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Abstract. T-310 is an important Cold War cipher [22]. It was the prin-
cipal encryption algorithm used to protect various state communication
lines in Eastern Germany in the 1980s. The cipher is quite robust and
it outputs extremely few bits from the internal state. In this article we
study the choice of the long-term key in T-310. The main result is to show
that if a key is faulty, communications can be decrypted in a ciphertext-
only scenario. The attack becomes possible when the round function is
not bijective. For example we demonstrate that this can happen if we
omit to check just one highly technical condition out of many which the
long-term keys are expected to satisfy. We provide mathematical proofs
that the main historical key classes KT1 and KT2 are secure against
such attacks.
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1 Introduction

T-310 is an important historical cipher which was used in East Germany during
the last period of the Cold War. According to [12, 22], in 1989 there were some
3,800 T-310 cipher machines in active service across all sorts of government,
party and internal security services.

1.1 Basic Description of T-310

T-310 is a synchronous stream cipher which derives its keystream from the it-
eration of a relatively complex block cipher. The main component of T-310 is a
keyed permutation which also takes an IV which we will call “the T-310 block
cipher”. The block size in T-310 is 36 bits only, the secret key has 240 bits which
can (but doesn’t have to) include 10 parity bits. The IV has 61 bits which are
generated at random by the sender. The block cipher is not used directly to
encrypt, but it is iterated a large number of times. Some 13 · 127 = 1651 block
cipher rounds are performed in order to extract as few as 10 bits called (Bj , rj)
from the cipher’s internal state, which will then be used to encrypt just one 5-bit
character of the plaintext by a sort of double one-time pad cf. Fig. 1.

The initial key is s1−120,1−2 which is 240 bits. The key used in different
encryption rounds repeats every 120 steps:

sm+120,1−2 = sm,1−2.

This periodicity is a key vulnerability which we exploit in this article. In
contrast the IV bits are expanded in an aperiodic way from an initial set of 61
bits chosen at random by the sender. The expansion is based on the following
LFSR which produces a sequence with a very large prime [21] period of 261 − 1:

fi = fi−61 ⊕ fi−60 ⊕ fi−59 ⊕ fi−56.
This peculiar aperiodic expansion makes T-310 stronger than for example

GOST where the same permutation is repeated many times, which is a source of
numerous self-similarity attacks [4, 8, 9]. However this sequence remains entirely
predictable for the attacker and in this article we show that if we are not careful
with the choice of the long-term key, T-310 communications can be decrypted.



Fig. 1. T-310 Cipher.



T-310 mandates a peculiar variant of a so-called “Contracting Unbalanced
Feistel cipher” with 4 branches, cf. [19]. The original Feistel cipher construc-
tion had 2 branches and was invented around 1971 [15]. Then East German
cipher designers had already in 1970s [22] mandated a substantially more com-
plex structure. The actual connections depend on the so-called long-term key,
a.k.a. LZS, in German Langzeitschlüssel. In this article we show that T-310 can
be strong or weak, depending on the LZS. On Fig. 2 we show what happens for
the so-called class KT1 of keys which has been the main and primary method
used in T-310 history [13]. Another example is key number 15 from [13] which is
not at all like in Fig. 2 and belongs to the so-called class KT2 described in [21].

Following [22] we denote by um,1−36 the 36-bit state of the cipher at moment
m = 0, 1, . . .. We denote by φ : {0, 1}3 × {0, 1}36 → {0, 1}36 the function of one
round. We have

(um,1−36) = φ (sm,1, sm,2, fm; um−1,1−36) .
The numbering in the cipher is such that the bits numbered 1, 5, 9, . . . , 33 will

be those created in one encryption round, and the bits numbered 4, 8, . . . , 36 are
those which are replaced, and all the other bits get shifted by one position i.e.
um+1,i+1 = um,i for any i 6= 4k.

Fig. 2. The internal structure of one encryption round for T-310 in the KT1 case.



1.2 One Block Cipher Round φ

Let U1−9 be the 9 newly created bits. By definition after one round we have

(um+1,1, um+1,5, um+1,9, . . . , um+1,29, um+1,33) = (U1, U2, U3, . . . , U8, U9)

It remains to specify how the U1−9 are computed inside one round. In [22] this
is defined using a function T : {0, 1}2+27 → IF9

2 which is also illustrated in Fig.
3 below. In this article we use a different particularly compact way to describe
this computation: bits can be computed in order starting from U9 as follows:

u0
def
= s1

U9 = uD(9) ⊕ f
U8 = uD(8) ⊕ U9 ⊕ uD(9) ⊕Z1(s2, uP (1−5))

U7 = uD(7) ⊕ U8 ⊕ uD(8) ⊕uP (6)

U6 = uD(6) ⊕ U7 ⊕ uD(7) ⊕Z2(uP (7−12))

U5 = uD(5) ⊕ U6 ⊕ uD(6) ⊕uP (13)

U4 = uD(4) ⊕ U5 ⊕ uD(5) ⊕Z3(uP (14−19))⊕ s2
U3 = uD(3) ⊕ U4 ⊕ uD(4) ⊕uP (20)

U2 = uD(2) ⊕ U3 ⊕ uD(3) ⊕Z4(uP (21−26))

U1 = uD(1) ⊕ U2 ⊕ uD(2) ⊕uP (27)

Note: These compact notations require a special convention such that if

D(i) = 0 for one1 of the i, we put input um,0
def
= sm+1,1, m ≥ 0 which is part

of the secret key and a constant for any given round.

