both .256 2.253 2.223 .280a 2.413b 2.413b

R + L + Both .176 2.186 2.187 .201 2.331a 2.328a

Assembly .136 2.182 2.196 .050 2.289 2.382b

Values are Pearson’s r.
R + L + Both, right hand 1 left hand 1 both composite score.
ap , .025.
bp , .01.
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Relation Between Manual Dexterity and Tract
Properties in the ASD Group

Unlike the healthy control group, in the ASD group there were no
significant correlations between pegboard performances and
diffusion measurements in the left-hemisphere hand-region tract;
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Figure 3. Pearson’s r correlations
between left- and right-hemisphere
hand-region tract mean diffusivity
and pegboard performance in the
control and autism groups. Statistically
significant at *p, .025, **p, .01. ASD,
autism spectrum disorder; L, left; R,
right.
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conversely, there were a number of significant correlations
between pegboard performances and diffusion measurements
in the right-hemisphere hand-region tract (Table 4, Figure 3).
There were no significant correlations between manual dexterity
scores and DTI measures of the face/tongue tract (Supplement).

Z observation analysis revealed that the correlation
between pegboard performance with both hands and perpen-
dicular diffusivity was significantly higher for the right-
hemisphere hand-region tract in comparison with the right
face/tongue tract (z 5 22.29, p 5 .011). There were also
significantly higher correlations between the right-hemisphere
hand-region tract mean diffusivity and both pegboard per-
formance with both hands (z 5 22.46, p 5 .007) and
performance in the composite score of R 1 L 1 B (z 5

21.92, p 5 .027), compared with the correlations with the
mean diffusivity of the face/tongue tract.

Finally, there was a significant difference in strength of
correlation between the right-hemisphere hand-region tract
mean diffusivity and assembly scores (z 5 22.19, p 5 .014)
when comparing the ASD and control groups.
DISCUSSION

The present study provides the first direct support of the role
of connections between the M1 and S1 in fine motor skill
performance. This finding was specific to the S1-M1 con-
nections of the hand-region of the motor-sensory homunculus
216 Biological Psychiatry February 1, 2017; 81:211–219 www.sobp.or
and was not present for the S1-M1 connections of the face/
tongue region, demonstrating that the U-shaped white
matter fibers connecting either side of the central sulcus
display functional topographical organization (2). Disruption
of the S1-M1 connections was associated with precision
grasping impairments in a group of individuals with ASD. In
comparison with healthy controls, participants with ASD
showed a slower performance on the pegboard test and
showed decreased fractional anisotropy and increased per-
pendicular diffusivity and mean diffusivity in the left hemi-
sphere. These differences in diffusion measurements have
previously been associated with alterations to tract structure,
such as reduced tract coherence and organization, and
reduced myelination (37) and may be associated with reduced
conduction speed (38). These processes may contribute to
ASD pathology (39,40), because studies report lower myelin
content in areas of the frontal lobes (41), and increased
transmission times of brainstem auditory-evoked potentials
in ASD (42). In addition, lower tract coherence may be linked to
abnormally low signal to noise, which has been proposed to
underpin ASD symptoms (43). Such pathology might reason-
ably be expected to degrade performance in the pegboard test
in the ASD group. This is consistent with the existence
of significant correlations between slower performances in
the pegboard test and tractography measurements in the
ASD group.

The association between the S1-M1 connections and
precision grasping is asymmetrical and present only in the
g/journal

www.sobp.org/journal


Dexterity and Frontoparietal Networks in Autism
Biological
Psychiatry
left hemisphere in the control group. The finding of asymmetry
is in line with previous clinical studies on patients with
acquired apraxia, in which a loss of grasping abilities in the
left or right hand is invariably associated with left-hemisphere
lesions (44,45). Unlike the healthy control group, in the ASD
group there were no significant correlations with the left-
hemisphere tract, but there were a number of significant
correlations with the right-hemisphere tract. Together these
data suggest that the left hemisphere is dominant for precision
grasping in healthy individuals and that the loss of this typical
left dominance is associated with reduced fine motor skills in
individuals with ASD. Loss of hemispheric dominance in the
ASD group is in accordance with studies that suggest an
atypical right-hemispheric shift of lateralization may be a
fundamental feature of brain organization in ASD (46). Atypical
rightward lateralization in ASD has most frequently been linked
to language abnormality (47–49), but studies that report a
rightward shift of lateralization across widespread brain areas
suggest that atypical lateralization in ASD may result from a
generalized maturational disturbance (46,50).