Fig. 3. Internal structure of one round of T-310 based on original drawings [21, 12].

Definition of Z1−4: Finally, in the above, Z1−4 are four identical copies of the
Boolean function Z : IF6

2 → IF2 which is:

Z(e1, e2, e3, e4, e5, e6) = e1 ⊕ e5 ⊕ e6 ⊕ e1e4 ⊕ e2e3 ⊕ e2e5 ⊕ e4e5 ⊕ e5e6 ⊕
e1e3e4 ⊕ e1e3e6 ⊕ e1e4e5 ⊕ e2e3e6 ⊕ e2e4e6 ⊕ e3e5e6 ⊕

e1e2e3e4 ⊕ e1e2e3e5 ⊕ e1e2e5e6 ⊕ e2e3e4e6 ⊕ e1e2e3e4e5 ⊕ e1e3e4e5e6
1 This means that the “Contracting Unbalanced Feistel cipher” structure of [19] is

altered. Having (exactly) one i s.t. D(i) = 0 is mandatory in [21, 22]. The effect of
this is that one bit of the left branch is removed, as shown on Fig. 2. Moreover for
so called KT1 class of keys [22, 21] and in most of the historical examples of keys in
[13] the bit which is removed is um,4j8 and it is used elsewhere, i.e. we must have
P (i) = 4j8 for a certain i.



1.3 How Encryption is Performed - Double One-Time Pad

From our iterated block cipher we extract just 1 bit per 127 rounds:

a1
def
= u127,α, then a2

def
= u254,α, where α ∈ {1 . . . 36} is a constant which is

a part of the long-term key and which is called d in [13]. Then we also use
u3·127,α, . . . , u1651,α and all these will be used to encrypt just one character of

the plaintext(!). More generally let ai
def
= u127i,α for any i. Out of these bits, for

every 13 bits we discard 3 and use 5+5 bits. Then the encryption is performed
as follows:

Cj = (Pj ⊕Bj) ·Mrj ,

where Pj/Cj is the plaintext/ciphertext character on 5 bits, respectively,
then Bj = (a7+13(j−1), . . . , a11+13(j−1)) are 5 consecutive bits out of the 13
previously discussed and rj is a “stepping” output which is derived from the
FIRST consecutive 5 bits out of the 13 as follows:

rj =

0 if Rj = (0, 0, 0, 0, 0)
0 if Rj = (1, 1, 1, 1, 1)
31− r if Rj ·Mr = (1, 1, 1, 1, 1)

where Rj
def
= (a1+13(j−1), . . . , a5+13(j−1)) and

M =


0 0 0 0 1
1 0 0 0 0
0 1 0 0 1
0 0 1 0 0
0 0 0 1 0

 , which is such that M31 = Id.

This selection of extremely few bits is where T-310 appears to be a par-
ticularly strong cipher, potentially stronger than most block ciphers used in
traditional ways such as CBC mode. This is an incredibly low quantity and the
cryptanalytic literature knows extremely few examples where the cipher would
actually be broken under such difficult circumstances. One major example is the
so-called “Dark Side Attack” on MiFare classic [7] one of the most widely used
cryptosystems on our planet, with approximately 2 billion RFID smart cards
sold. In this attack the attacker obtains only 4 bits from each encryption [7].
Here we can obtain only 1 bit per 127 rounds of encryption. The more rounds,
the harder it becomes to develop any sort of cryptographic attack.



2 Analysis of T-310

2.1 The Zero Value Attack on T-310

The Zero-Value attack is a well-known folklore2 attack in side channel crypt-
analysis. The key vulnerability is nicely summarized in the PhD thesis by Matthieu
Rivain [20], where we read that “multiplicative masking has a serious drawback:
it does not mask the zero value”. We have exactly the same problem here with
·Mr masking in the T-310. We recall the encryption formula from Section 1.3:

Cj = (Pj ⊕Bj) ·Mrj ,

Theorem 2.1.1 (Zero-Value Vulnerability in T-310 block cipher). If
Cj = 05 on 5 bits, then Pj = Bj regardless of what the Rj/rj values are.
The converse also holds: if Pj = Bj on 5 bits, then we must have Cj = 0.

Notes. This property shows that the “double” one-time pad of T-310 has a
security flaw, and shows it could become the equivalent of a “single” one-time
pad, if we restrict our attention to a subset of encrypted characters. Unhappily,
the designers of T-310 did well to make this sort of attack relatively unattractive:
following Section 1.3, the first bit of Bj comes from a7, which comes from round
7 ·127 = 889. Breaking T-310 with state bit(s) after 889 rounds seems ambitious.

2.2 Is the Round Function φ Bijective?

In theory, from a pure encryption point of view, nothing forces φ to be in-
vertible. Decryption, in the sense of computing the previous states of our T-310
generalized Feistel cipher variant, is not needed in the normal operation of the
cipher. However φ is bijective in any version of T-310 we have ever heard of.
The original documentation clearly says that it must be a bijection cf. pages 47
and 56 in [21]. It appears therefore that if φ is required to always be bijective,
this will be for security reasons, not for purely functional encryption reasons.
The question of whether different LZS will always make φ bijective in T-310 and
what happens in the contrary case is the central question in this article. Our
main result is that more or less every non-bijective LZS can be broken quite
badly cf. Table 2. Accordingly a secure setup of T-310 should come with a proof
that φ is always bijective cf. Section 5 and Section 7.

2.3 Vanishing Differential Attacks

One reason for φ to be bijective is that it prevents some very strong attacks on
block ciphers. Such attacks are very well known for example in mobile telephone
SIM cards. These attacks can be called by many different names such as vanishing
differentials, all-zero output difference attacks, or collision attacks. For example

2 It is typically attributed to Golic and Tymen cf. [20, 11] which proposed on solution
to the problem, which is not the only one known cf. [11].



in the last 20 years it was relatively easy3 to extract keys from SIM cards for
certain mobile phone operators, and these attacks exploit precisely vanishing
differentials cf. [1, 5]. In general, the question of avoiding such rather strong
differential properties is precisely the reason why we have many bijections in the
design of block ciphers and hash functions. For example S-boxes in SERPENT,
PRESENT, GOST [8, 10] and many other ciphers are permutations on 4 bits.
DES S-boxes can be viewed as four such permutations, cf. [2]. It is also well-
known that DES was designed to make all-zero differentials on 1 or 2 S-boxes
impossible, cf. [2, 3].

2.4 Passive and Active Attacks

A vanishing differential attack can definitely be a problem in T-310. However
this is not the attack we will study in this article. One reason for this is that in
the normal operation of T-310 the attacker does NOT have direct access to the
cipher’s internal state. It is difficult to detect if a collision takes place and it seems
only possible in active attack scenarios such as a chosen or related IV attacks,
which could also be seen as a form of self-similarity attacks [8]. With two identical
IVs in 2 encryptions, if two 36-bit states could be made to be identical, and if
the key bits are also aligned appropriately, this would generate two identical
keystream sequences later on. This could be detected by the attacker and leak
exploitable information about the (very few) keys bits which would appear in
the round in which the collision occurs.

In this article we do not study such attacks. Instead we would like to see if
there are stronger attacks, where the attacker is passive and does not have a
possibility to influence the random IVs used in each encryption. Moreover, we
assume that the attacker does not have access to the plaintext either. Our goal is
therefore to see if and how T-310 with a weak LZS, which leads to a non-bijective
φ, could be broken in a pure ciphertext-only scenario which is a very ambitious
goal4 which we aim to achieve in this article.

2.5 Weak Keys and the Space Shrinking Property

In this article we show that using a non-bijective φ typically has very strong
indirect consequences and leads to powerful correlation attacks. The starting
point is that each time φ is not a permutation, a certain amount of “shrinking”
occurs after a few rounds of encryption. The space with initially 236 elements

3 We and our students have extracted many different keys from SIM cards as recently
as in 2012 primarily from Chinese SIM cards, and we have also discovered that
certain European mobile operators still used COMP128v1 until 2012. The basic
attack was first outlined by Briceno-Goldberg-Wagner cf. [1], and in Section 13.1
slides 249-255 in [5]. Moreover there exist more efficient variants of this attack which
we have developed cf. slide 230 in [6]. These attacks do not concern SIM cards which
use more recent crypto algorithms.

4 It is quite difficult to break a cipher in the ciphertext-only setting. For example
ciphertext-only attacks on Enigma were shown to be possible only very recently,
more than half a century after the WW2 attacks which relied on cribs, cf. [16, 18].



will inevitably shrink, this is if the key and IV bits used in several consecutive
rounds are fixed.

In order to show this we have generated a number of non-standard long-term
keys for T-310 and also looked at some “anomalous” testing keys specified in [13].
For example we can follow the excessively complex recommendations of [21] for
the so-called KT2 keys, which document specifies not less than 40 very technical
conditions which these keys need to satisfy, cf. pages 59-60,114-115 and 117 in
[21]. Then we look at the very last condition specified on page 60 in [21], which
we call M9. What could possibly go wrong if we omit to verify just one of some
40 highly complex conditions? An example of such a key is key 206 below. We
call this sort of keys “Rank-Deficient” KT2 keys. As we will show below, this
will be sufficient for our cipher to be broken in a ciphertext-only attack scenario.
In Table 1 we present the results of computer simulations we have done to see
how the output space shrinks after 1, 4, 16 and 24 rounds of encryption φ for
different keys. In these results we ignore bits ⊆ 1-36 which are never used.

Table 1. Space shrinking simulations for different long-term keys.

key nb D P M
φ1

M
φ4

M
φ16

M
φ24

15 0,4,17,12,35,32,2,24,20 15,13,33,34,6,8,5,3,9,18,
14,22,28,30,21,31,7,25,26,
16,27,11,23,29,19,1,36

236.0 236.0 236.0 236.0

206 4,0,32,2,35,17,12,20,24 15,13,33,18,34,8,5,6,9,30,
22,14,16,3,21,31,7,25,26,
28,27,11,23,29,19,1,36

234.4 233.8 232.9 232.3

925 0,16,36,12,32,28,4,8,24 34,24,33,26,14,4,5,28,9,
32,12,18,36,16,21,15,8,25,
35,20,1,6,23,29,19,27,13

235.0 232.6 230.6 230.5

934 0,4,20,12,14,9,19,7,10 21,3,16,25,28,30,26,11,1,
5,6,32,36,29,24,2,23,33,
27,34,8,18,17,31,35,13,22

232.8 227.7 224.3 223.7

27 8,3,5,2,4,6,7,9,1 10,21,18,4,5,8,16,12,6,24,
2,7,3,25,17,26,9,14,22,1,
20,11,19,15,13,23,27

224.2 218.8 216.1 215.2

Keys 15 and 27 are historical keys from [13]. Key 934 was generated at
random mandating only that D,P should be bijective and that their outputs
should not overlap, and that D(i) = 0 for some i, which we consider to be a
minimal subset of rules of KT2 which do not have any obvious weakness.