A number of considerations must be taken into account
when interpreting the present findings. Although the pegboard
task measures motor speed, cognitive factors such as moti-
vation or comprehension of task instructions may also affect
the speed of pegboard completion. Although there were no
significant differences in IQ between the ASD and control
groups in the present study, we cannot rule out the possibility
that other cognitive factors, such as attention, may have
played a role in the difference in pegboard scores observed.
In addition, our sample is restricted to a high-functioning ASD
group, with relatively low Autism Diagnostic Observation
Schedule scores. Our findings may not, therefore, be general-
izable to low-functioning individuals with ASD. We also
excluded participants with comorbid ADHD. Although this
may be considered a strength of the sample, it also limits
the generalizability of our findings to individuals with ASD and
comorbid ADHD. ADHD may be present in up to 78% of
individuals with ASD (51,52), and studies suggest the nature of
motor impairments may be distinct in individuals with ASD
with and without ADHD (53). Future studies should therefore
aim to investigate this.

Furthermore, the motor impairments we report in the ASD
group may relate to abnormalities in other brain regions, in
addition to the S1-M1 connections. Cerebellar (54) and
thalamic (55) abnormalities have been reported in ASD,
including altered white matter connectivity of these regions
(56,57). Abnormality of these regions may have a distinct
influence on motor impairment in ASD. For example, although
the S1-M1 connections likely play a role in sensory feedback
after contact with an object, anterior cerebellar abnormalities
may be associated with deficits in the feedforward planning,
which occurs before object contact (58). A more comprehen-
sive assessment of the tracts involved in motor planning and
execution, which may also include, for example, the superior
cerebellar peduncle and the superior longitudinal fasciculus
system, will be necessary to understand the specific role of
each tract to fine motor skills in ASD. Because of the
characteristics of our data set, we were unable to perform
dissections of the superior longitudinal fasciculus for which
high angular resolution diffusion-weighted imaging models
Biological Psy
that necessitate higher number of directions and higher b
values are required (59).

Several theories of disconnection in ASD propose a dual
mechanism of increased connectivity in short-range connec-
tions and reduced connectivity in long-range connections
(43). The present study reports alterations in U-shaped
fibers between frontal and parietal lobes, which are anatom-
ically considered to be short tracts compared with other
association pathways. However, the concept of short- and
long-range connectivity in ASD is not well defined (51), and
indeed other studies have previously reported reductions in
short-range white matter connectivity in ASD (52,53). Future
studies will be required to determine whether the short- versus
long-range dichotomy defined at the anatomical and func-
tional levels accurately reflects underlying biology in ASD.
Such studies will require advanced methods to quantify
connectivity of intracortical fibers, U-shaped fibers, and long
interlobar fibers.

The S1-M1 connections are thought to be the terminal
component of an indirect route for thalamic sensory informa-
tion to reach M1, as opposed to a direct thalamo-M1 pathway
(3). Electrophysiological studies in cats indicate that this
indirect route may play a role in motor learning. For example,
tetanic stimulation of S1 leads to long-term potentiation (LTP)
in M1 (5), an effect that does not occur with tetanic stimulation
of the thalamus alone (6). Further evidence in support of the
role of the S1-M1 connections in motor learning comes from
the finding that ablation of S1 in macaque monkeys prevents
the ability to learn novel motor sequences (60). Our study is
restricted to an adult cohort, and it is not possible to establish
whether the microstructural abnormalities reported are due to
processes occurring early or late in development. However,
white matter differences have been reported across the
lifespan in ASD, including early childhood (61). Because of
the involvement of the S1-M1 connections in LTP and motor
learning, as suggested by the above studies in nonhuman
animal models, the findings of the present study may lead to
novel therapeutic approaches targeting motor learning in
young children with ASD and in children with developmental
dyspraxia in general. Navigated transcranial magnetic stimu-
lation of the S1 cortex, for example, could be used to elicit LTP
in M1 and to facilitate consolidation of behaviorally induced
motor learning. Because motor disturbance is one of the
earliest signs of abnormality in infants with ASD and underpins
later abnormal development of language and social abilities
(15,17), the development of a therapeutic approach for motor
impairments in ASD would be of great importance.

In conclusion, we reported significant correlations between
pegboard performance skill and the microstructural properties
of white matter connections between S1 and M1 of the left-
hand region in a group of healthy adults. We also found that
poor pegboard performance was associated with structural
abnormality of this tract in a clinical population of individuals
with ASD. Our findings represent the first empirical evidence in
humans that development of normal S1-M1 connections play
an important role in fine motor control. In addition, because S1
input to M1 underpins LTP in M1, these findings may lead to
novel therapeutic approaches for motor rehabilitation in peo-
ple affected by ASD, and in individuals with specific motor
learning disability.
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