An important observation is that the space shrinking is strong only for a
limited number of rounds. Accordingly we will not attempt to guess the state
after shrinking, instead we will look at correlations [or conditional biases].



2.6 Correlation Attacks vs. Weak Keys in T-310

The next step is to show that a moderate amount of space shrinking is sufficient
in order to obtain an attack on T-310. The main remark is that when the space
shrinks from 236 to say M elements, this set of elements is expected to behave as
a random set of elements of IF36

2 . And this fact alone, leads to the single bits of
type um,α which are used for encryption in T-310 to become almost inevitably
strongly biased, this is when both key and IV bits used are fixed. We illustrate
this in Table 2 which shows the average bias observed for a few different LZS.

Table 2. Simulations for φ16 which show the best and average observed bias β on
different Uα for 16 rounds of encryption and for a random choice of key/IV bits.

LZS Mφ16 αbest |P (Uαbest = 0)− 1/2| average(α∈{1− 36},keys)

206 232.9 12 2−14.8 2−15.5

934 224.3 23 2−10.5 2−12.9

27 216.1 9 2−8.4 2−9.4

925 230.6 25 2−5.4 2−8.4

We observe that the bias is quite substantial for any value of α and for any
weak key studied. Moreover in many cases we observed that it follows a simple
law O(

√
1/M) which is what we would expect for a random function with M

possible outputs. This is except for key 925 which is an outlier and a weak key
for which the bias substantially worse than

√
1/M .

2.7 Weak Keys and Conditional Correlations

More importantly, it appears that any non-bijective LZS and any α are vulner-
able. This is a bit counterintuitive. For example for one round, most of the time
we do not expect the output bits to be correlated to any key bits. In Table 3
below we present one example of a weak long-term key when this happens, but
in general this will be exceptional. Now in Table Table 2 we see that for φ16 it
looks rather like all non-bijective long-term keys are vulnerable and this is, more
or less, for any α with limited variations.

Table 3. Correlations for one particularly weak LZS where the bit S2 leaks to the
attacker directly after just 1 round.

LZS nb sum α Pr[Uα = sum]

925 s2+f 25 1/2+2−5.6

LZS nb s1 s2 f α Pr[uα = 0]

925 0 1 0 25 1/2 -2−5.0

The right hand table can be compared to Table 2. The linear approximation
in the left table suggests that the output will be biased for any choice of s1, s2, f
in this round, however the actual biases are variable and their signs depend on
the key/IV bits involved.



3 Useful Natural Language Statistics

Our ciphertext-only attack will rely on some basic facts about the bias on in-
dividual bits for German language plaintexts in a realistic teletype setting. For
example we look at bit I and observe that the probability of 0 is consistently
higher than 0.5. In the table below we report precise results on these probabilities
based on simulations with 750 Mbytes of German language corpus downloaded
from the online archives of Zeit magazine from 1980-2000, cf. www.zeit.de.

Table 4. Statistics for the bias on different bits which occur for German text with
5-bit Baudot-Murray ITA-2 encoding.

P (bit I = 0) P (bit II = 0) P (bit III = 0) P (bit IV = 0) P (bit V = 0)

1/2 + 2−2.32 1/2− 2−3.67 1/2 + 2−4.06 1/2− 2−3.89 1/2 + 2−2.27

These statistics were computed for plain text with letters and numbers, with
spaces and special characters removed, we have converted all letter to lowercase,
and we have converted the “umlaut” accented characters as follows: German ü
becomes ue, etc, while ß becomes ss. These statistics could be different in a real-
life attack setting due to special rules used by T-310 operators or for transmitting
files or documents of specific type.
Note. An extended table with 2 different character encodings can be found in
Section 18.1 page 56 of [14].



4 A Ciphertext-Only Correlation Attack on T-310

In this section we show how to combine the biases of φk output in Table 2 and
biases on the plaintext due to Table 4 and Thm. 2.1.1 in order to decrypt T-310
communications in the ciphertext-only scenario. Our correlation attack works as
follows:

1. We apply the Zero-Value attack of Thm. 2.1.1 and we exploit a proportion
of 2−5 of the available ciphertext data. We discard all of the other data.

2. We recall from Section 2.1 that if Cj = 05 we have Pj = Bj .
3. We can now express certain, but not all, bits of the plaintext as a function

of the internal state bits as
Pj,I−V = Bj,0−5

which equation holds for all ciphertext characters Cj = 0 we selected.
4. We can then approximate the 5 bits of Bj knowing that

Bj,0−5 = (a7+13(j−1), . . . , a11+13(j−1))

and all these bits are biased using Table 2.
5. We know the expected average value of the bias but we do not know the

sign of the bias. The sign of the bias depends on the values of the key and
IV bits preceding any of the (a7+13(j−1), . . . , a11+13(j−1)) which by definition
are equal to u127(7+13(j−1)),α, . . . , u127(11+13(j−1)),α. We know the IV bits at
any location, we just need to guess key bits at certain locations.

6. In our attack we are going to guess a window of say 48 keys bits for a window
of 24 consecutive rounds. The same window of 48 bits is repeated every 120
rounds, (with different IVs which are known to the attacker).

7. We will work on individual bits, and if we want to be able to know the
sign of a bias reported in Table 2, we need to know the 32 key bits for
16 rounds preceding the actual bit extracted which are um,α with m =
127(B + 13(j − 1)) with five possible B ∈ {7− 11}.

8. We assume that the attacker disposes of a pre-computed table which indi-
cates the sign σK,IV = +1 or −1 for the bias for any 32 key bits and any 16
bit IV for φ16s . This table requires only 1 Terabyte of storage (248 bits).

9. We have a window of 24 rounds where the key bits are known and it is
repeated with a period of 120 rounds. We consider that positions of type
m = 127(B + 13(j − 1)) span the interval 0− 119 uniformly at random. We
are interested in positions where key bits are known for at least 16 rounds
before m, i.e. the window m− 15, . . . ,m must fall within our window of 24
rounds. The probability of this is (24− 16)/120 ≈ 2−3.9.

10. Accordingly, the probability that any Bj,0−5 we want to compute, can be
approximated as a biased bit of type say 1/2− 2−5.8 with the sign known to
the attacker, is equal to 2−3.9.

11. In order to simplify our attack, we will only work on plaintext bits I and V
in Table 4 which both have a bias of approximately ±2−2.3. We need to pay
attention to the signs; let σI = +1 and σV = +1 for these two bits.

12. The attacker will now compute many biased bits which are all more likely
to be 0 than 1, and which combine the biases due to the plaintext and due
to φ16. Then he will count 0s and 1s and if the bias is sufficiently large he
will be able to confirm if his choice of 48 was correct.



13. The attacker assumes that Bj,0 = (1 + σK,IV )/2 which is true with proba-
bility of about 0.5 + β where β is a positive value from Table 2, for example
for LZS-16 we have β = 2−8. Similarly we have Bj,2 = (1 + σK,IV )/2 for a
different choice of 32 key bits and 16 IV bits which pertain to this position.

14. We know that Bj,0 = Pj,I and Bj,2 = Pj,V for all ciphertext positions with
Cj = 05 selected. The sequence of bits the attacker produces will be simply
all the (1 + σIσK,IV )/2 or (1 + σV σK,IV )/2 for all the cases considered. We
call these bits available to the attacker “the B − I set”.

15. We apply Matsui’s piling-up lemma [17] and we see that the overall bias for
our bits which are (1 + σIσK,IV )/2 or (1 + σV σK,IV )/2 is going to be equal
to γ = 2−2.3β.

16. In order to distinguish these biased distributions and have results which is
stronger than 8 standard deviations we need to generate about 82γ−2 ≈
216+4.6β−2 biased bits in “the B − I set”.

17. We need to work with 8 standard deviations exactly: we apply the Gauss
Error function cf. [10] which leads to a probability of 2−49.5 of a false positive
which is sufficient to confirm if our 48-bit key is correct.

18. We get 2 bits for our “the B−I set” when we have ciphertext character with
Cj = 05 which happens with probability 2−5 AND when simultaneously the
window of 32 bits needed is contained within our window of 48 bits which
happens with probability 2−3.9.

19. Therefore we need overall 216+4.6+3.9+5β−2/2 ≈ 228.5β−2 encrypted charac-
ters in order to recover 48 bits of the key in time which is approximately
248+28.5−5−3.9β−2 ≈ 268β−2. Here −5− 3.9 comes from the fact the we can
pre-select ciphertext bytes and m values for the attack independently of the
key depending on the window position.

20. Once we have a plausible candidate for 48 key bits, we can re-do the whole
attack with a different and preferably overlapping interval of 24 consecutive
rounds and 48 key bits. Making these intervals overlap with those where key
bits are already known makes that these extra steps will be substantially
faster and easier and their cost can be neglected.

Application using key 206: With our “Rank-Deficient” key 206, we have
β = 2−15 and the attacker can recover the full 240-bit encryption key in a time of
298 given about 259 characters of encrypted data in the ciphertext-only scenario.

Application using key 27: With the original key 27 which is an anomalous
key not recommended for encryption from [13], we have β = 2−8.0 typically and
the attacker can recover the full 240-bit encryption key in a time of 284 given
about 245 characters of encrypted data in the ciphertext-only scenario.

Better Attacks: An improved attack needs to be non-uniform: use more
ciphertext bits, and exploit the fact that for many windows we know the key for
more than 16 rounds. The number of key bits being guessed needs then to be
optimized.



5 A Security Proof For KT1 Keys

We provide a description of the key class KT1 following page 58 and Section 2.2
of Annex 1 on pages 114-115 and also Section 4.1 page 117 in [21]. An incomplete
(and therefore not quite correct) description which only included the conditions
from page 58 of [21] was published in [22].

(P,D, α) ∈ KT1⇔ all of the following hold:

D and P are injective
P (3) = 33, P (7) = 5, P (9) = 9, P (15) = 21, P (18) = 25, P (24) = 29
Let W = {5, 9, 21, 25, 29, 33}, ∀1≥i≥9 D(i) /∈W, α /∈W
Let T = ({0, 1, . . . , 12}\W ) ∩ ({P (1− 24)} ∪ {D(4− 9)} ∪ {α})
Let U = ({13, . . . , 36}\W ) ∩ ({P (26), P (27)} ∪ {D(1), D(2), D(3)})
|T\{P (25)}|+ |U\{P (25)}| ≤ 12
D(1) = 0
There exist {j1, j2, . . . , j7, j8} a permutation of {2, 3, . . . , 9} which

defines D(i) for every i ∈ {2, 3, . . . , 9} as follows:
D(j1) = 4, D(j2) = 4j1, D(j3) = 4j2, . . . , D(j8) = 4j7

P (20) = 4j8 (note: this value is not any of the D(i))

(D(5), D(6)) ∈ {8, 12, 16} × {20, 28, 32} ∪ {24, 28, 32} × {8, 12, 16}
P (6) = D(8) and P (13) = D(7)
P (27) 6= 0 mod 4
∀1≥l≥9∃1≥i≥26P (i) = 4 · l
D(3) ∈ {P (1), P (2), P (4), P (5)}
D(4) /∈ {P (14), P (16), P (17), P (19)}
{P (8), P (10), P (11), P (12)} ∩ {D(4), D(5), D(6)} = ∅

We will now show that these KT1 conditions imply that φ is a permutation.
Following Section 1.2 we re-write the equations for one encryption round which
will be numbered here (1-9) in the order of the 9 “fresh” outputs U1−9, and
knowing that D(1) = 0 for all KT1 keys [22, 13, 21].

U1 ⊕ s1 = U2 ⊕ uD(2) ⊕uP (27) (1)

U2 ⊕ uD(2) = U3 ⊕ uD(3) ⊕Z4(uP (21−26)) (2)

U3 ⊕ uD(3) = U4 ⊕ uD(4) ⊕uP (20) (3)

U4 ⊕ uD(4) = U5 ⊕ uD(5) ⊕Z3(uP (14−19))⊕ s2 (4)

U5 ⊕ uD(5) = U6 ⊕ uD(6) ⊕uP (13) (5)

U6 ⊕ uD(6) = U7 ⊕ uD(7) ⊕Z2(uP (7−12)) (6)

U7 ⊕ uD(7) = U8 ⊕ uD(8) ⊕uP (6) (7)

U8 ⊕ uD(8) = U9 ⊕ uD(9) ⊕Z1(s2, uP (1−5)) (8)

U9 ⊕ uD(9) = f (9)

We have the following result:

Theorem 5.0.1 (KT1 Invertibility Theorem). For every key in the class
KT1, as defined in Section 5, and for every 3 bits s1, s2, f the round function φ
is bijective and given the 36 outputs, the internal bits and the 9 input bits of
the form 4 · k which are the only bits which are modified, can be computed in
the order defined by the following sequence (written in a compact notation):



0 D1 P27 D9 D2 D7 P13 Z2 D6 D5 Z3 D4 Z4 D3 Z1 D8 P20

Proof: We need to recover 9 bits which are of type u4k. For the class KT1, cf.
Section 5, it is easy to see that inside these u4k we have 8 which are of type
uD(i) and one which is always uP (20). All the remaining 27 bits are known from
the start, cf. Fig. 2 above. Thus we only need to show how to compute uD(1−9)

and then uP (20) given the U1−9.

D1 We use the notation D1 in our compact notation to say that we know from
the start that uD(1) = s1.

P27 We have P (27) 6= 0 mod 4 for the KT1 keys, cf. Sec. 5, therefore we know
uP (27).

D2 The equation (1) can be used to compute uD(2) = U1 ⊕ s1 ⊕ U2 ⊕ uP (27).
D7 Then we use the fact that P (6) = D(8) in KT1 keys, cf. Sec. 5. Then equation

(7) becomes U7 ⊕ uD(7) = U8 and we can compute uD(7) = U7 ⊕ U8.
P13 We observe that for all KT1 keys P (13) = D(7), cf. Sec. 5.
D9 From equation (9) we get: uD(9) = U9 ⊕ f .

Fig. 4. A method for inverting φ which works for ANY key of type KT1.

Z2 Now we are going to show that we know all the inputs of Z2, which are
uP (7−12), which is not quite obvious. At this moment we have already ob-
tained 4 bits of the 10 planned, and there are only SIX bits of type u4∗k which
remain unknown. These are uD(3−6), uD(8) and uP (20). Now D(8) = P (6) cf.
Sec. 5.
In order to show that Z2(uP (7−12)) can be computed we need to show that:
{D(3 − 6), P (6), P (20)} ∩ {P (7 − 12)} = ∅. Moreover knowing that P is
injective, we can exclude 6,20 and we just need to show that: {D(3− 6)} ∩
{P (7− 12)} = ∅. Moreover, {D(3− 6)} only contains multiples of 4 and we
have P (7) = 5 and P (9) = 9 due to the W conditions in Sec. 5. It remains
to show that:



{D(3− 6)} ∩ {P (8), P (10− 12)} = ∅.
Now also following Sec. 5, we have D(3) ∈ {P (1), P (2), P (4), P (5)} and P
is injective, so we can exclude D(3) and it remains to show that:

{D(4− 6)} ∩ {P (8), P (10− 12)} = ∅
which is exactly the last KT1 condition in Sec. 5. This ends the proof that
Z2 is known.

D6 Now we compute D6 using equation (6): uD(6) = U6⊕U7⊕uD(7)⊕Z2(uP (7−12)).
D5 Then after D6 we use equation (5) to compute uD(5) as:

uD(5) = U5 ⊕ uD(6) ⊕ U6 ⊕ uP (13)

Z3 The inputs of Z3 are Z3(uP (14−19)).
At this moment there are only FOUR bits of type u4∗k which remain un-
known. These are uD(3−4), uD(8) and uP (20). Discarding two, P (20), P (6) due
to injectivity of P as before, we need to show that:
It remains to show that:

{D(3− 4)} ∩ {P (14− 19)} = ∅.
We have P (15) = 21 and P (18) = 25 due to the W conditions. and according
to the penultimate condition in Sec. 5, D(4) can be excluded because it says
precisely that D(4) /∈ {P (14), P (16), P (17), P (19)} and P (15) and P (18)
were already excluded as not being multiples of 4. It remains to show that:

D(3) /∈ {P (14), P (16), P (17), P (19)},
which is ensured by the injectivity of P and pre-penultimate condition in
Sec. 5, which says that D(3) ∈ {P (1), P (2), P (4), P (5)}.

D4 Now that the the D5 and Z3 steps are done, we use equation (4) to compute
uD(4) as:

uD(4) = U4 ⊕ U5 ⊕ uD(5) ⊕ Z3(uP (14−19))⊕ s2.

Z4 The next step is to compute Z4(uP (21−26)). Can this intersect with any of the
three remaining unknowns uD(3), uD(8), uP (20)? The intersection is empty as
D(8) = P (6) and D(3) ∈ {P (1), P (2), P (4), P (5)} and P injective makes
that none of these can intersect with P (21− 26).

D3 From Z4 and uD(2) we compute uD(3) using equation (2). We obtain uD(2) =
U2 ⊕ U3 ⊕ uD(3) ⊕ Z4(uP (21−26)).

Z1 This will enable the computation of Z1(s2, uP (1−5)). Can this intersect with
any of remaining unknowns uD(8), uP (20)? Again no, because D(8) = P (6)
and P is injective.

D8 From Z1 we can deduce uD(8) using equation (8) and we have: uD(8) =
U8 ⊕ f ⊕ Z1(s2, uP (1−5)).

P20 The last unknown is determined using equation (2): uP (20) = uD(3)⊕uD(4)⊕
U3 ⊕ U4.

This ends the proof that φ is bijective for any KT1 type key which is also a
security proof against both the “Vanishing Differentials” attacks cf. Section 2.3
and correlation attacks, as described in Section 4.



6 A Key Property of KT2 Keys and a Wider Class KT2b

In this article we define a new class of keys called KT2b which contains a small
subset of the excessively large and complex set of conditions for KT2 specified in
pages 59-60,114-115 and 117 in [21]. We are not aware of any attack or security
problem with any of the KT2b keys and in Thm. 7.0.1 we show that all KT2b
keys, and therefore also all KT2 keys, are immune to vanishing differentials and
secure against our ciphertext-only correlation attack.

(P,D, α) ∈ KT2b⇔ all of the following hold:

D and P are injective
P (3) = 33, P (7) = 5, P (9) = 9, P (15) = 21, P (18) = 25, P (24) = 29
Let W = {5, 9, 21, 25, 29, 33}, ∀1≥i≥9 D(i) /∈W, α /∈W
A = {D(1− 9)} ∪ {P (6), P (13), P (20), P (27)}
∀(i, j) ∈ {1, . . . , 27} × {1, . . . , 9} : Pi 6= Dj

∃j1 ∈ {1, . . . , 7} : Dj1 = 0
{D(8), D(9)} ⊂ {4, 8, . . . , 36} ⊂ A
the “Matrix rank = 9 condition” M9 defined in Section 6.1.

We will specify the M9 condition later, as initially it is not trivial that such
a matrix actually exists in the first place. We need the following result:

Lemma 6.0.1 (KT2b Separation Lemma). For every key which satisfies
the conditions in the class KT2b and ignoring the last M9 condition, the 4 non-
linear functions Z() inside the round function φ depend only on variables of I2−4

which are not modified by φ, i.e. the Z1−4() do not depend on any of the input
variables of type 4k in I1 ∪ {0}.

Proof: For every KT2b key we have:

{4, 8, . . . , 32, 36} ⊂ {D(1− 9);P (6), P (13), P (20), P (27)}

and all outputs of D and P are disjoint by definition in KT2b. This implies that
the inputs of 4 non-linear functions Z() cannot contain any of the {4, 8, . . . , 32, 36}.
Moreover in KT2b one of D(1 − 7) will be 0 (which is where uD(i) is replaced
by s1 in the definition of φ). Accordingly, u0 = s1 cannot be any of the inputs
of the Z() either, which are all either of the form uP (i) or s2.

6.1 The Statement of the M9 Condition

Now we can provide a statement of the “Matrix rank = 9 condition” as follows:

M9 :


The concrete values D(i)/P (j) inside the 1+9 formulas of Section 1.2 which
define the 9 “fresh” outputs {1, 5, . . . , 33} of φ a.k.a. U1−9 appear at such places
that all the 9 “fresh” outputs U1−9 of φ are sums of non-linear parts of type Z(.),
plus affine parts which involve various variables ui with i 6= 4k, plus an invertible
matrix B of rank 9 applied to the remaining 9 inputs {4, 8, . . . , 36}.



6.2 Computation of the Matrix B

We recall our compact description of φ from Section 1.2:

u0
def
= s1

U9 = uD(9) ⊕ f
U8 = uD(8) ⊕ U9 ⊕ uD(9) ⊕Z1(s2, uP (1−5))

U7 = uD(7) ⊕ U8 ⊕ uD(8) ⊕uP (6)

U6 = uD(6) ⊕ U7 ⊕ uD(7) ⊕Z2(uP (7−12))

U5 = uD(5) ⊕ U6 ⊕ uD(6) ⊕uP (13)

U4 = uD(4) ⊕ U5 ⊕ uD(5) ⊕Z3(uP (14−19))⊕ s2
U3 = uD(3) ⊕ U4 ⊕ uD(4) ⊕uP (20)

U2 = uD(2) ⊕ U3 ⊕ uD(3) ⊕Z4(uP (21−26))

U1 = uD(1) ⊕ U2 ⊕ uD(2) ⊕uP (27)

We are now ready to write the matrix B for any KT2b or/and any KT2 key, we
just need to discard all the Z() and all the numbers not in {4, 8, . . . , 32, 36} in
and we will a obtain a square 9× 9 matrix B = (bij). We then have:

U1

U2

U3

U4

U5

U6

U7

U8

U9


= B ·



u4
u8
u12
u16
u20
u24
u28
u32
u36


+ C where C

def
=



f
Z1(s2, uP (1−5))
uP (6) ⊕ . . .

Z2(uP (7−12))⊕ . . .
uP (13) ⊕ . . .

Z3(uP (14−19))⊕ s2 ⊕ . . .
uP (20) ⊕ . . .

Z4(uP (21−26))⊕ . . .
uP (27) ⊕ . . .


Here ⊕ . . . denotes some additional terms and will not occur in the first two
lines; they will only occur if some of the uD() in our equations of Section 1.2
reproduced above have terms which are not in {4, 8, . . . , 36}, in which case they
need to be added to C, with a replacement of u0 by s1 in one case.



7 A Security Proof For KT2 Keys

We have the following result:

Theorem 7.0.1 (KT2 and KT2b Invertibility Theorem). For every key
in the class KT2b, and therefore also for every KT2 key, and for every 3 bits
s1, s2, f the round function φ is bijective, and given the 36 outputs, the 9 input
bits of the form 4k, can be computed by solving a linear system of rank 9.

Proof: Again due to KT2 Separation Lemma 6.0.1, we know all of the values
in C and the matrix B is assumed to be invertible. Therefore we can do the
inversion simply as:



u4
u8
u12
u16
u20
u24
u28
u32
u36


= B−1·



U1

U2

U3

U4

U5

U6

U7

U8

U9


+B−1·C, where C

def
=



f
Z1(s2, uP (1−5))
uP (6) ⊕ . . .

Z2(uP (7−12))⊕ . . .
uP (13) ⊕ . . .

Z3(uP (14−19))⊕ s2 ⊕ . . .
uP (20) ⊕ . . .

Z4(uP (21−26))⊕ . . .
uP (27) ⊕ . . .


.

Remark: K2 vs. KT1: In KT1 we had a very different situation, many inputs
to Z() were not initially known. For KT2 keys the proof is substantially simpler
overall and uses extremely few of the conditions mandated for KT2 cf. [21].



8 Conclusion

T-310 is an important Cold War cipher. It is essentially a block cipher from which
we extract extremely few bits for the actual encryption. This property makes
that T-310 is substantially stronger than other ciphers from the same historical
period such as DES. The cryptanalytic literature knows extremely few examples
where a cipher could actually be broken under such difficult circumstances. In
one such example the attacker obtains only 4 bits from each encryption [7].
In T-310 bits from rounds as high as 1397 are used to encrypt just the first
character of the plaintext, which character will already depend on all 240 bits
of the key. Breaking T-310 in a completely general setting is very difficult5. The
T-310 encryption process has however a major flaw: the attacker can have access
to individual bits of the internal state due to a zero-attack cf. Section 2.1.

Our main result is to show how to recover the 240-bit key of T-310 in a
ciphertext-only attack, more or less each time the long-term key is such that
the round function is not bijective. It is extremely rare to see a ciphertext-only
attack on a real-life government cipher. This for example was not the case for
Enigma during WW2, and the first ciphertext-only attack on Enigma was found
only in 1995, cf. [16, 18]. A strong attack requires very serious steps to be taken
in order to avoid it. In this article we provide detailed mathematical proofs that
the historical recommendations for the KT1 and KT2 classes of key from 1970s
are provably secure against this type of attacks.

A crucial question in crypto history is, do the rules mandated by the designers
matter, and do they make the cipher secure? Our proofs provide valuable insights
into the excessively complex set of requirement for the long-term keys mandated
in 1970s for T-310 [21]. For KT1 keys we made use of most the rules. For KT2
keys we see very clearly that great majority of the rules are not required
for our security result to hold. One surprising result in this article is that it
is sufficient to omit just one of some 40 conditions from the original KT2
class recommendations in [21], to see the T-310 encryption become insecure (cf.
our attack for key 206). A weak LZS could also be a deliberate choice in a
chosen-LZS attack scenario. Overall in the case of key 206 we present an attack
with a time complexity of 298 and a data complexity of about 259 which allows
recovery of a 240-bit key in the ciphertext-only setting. The complexity is worse
for the historical key 27 from [13]: we obtain a time complexity of 284 and a data
complexity of 245 again to recover a 240-bit key in the ciphertext-only setting.

We believe that a secure symmetric encryption standard should have a robust
design. Robust could mean for example, that the security should not collapse
from 240 bits to less than 100 and in the ciphertext-only setting, if we omit-
ted to check just one highly technical condition inside an excessively complex
specification of KT2 keys.

5 According to [12], a security evaluation of T-310 was done by the BSI after the
German re-unification in 1990, and reportedly its conclusion was that T-310 is “ex-
tremely secure” [12].
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